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We obtain a closed expression for the response function for damped anharmonic vibrational modes
using the Feynman rule obtained through the nonequilibrium generating functional derived in our
previous paper@Phys. Rev. E53, 214~1996!#. The linear absorption spectra are explicitly calculated
through the Feynman diagrams for molecules with anharmonic potential in solution. The
dependence of the spectra both on the temperature and on the solvent nature can be taken into
account in our theory. The result is examined numerically for various dampings, anharmonicities,
and temperatures. ©1996 American Institute of Physics.@S0021-9606~96!52634-6#

I. INTRODUCTION

Recent progress of ultrafast nonlinear spectroscopy such
as infrared~IR! spectroscopy or Raman spectroscopy allows
us to probe and characterize vibrational modes of molecules.
These spectroscopies, including infrared photon echo,1–3Ra-
man echo,4–7 and fifth order off-resonant8–12 experiments,
have been successful in studying the homogeneous and in-
homogeneous broadening in liquids.

The electronically off-resonant coherent Raman experi-
ments which contain only one time variable, such as the
optical Kerr effects~OKE!13–17and the coherent anti-Stokes
Raman spectroscopies~CARS!,18,19are physically equivalent
to the linear absorption experiment with infrared laser. These
vibrational line shapes in solution contain the details of the
interactions of normal modes with their environment. In or-
der to explain the wide range of behaviors that have been
observed experimentally, one can use a Brownian oscillator
model that consists of primary modes and other environmen-
tal ~the bath! modes.8,19–21 The OKE, CARS or linear ab-
sorption spectroscopy with the infrared laser is, then, related
to the two-time autocorrelation functions^Q(t)Q(t8)& of the
primary nuclear coordinateQ in the quantum Brownian
theory. Due to the assumption of the harmonic potential for
nuclear degrees of freedom we are able to obtain a closed
expression for the spectrum.8 The technique developed in the
harmonic case can be applied to the intermolecular spectrum
of liquid such as water.22–24 Though the assumption of the
harmonic potential is reasonable for a number of realistic
systems, there are still many exceptions. For example, the
low frequency intermolecular modes of water are found to
have fairly large anharmonicity.22 One of the purposes of this
paper is to provide foundations for studying the anharmonic-
ity for such systems.

The full quantum treatment of anharmonicity in the pres-
ence of the heat bath poses some difficult problems. Quan-
tum vibrational transitions, in the absence of environment
modes, can be studied by a wide variety of numerical meth-
ods based on the wave function.25 When environment modes
are important, these methods are not practical since the cal-
culation requires the incorporation of many degrees of free-
dom ~the bath!. In such a case, it is convenient to integrate

out the bath degrees of freedom by using the
projection-operator26 or the path-integral27 techniques.

Whether the projection-operator or the path-integral
method is used, it is quite common to derive the equations of
motion for the reduced density matrix~i.e. the master
equation28,29 or the quantum Fokker–Planck equation30! in
order to calculate the physical observables numerically.31

The shortcomings of the reduced density matrix approach are
as follows. First, the factorized initial conditions~i.e.,
r I5e2bHSe2bHB) have to be assumed instead of the corre-
lated ones~i.e., r I5e2b(HS1HB1HSB)). Here,r I is the initial
density matrix whereHS , HB , and HSB are the system,
bath, and interaction Hamiltonians, respectively. Second, the
interaction between the system and the bath has to be bilin-
ear for the practical calculation.32 Third, either a high tem-
perature Ohmic dissipative bath~a white noise bath! or a
weak system–bath coupling has to be assumed. The white
noise assumption leads to the quantum master equation or
the quantum Fokker–Planck equation, whereas the weak
coupling assumption leads to the generalized master equa-
tion. Due to these assumptions, however, the equation of
motion approach is not applicable to a system coupled with a
low temperature or non-Ohmic dissipative bath~a non-
Markovian bath! with a strong system–bath interaction, al-
though some improvement has been done~for example,
Refs. 33–35!.

The nonequilibrium generating functional for the corre-
lation functions can be systematically calculated by use of
the path integral. This approach through the generating func-
tional is especially powerful for the harmonic system. As
mentioned before, one can derive a closed form expression
for the nuclear response function to an arbitrary order in the
electric field for nuclear motions in the harmonic case.8,36

Recently, the authors derived a nonequilibrium generat-
ing functional in a more general form and developed the
Feynman rule from the generating functional.37 By this rule
we can systematically study the effects of anharmonicities of
the potentials@both for molecules and the bath oscillators
~solvent!# as well as the effects of nonbilinear molecular–
solvent couplingsin the presence of the bilinear system–bath
coupling. This work can be regarded as an extension of the
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work by Fukudaet al.38 They dealt with a case of a nonbi-
linear system–bath couplingin the absence of the bilinear
system–bath couplingand gave the microscopic expression
for the damping constant through their Feynman rule. If one
wants to take into account the bilinear coupling by using
their rule, one has to deal with it by a perturbative expansion
in the coupling constant.

Compared with the equation of motion approach, the
present approach has the following advantages. First, we can
incorporate the initial correlation between the system and the
bath, namely we can start fromr I5e2b(HS1HB1HSB). Sec-
ond, the system–bath coupling is not necessary to be bilinear
in the practical calculation, though, in this paper, we only
discuss the bilinear coupling case, where we can treat the
system–bath interaction exactly. Third we can obtain the
correlation functions~which is valid for the low temperature!
by taking into account the memory effects of the noise pro-
duced from the non-Ohmic heat bath. Fourth, with the help
of the graph rule, we can examine the effects of the anhar-
monicity of the system or the heat–bath potential.

In this paper, we present an explicit form for the two-
time correlation function which enables us to calculate
physical observables such as the linear absorption spectrum.
This is obtained through the Feynman rule deduced from the
nonequilibrium generating functional derived in our previous
paper. Here, we take into account the anharmonicity of the
system potential assuming the bilinear system–bath cou-
pling, while analysis for the anharmonic oscillator bath or
nonbilinear coupling are left for future study. We calculated
the linear absorption spectrum and obtain modestly compact
expressions through the diagrams@Eqs. ~4.8!–~4.19! below#
for an arbitrary spectral density of the heat bath. As an illus-
tration, the result is further analyzed in the representative
case of Ohmic dissipation@Eqs. ~5.8!–~5.12! below#. The
numerical results are also given for various parameters in the
Ohmic case.

