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We obtain a closed expression for the response function for damped anharmonic vibrational modes
using the Feynman rule obtained through the nonequilibrium generating functional derived in our
previous papefPhys. Rev. E53, 214(1996]. The linear absorption spectra are explicitly calculated
through the Feynman diagrams for molecules with anharmonic potential in solution. The
dependence of the spectra both on the temperature and on the solvent nature can be taken into
account in our theory. The result is examined numerically for various dampings, anharmonicities,
and temperatures. @996 American Institute of PhysidsS0021-96006)52634-4

I. INTRODUCTION out the bath degrees of freedom by using the

. projection-operatdf or the path-integral techniques.
Recent progress of ultrafast nonlinear spectroscopy such “\wnether the projection-operator or the path-integral

as infrared(IR) spectroscopy or Raman spectroscopy alloWsyethod is used, it is quite common to derive the equations of
us to probe and characterize vibrational modes of moleculesy,qiion for the reduced density matrii.e. the master
These spectroscopies, including infrared photon éch&a- equatioR®2 or the quantum Fokker—Planck equaf®nin

hman iChdl’ and f'ffthl prder c;)ff-reSﬁnatfﬂ experiments, d order to calculate the physical observables numeriCally.
ave been successful in studying the homogeneous an e shortcomings of the reduced density matrix approach are

hom‘l(')r?eer;?é)cljt?o?wrig:ﬁer;f??r;gow:rfioherent Raman ex eri-as follows. First, the factorized initial conditioné.e.,
y Per — e~BHse~AHe) have to be assumed instead of the corre-

ments which contain only one time variable, such as th : (Mt Hat H . o
) 13 17 y ated onedi.e., p;=e AHsTHe*Hse)) Here,p, is the initial
optical Kerr effectd OKE) and the coherent anti-Stokes density matrix whereHg, Hg, andHgg are the system,

R i€SARS), "8 are physicall ival , , B .
aman SpectroscopieSARS), are physically equivalent bath, and interaction Hamiltonians, respectively. Second, the

to the linear absorption experiment with infrared laser. These

vibrational line shapes in solution contain the details of themteractmn between the system and the bath has to be bilin-

interactions of normal modes with their environment. In or- 2" for the practical calculatioi. Third, either a high tem-

der to explain the wide range of behaviors that have beeRerature Ohmic d'ss'pat'\_/e batla white noise bathor a .
observed experimentally, one can use a Brownian oscillatof'€3k System—bath coupling has to be assumed. The white
model that consists of primary modes and other environmen10iS€ @ssumption leads to the quantum master equation or
tal (the bath modes®!9-21 The OKE, CARS or linear ab- the q.uantum Fokker—PIanck equation, V\{hereas the weak
sorption spectroscopy with the infrared laser is, then, relate§OUPIiNG assumption leads to the generalized master equa-
to the two-time autocorrelation functiog@(t)Q(t')) of the t|on: Due to the;e assumptlons, however, the equatlo-n of
primary nuclear coordinat® in the quantum Brownian Motion approach is not applicable to a system coupled with a
theory. Due to the assumption of the harmonic potential fol0W temperature or non-Ohmic dissipative bath non-
nuclear degrees of freedom we are able to obtain a closdfarkovian bath with a strong system-bath interaction, al-
expression for the spectrufiThe technique developed in the though some improvement has been dafe example,
harmonic case can be applied to the intermolecular spectrur‘ﬁefs- 33-3h

of liquid such as wate??=* Though the assumption of the The nonequilibrium generating functional for the corre-
harmonic potential is reasonable for a number of realistidation functions can be systematically calculated by use of
systems, there are still many exceptions. For example, th&e path integral. This approach through the generating func-
low frequency intermolecular modes of water are found totional is especially powerful for the harmonic system. As
have fairly large anharmoniciﬁ?.One of the purposes of this mentioned before, one can derive a closed form expression
paper is to provide foundations for studying the anharmonicfor the nuclear response function to an arbitrary order in the
ity for such systems. electric field for nuclear motions in the harmonic c&s@.

The full quantum treatment of anharmonicity in the pres- ~ Recently, the authors derived a nonequilibrium generat-
ence of the heat bath poses some difficult problems. Quaring functional in a more general form and developed the
tum vibrational transitions, in the absence of environmenfeynman rule from the generating functioAaBy this rule
modes, can be studied by a wide variety of numerical methwe can systematically study the effects of anharmonicities of
ods based on the wave functi®hWhen environment modes the potentialsboth for molecules and the bath oscillators
are important, these methods are not practical since the calsolven}] as well as the effects of nonbilinear molecular—
culation requires the incorporation of many degrees of freesolvent couplingén the presence of the bilinear systebath
dom (the bath. In such a case, it is convenient to integratecoupling This work can be regarded as an extension of the

7294 J. Chem. Phys. 105 (17), 1 November 1996 0021-9606/96/105(17)/7294/16/$10.00 © 1996 American Institute of Physics



K. Okumura and Y. Tanimura: Vibrational spectroscopy in solution 7295

work by Fukudaet al®® They dealt with a case of a nonbi- where E(t) is the classical electronic field and(Q) the
linear system—bath couplinigp the absence of the bilinear dipole moment. Note that the present formulation applies
systembath couplingand gave the microscopic expressionalso to experiments which use off-resonant laser pulses. In
for the damping constant through their Feynman rule. If ondhis case, we should replace theg(Q)E(t) coupling by
wants to take into account the bilinear coupling by usingE?(t)a(Q), where «(Q) is the electronic polarizabil-
their rule, one has to deal with it by a perturbative expansiority.51929
in the coupling constant. The molecular system is assumed to be coupled to the
Compared with the equation of motion approach, thesolvent(bath degrees of freedom. We assume that these are
present approach has the following advantages. First, we catescribed by a set of oscillators:

incorporate the initial correlation between the system and the N 2 2
bath, namely we can start from=e*/’(HS*HB*HSB). Sec- Hg= (p_,+ m; @i 0| +Va(q). 2.3
ond, the system—bath coupling is not necessary to be bilinear =1 \2m, 2

n the prachcz_al_ calculatlon, though, in this paper, we OnlyHere,VB(q) is the anharmonicity of the bath oscillators. The
discuss the bilinear coupling case, where we can treat thﬁ’lolecular system interacts with the oscillators:

system—bath interaction exactly. Third we can obtain the

correlation functiongwhich is valid for the low temperature

by taking into account the memory effects of the noise pro- Hsg(d,Q)= —21 CidiQ+Vse(0,Q), (2.4

duced from the non-Ohmic heat bath. Fourth, with the help

of the graph rule, we can examine the effects of the anhawhere Vsg(q,Q) is the nonbilinear molecular—solvent

monicity of the system or the heat—bath potential. coupling®® In order to describe dissipation from the molecu-
In this paper, we present an explicit form for the two- lar system the numbeé of the bath degrees of freedom will

time correlation function which enables us to calculatebe taken to an infinity. The total Hamiltonid#(t) govern-

physical observables such as the linear absorption spectrurig the time evolution of the density matrix in the scheme

