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The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-
Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy
form. This model describes frequency fluctuations in the quantum system with an arbitrary cor-
relation and thus bridges the gap between the wnian oscillator model and the chastic
model by Anderson and Kubo. The effects of the finite correlation time and the system-bath
coupling strength are studied for a harmonic model system by numerically integrating the equa-
tion of motion. The one-time correlation function of the system coordinate, which is measured
in conventional Raman and infrared absorption experiments, already reflects the inhomogeneous
character of the relaxation process. The finite correlation time of the frequency fluctuations,
however, is directly evident only in the two- and three-time correlation function as probed by
multidimensional spectroscopic techniques such as the Raman echo and the fifth-order 2D Raman
experiment.
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§1. Introduction

The interactions between the reacting molecules and
their neighbors determine the reaction path and dy-
namics of virtually all chemical reactions in condensed
phase systems. In order to better understand the ba-
sic chemical and biological processes various theoretical
approaches such as ab initio calculations and molecular
dynamics simulations have been taken. Optical spec-
troscopy is a very popular technique to study these pro-
cesses experimentally: The position, width and shape of
vibrational and vibronic resonances directly reflect the
strength and dynamics of the most important molecular
interactions. In spectroscopy, two relaxation processes
are often distinguished:1-3) Energy relaxation is the pro-
cess in which the excited electronic or vibrational states
of a probe molecule (the system) return to the ground
state by transferring the energy difference to the envi-
ronmental molecules (the heat bath). Phase relaxation is
caused by fluctuations of molecular energy levels, which
destroys the phase coherence without energy dissipation.
The lifetime of the excited state has then no meaning and
is considered infinitely long.

Theoretically, relaxation effects have been studied ex-
tensively by using a system-bath model,2-4) such as the
spin-Boson system, which consists of a two-level molec-
ular system coupled to a harmonic oscillator bath. The
spin-Boson Hamiltonian is expressed as5)

ators of the two-level system, bj and b+j are those of
the jth bath oscillator. The interaction between the
system and the bath is linear in the bath coordinates,
but can be any function F (a, a+) of the system coor-
dinate. The heat bath acts as noise source, which in-
duces fluctuations in the two-level system through the
system-bath interaction. The noise is characterized by
the noise correlation function f(t) =

∫
dωJ(ω) sin(ωt),

where J(ω) =
∑

(c2j/h̄ωj)δ(ω−ωj) is the spectral density
of the bath. Usually, one assumes Gaussian-white noise,
f(t) = κδ(t) with J(ω) ∝ κω,6) or Gaussian-Markovian
noise, f(t) = ∆2 exp(−γt) with J(ω) ∝ ∆2ωγ/(γ2 +ω2),
in which γ corresponds to the inverse correlation time of
the noise.7, 8)

One popular approach to study energy relaxation pro-
cesses is using the optical Bloch equation.1, 6) This equa-
tion is obtained by assuming Gaussian-white noise with
linear system-bath interaction F = a + a+ and evok-
ing the rotating wave approximation (a+ a+)

∑
cj(bj +

b+j )→
∑
cj(a

+bj+ab+j ). These two terms describe reso-
nant energy exchange between the two-level system and
the heat bath. Since for a Gaussian-white noise heat bath
the spectral distribution is continuous, i.e., J(ω) ∝ κω,
there is an infinite number of the bath oscillators with
different frequencies in every frequency interval ω ± δω.

H =
1

2
h̄ω0a

+a+
1

2
F (a+, a)

∑
j

cj(bj + b+j )

+
∑
j

(
1

2
h̄ωjb

+
j bj

)
, (1)

where a and a+ are the creation and annihilation oper-
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The Gaussian-Markovian case is characterized by two
parameters, the inverse correlation time of the frequency
fluctuations γ and the width of the frequency fluctu-
ations ∆. In the fast modulation limit, γ À ∆, the
bath perturbs the energy levels so rapidly that the sys-
tem cannot follow these motions. It experiences then an
effective bath (motional narrowing) and the line shape

Thus, the energy transferred from the system to the bath
does not return to the system in a finite time, yielding
an effective energy relaxation of the system. The rate 2κ
appearing in the Bloch equation corresponds to the pop-
ulation relaxation from the excited state to the ground
state, which is analogous to 1/T1 in nuclear magnetic
relaxation.