II. THE GENERAL SYSTEM AND THE LINEAR
ABSORPTION SPECTRUM

Consider a molecular system whose electronic ground
state is described by a single primary coordinateQ and its
conjugate momentumP:

HS5
P2

2M
1
MV2

2
Q21VS~Q!. ~2.1!

Here,V is of order of the frequency of the molecular vibra-
tional modes in question andVS(Q) stands for the anharmo-
nicity of the molecular potential U(Q)
@5MV2Q2/21VS(Q)#. We consider infrared measurements
conducted with laser fields far below any electronic transi-
tion. Thus, all the electronic excited states can be neglected
unless we consider the case of considerably high tempera-
ture. The interaction between laser fields and the molecular
system is expressed as

HSL~ t !52m~Q!E~ t !, ~2.2!

whereE(t) is the classical electronic field andm(Q) the
dipole moment. Note that the present formulation applies
also to experiments which use off-resonant laser pulses. In
this case, we should replace them(Q)E(t) coupling by
E2(t)a(Q), where a(Q) is the electronic polarizabil-
ity.8,19,20

The molecular system is assumed to be coupled to the
solvent~bath! degrees of freedom. We assume that these are
described by a set of oscillators:

HB5(
i51

N S pi
2

2mi
1
miv i

2

2
qi
2D 1VB~q!. ~2.3!

Here,VB(q) is the anharmonicity of the bath oscillators. The
molecular system interacts with the oscillators:

HSB~q,Q!52(
i51

N

ciqiQ1VSB~q,Q!, ~2.4!

where VSB(q,Q) is the nonbilinear molecular–solvent
coupling.39 In order to describe dissipation from the molecu-
lar system the numberN of the bath degrees of freedom will
be taken to an infinity. The total HamiltonianHT(t) govern-
ing the time evolution of the density matrix in the scheme
based on the coupled Maxwell–Liouville equations40 is now
expressed as

HT~ t !5H1HSL~ t !, ~2.5!

where

H5HS
R1HB1HSB. ~2.6!

In order to compensate for the renormalization of the system
potential due to the coupling to the bath~see, for example,
Refs. 41 and 42!, we have introduced the counter term: the
renormalized system HamiltonianHS

R is the system Hamil-
tonianHSwith the frequency of the potentialV2 replaced by
V21DV2 where the frequency shiftDV2 is given by
( ici

2/(miv i
2).

The physical observable in optical experiments is the
polarizationP(t) or the expectation value of the dipole mo-
ment:

P~ t !5^m~Q!&5Tr@r~ t !m~Q!#, ~2.7!

wherer(t) is the density matrix at the observed timet. If we
assume the total system is initially (t50) in the equilibrium
state at the temperature 1/b, r(t) is given by

r~ t !5KT~ t !r IKT
†~ t !, ~2.8!

where the initial distributionr I is given by the following
density matrix since the electric field is initially set to zero;

r I5e2bH/Tr e2bH. ~2.9!

The time evolution operator for the total Hamiltonian
KT(t) is defined as

KT~ t !5T expS 2
i

\E0
t

dt8HT~ t8! D , ~2.10!

where T is the time ordering operator. It has been shown that
the quantity such asP(t) can be estimated systematically by
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using the Feynman rule on the unified time path.37 In this
paper we focus on the calculation of the first order inE(t) of
P(t) to obtain the linear absorption spectrums(v) as shown
below.

The first order of the polarizationP(1)(t) is given by

P~1!~ t !5E
2`

`

dt8E~ t8!S~1!~ t2t8!. ~2.11!

The correlation functionS(1)(t) independent ofE(t) is de-
fined as

S~1!~ t !5u~ t !
i

\
~Tr@m~Q!K~ t !m~Q!K~2t !r I #2c.c.!,

~2.12!

where c.c. stands for the complex conjugate and the time
evolution operator with zero electric fieldK(t) is given by

K~ t !5KT~ t !uE~ t !505e2~ i /\! Ht. ~2.13!

The linear absorption spectrums(v) is then expressed by
the Laplace transform ofS(1)(t) as

s~v!5Im@S̄~1!~z52 iv!#, ~2.14!

where

S̄~1!~z!5Lz@S
~1!~ t !#[E

0

`

dt e2ztS~1!~ t !. ~2.15!

III. THE FEYNMAN RULE FOR AN ANHARMONIC
POTENTIAL

We assume the following form of anharmonicity of the
molecular potential and that of non-Condon dipole moment:

VS~Q!5
g3
3!
Q31

g4
4!
Q4, ~3.1!

m~Q!5m01m1Q, ~3.2!

while VB(q)5VSB(q,Q)50. In this caseS(1)(t) is given by

S~1!~ t !5u~ t !m1
2 i

\
~Tr@r Ie

~ i /\! HtQe2 ~ i /\! HtQ#2c.c.!.

~3.3!

The generating functionalWJ5W(J1 ,J2 ,J3) is introduced
by

e
i
\ WJ5TrFTt expS 2

1

\E0
b\

dt@H2J3~t!Q# D
3H T expS 2

i

\E0
`

dt@H2J2~ t !Q# D J †
3T expS 2

i

\E0
`

dt@H2J1~ t !Q# D G
5Tr TC expS 2

i

\ECdt@H2J~ t !Q# D , ~3.4!

where TC is the time ordering operator on the unified time
pathC and *C dt implies the integration on the path~see
Fig. 1!. The step function onC is naturally defined:

uC(t,t8) takes the value unity if the timet appears later than
t8 along the unified time path when we follow the direction
of the arrow; otherwiseuC(t,t8) is zero. Thed function on
C is also defined accordingly.37 If the system is in the equi-
librium state or the ground state, only one component of the
time path (C3 for the equilibrium case andC1 for the zero-
temperature case! contributes to the calculation, while in the
present nonequilibrium case the three componentsC1, C2,
andC3 take part in it. Accordingly, in our case, many kinds
of propagators~which connect different time-path compo-
nents, sayC12C3, in addition to the same components, say
C12C1) appear in the Feynman rule as we see below. On
the other hand, in the case of the equilibrium system and the
zero-temperature system, only one kind of propagator ap-
pears in the calculation which connects the same components
(C32C3 andC12C1, respectively!.

The correlation function is obtained as the derivative of
the generating functionalWJ :

S~1!~ t !5u~ t !m1
2S ]2WJ

]J1~ t !]J1~0!
2

]2WJ

]J2~ t !]J2~0! D
J15J25J350

5u~ t !m1
2S ]2WJ

]J~1 !~ t !]J~2 !~0!

1
]2WJ

]J~2 !~ t !]J~1 !~0! D
J~1 !5J~2 !5J350

,

whereJ(1), J(2) are defined by

J~1 !~ t !5
J1~ t !1J2~ t !

2
, J~2 !~ t !5J1~ t !2J2~ t !. ~3.5!

The derivatives with respect to (J1 , J2 , J3) pull out
(Q1 ,2Q2 , Q3), respectively, while those with respect to
(J(1), J(2), J3) pull out (Q12Q2 , (Q11Q2)/2, Q3), re-
spectively. HereQi implies the operatorQ on Ci .