This is obtained through the Feynman rule deduced from thased on the coupled Maxwell-Liouville equati¢fhis now

nonequilibrium generating functional derived in our previous€xpressed as

paper. Here, we take intp account. Fhe anharmonicity of the He(t)=H+Hg,(1), (2.5

system potential assuming the bilinear system—bath cou-

pling, while analysis for the anharmonic oscillator bath orwhere

nonpilinear couplipg are left for future stydy. We calculated | — H§+ Hg+Hsg. (2.6)

the linear absorption spectrum and obtain modestly compact

expressions through the diagraffsys. (4.8)—(4.19 below] In order to compensate for the renormalization of the system

for an arbitrary spectral density of the heat bath. As an illusfotential due to the coupling to the batkee, for example,

tration, the result is further analyzed in the representativéRefs. 41 and 42 we have introduced the counter term: the

case of Ohmic dissipatiofEgs. (5.8—(5.12) below]. The renormalized system Hamiltoniaﬁg is the system Hamil-

numerical results are also given for various parameters in th®nianHs with the frequency of the potentiél® replaced by
Ohmic case. Q2%+ A02? where the frequency shifdQ? is given by

3.2 (mw?).

The physical observable in optical experiments is the
polarizationP(t) or the expectation value of the dipole mo-
ment:

. . PO=(r(Q)=Tp(t)u(Q)], 2.7
Consider a molecular system whose electronic ground ) ] . .
state is described by a single primary coordin@tend its ~ Wherep(t) is the density matrix at the observed timnéf we

N

Il. THE GENERAL SYSTEM AND THE LINEAR
ABSORPTION SPECTRUM

conjugate momentur: assume the total system is initially=€ 0) in the equilibrium
, ) state at the temperatureBl/p(t) is given by
P MQ
Hs=5p + 5 Q7+ Vs(Q). (2. p(1)=K(t)piK(1), 2.8

) i where the initial distributionp, is given by the following
Here, () is of order of the frequency of the molecular vibra- yensity matrix since the electric field is initially set to zero;
tional modes in question andg(Q) stands for the anharmo-

nicity =~ of  the  molecular  potential U(Q) pi=e PTre A1, 2.9

— 2M2 P ;
[=MO°Q%2+Vs(Q)]. We consider infrared measurements the ime evolution operator for the total Hamiltonian
conducted with laser fields far below any electronic transi (t) is defined as

. . . T
tion. Thus, all the electronic excited states can be neglected
unless we consider the case of considerably high tempera-
ture. The interaction between laser fields and the molecular
system is expressed as

i t
Kp(t)=T exp( - %—Jodt’HT(t’)), (2.10

where T is the time ordering operator. It has been shown that
Hg ()= — u(Q)E(t), (2.2 the quantity such aB(t) can be estimated systematically by
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using the Feynman rule on the unified time pHttn this
paper we focus on the calculation of the first ordeE(i) of
P(t) to obtain the linear absorption spectrurtw) as shown
below.

The first order of the polarizatioR(*)(t) is given by

P<1>(t)=f dt’E(t")SV(t—t). (2.11
The correlation functior5¥)(t) independent of(t) is de-
fined as

S0 = 6() 7 (T A(QK (D m(QK(~t)py ] c.c),
2.12

where c.c. stands for the complex conjugate and the time

evolution operator with zero electric field(t) is given by
K(t)=K(t)|gy—o=e "M A, (213

The linear absorption spectrum(w) is then expressed by
the Laplace transform d)(t) as

o(w)=Im[SY(z=—iw)], (2.14
where
gl)(z)::%’z[s(l)(t)]zfwdt e 2s(t). (2.15
0

Ill. THE FEYNMAN RULE FOR AN ANHARMONIC
POTENTIAL
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FIG. 1. The unified time-pattC=C,;+C,+C; on the complext plane
(T—). It starts from the origin up to an infinity along the real path
(C,), returns to the origin@,), and then goes te i 87 along the imaginary
axis (Cj).

0c(t,t") takes the value unity if the timeappears later than

t’ along the unified time path when we follow the direction
of the arrow; otherwisé(t,t’') is zero. Thes function on

C is also defined accordingff.If the system is in the equi-
librium state or the ground state, only one component of the
time path C; for the equilibrium case an@, for the zero-
temperature cageontributes to the calculation, while in the

We assume the following form of anharmonicity of the present nonequilibrium case the three componéntsC.,,
molecular potential and that of non-Condon dipole momentand C3 take part in it. Accordingly, in our case, many kinds

VHQ)= o Q%+ 310, @1

#(Q)= ot p1Q, (3.2
while Vg(q) =Vsg(q,Q)=0. In this cases})(t) is given by

i . .
SPO=0(t) i 5 (T pe!" HQe” W HQ]—c.c).
(3.3
The generating functionalV,=W(J,,J,,J3) is introduced
by

i
er Wo="Tr

1 (8h
TTGX% _%fo dT[H—J3(T)Q])

i (o T
X[T exp( - %L dt[H—JZ(t)Q]”
i 0
XT exp( - gjo dt[H—Jl(t)Q]”

=Tr T¢ ex;{—;—fcdt[H—J(t)Q]), (3.9

of propagatorswhich connect different time-path compo-
nents, sayC,;— Cj, in addition to the same components, say
C,—C;) appear in the Feynman rule as we see below. On
the other hand, in the case of the equilibrium system and the
zero-temperature system, only one kind of propagator ap-
pears in the calculation which connects the same components
(C3—C53 andC;—C4, respectively.