The phase relaxation can be taken into account by as-
suming fluctuations of the energy levels, which leads to
the stochastic Liouville equation.9) The random modula-
tion of energy levels causes a phase loss of the initial co-
herence between ground and the excited state, which
can be incorporated into the spin-Boson Hamiltonian by
setting F = a+a. Such a term is found for a coupling that
is linear in the bath coordinate and quadratic in the sys-
tem coordinate, i.e., Q2

∑
cjxj → (a+a+)2

∑
cj(bj+b

+
j )

(SL model). In our previous paper (here after paper
I)10) we showed that in the limits of Gaussian-white
noise and weak coupling this model describes phase re-
laxation, i.e., the T2 process in NMR, see also the dis-
cussion above. In many cases, e.g., molecular collisions
or lattice vibrations, the Markovian approximation of
completely uncorrelated fluctuations is valid. In liquids,
however, where the motions of the bath molecules have
similar time constants as the motions of the system, this
approximation can break down and a more elaborated
model is necessary, which accounts for the finite correla-
tion of the system and the bath motions. Then the phase
relaxation process cannot be characterized by a single
decay constant 1/T2 anymore since here we consider
a colored noise. The simplest example is a Gaussian-
Markovian modulation defined by the noise correlation
function f(t) = ∆2 exp(−γt).7, 8)

To make this discussion more concrete, we discuss
the effects of energy and phase relaxation upon lin-
ear absorption in a two-level system. We assume that
the bath is in the high temperature equilibrium state;
ρeq

B = exp(−
∑
βh̄ωjb

+
j bj/2), where β is the inverse tem-

perature of the bath. If the two-level system is initially
in the ground state, |0〉〈0|, then the linear absorption
signal is calculated as2)

I(t) = tr{a+(t)a|0〉ρeq
B 〈0|} = exp[−iω0 − g(t)], (2)

where the line shape function g(t) is expressed in the
Gaussian-white (GW) case as

gGW(t) = κt, (3)

and in the Gaussian-Markovian (GM) case as

gGM(t) =
∆2

γ2
(e−γt + γt− 1). (4)

the

function can be approximated by gGM(t) = γ′t with
γ′ ≡ ∆2/γ, corresponding to a Lorentzian shape of the

Here, Q, P , and M denote the effective coordinate, con-
jugated momentum, and mass of the molecular system.
The coordinate, conjugated momentum, mass and fre-
quency of the jth bath oscillator are given by xj , pj , mj

and ωj , respectively. The coupling between the system
and the jth bath oscillator is controlled by the function
Fj(Q), which is related to the system-bath interaction
via: HSB = −

∑
xjFj(Q).

In the simplest form of the Brownian oscillator model,
the interaction is also linear in the system coordinate,
−
∑
cjxjQ (the LL interaction). Since the coordinates

can be expressed in terms of the creation and annihila-
tion operators, a and a+, and bj and b+j , the interaction is

rewritten as (a+a+)
∑
cj(bj +b+j ). In the rotating wave

approximation, this is expressed as
∑
cj(ab

+
j + a+bj)

implying that the LL model describes the energy relax-
ation (the T1 relaxation process), besides the off-resonant
terms, ab and a+b+. The pure phase relaxation, however,
cannot be described by the LL model, even if we consider

spectral line. This limit describes the phase relaxation
described above. In the opposite case of slow modula-
tion, γ ¿ ∆, the bath configuration is effectively static
and the line shape function is gGM(t) = ∆2t2/2; the
spectral line shape is then Gaussian. This is indeed iden-
tical with the case that the two-level molecules are dis-
tributed spatially with the Gaussian distribution func-
tion S(ω) = exp[−δ2(ω − ω0)2]. The linear absorption
spectrum is expressed as

Iinhomo(t) =

∫
dωS(ω)eiωt = eiω0t−∆2t2/2, (5)

where we put ∆2 = δ2/2. This inhomogeneous broaden-
ing is found, e.g., for molecules in the gas phase (Doppler
broadening) or molecules at different sites in a crystal or
glass matrix. When neither of the two limits applies
and the inverse correlation time of the fluctuations is
of the same order as the width of the fluctuations, the
noise cannot be regarded as white and eq. (4) has to be
used. The stochastic model has been applied to photon
echoes,2) resonant light scattering,11) Raman echoes12)

and fifth-order Raman scattering.13)

Although it surpasses the traditional descriptions in
terms of population and phase relaxation rates, the
stochastic model is still rather phenomenological in the
sense that it does not involve a detailed microscopic de-
scription of the system and the bath. In particular, it is
independent of the bath temperature and the shape of
the system potential. The Brownian oscillator model is
a more microscopic approach to the dynamics of a sys-
tem with a potential U(Q), which is in contact with a
distribution of bath oscillators. The Hamiltonian is then
given by:14)