FIG. 1. The unified time-pathC5C11C21C3 on the complext plane
(T→`). It starts from the origin up to an infinity along the real path
(C1), returns to the origin (C2), and then goes to2 ib\ along the imaginary
axis (C3).
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By changing variables from (J1 , J2 , J3) to
(J(1), J(2), J3), we may decrease the number of the Feyn-
man diagrams: we would have nine kinds of propagators
@D ( i j ) ( i , j51,2,3)# instead of the four (D (21), D (22),
D (23), D (33)) in Eq. ~3.6! below.

As shown in Appendix A, we have the following general
formula for an arbitrary functionalO @w (1),w (2),w3# where
w (1), w (2), and w3 correspond to the quantities
Q12Q2 ,(Q11Q2)/2, andQ3 , respectively,

43 in which Qi

implies the operatorQ on Ci again,

O F\

i

]

]J~1 ! ,
\

i

]

]J~2 ! ,\
]

]J3
G i\ WJuJ50

5e
]

]wD
]

]w O @w~1 !,w~2 !,w3# e
V@w#uw50,conn., ~3.6!

where

]

]w
D

]

]w

5E
0

`

dtE
0

`

ds
]

]w~2 !~ t !
D ~21 !~ t,s!

]

]w~1 !~s!

1
1

2E0
`

dtE
0

`

ds
]

]w~2 !~ t !
D ~22 !~ t,s!

]

]w~2 !~s!

1E
0

`

dtE
0

b\

dt
]

]w~2 !~ t !
D ~23!~ t,t!

]

]w3~t!

1
1

2E0
b\

dtE
0

b\

dt8
]

]w3~t!
D ~33!~t,t8!

]

]w3~t8!
~3.7!

and

V@w#52
i

\E0
`

dt@VS~w~1 !~ t !/21w~2 !~ t !!

2VS~2w~1 !~ t !/21w~2 !~ t !!#2
1

\E0
b\

dtVS~w3~t!!.

~3.8!

Here, the subscript conn. implies that we keep only con-
nected graphs. The Feynman rule is clear from this formula:
propagators are given byD ( lm)@l ,m5(1,2, 3)# and vertices
are determined byV@w# while O @w (1),w (2),w3# corre-
sponds to the external points. This can be seen as follows.
For the moment, we employ a simple notation in which
D ( lm)(t,s) is denoted byDIJ implying I5( l ,t), J5(m,s) for
simplicity. SinceO andV in Eq. ~3.6! are given as a poly-
nomial of w I ,wJ ,•••, the quantityO eV can also be ex-
pressed as a polynomial by expandingeV in terms ofV. Then
the expressions needed for the calculation of the right-hand
side of Eq.~3.6! ~perturbatively inV) typically take the fol-
lowing form:

expS (
IJ

]

]w I
DIJ

]

]wJ
DwKwLwMwN•••uw50.

If wKwLwMwN••• contains even number ofw ’s, this expres-
sion reduces to the summation of the product of the propa-
gators as follows:

DKLDMN•••1DKMDLN•••1•••.

Otherwise the expression is zero since we putw50 at the
end. This process exactly coincides with making the Feyn-
man diagram by taking the Wick contraction from the given
vertices, external lines, and propagators~see Fig. 3 below!.

D (33) is the Matsubara Green function, or the propagator
connecting the imaginary time path componentsC32C3.
D (21) or D (22) is a linear combination of the propagators
on the real time pathD (11) andD (22) which connect the com-
ponentsC12C1 andC22C2, respectively.D

(23) is the only
propagator mixing the real and imaginary time path.@If we
adopt the original (1, 2, 3)-representation instead of
(1,2, 3)-representation, we have other mixing propagators
such asD (13) andD (23).#

FIG. 2. The bare propagators and the bilinear vertices.

FIG. 3. Diagrammatic expressions for the Feynman rule: vertices and propa-
gators.
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These propagators are correlation functions for the bilin-
early coupled system. If we introduce the cumulant part of
the auto-correlation functionC(t1 i t) for 0,t,b\

C~ t1 i t!5^QQ~ t1 i t!&bilinear, ~3.9!

and call the real and imaginary partS andA, respectively
(C5S1 iA), then the propagators are expressed as follows:

D ~23!~ t,t!5C~ t1 i t!, ~3.10!

D ~22 !~ t,s!5S~ t2s!, ~3.11!

D ~21 !~ t,s!522iu~ t2s!A~ t2s!, ~3.12!

D ~33!~t,t8!5u~t2t8!C~ i t2 i t8!

1u~t82t!C~ i t82 i t!. ~3.13!

The bilinearly corrected propagatorsD ( lm) which completely
take into account the general bilinear system-bath coupling
~see Ref. 39!, have been derived in Ref. 37. Originally the
formula ~3.6! or the corresponding Feynman rule is written
in terms of the bare propagators~of both the system and the

bath! and bilinear vertices~see Fig. 2! in addition to the
anharmonic or nonbilinear vertices. The bare propagators are
denoted asDIJ

(0)i where theDIJ
(0)0 is the bare system propa-

gator andDIJ
(0)i ( i Þ 0) are the bare bath propagators. That is,

the right-hand side of Eq.~3.6! originally takes the following
form ~with suppression of theI ,J indices!

expS (
i50

N
]

]w i
D ~0!i

]

]w i
DO @w~1 !,w~2 !,w3#exp~V@w i # !,

whereV@w i # contains the bilinear vertex in addition to the
vertices due to the anharmonicity and nonbilinearlity. The
correction originating from the bilinear vertices is not in-
cluded in the system propagators at all in the above expres-
sion. The corrections are, however, always made to the sys-
tem propagator and thus the bilinear coupling correction is
fully taken into account. Namely, the system propagators
with the full correction of the bilinear bath is graphically
expressed as@with suppression of the (lm) indices in the
diagrams#

, ~3.14!

where the broken lines denote the bare propagators and the
black dots the bilinear vertices. In the specific case of the
bilinear coupling@the first term in Eq.~2.4!#,44 D ( lm) are
explicitly given by

D ~21 !~ t,0!5E
Cz

dz

2p i
eztD ~21 !~z!, ~3.15!

D ~22 !~ t,0!5E
Cz

dz

2p i
@u~ t !ezt1u~2t !e2zt#D ~22 !~z!,

~3.16!

D ~23!~ t,t!5
1

b\ (
n52`

`

einntE
Cz

dz

2p i
eztD ~23!~z!, ~3.17!

D ~33!~t,0!5
1

b\ (
n52`

`

einntD ~33!~z!, ~3.18!

where

D ~21 !~z!5
\

i
F~z!, ~3.19!

D ~22 !~z!5
2\

b\ (
n

z

z22nn
2 @F~z!2F~nn!#, ~3.20!

D ~23!~z!5
2\

z2nn
@F~z!2F~nn!#, ~3.21!