The correlation function is obtained as the derivative of
the generating functiona/; :

S(l)(t)z 0(t),u,2< 52WJ _ 52WJ
1 931(t)331(0)  93,(1)335(0)

)Jl—Jz—Js—O
o2 3?W,
=08 33093 0)
. 9*W, )
a3 OITN0) g1y o’
whereJ(), J(7) are defined by
J1(1) +3,(1)
2 1

The derivatives with respect toJ{, J,, J3) pull out

Ity = JN()=3,() = J(t). (35

where T is the time ordering operator on the unified time (Q;,— Q», Q3), respectively, while those with respect to

path C and [ dt implies the integration on the pailsee
Fig. 1). The step function onC is naturally defined:

(3, 35, 3g) pull out (Q1—Q,, (Q1+Q2)/2, Qa), re-
spectively. Her&; implies the operato® on C; .
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By changing variables
(I, 3] 3,), we may decrease the number of the Feyn-
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from Jg¢, J,, J3) to

0. - -a-

The system propagator D(®)

man diagrams: we would have nine kinds of propagators
DD (i, j=1,2,3)] instead of the four D), D),

D3, D®3) in Eq. (3.6

As shown in Appendix A, we have the following general

below.

The Bath propagatorD©®¥ :  -----

formula for an arbitrary functionat’[ (™), (™), 03] where

oM, o)) and ¢

correspond

to the quantities

Q;—Q,,(Q;+Q,)/2, andQ; , respectively’? in which Q; . s B
implies the operato® on C; again,

(o ko9 d

T T 2,

[
=e7e 7 Lo, o7

where

17 J
do  Jdo¢

i
ﬁWJL]:O

1()03] eV[cp]l

The bilinear vertex: = =----- -—=c-

FIG. 2. The bare propagators and the bilinear vertices.

o= 0.conns (3.6) If oxeLemen: - - contains even number @f's, this expres-

sion reduces to the summation of the product of the propa-
gators as follows:

D Dun: - +DguDin: -+ -

Otherwise the expression is zero since we put0 at the
end. This process exactly coincides with making the Feyn-

o 0 a a
— (7+) . . . . .
fo dtfO ds—&q)(_)(t) D (t,s) —3QD(+)(S) man diagram by taking the Wick contraction from the given

fdtf ds
Bh
f dtf dT
Bh Bh
+—f drf dr’
2Jo 0

and

Viel=— 1 | atvee o)

1 (B
— V(= ()24 ¢ (1) ] gfo d7Vs(e3(7)).

d3(7)

>(t)

><t)

D )(t,s)

DIt ——

vertices, external lines, and propagattsse Fig. 3 beloyw
P D®3 is the Matsubara Green function, or the propagator
(9(—)() connecting the imaginary time path componefg—Cs,.
D) or D7) is a linear combination of the propagators
9 on the real time pat®? andD?? which connect the com-
Toa(7) ponentsC; — C; andC,— C,, respectivelyD(~%) is the only
propagator mixing the real and imaginary time pdthwe
adopt the original (1,2, 3)-representation instead of

3(r, T,)&pg(r’) (8.7 (+,—, 3)-representation, we have other mixing propagators

such asD®*® andD(?3) ]

(3.9

Here, the subscript conn. implies that we keep only con- +

nected graphs. The Feynman rule is clear from this formula:
propagators are given iy{™[I,m=(+,—, 3)] and vertices ’ - ‘ -
are determined byW[¢] while ("), ¢(7) @s] corre-

sponds to the external points. This can be seen as follows.

For the moment, we employ a simple notation in which D+
DUM(t,s) is denoted byD,; implying | = (I,t), J=(m,s) for

simplicity. Sincec” andV in Eq. (3.6) are given as a poly- _ -

nomial of ¢,,¢;,- -, the quantity’” e’ can also be ex- D&
pressed as a polynomial by expandaYgin terms ofV. Then

the expressions needed for the calculation of the right-hand - D3

side of Eq.(3.6) (perturbatively inV) typically take the fol-

lowing form: 3 D)

d . . . ,
ex E Diy=— | exeLomen: - - | -0 FIG. 3. Diagrammatic expressions for the Feynman rule: vertices and propa-
N 3GD| dpy ¢ gators.
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These propagators are correlation functions for the bilinbath and bilinear verticegsee Fig. 2 in addition to the
early coupled system. If we introduce the cumulant part ofanharmonic or nonbilinear vertices. The bare propagators are
the auto-correlation functio@(t+ir) for 0< < p# denoted aD (" where theD(9? is the bare system propa-

- , (o) he bare bath propagators. That is

Clt+ir = t+i N 3.9 gator and; (|¢O)arete propag . ,

(1) =(QQUHIT))biinear 39 the right- hand side of E3.6) originally takes the following

and call the real and imaginary paBtand A, respectively  form (with suppression of thé,J indices
(C=S+iA), then the propagators are expressed as follows:

N
(-3) - i 3 - d -

DUt n)=C(t+im), (3.10 exp(zo aT;-D(O)Ia_(p) e, 07 eslexp VI ei]),
D 7)(t,5)=S(t—s), (3.11) ' '
D= *)(t,5)= —2i O(t—S)A(t—S) (3.12 where V[ ¢;] contains the bilinear vertex in addition to the

’ ' vertices due to the anharmonicity and nonbilinearlity. The
D®(r,7)=0(r—7)C(it—i7") correction originating from the bilinear vertices is not in-

+ o7 =) C(ir —i7). (3.13 cluded in the system propagators at all in the above expres-

sion. The corrections are, however, always made to the sys-
The bilinearly corrected propagatdd$'™ which completely tem propagator and thus the bilinear coupling correction is
take into account the general bilinear system-bath couplindully taken into account. Namely, the system propagators
(see Ref. 39 have been derived in Ref. 37. Originally the with the full correction of the bilinear bath is graphically
formula (3.6) or the corresponding Feynman rule is written expressed agwith suppression of thelin) indices in the

in terms of the bare propagataif both the system and the diagrams

T B (B, (314

where the broken lines denote the bare propagators and the

z
black dots the bilinear vertices. In the specific case of the D (2)=— ah 72— 2lF(@=F()l, (3.20
bilinear coupling[the first term in Eq.(2.4],* D™ are ¥ n
explicitly given b
plicitly g y D(-I(z)= (3.2
dz D®3(z)=hF(vy), 3.2
D<—+>(t,0)=f —e?'D"M)(2), (3.15 (2) (7n) (3.2
CZZ’]TI
with
dz
D<">(t,0):f ——[6()e*+ o(—t)e 2D ) (2),
C227T| 1 1 1
3.1 = ————————— .
(10 FOO= TSV o0 - M aZdiatg” 23
1 dz 1 1 1 1
D3, 1) =— e'Van e?D"%(z), (3.1 - -
(t,7) nzw 2 | (z), 3.1 f(x) M 021 AQZ 2" fi(x)= —2+—X2, (3.29
- N
D(33(7_ 0)= — lBﬁ eiV”TD(Sa)(Z), (31& ’y(X)— AQZ 2 Cizfi(X) , (325)
e
2n (3.26
Vn=—77 . .
where " ph

5 Here the contou€C, on the complex plane runs parallel to
D (2)= ~F(2), (3.19 the imaginary axis where the real part of_the path is chosen
| such that there are no poles on the left side of the path.
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We notice here that the characteristic functifx) for , 1 (=do 2
the bilinearly corrected propagator reflects the structure AQ M 07'((());,
shown in Eq.(3.14): f(x) is the characteristic function for

g]rte);gs;etg: bare propagator i) Is that for the bath bare in order to compensate for the coupling-induced re-

Once we use the bilinearly corrected propagators, Wé‘lormallzatlon of the potential. Then the classical equation of

have to neglect the bilinear vertices altogether since it |§T]Ot'0n forQ has the friction term proportional to the veloc-

taken into account already. In addition, since we do not as!

sume the bath anharmonicity and the nonbilinear system— ) e

bath coupling, we can omit the bare bath propagators, too. In fodt y(t=t)Q(").

this way we obtain Eq.3.6), which is expressed only

through the propagators and vertices of the system: no propdhe Laplace transform of the damping kerngt) is nothing

gators and vertices of the bath appear. but () appearing in Eq(3.29. By use ofl (), this can be

In our theory all the bath parameters (m;,w;) appear rewritten as
only through the auxiliary functiorr(x). In what follows, <dew |(w
we follow the conventional argumeni$or example, see y(z)——f 2+z
Refs. 41 and 4Rto clarify our points. In the above expres- @
sion for F(x), we rewrite the summation into the integral Thus, in our propagator, all the bilinear bath effect is com-
form as pletely contained through this damping kernel.

" If we assume the Ohmic dissipation{w)=M yw,

2w we obtain y(t)=+y8(t). In this case y(x) in Eq.
2 cfi(2)= f _|( w) 772 (3279 (3.23 or (3.29 is replaced by a constang and F(v,)

in Egs. (3.19—(3.22 by F(|v,).*® Here, |x| is the
absolute value ofx. In the case of a memory damping
kernel, sayy(t)=ywpe “o' (Durde model, y(x) is re-
placed by

where the spectral distribution functidfw), which charac-
terizes the solvent nature, is defined by

2 Y®p
(J)D+ X '

(w)= wE

2m o w— wj). (3.28 y(x)=

The Durde model approaches the Ohmic model
We may considef(w) as a continuous function @b since aswp—o°.

we tacitly assumé&l—« to realize the dissipation. We intro- In our special case of the cubic and quadratic interac-
duced the counter terrMAQ?Q?/2 to the Hamiltonian in tions (anharmonicity the vertex partV[¢] in Eq. (3.6) is
Eq. (2.6) where given as follows:

%w( P 0+ 20

Viel=- 5 [ dt(gs[ <+><t>]3+%<p<“<t>[<p<-><t>]2) SRCE

16 (g g
——fo dr(3—f[¢3<r>13+4—‘!‘[¢3<r>]4), (329

B~

whereg;=gs/4 andg,=g,/4. For any polynomial interac- linear optical processgsan always be cast into the form of
tion, a vertex contains an odd numbergdf”), which is clear  EQ. (3.6), they can also be estimated systematically by our
from the expressioV(¢( M2+ ()= V(- o(*)/2+ (")) ~ Feynman rule.

in Eqg. (3.8). The graphical elements for our Feynman rule \, AN ANALYTICAL EXPRESSION FOR THE LINEAR

are given in Fig. 3. The rule is more closely explained in theABSORPTION SPECTRUM THROUGH THE
next section. FEYNMAN DIAGRAM

Since higher order correlation functions required for cal- By using the above Feynman rule we have the diagram-
culation of higher order polarizatioftorresponding to non- matic expansion o81)(t):

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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S(E) = 0(0)EePE 1 [P (0) + D (1) (0)] 7] -1

B =p(—)==0,conn.

-+ - +
A s () ( > 8 8
+ U + 3 33 + -
— == =7 — =
- + p— —_
+— +/— H- ++— +/[— \- ++_”. (4.2)
~—% ~—%

All the graphs up to the order @ for g;~g,~g are pre- (1, 2, 3-representation. In this way we confirm that only one
sented in the above. Let us illustrate the Feynman diagrandiagram appears from the first order calculation.

more closely by considering an example: the first order con-  In a similar manner we can construct the diagrams start-
tribution [the second graph in diagrafd.2)]. The first order ing from the given vertices, external points, and propagators.
correction term should be made up of two external pointsThen the corresponding analytical expression to the diagram
— and + and one of the three 4-point vertices given in Fig.is obtained from the following rule.

3. The graphs with a single 3-point vertex need not be con;
sidered, since such graphs always have an uncontracted
(which should be set to zerand their contributions vanish.
First consider thep! ™[ (7)]° vertex (depicted in the lower
center in Fig. 3 as the 4-point vertex to be contracted with
the two external points. Considering that the peintlways
has to be contracted with the poirt (see Fig. 3:D(" %),
D(*3) etc., do not exist in the ruleand thatD(~ ") is non-
zero only fort>0, we obtain the second diagram Whose(z)
analytical expression is given by

(1) In one specific way(as you likg, assignn labels
ti,to, ...ty andn’ labelsts,ts, . .. ,tn, to all the ver-
tices (internal point$ and external points, respectively,
wheren is the total number of the vertices and is that
of external points. In our case of tH&Y) the external
points is always two on’=2 (while we sett;=t and
=0 in the abovg

Associate a propagat®(™(t,t") with each line whose
ends carry indicesl(m) and the time indicest(t’)

where |, m=+,—,3. Factors —igs/t, —igslf,
I 1(—ig4) (= _ —ig4lh, —ig4lh, —g3/h, and—g,/% are assigned to
2. = PN (=) 4 g1 g4/, —194/0, —Qgsih, 94 g
0n1y 2( )fo drDT L) the vertices corresponding the(")1%, oM e(7)7?,
e ety e, o1, [93]% [ 3]*, respectively.
XDV (L, t)D(t,0). (4.3 (3) Associate the symmetry factor 1/S with the diagram.
The symmetry factor 1/2 is easily understood if we considef4) Integrate the product of all factors in rulé®)—(3) over
that this is coming from the following expression: the internal timety,t;, ... t,.
PR The symmetry numbe® is an integer easily obtained from
o(t)uf e7s° 7% FP(*)(UQDH)(O) the symmetric property of the graph while we can always
obtain the factor by looking at the original expression like
SiQa) (% Eq. (4.4).
X\ 31 ] ], AU W) Flo-ocom. (4.4 The analytical expression for the third term is, for ex-

ample, given by
The other two 4-point vertices in Fig. 8except (")
X[ ¢(71%) do not contribute in this expression, since propa-
gators likeD**) and D(**® do not exist in our rule. The —igs
absence oD**) andD(*?® in our rule (Fig. 3 decreases 0(1 )'u’lh( ) j dt,f dt'D (L)
the number of diagrams in general. This is one of the advan-
tages of the(+,—, 3)-representation instead of the original xDC 2t tD P, t")DC P(t”,0). (4.5
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Noting, for example, that the Laplace transform of Eq.