D ~33!~z!5\F~nn!, ~3.22!

with

F~x!5
1

1/f ~x!2( i51
N ci

2f i~x!
5

1

M

1

V21x21xg~x!
, ~3.23!

f ~x!5
1

M

1

V21DV21x2
, f i~x!5

1

mi

1

v i
21x2

, ~3.24!

g~x!5
1

Mx FDV22(
i51

N

ci
2f i~x!G , ~3.25!

nn5
2pn

b\
. ~3.26!

Here the contourCz on the complexz plane runs parallel to
the imaginary axis where the real part of the path is chosen
such that there are no poles on the left side of the path.
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We notice here that the characteristic functionF(x) for
the bilinearly corrected propagator reflects the structure
shown in Eq.~3.14!: f (x) is the characteristic function for
the system bare propagator andf i(x) is that for the bath bare
propagator.

Once we use the bilinearly corrected propagators, we
have to neglect the bilinear vertices altogether since it is
taken into account already. In addition, since we do not as-
sume the bath anharmonicity and the nonbilinear system–
bath coupling, we can omit the bare bath propagators, too. In
this way we obtain Eq.~3.6!, which is expressed only
through the propagators and vertices of the system: no propa-
gators and vertices of the bath appear.

In our theory all the bath parameters (ci ,mi ,v i) appear
only through the auxiliary functionF(x). In what follows,
we follow the conventional arguments~for example, see
Refs. 41 and 42! to clarify our points. In the above expres-
sion for F(x), we rewrite the summation into the integral
form as

(
i51

N

ci
2f i~z!5E

0

`dv

p
I ~v!

2v

v21z2
, ~3.27!

where the spectral distribution functionI (v), which charac-
terizes the solvent nature, is defined by

I ~v!5p(
i51

N ci
2

2miv i
d~v2v i !. ~3.28!

We may considerI (v) as a continuous function ofv since
we tacitly assumeN→` to realize the dissipation. We intro-
duced the counter termMDV2Q2/2 to the Hamiltonian in
Eq. ~2.6! where

DV25
1

ME
0

`dv

p
I ~v!

2

v
,

in order to compensate for the coupling-induced re-
normalization of the potential. Then the classical equation of
motion forQ has the friction term proportional to the veloc-
ity Q̇;

E
0

t

dt8g~ t2t8!Q̇~ t8!.

The Laplace transform of the damping kernelg(t) is nothing
butg(z) appearing in Eq.~3.25!. By use ofI (v), this can be
rewritten as

g~z!5
1

ME
0

`dv

p

I ~v!

v

2z

v21z2
.

Thus, in our propagator, all the bilinear bath effect is com-
pletely contained through this damping kernel.

If we assume the Ohmic dissipation,I (v)5Mgv,
we obtain g(t)5gd(t). In this case g(x) in Eq.
~3.23! or ~3.25! is replaced by a constantg and F(nn)
in Eqs. ~3.19!–~3.22! by F(unnu).

45 Here, uxu is the
absolute value ofx. In the case of a memory damping
kernel, sayg(t)5gvDe

2vDt ~Durde model!, g(x) is re-
placed by

g~x!5
gvD

vD1x
.

The Durde model approaches the Ohmic model
asvD→`.

In our special case of the cubic and quadratic interac-
tions ~anharmonicity! the vertex partV@w# in Eq. ~3.6! is
given as follows:

V@w#52
i

\E0
`

dtS g383! @w~1 !~ t !#31
g3
2!

w~1 !~ t !@w~2 !~ t !#2D 2
i

\E0
`

dtS g483! @w~1 !~ t !#3w~2 !~ t !1
g4
3!

w~1 !~ t !@w~2 !~ t !#3D
2
1

\E0
b\

dtS g33! @w3~t!#31
g4
4!

@w3~t!#4D , ~3.29!

whereg385g3/4 andg485g4/4. For any polynomial interac-
tion, a vertex contains an odd number ofw (1), which is clear
from the expressionV(w (1)/21w (2))2V(2w (1)/21w (1))
in Eq. ~3.8!. The graphical elements for our Feynman rule
are given in Fig. 3. The rule is more closely explained in the
next section.

Since higher order correlation functions required for cal-

culation of higher order polarization~corresponding to non-

linear optical processes! can always be cast into the form of
Eq. ~3.6!, they can also be estimated systematically by our
Feynman rule.

IV. AN ANALYTICAL EXPRESSION FOR THE LINEAR
ABSORPTION SPECTRUM THROUGH THE
FEYNMAN DIAGRAM

By using the above Feynman rule we have the diagram-
matic expansion ofS(1)(t):
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(4.1)

~4.2!

All the graphs up to the order ofg2 for g3;g4;g are pre-
sented in the above. Let us illustrate the Feynman diagrams
more closely by considering an example: the first order con-
tribution @the second graph in diagram~4.2!#. The first order
correction term should be made up of two external points
2 and1 and one of the three 4-point vertices given in Fig.
3. The graphs with a single 3-point vertex need not be con-
sidered, since such graphs always have an uncontractedw
~which should be set to zero! and their contributions vanish.
First consider thew (1)@w (2)#3 vertex ~depicted in the lower
center in Fig. 3! as the 4-point vertex to be contracted with
the two external points. Considering that the point1 always
has to be contracted with the point2 ~see Fig. 3:D (11),
D (13) etc., do not exist in the rule! and thatD (21) is non-
zero only for t.0, we obtain the second diagram whose
analytical expression is given by

u~ t !m1
2 i

\

1

2 S 2 ig4
\ D E

0

`

dt8D ~21 !~ t,t8!

3D ~22 !~ t8,t8!D ~21 !~ t8,0!. ~4.3!

The symmetry factor 1/2 is easily understood if we consider
that this is coming from the following expression:

u~ t !m1
2 e

]
]w D

]
]w

i

\
w~2 !~ t !w~1 !~0!

3S 2 ig4
3!\ D E

0

`

dt8w~1 !~ t8!@w~2 !~ t8!#3uw50,conn.. ~4.4!

The other two 4-point vertices in Fig. 3~except w (1)

3@w (2)#3) do not contribute in this expression, since propa-
gators likeD (11) andD (13) do not exist in our rule. The
absence ofD (11) andD (13) in our rule ~Fig. 3! decreases
the number of diagrams in general. This is one of the advan-
tages of the~1,2, 3!-representation instead of the original

~1, 2, 3!-representation. In this way we confirm that only one
diagram appears from the first order calculation.

In a similar manner we can construct the diagrams start-
ing from the given vertices, external points, and propagators.
Then the corresponding analytical expression to the diagram
is obtained from the following rule.

~1! In one specific way~as you like!, assign n labels
t1 ,t2 , . . . ,tn andn8 labelst18 ,t28 , . . . ,tn8

8 to all the ver-
tices ~internal points! and external points, respectively,
wheren is the total number of the vertices andn8 is that
of external points. In our case of theS(1) the external
points is always two orn852 ~while we sett185t and
t2850 in the above!.