7301

—_ | B
(4.5 is given by sP(2)=uizDc (2 (4.8
i - _ _ _
6(t)uiz D P(2)25(2)D 7 (2), (4.6) DS (=D "(2)+D" (2)2(2)D" () + -
4.9
where
5= %) s oo, @3 = - (4.19
A - 5 =Lz ’ ’ ’ . [D(—+)(Z)]—1_E(Z)’ .
the Laplace transform of the two-time correlation function
SM(t) [Eq. (2.12] is then expressed as where
3 3 - -
by = _ -
(2) _O_ + 3@3 + / + 3 3 + + _
t — — - — _ —
t t t t
—_ + P —
+ L, t@o + t@o + t@o + - (4.11)
= 4 = 4
|
All the graphs appearing i (z) up to the second order 1 igﬁ 2 o o
in g are presented on the right-hand side of E4.11). 205(t)=§ 7 D¢ )(O,O)J dt’
Though the second and the third graphs on the right-hand 0
side of Eqg.(4.11) explicitly depend ort, the sum of the two XD H(t,t)DC (t,t), (4.16

graphs is independent of The sum of the fourth and fifth

graphs also becomes a constant. These properties are g¥spectively. The graphs in the bracket @f are expressed
pected to be general and actually proved in Appendix B byyg

not assuming Ohmic damping.
The final expression for the linear_absorption is then

given by o(w)=1m[SV)(z=—iw)] with SP(z) given in

the above. Explicit analytical expressions corresponding to

the Feynman diagrams are given as follows. The first five

graphs on the right-hand side of E4.11) are given by

201=—;L—%D(")(0,0), (4.12
L B EY R A 53
S al1) 2( ﬁ) D (O’O)L drD3(t,7), (4.13
H 2
Eog(t):%(—'%) D<">(o,0)ftdt’DH)(t,t'), (4.14
0
1 [ igs)? B .
Sodt)=5 5| ~ 5| DP(0,0 | dr D2t

(4.19

i\2

EA(t)=(—;,L—> 93D M(t,00D"(t,0), (4.1
o

set=| - ;| %o w0 @18
. 2 2

Ec(t):(—%) %D(’*)(t,O)[D(”>(t,O)]2. (4.19

The physical interpretation of Eq§4.9) or (4.10 goes
as follows. For the harmonic system, between the two exter-
nal points (-, +) runs a single propagat@(~*) which has
a fundamental resonance around at the ené@y(if the
damping is weak Due to the anharmonicity, the mass op-
erator (z) appears between—(,+). The z-dependent part
of 3(z) causes the other resonances while the
z-independent part makes the shift of the resonances. In
other words, the particlésystem dressed with the heat bath
undergoes the interaction with the dressed partisjstem
and thus with the thermal bath again and again due to the
anharmonicity.
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V. ANALYTICAL RESULTS FOR THE OHMIC where

DAMPING YEGE M203
In order to clarify the physical interpretation given in the 93="1\/ 7 O3, Q4= 7 9. (5.3

above, here we consider the representative case of the Ohmic

damping. An analytical expression for the linear absorptionPimensionless propagators and self energy are introduced as

spectrumo(w) in this case will be presented in this section. A1 ~

The series expansion &f(z) up to the second order m[all DM (z)= T WD("“)(Z) [, m=(+,—,3] (5.9

the graphs on the right-hand side of E4.11)] is fully in-

cluded in the calculation. The detailed calculations are give@nd

in Appendix B. Though we truncate the series expansion of i -

3(z), an infinite series ing is partially included in 3(2)= gMQZE(Z ), (5.9

D{ ™)(2) or o(w), as clearly seen from E¢4.9). Indeed the _ _ _ _ _

result (5.8 below containsgs and g, in nonperturbative rgspecuvely. The dimensionless absorption spectrum is then

ways. The system bath couplirg or y is treated exactly 9iven by[see Eq(4.8)]

since we use the bilinearly corrected propagators as men- 5(z)=Im[D""(Z)]5-_ iz, @=w/Q (5.6)

tioned in Sec. Ill.

— : P 2 2
We introduce dimensionless quantiti¥s besides the trivial factop/(M Q7).

In the following, we omit tildes for dimensionless quan-
tities introduced in the above if it causes no ambiguity. By

o~ _ _ ~ noting the dimensionless expression BY *)(z)
Q=\yg Q@ =9z y=Qy prO=. (] L L
. D-H(z)= . = , (5.7)
Then the molecular Hamiltonian takes the form 1+z°4+zy  (z+N)(zZ+Ny)
we have the following analytical result:
H ﬁQ( 1&2+162+1”53+1”54> 1
=hQ| =5 =5+ 5 Q*+ 57 GQ°+ 7 0 =
s 29Q2 2 3198 74194 o(w)=Im DD -S@) (5.9
=#0Hs, (5.2  where
|
S(2)= — guA+ g2A+ g2A| (B— —o | Gyl = — Z)1cy| - L +g§ ! ., G
(2)==GATGATGA B 1671 Col o, 75 T2 o, ) [T ac 27|~ zoon, T zron,
. 93 1 1+2C;C, . c? ) C2
32g2 (Z+3)\1)(Z+3)\2) (Z+ 'y+)\1)(z+ ’y+)\2) (Z+3)\1)(Z+ ’y+)\1) (Z+3)\2)(Z+ ’y+)\2)
- A i A C C
+29§E n +% n 1 _ 2
n=1 (Zt vt N )(Z+H vyt Ny) 2051 2+ y+w,\Z+ 2N+ v, Z+ 2N+ v,
+2¢32, 2 e (5.9

A=1m=1 (Z+ Nt vptvg)(Z+ A+t

Here, we have introduced the following dimensionless parameters:

2 .
N Y. Y _ 1PN
g— 1—7, )\1—§+|§, 7\2—§—|§, Cj—COthT, (51@

A= ! i ! + ! B= i An (5.11)
_,8 n=1 (vptN)(vpthy) 2] _n:l(Vn"')\l)(Vn"')\Z)’ ’
1 1
A — YVn YVn - (5.12

"B (at A) (It A) (e A (7= N2) B (14 12)%— 12y?
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The first three termgproportional toA) on the right-hand 5
side of Eq.(5.9), which is independent of= —iw, corre- 45 y=01 —
sponds to the first five graphs on the right-hand side of Eq. ' y=1.0 —
(4.17). The other terms proportional @g (gﬁ) come from 41 y=100 -
the first (second and thindterm(s) in the bracket of%, in 3.5 -
Eq. (4.1). From the definition, o(w) is zero at 3
z=—iw=0, which implies that®,(0) should be real. It is 3 55,
easy to make sure that(0) is real in the expressiofb.9). ® “
The numerical estimations of this expression will be pre- 21
sented in the next section. In this section we discuss qualita- 1.5 1
tive features of the above analytical expression for the spec- 1 ,
trum, which confirms our previous physical interpretation.
First, we note that, in general, the imaginary part of the func- 0.5 4
tion 0+ ; . .
0 3 35 4 45
1
flw)= (z+a)(z+b)---(z+c) _ (5'13 FIG. 4. The linear absorption spectra of the harmonic systenflinthe
="l underdamped case=0.1; (2) the intermediate casg=1; (3) the over-
. damped case/=10. Here, we normalized and w by the unit(}. In the
shows peaks around=Im(a), Im(b), ..., Im(c), if the harmonic case the spectra are temperature independent.
real parts ofa,b, ...,c are small. Next, it is important to
notice the fact that
_ VI. NUMERICAL RESULTS
IMAj—=Q  (Im\j—=*1), as y=0, (514 A The harmonic system (Fig. 4)
since the dimensional expression fis given by[see Eq. From Eq.(5.8), the spectrum for the harmonic potential
(5.101: (2£(z)=0) shows a single temperature-independent peak at
o= for weak damping ¥<1). This peak is shifted and
(=\O%— 5?14, (5.15 broadened as the damping constarincreasegsee Fig. 4.

In all the graphs below, the unit @ (the frequency of the

Thus, from Eq.(5.8), o(w) is expected to have a peak laser field is chosen to be the characteristic frequency of the
around o= in the weakly damped case #ly), if  system oscillatof).
3,(z) =0 (the harmonic cageThis implies the fact that our
molecular system can absorb only one quaniwith fre-
quency () in the first order optical process since we as-
sumed thaju(Q) is a linear function 0QQ. We now present numerically the linear absorption spec-

For a small value ofy; in the weakly damped case, a tra for anharmonic potentia[8/5(Q) # 0] given in the pre-
new peak around = 2() is expected as seen from the fourth vious section. The anharmonic parameters used in the fol-
term (proportional tog3) on the right-hand side of E¢5.9.  lowing numerical estimations arg;=g,=0.2, 0.5 and 7.
The intensity of this peak is temperature dependent througfihe corresponding potentials are shown in Figs)-55(c),
C, andC,. At the same time the intensity of the peak aroundrespectively. We seg;=g, in the above choices, since we
w=0 may be modified due to the sixth term on the right- truncate the series id.(z) up to the second order ig re-
hand side of Eq(5.9) because of the cubic interaction. garding g;~g4~g. The strongly anharmonic cage is also

For a small value ofy, in the weakly damped case, a examined since our calculation includes an infinite number
similar consideration is possible. There will be another newof diagrams and it is interesting to see the validity of our
peak arounds=3() and various temperature dependent cor-expression.

B. The anharmonic system (Figs. 5 =7)

rections of intensities are expected. Figure 6 shows the absorption spectra at the low tem-
At the zero temperature, the above expression is simpliperatureT = kg T/ = 0.05 together with the corresponding
fied significantly logarithmic plots. At the initial equilibrium, the population
) ) of the first excited state is aboat ¥"~10? if that of the
S(2)], _ 9 1 1 N 1 )+ 9 ground state is 1 for the harmonic system. This temperature
B=="4¢ z+y\z+2N;  z+2\, 3277 corresponds to 3&] if Q=500 cm™!]. As mentioned in the
1 1 previous section, for a weak damping cd$égs. §a) and
X + 6(b)], we observe new peaks arouad-2() andw=3() due
(z+3N)(z+3N2)  (z+y+A)(ZTy+N2)  to Q3 andQ* anharmonicities, respectively. The naive con-

sideration for weak anharmonicity given in Sec. V is clearly
. not true of the strongly anharmonic case in Fi¢:)6
Our approximation may deteriorate as anharmonicity in-
(5.19 creases since we take unperturbative contributions into ac-

1 1
(43N (ZF 7ihy) | (2430 (ZF 71 Ny)

+
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(a): 83=0.2; g4=0.2

(b): g3=0.5; g4=0.5

Q)

(c): g3=1.0; g4=7.0

FIG. 5. The potential surfacdd(Q) (in the unitA () for different anhar-
monic parametersya g=0.2; (b) g=0.5; (c) g=7. Here, we set
g=g3=0,. We also display thenth eigenvaluesE, and eigenfunctions
| ¥ | of the system Hamiltoniahig (for some values oft) by the quantities
E,+c|¥,|2 where we chose=20 to superpose them on the potentials.

count only partially. However, the first peak in Fig(ch
seems to correspond to the transition between the ground
state and the first excited state while the second peak to the
transition between the ground and second excited states,
which is consistent with our physical intuitigeee Fig. &c)].

This implies that our inclusion of unperturbative contribu-
tions is enough at least to describe the qualitative physics,
though, in this case, due to the strong anharmonicity, the
ground state is critically changed—the minimum of the po-
tential U(Q) is no longer alQ=0.

At the higher temperatur€=0.5 the spectra look differ-
ent (see Fig. 7. At the initial equilibrium, the population of
the first excited state is aboet "~ 0.1 if that of the ground
state is 1 for the harmonic system. This temperature corre-
sponds to 360 if Q=500cm1]. In Figs. 7a) and 1b) we
notice the splitting of the peak around=1 (Q). This is
quite natural since the occupation probability of the first ex-
cited state becomes higher as the temperature increases. At
T=0.05 only the transition between the ground and the first
excited states may be observed whileTat0.5, in addition
to this, the transition between the first and second states may
start to be observeffor the weak harmonic casesThe en-
ergies of these two transitions are slightly different due to the
anharmonicity and thus we observe the splittings of the
peaks.

The relative intensities of all peaks are also changed as
temperature varies. This tendency is stronger as the anhar-
monicity increases as seen from both analytical and numeri-
cal results. Especially the change between the two tempera-
tures in the strongly anharmonic cag® may be easily
noticed—large intensity correction and appearance of a new
peak aroundv= (). This new peak may reflect the transition
from the first to the second excited states.