~2! Associate a propagatorD ( lm)(t,t8) with each line whose
ends carry indices (l ,m) and the time indices (t,t8)
where l , m51,2, 3. Factors 2 ig38/\, 2 ig3 /\,
2 ig48/\, 2 ig4 /\, 2g3 /\, and2g4 /\ are assigned to
the vertices corresponding to@w (1)#3, w (1)@w (2)#2,
w (2)@w (1)#3, w (1)@w (2)#3, @w3#

3, @w3#
4, respectively.

~3! Associate the symmetry factor 1/S with the diagram.
~4! Integrate the product of all factors in rules~2!–~3! over

the internal timet1 ,t2 , . . . ,tn .

The symmetry numberS is an integer easily obtained from
the symmetric property of the graph while we can always
obtain the factor by looking at the original expression like
Eq. ~4.4!.

The analytical expression for the third term is, for ex-
ample, given by

u~ t !m1
2 i

\ S 2 ig3
\ D 2E

0

`

dt8E
0

`

dt9D ~21 !~ t,t8!

3D ~22 !~ t8,t9!D ~21 !~ t8,t9!D ~21 !~ t9,0!. ~4.5!
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Noting, for example, that the Laplace transform of Eq.
~4.5! is given by

u~ t !m1
2 i

\
D ~21 !~z!SA~z!D ~21 !~z!, ~4.6!

where

SA~z!5S 2 ig3
\ D 2Lz@D

~22 !~ t,0!D ~21 !~ t,0!#, ~4.7!

the Laplace transform of the two-time correlation function
S(1)(t) @Eq. ~2.12!# is then expressed as

S̄~1!~z![m1
2 i

\
DC

~21 !~z! ~4.8!

DC
~21 !~z!5D ~21 !~z!1D ~21 !~z!S~z!D ~21 !~z!1•••

~4.9!

5
1

@D ~21 !~z!#212S~z!
, ~4.10!

where

(4.11)

All the graphs appearing inS(z) up to the second order
in g are presented on the right-hand side of Eq.~4.11!.
Though the second and the third graphs on the right-hand
side of Eq.~4.11! explicitly depend ont, the sum of the two
graphs is independent oft. The sum of the fourth and fifth
graphs also becomes a constant. These properties are ex-
pected to be general and actually proved in Appendix B by
not assuming Ohmic damping.

The final expression for the linear absorption is then
given by s(v)5Im@S̄(1)(z52 iv)# with S̄(1)(z) given in
the above. Explicit analytical expressions corresponding to
the Feynman diagrams are given as follows. The first five
graphs on the right-hand side of Eq.~4.11! are given by

S0152
i

\

g4
2
D ~22 !~0,0!, ~4.12!

S02~ t !5
i

2 S 2
g3
\ D 2D ~33!~0,0!E

0

b\

dt D ~23!~ t,t!, ~4.13!

S03~ t !5
1

2 S 2
ig3
\ D 2D ~22 !~0,0!E

0

t

dt8D ~21 !~ t,t8!, ~4.14!

S04~ t !5
1

2•2 S 2
ig4

2

\ D 2D ~33!~0,0!E
0

b\

dt @D ~23!~ t,t!#2,

~4.15!

S05~ t !5
1

2 S 2
ig4

2

\ D 2D ~22 !~0,0!E
0

`

dt8

3D ~21 !~ t,t8!D ~22 !~ t,t8!, ~4.16!

respectively. The graphs in the bracket ofLz are expressed
as

SA~ t !5S 2
i

\ D 2g32D ~21 !~ t,0!D ~22 !~ t,0!, ~4.17!

SB~ t !5S 2
i

\ D 2g4g483!
@D ~21 !~ t,0!#3, ~4.18!

SC~ t !5S 2
i

\ D 2g422 D ~21 !~ t,0!@D ~22 !~ t,0!#2. ~4.19!

The physical interpretation of Eqs.~4.9! or ~4.10! goes
as follows. For the harmonic system, between the two exter-
nal points (2,1) runs a single propagatorD (21) which has
a fundamental resonance around at the energy\V ~if the
damping is weak!. Due to the anharmonicity, the mass op-
eratorS(z) appears between (2,1). The z-dependent part
of S(z) causes the other resonances while the
z-independent part makes the shift of the resonances. In
other words, the particle~system! dressed with the heat bath
undergoes the interaction with the dressed particle~system!
and thus with the thermal bath again and again due to the
anharmonicity.
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V. ANALYTICAL RESULTS FOR THE OHMIC
DAMPING

In order to clarify the physical interpretation given in the
above, here we consider the representative case of the Ohmic
damping. An analytical expression for the linear absorption
spectrums(v) in this case will be presented in this section.
The series expansion ofS(z) up to the second order ing @all
the graphs on the right-hand side of Eq.~4.11!# is fully in-
cluded in the calculation. The detailed calculations are given
in Appendix B. Though we truncate the series expansion of
S(z), an infinite series ing is partially included in
DC
(21)(z) or s(v), as clearly seen from Eq.~4.9!. Indeed the

result ~5.8! below containsg3 and g4 in nonperturbative
ways. The system bath couplingci or g is treated exactly
since we use the bilinearly corrected propagators as men-
tioned in Sec. III.

We introduce dimensionless quantitiesX̃

Q5A \

MV
Q̃, z5V z̃, g5Vg̃, b\V5b̃. ~5.1!

Then the molecular Hamiltonian takes the form

HS5\VS 2
1

2

]2

]Q̃2 1
1

2
Q̃21

1

3!
g̃3Q̃

31
1

4!
g̃4Q̃

4D
[\VH̃S , ~5.2!

where

g35AM3V5

\
g̃3 , g45

M2V3

\
g̃4 . ~5.3!

Dimensionless propagators and self energy are introduced as

D ~ lm!~z!5
\

i

1

MV2 D̃
~ lm!~ z̃ ! @ l , m5~1,2, 3!# ~5.4!

and

S~z!5
i

\
MV2S̃~ z̃ !, ~5.5!

respectively. The dimensionless absorption spectrum is then
given by @see Eq.~4.8!#

s̃~ ṽ !5Im@D̃ ~21 !~ z̃ !# z̃52 i ṽ , ṽ5v/V ~5.6!

besides the trivial factorm1
2/(MV2).