In Fig. 7 (b.2), the spectrunmr(w) may not seem to go
toward zero asv— 0 for y=0.001, while the analytical ex-
pression tellss(0)=0 as mentioned before. We made sure,
however, thair(w) really goes to zere—0 (w=< 0.00J.

VIl. CONCLUDING REMARKS

The appearance of new peaks due to the anharmonicity
has been well known for an isolated molecular system from
the Schrdinger equation approadk.g. Ref. 46. Our results
include effects of a bath systetof any strength of dissipa-
tion) and allows us to study an interplay between anharmo-
nicity and dissipation. Using the expression we analyzed the
effects of the third and fourth order anharmonicity;Q3
andg,Q* in V4(Q)] at various temperatures with different
strengths of dissipation.

Our results can be applied for a non-Ohmic distribution
case, but here we restricted our analysis to the Ohmic one to
illustrate main qualitative features. We should notice, how-
ever, that even in the simple Ohmic case, the effects of an-
harmonicity at the low temperature have not been well stud-
ied, since the reduced equation of motion approach fails at

The broken line represents the unperturbed harmonic potentiafliS range as mentioned before. As shown in Sec. Ill, the

(9=93=94=0).

generalization to a non-Ohmic case is straightforward.
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(a.1): T=0.05; g3=02; g4=02 (a.2): T=0.05;8;=0.2;84=02
3 T 10
i r=0.001 — 8 - v=0.001 —
25 - i v=0.100 — 7=0.100 -
: ! Y=1.000 -~ 64 Y=1.000 -
i
2 ! | 4 1
Pl =
= il 3
3 S
1.5 1 Hi 5
11 I
1N

0 05 1 1.5

(b.1): T=0.05; g3=0.5; g4=0.5

10
=0.001 —
7:0100 ------ -
8 1 v=1.000
it
i
5z 3
5 i 3
41 i ¥
i
1
2 ’;\\
..... -3
0 ezl _,/JL\_ ..............
0 05 1 15 2 25 3 35 4
[}
(c1):T=005;83=7.0;84=7.0 (€2:T=005;8;=7.0;8,=70
20 10
v=0.001 — 8 v=0.001 —
y=0.100 ~~-- y=0.100 -~
7=1.000 - 6 v=1.000 ~
15 1
4.
= T 2
3
10 1 5
® T
-2.
5 4.
.6.;,:
0 v ' r r . -84
0 05 1 15 2 25 3 35 4 0

FIG. 6. The linear absorption spectogw) of the anharmonic system for the different damping constast8.001, 0.1, and 1 at the low temperature

T=0.05. The graphsa), (b), and(c) correspond to the spectra from the different potentials in Figs, 5(b), and 5c), respectively. The logarithmic plots
of each spectrum are given on the right-hand $ide?), (b.2), and(c.2)].

As shown in the numerical calculations, when the tem-suggests that all the terms dropped in the approximation do
perature varies, the peaks not only change their intensity butot play a significant role. In order to make this point clearly,
also shift because of anharmonicity. Our expression seems tb is desired to include unperturbative contributions more
be good even for the strong anharmonicity where the miniprecisely.
mum of the potential (Q) is shifted fromQ=0. This result One possible way to systematically include the unpertur-
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(a.1):T=0.50; g3=0.2; g4=0.2 10 (a2 T=050;g,=0.2;g,=0.2
3 T
it y=0.001 — 8- y=0.001 —
25 - il ¥=0.100 - ¥=0.100 -
. in ¥=1.000 -wreeen 6 - ¥=1.000 ---mn
2: i 4
il =
= i T
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1.5 1 B [
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0 __’_'/ J' '\\‘ I~' ............. i
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(b.1): T=0.50; g3 =0.5; g4=0.5 (b.2): T=0.50; g3=0.5; g4,=05
10 10
y=0.001 — 8 v=0.001 —
7=0.100 —— v=0.100 ——
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° 3
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15
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FIG. 7. The linear absorption spectra of the anharmonic system at the high temp?raﬂ.& The other parameters are the same as in Fig. 6.

bative contributions is Fukuda’'s method which consists ofare systematically taken into account by perturbative calcu-
the inversion method and the on-shell expanéfofi’ They  lations in this methodthough it may sound paradoxigal
are originally applied to the problems in high energy physicsThe application of this method to the present problem of the
and have proved their wide applicability in various molecular spectra should be studied in the future.
fields>®~%° By this method one can rewrite the theory in At the very high temperature our perturbation scheme
terms of the physical observable in question by using thenay become worse since in that case the initial wave packet
Legendre transformation. The unperturbative contributionss spreading out so that higher energy eigenstates are well
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populated and the effect of the anharmonicity will appearinear function of the coordinate gs(Q)= ug+ ©1Q. Our
strongly. This can be seen if we look at the temperatureliagrammatic approach, however, makes it possible to in-
dependent propagators, say, in the Ohmic case. Botblude the higher-order coordinate dependenceu@®) as
D7) and D) proportional toC;=coth({A\/2) become well. For the harmonic case, the response functions for a
large asT—o. However, in the temperature range of the generalu(Q) had been obtained in a compact forisee
experiment or in our numerical calculation, we may not needAppendix E of Ref. 8 It is also possible to extend our re-
to care about it. Since in this regid is of order unity. sults to study the fifth order optical process related to three
It is emphasized here that our theory can be used ttime correlation functions, such dQ(t)Q(t")Q(t")). Fifth
investigate the form of anharmonic adiabatic potential surorder optical measurements may be useful in distinguishing
faces. the spectrum of anharmonic origin from that of the other
The formalism employed in the present paper can berigins, since this measurement has two-time evolution pe-
easily generalized to study the anharmonicity of the bathriod and the time dependencies on the anharmonic and other
oscillators and the nonbilinear system—bath coupling byorigins are expected to be different. By using this measure-
adapting the Feynman rule. These are also important issu@sent, for example, we should be able to tell the effects of
to be studied in a separate paper. anharmonicity from those of higher order coordinate depen-
In the present paper, we limited our study to a systendence ofu(Q). On the other hand, it may be difficult to
with a single potential surface. Many systems in nonlineadistinguish those two effects in the linear absorption spec-
optical response as well as nonadiabatic transition and turtrum. This direction of study is also useful to investigate the
neling are, however, characterized by two or three potentighomogeneous and inhomogeneous nature of the spetirum.
surfaces with dipole or nonadiabatic couplings betweenVe leave these problems for future stify.
them. For a displacedwo-stat¢ harmonic oscillator system,
one can obtain response functions by using the generating
functional®® In the same way, we can extend the presentyckNOWLEDGMENT
results to the multi-anharmonic potentials.
In our calculation of the spectrum or the response func-  One of the author$K.O.) thanks S. Yokojima for fruit-
tion, we assumed that the dipole moment is expressed in thel discussions.