In the following, we omit tildes for dimensionless quan-
tities introduced in the above if it causes no ambiguity. By
noting the dimensionless expression forD (21)(z)

D ~21 !~z!5
1

11z21zg
5

1

~z1l1!~z1l2!
, ~5.7!

we have the following analytical result:

s~v!5ImF 1

~z1l1!~z1l2!2S~z!G
z52 iv

, ~5.8!

where

S~z!52g4A1g3
2A1g4

2AFzB2
1

16z i HC1S 1

2l1
2
1

g D 1C2S 1

2l2
2
1

g D J G1
g3
2

4z

1

z1g S 2
C1

z12l1
1

C2

z12l2
D

1
g4
2

32z2 F 1

~z13l1!~z13l2!
2

112C1C2

~z1g1l1!~z1g1l2!
1

C1
2

~z13l1!~z1g1l1!
1

C2
2

~z13l2!~z1g1l2!
G

12g3
2(
n51

`
An

~z1nn1l1!~z1nn1l2!
1
g4
2

2z (
n51

`
An

z1g1nn
S C1

z12l11nn
2

C2

z12l21nn
D

12g4
2(
n51

`

(
m51

`
AnAm

~z1l11nn1nm!~z1l21nn1nm!
. ~5.9!

Here, we have introduced the following dimensionless parameters:

z5A12
g2

4
, l15

g

2
1 i z, l25

g

2
2 i z, Cj5coth

ibl j

2
, ~5.10!

A5
1

b F (
n51

`
1

~nn1l1!~nn1l2!
1
1

2G , B5 (
n51

`
An

~nn1l1!~nn1l2!
, ~5.11!

An5
1

b

gnn
~nn1l1!~nn1l2!~nn2l1!~nn2l2!

5
1

b

gnn
~11nn

2!22nn
2g2 . ~5.12!
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The first three terms~proportional toA) on the right-hand
side of Eq.~5.9!, which is independent ofz52 iv, corre-
sponds to the first five graphs on the right-hand side of Eq.
~4.11!. The other terms proportional tog3

2 (g4
2) come from

the first ~second and third! term~s! in the bracket ofLz in
Eq. ~4.11!. From the definition, s(v) is zero at
z52 iv50, which implies thatS(0) should be real. It is
easy to make sure thatS(0) is real in the expression~5.9!.
The numerical estimations of this expression will be pre-
sented in the next section. In this section we discuss qualita-
tive features of the above analytical expression for the spec-
trum, which confirms our previous physical interpretation.
First, we note that, in general, the imaginary part of the func-
tion

f ~v!5
1

~z1a!~z1b!•••~z1c!
U
z52 iv

~5.13!

shows peaks aroundv5Im(a), Im(b), . . . , Im(c), if the
real parts ofa,b, . . . ,c are small. Next, it is important to
notice the fact that

Iml j→6V ~ Iml̃j→61!, as g→0, ~5.14!

since the dimensional expression forz is given by@see Eq.
~5.10!#:

z5AV22g2/4. ~5.15!

Thus, from Eq.~5.8!, s(v) is expected to have a peak
around v5V in the weakly damped case (1@g), if
S(z)50 ~the harmonic case!. This implies the fact that our
molecular system can absorb only one quantum~with fre-
quencyV) in the first order optical process since we as-
sumed thatm(Q) is a linear function ofQ.

For a small value ofg3 in the weakly damped case, a
new peak aroundv52V is expected as seen from the fourth
term ~proportional tog3

2) on the right-hand side of Eq.~5.9!.
The intensity of this peak is temperature dependent through
C1 andC2. At the same time the intensity of the peak around
v5V may be modified due to the sixth term on the right-
hand side of Eq.~5.9! because of the cubic interaction.

For a small value ofg4 in the weakly damped case, a
similar consideration is possible. There will be another new
peak aroundv53V and various temperature dependent cor-
rections of intensities are expected.

At the zero temperature, the above expression is simpli-
fied significantly

S~z!ub5`5
g3
2

4z

1

z1g S 1

z12l1
1

1

z12l2
D1

g4
2

32z2

3F 1

~z13l1!~z13l2!
1

1

~z1g1l1!~z1g1l2!

1
1

~z13l1!~z1g1l1!
1

1

~z13l2!~z1g1l2!
G .

~5.16!

VI. NUMERICAL RESULTS

A. The harmonic system (Fig. 4)

From Eq.~5.8!, the spectrum for the harmonic potential
(S(z)50) shows a single temperature-independent peak at
v5V for weak damping (g!1). This peak is shifted and
broadened as the damping constantg increases~see Fig. 4!.
In all the graphs below, the unit ofv ~the frequency of the
laser field! is chosen to be the characteristic frequency of the
system oscillatorV.

B. The anharmonic system (Figs. 5 27)

We now present numerically the linear absorption spec-
tra for anharmonic potentials@VS(Q) Þ 0# given in the pre-
vious section. The anharmonic parameters used in the fol-
lowing numerical estimations areg35g450.2, 0.5 and 7.
The corresponding potentials are shown in Figs. 5~a!–5~c!,
respectively. We setg35g4 in the above choices, since we
truncate the series inS(z) up to the second order ing re-
garding g3;g4;g. The strongly anharmonic case~c! is also
examined since our calculation includes an infinite number
of diagrams and it is interesting to see the validity of our
expression.

Figure 6 shows the absorption spectra at the low tem-
peratureT̃5kBT/\V50.05 together with the corresponding
logarithmic plots. At the initial equilibrium, the population

of the first excited state is aboute21/T̃;1029 if that of the
ground state is 1 for the harmonic system. This temperature
corresponds to 36@K# if V5500@cm21#. As mentioned in the
previous section, for a weak damping case@Figs. 6~a! and
6~b!#, we observe new peaks aroundv52V andv53V due
to Q3 andQ4 anharmonicities, respectively. The naive con-
sideration for weak anharmonicity given in Sec. V is clearly
not true of the strongly anharmonic case in Fig. 6~c!.

Our approximation may deteriorate as anharmonicity in-
creases since we take unperturbative contributions into ac-

FIG. 4. The linear absorption spectra of the harmonic system in:~1! the
underdamped caseg50.1; ~2! the intermediate caseg51; ~3! the over-
damped caseg510. Here, we normalizedg andv by the unitV. In the
harmonic case the spectra are temperature independent.
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count only partially. However, the first peak in Fig. 6~c!
seems to correspond to the transition between the ground
state and the first excited state while the second peak to the
transition between the ground and second excited states,
which is consistent with our physical intuition@see Fig. 5~c!#.
This implies that our inclusion of unperturbative contribu-
tions is enough at least to describe the qualitative physics,
though, in this case, due to the strong anharmonicity, the
ground state is critically changed—the minimum of the po-
tentialU(Q) is no longer atQ50.

At the higher temperatureT̃50.5 the spectra look differ-
ent ~see Fig. 7!. At the initial equilibrium, the population of

the first excited state is aboute21/T̃;0.1 if that of the ground
state is 1 for the harmonic system. This temperature corre-
sponds to 360@K# if V5500@cm21#. In Figs. 7~a! and 7~b! we
notice the splitting of the peak aroundv51 (V). This is
quite natural since the occupation probability of the first ex-
cited state becomes higher as the temperature increases. At
T̃50.05 only the transition between the ground and the first
excited states may be observed while, atT̃50.5, in addition
to this, the transition between the first and second states may
start to be observed~for the weak harmonic cases!. The en-
ergies of these two transitions are slightly different due to the
anharmonicity and thus we observe the splittings of the
peaks.

The relative intensities of all peaks are also changed as
temperature varies. This tendency is stronger as the anhar-
monicity increases as seen from both analytical and numeri-
cal results. Especially the change between the two tempera-
tures in the strongly anharmonic case~c! may be easily
noticed—large intensity correction and appearance of a new
peak aroundv5V. This new peak may reflect the transition
from the first to the second excited states.

In Fig. 7 ~b.2!, the spectrums(v) may not seem to go
toward zero asv→0 for g50.001, while the analytical ex-
pression tellss(0)50 as mentioned before. We made sure,
however, thats(v) really goes to zerov→0 (v& 0.001!.

VII. CONCLUDING REMARKS

The appearance of new peaks due to the anharmonicity
has been well known for an isolated molecular system from
the Schro¨dinger equation approach~e.g. Ref. 46!. Our results
include effects of a bath system~of any strength of dissipa-
tion! and allows us to study an interplay between anharmo-
nicity and dissipation. Using the expression we analyzed the
effects of the third and fourth order anharmonicity@g3Q

3

andg4Q
4 in VS(Q)# at various temperatures with different

strengths of dissipation.
Our results can be applied for a non-Ohmic distribution

case, but here we restricted our analysis to the Ohmic one to
illustrate main qualitative features. We should notice, how-
ever, that even in the simple Ohmic case, the effects of an-
harmonicity at the low temperature have not been well stud-
ied, since the reduced equation of motion approach fails at
this range as mentioned before. As shown in Sec. III, the
generalization to a non-Ohmic case is straightforward.

FIG. 5. The potential surfacesU(Q) ~in the unit\V) for different anhar-
monic parameters;~a! g50.2; ~b! g50.5; ~c! g57. Here, we set
g5g35g4. We also display thenth eigenvaluesEn and eigenfunctions
uCnu of the system HamiltonianHS ~for some values ofn) by the quantities
En1cuCnu2, where we chosec520 to superpose them on the potentials.
The broken line represents the unperturbed harmonic potential
(g5g35g450).
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As shown in the numerical calculations, when the tem-
perature varies, the peaks not only change their intensity but
also shift because of anharmonicity. Our expression seems to
be good even for the strong anharmonicity where the mini-
mum of the potentialU(Q) is shifted fromQ50. This result

suggests that all the terms dropped in the approximation do
not play a significant role. In order to make this point clearly,
it is desired to include unperturbative contributions more
precisely.

One possible way to systematically include the unpertur-

FIG. 6. The linear absorption spectras(v) of the anharmonic system for the different damping constantsg50.001, 0.1, and 1 at the low temperature
T̃50.05. The graphs~a!, ~b!, and~c! correspond to the spectra from the different potentials in Figs. 5~a!, 5~b!, and 5~c!, respectively. The logarithmic plots
of each spectrum are given on the right-hand side@~a.2!, ~b.2!, and~c.2!#.
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bative contributions is Fukuda’s method which consists of
the inversion method and the on-shell expansion.47–49 They
are originally applied to the problems in high energy physics
and have proved their wide applicability in various
fields.50–55 By this method one can rewrite the theory in
terms of the physical observable in question by using the
Legendre transformation. The unperturbative contributions

are systematically taken into account by perturbative calcu-
lations in this method~though it may sound paradoxical!.
The application of this method to the present problem of the
molecular spectra should be studied in the future.

At the very high temperature our perturbation scheme
may become worse since in that case the initial wave packet
is spreading out so that higher energy eigenstates are well

FIG. 7. The linear absorption spectra of the anharmonic system at the high temperatureT̃50.5. The other parameters are the same as in Fig. 6.
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populated and the effect of the anharmonicity will appear
strongly. This can be seen if we look at the temperature
dependent propagators, say, in the Ohmic case. Both
D (22) andD (23) proportional toCi5coth(ibli/2) become
large asT→`. However, in the temperature range of the
experiment or in our numerical calculation, we may not need
to care about it. Since in this regionCi is of order unity.

It is emphasized here that our theory can be used to
investigate the form of anharmonic adiabatic potential sur-
faces.

The formalism employed in the present paper can be
easily generalized to study the anharmonicity of the bath
oscillators and the nonbilinear system–bath coupling by
adapting the Feynman rule. These are also important issues
to be studied in a separate paper.

In the present paper, we limited our study to a system
with a single potential surface. Many systems in nonlinear
optical response as well as nonadiabatic transition and tun-
neling are, however, characterized by two or three potential
surfaces with dipole or nonadiabatic couplings between
them. For a displaced~two-state! harmonic oscillator system,
one can obtain response functions by using the generating
functional.36 In the same way, we can extend the present
results to the multi-anharmonic potentials.

In our calculation of the spectrum or the response func-
tion, we assumed that the dipole moment is expressed in the

linear function of the coordinate asm(Q)5m01m1Q. Our
diagrammatic approach, however, makes it possible to in-
clude the higher-order coordinate dependence ofm(Q) as
well. For the harmonic case, the response functions for a
generalm(Q) had been obtained in a compact form~see
Appendix E of Ref. 8!. It is also possible to extend our re-
sults to study the fifth order optical process related to three
time correlation functions, such as^Q(t)Q(t8)Q(t9)&. Fifth
order optical measurements may be useful in distinguishing
the spectrum of anharmonic origin from that of the other
origins, since this measurement has two-time evolution pe-
riod and the time dependencies on the anharmonic and other
origins are expected to be different. By using this measure-
ment, for example, we should be able to tell the effects of
anharmonicity from those of higher order coordinate depen-
dence ofm(Q). On the other hand, it may be difficult to
distinguish those two effects in the linear absorption spec-
trum. This direction of study is also useful to investigate the
homogeneous and inhomogeneous nature of the spectrum.36

We leave these problems for future study.56
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APPENDIX A: DERIVATION OF THE GENERAL FORMULA (3.6)

The generating functional obtained in Ref. 37 is expressed as

expS i\ WJD 5expS V̄F\

i

]

]J~1 ! ,
\

i

]

]J~2 ! , \
]

]J3
G Dexp~F@J~1 !, J~2 !, J3# !, ~A1!

whereV̄ andF are given by

V̄F\

i

]

]J~1 !,
\

i

]

]J~2 ! , \
]

]J3
,G 52

i

\E0
`

dtFVS \

i
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]J1~ t !
D 2VS 2

\
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D G2

1

\E0
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dt VS \
]

]J3~t! D
52
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\E0
`

dtFVS \
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]J~1 !~ t !
1

\

i
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]J~2 !~ t ! D 2VS 2
\

2i

]

]J~1 !~ t !
1

\

i

]

]J~2 !~ t ! D G
2
1

\E0
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dt VS \
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]J3~t! D , ~A2!