APPENDIX A: DERIVATION OF THE GENERAL FORMULA (3.6)

The generating functional obtained in Ref. 37 is expressed as

I SR R
SR W | =R V|7 5300 T a0 g,

whereV and® are given by

)exp(<1>[J<+>, I 35)), (A1)

v i 0 h 0 5 0 B i °°d y fi Vv fi J 1fﬁhd vl % J
P90 93 Va3 R o Wit Y\ T w5l 97 335(7)
= ifodtv h_6 L R_9 P
~ ko [ M2T ™ T M) 200 T e
“nlo T a3m) (A2)

i\2 (= (=
_ -) (=) (-)
ﬁ) fo dtfo ds J7(t)D" )(t,5)37)(s)

. 2 w -
dLIH), 3, J3]=(;i—) f dtf ds J*>(t)D<*+>(t,s)J<+>(s)+%
0 0

(e o (-) (—3) 1 Ah Ah ’ (33 ’ ’
+Pf0 dtfo dr 37 (t)D (t,T)Jg(T)‘f’WfO deo d7'J3(7) D (7,77)d5( 7). (A3)

We insert the right hand-side of the following identity at the end of @d.):**

(A4)

1=exp(1 f 2 47 3y(Pes(n) + f °°dt[3<+>(t)¢<+>(t)+3<>(t)¢<)(t)])
h 0 0

oH)=p(-)=gs=0
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Using the simple relation - A1 Ta(= o~ _
J) F 3p(Z)=+ Mﬂzzs(z):_jf dte 2'[D"Y)(t, 0)]3.
ef(g]eg(x)eax:eaxeg(%+xjef(a), (A5) | -Jo (86)
we have We should notice here that the dimensionless propagators in
i o9 +) h 9 =) terms of time variable is defined hgompare with Eq(5.4)]
ex gWJ =exp ¢ —a¢(+)+J ,i—&qo(,)JrJ ,

D<'m>(t,0)=?—%5<'m)€, 0) [I, m=(+,-,3]. (B?)

exp(V[e' ™), o7, <P3])|¢=0- . ) )
In what follows we use the dimensionless expressions but
(AB) with no tildes. From Eq(B1) and the simple relation

fi a-i-J
dpg 2

In the same way we have

wdte*“singtz —————> (Rex>0), (B8)
LN S T . fo X2+ ¢°
T3 T 930 " a5,¢ l9=0 (A7) we have
h 9 h 9 a 92 3 1
=eX CI).——,.——,ﬁ—) :—_4—
p( [I a7 i 907 T des (D=~ 122 o+ YN (Z+ 7+ Ny
XL, 07, 03] expVIe ™, 07, 03] oo B 1 (B9)
Since ®[#/i alae™), #ili 9lae' ™), ki aldgs]=dl d@ Dalde Next we consider the Laplace transform of dimension-
and V[ ¢, ¢(7) ¢5]=V[ ¢], we have the general formula l€ss functionX a(t)
(3.6) which keeps only connected graphs as is clear from the w
Goldstone theorem of the Feynman graph. EA(Z):ggf dt e ?D)(t,00D )(t,0).  (B10)
0
APPENDIX B: ESTIMATION OF GRAPHS From Eqs.(B1), (B2), and(B8), we have
In this appendix we explicitly calculate the Laplace 2A(2)= =212+ 22(2) = 21 (2), (B1D)
transforms of each diagrams of the mass opetafa) inthe  where
Ohmic case. For later convenience, we present propagators 2 c
in terms of time variable in the Ohmic case. 3(2)= 9 & (B12)
. : 47 (z+y)(z+2\)’
D= M)(t,0)= ——e "2 sin ¢t, (B1) %
iM¢ 5 A,
Sr(z)=293 >, (B13)

n=1 (Z+ Vn+ )\1)(Z+ Vn+ )\2) )

h
(==) - (— =gt —Noty _
D (t.0) 4|v|§( Ce T+ Coe T =T, (B2) Here,C; andA,, were defined in Sec. V.
In a similar manner, the Laplace transform of dimen-

D3t )= —aye M+ ae M -T(t+i7), (B gonless functior® . is calculated as

with 92 (=
- Cx Sc(2)==| dt e @D *)(t,0)[D)(t,0)]2
a=(1+c), To=2Ly __ " 2Jo
17 aM¢ i MBS (Q2+v2)2— 4202 2 2
(B4) _ O4 C1
- 2
Here,\;, C; are defined in Sec. V. The expressions for the 327 (zH3N)(ZF y+hy)
first two propagators have already been derived in a rather C% 2C,C,
. 2 . . g + —
different contexf? Owing to the initial value theorem of the (Z+30)(2+ 7t Na)  (Z+ 7+ A (Z+ 7+ Np)
Laplace transform, we have
2 o0
D(__)(0,0)=ZD(__)(Z)|ZHOC _’_% An Ci _ C,
. 2{n=1 2+ yt v\ Z+H 2Nt v, ZtH 2Nt v,
_ 1 > =D3(0,0). i AA
MB nE e Q2+ vi+ vy 12023 > nm _
(B5) A W2 (ZH N vt ) (ZH N vt )
Let us first consider the Laplace transformX(t). In (B14)
terms of the dimensionless quantities it is expressed as: Finally we calculate the first five terms on the right-hand
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side of Eq. (4.1 or Xy—20s5, given in Egs.(4.12 to
(4.16. The dimensionless expression &fy; reduces to
—g,4A through Eq.(B.5). The sum off,(t) and3 4(t) can
be directly calculated from Eq$B1) to (B3). After tedious
but straightforward calculations, we find that fltgmension-
lesg sum isggA, which is independent df Instead we can
use the fact that the sum is equaldg,(t=0) since the sum
is independent of andX, 5;(t=0)=0 in order to alleviate the
tedious calculation. The independence tonan be proved
generally(by not assuming the Ohmic dampjngs follows.
SinceD®3(0,0)=D(~7)(0,0)=5(0), the sum iexpressed
as

1/-9s 2
E(T) S(0)G(t),
where

t B
G(t)=2ifodt'A(t')+if0 dr C(t+ir).

By noting the periodicity relations
S(t+iBh)=9(t), A(t+iph)=—A(t),
we conclude that the time derivative @(t) which is
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