F@J~1 !, J~2 !, J3#5S i\ D 2E
0

`

dtE
0

`

ds J~2 !~ t !D ~21 !~ t,s!J~1 !~s!1
1

2 S i\ D 2E
0

`

dtE
0

`

ds J~2 !~ t !D ~22 !~ t,s!J~2 !~s!

1
i

\2E
0

`

dtE
0

b\

dt J~2 !~ t !D ~23!~ t,t!J3~t!1
1

2\2E
0

b\

dtE
0

b\

dt8J3~t!D ~33!~t,t8!J3~t8!. ~A3!

We insert the right hand-side of the following identity at the end of Eq.~A1!:43

15expS 1\E0b\

dt J3~t!w3~t!1E
0

`

dt@J~1 !~ t !w~1 !~ t !1J~2 !~ t !w~2 !~ t !# DU
w~1 !5w~2 !5w350

. ~A4!
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Using the simple relation

ef S ]
]xDeg~x!eax5eaxegS ]

]a1xDef ~a!, ~A5!

we have

expS i\WJD 5expS FF\

i

]

]w~1 !1J~1 !,
\

i

]

]w~2 !1J~2 !,

\
]

]w3
1J3G Dexp~ V̄@w~1 !, w~2 !, w3# !uw50 .

~A6!

In the same way we have

O F\

i

]

]J~1 !,
\

i

]

]J~2 ! , \
]

]J3
Ge~ i /\!WJuJ50 ~A7!

5expS FF\

i

]

]w~1 ! ,
\

i

]

]w~2 ! , \
]

]w3
G D

3O @w~1 !,w~2 !,w3# exp~ V̄@w~1 !,w~2 !,w3# !uw50 .

~A8!

SinceF@\/ i ]/]w (1) , \/ i ]/]w (2) , \ ]/]w3#5]/]wD]/]w
and V̄@w (1),w (2),w3#5V@w#, we have the general formula
~3.6! which keeps only connected graphs as is clear from the
Goldstone theorem of the Feynman graph.

APPENDIX B: ESTIMATION OF GRAPHS

In this appendix we explicitly calculate the Laplace
transforms of each diagrams of the mass operatorS(z) in the
Ohmic case. For later convenience, we present propagators
in terms of time variable in the Ohmic case.

D ~21 !~ t,0!5
\

iM z
e2gt/2 sin zt, ~B1!

D ~22 !~ t,0!5
\

4Mz
~2C1e

2l1t1C2e
2l2t!2G~ t !, ~B2!

D ~23!~ t,t!52a1e
2l1~ t1 i t!1a2e

2l2~ t1 i t!2G~ t1 i t!, ~B3!

with

aj5
\

4Mz
~11Cj !, G~x!5

2g

Mb (
n51

`
nne

2nnx

~V21nn
2!22g2nn

2 .

~B4!

Here,l j , Cj are defined in Sec. V. The expressions for the
first two propagators have already been derived in a rather
different context.42 Owing to the initial value theorem of the
Laplace transform, we have

D ~22 !~0,0!5zD~22 !~z!uz→`

5
1

Mb (
n52`

`
1

V21nn
21unnug

5D ~33!~0,0!.

~B5!

Let us first consider the Laplace transform ofSB(t). In
terms of the dimensionless quantities it is expressed as:

S̃B~ z̃ ![
\

i

1

MV2SB~z!52
g̃ 4
2

4! E0
`

dt̃ e2 z̃ t̃ @D̃ ~21 !~ t̃, 0!#3.

~B6!

We should notice here that the dimensionless propagators in
terms of time variable is defined by@compare with Eq.~5.4!#

D ~ lm!~ t,0!5
\

i

1

MV
D̃ ~ lm!~ t̃, 0! @ l , m5~1,2, 3!#. ~B7!

In what follows we use the dimensionless expressions but
with no tildes. From Eq.~B1! and the simple relation

E
0

`

dte2xtsinzt5
z

x21z2
~Re x.0!, ~B8!

we have

SB~z!52
g4
2

4!

3

4z2 F 1

~z1g1l1!~z1g1l2!

2
1

~z13l1!~z13l2!
G . ~B9!

Next we consider the Laplace transform of dimension-
less functionSA(t)

SA~z!5g3
2E

0

`

dt e2ztD ~21 !~ t,0!D ~22 !~ t,0!. ~B10!

From Eqs.~B1!, ~B2!, and~B8!, we have

SA~z!52S1~z!1S2~z!2SG~z!, ~B11!

where

S i~z!5
g3
2

4z

Ci

~z1g!~z12l i !
, ~B12!

SG~z!52g3
2 (
n51

`
An

~z1nn1l1!~z1nn1l2!
. ~B13!

Here,Ci andAn were defined in Sec. V.
In a similar manner, the Laplace transform of dimen-

sionless functionSC is calculated as

SC~z!5
g4
2

2 E0
`

dt e2ztD ~21 !~ t,0!@D ~22 !~ t,0!#2

5
g4
2

32z2 F C1
2

~z13l1!~z1g1l1!

1
C2
2

~z13l2!~z1g1l2!
2

2C1C2

~z1g1l1!~z1g1l2!
G

1
g4
2

2z (
n51

`
An

z1g1nn
S C1

z12l11nn
2

C2

z12l21nn
D

12g4
2(
n51

`

(
m51

`
AnAm

~z1l11nn1nm!~z1l21nn1nm!
.

~B14!

Finally we calculate the first five terms on the right-hand
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side of Eq. ~4.11! or S012S05, given in Eqs.~4.12! to
~4.16!. The dimensionless expression ofS01 reduces to
2g4A through Eq.~B.5!. The sum ofS02(t) andS03(t) can
be directly calculated from Eqs.~B1! to ~B3!. After tedious
but straightforward calculations, we find that the~dimension-
less! sum isg3

2A, which is independent oft. Instead we can
use the fact that the sum is equal toS02(t50) since the sum
is independent oft andS03(t50)50 in order to alleviate the
tedious calculation. The independence ont can be proved
generally~by not assuming the Ohmic damping! as follows.
SinceD (33)(0,0)5D (22)(0,0)5S(0), the sum isexpressed
as

1

2 S 2g3
\ D 2S~0!G~ t !,

where

G~ t !52i E
0

t

dt8A~ t8!1 i E
0

b\

dt C~ t1 i t!.

By noting the periodicity relations

S~ t1 ib\!5S~ t !, A~ t1 ib\!52A~ t !,

we conclude that the time derivative ofG(t) which is
2iA(t)1C(t1 ib\)2C(t) becomes zero. Thus the sum is
truly time independent.

In the same way, the sum ofS04(t) andS05(t) is proved
to be independent oft and the dimensionless quantity
\/( iMV2) @S04(t)1S05(t)# reduces to the third terms on
the right-hand side of Eq.~5.9!.
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