H =
P 2

2M
+ U(Q)

+
N∑
j=1

 p2
j

2mj
+
mjω

2
j

2

(
xj −

Fj(Q)

mjω
2
j

)2
 . (6)

a Gaussian-Markovian modulation, since the LL interac-
tion causes just dissipation and no frequency fluctuation.
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In §2 the quantum Fokker-Planck equation for

In order to introduce pure dephasing due to level fluc-
tuations, one has to consider the square-liner interaction
(the SL model) in the Hamiltonian eq. (6) defined by
Fj(Q) = gjQ

2/2, where gj is the coupling constant.15)

One can regard this interaction as a part of the total
system-bath interaction expressed in the general form
as HSB = (Q + aQ2 + . . .)

∑
(cjxj + c′jx

2
j + . . .). Note

that in spectroscopy the interaction between the modes
of the form Q2x is known as Fermi resonance. This in-
teraction causes frequency modulations of the system,
since the instantaneous frequency of the molecular os-
cillator is expressed as δω(t) =

√
ω2

0 +
∑
gjxj(t)/M

for a harmonic potential U(Q) = Mω2
0Q

2/2. Note
that the relaxation in this model is, however, not com-
pletely equivalent to the pure dephasing, since in addi-
tion to (aa+ + a+a)

∑
gj(bj + b+j ), this interaction in-

cludes higher-order population relaxation described by
(a+a+ + aa)

∑
gj(bj + b+j ). These effects were discussed

for Gaussian-white noise in paper I.
As discussed for the two-level system, it is important

to take into account the correlation of the noise to study
memory effects. In the SL model the bath dynamics -
and hence the system-bath correlation - is described by
the spectral density

JSL(ω) =
N∑
j=1

g2
j

8mjωj
δ(ω − ωj). (7)

Such distribution can be evaluated computationally
based upon the molecular dynamics simulation.16) In the
previous paper, we discussed the Gaussian-white noise
case, JSL(ω) = MζSLω, which corresponds to the ho-
mogeneous limit of the stochastic two-level model. In
this paper, we consider a more general distribution func-
tion:7, 8, 17-20)

JSL(ω) = MζSL
γ2ω

γ2 + ω2
, (8)

corresponding to an exponentially decaying correlation
function f(t) ∝ exp[−γt]. This distribution can repre-
sent an inhomogeneous distribution in the slow modu-
lation limit, γ ¿ ω0, where ω0 is the characteristic fre-
quency of the potential in the harmonic approximation,
and reduces to the Gaussian-white case (paper I) in the
fast modulation limit, γ À ω0, i.e. J(ω) = MζSLω. In
the previous paper I, we have calculated the seventh-
order off-resonant Raman signal to compare it with the
result from the stochastic Raman echo theory, which pre-
dicts an echo peak for inhomogeneously distributed two-
level modes.12) We showed that the SL model with a
Gaussian-white bath does not have any echo like sig-
nal, since it corresponds to the homogeneous case. In
the present paper, we demonstrate that this signal does
show an echo for the exponentially correlated Gaussian-
Markovian noise. We will also show that fifth-order 2D
spectroscopies, which are of great interest both theoret-
ically21-46) and experimentally,47-61) are sensitive to the
correlation time of the noise.

Gaussian-Markovian noise with nonlinear system-bath
coupling is presented. A derivation of this equation is

Fig. 1. Schematic view of homogeneous and inhomogeneous dis-
tribution of harmonic oscillators.

given in the appendix. The third-, fifth-, and seventh-
order Raman response function, which is equivalent to
the first-, second-, and third-order IR response is pre-
sented in §3 for purely inhomogeneous broadening; in §4
these results are compared to the results for a Gaussian-
Markovian frequency fluctuation obtained by the hier-
archical quantal Fokker-Planck approach. Section 5 is
devoted to concluding remarks.

§2. The Gaussian-Markovian Quantum Fokker-
Planck Equation for Nonlinear System-Bath
Interaction

The Fokker-Planck equation was originally classical
and for white noise.62) Later, Caldeira and Leggett
derived the quantum version from the system-bath
Hamiltonian with LL interaction Fj(Q) = cjQ us-
ing the Feynman-Vernon influence functional formal-
ism.63) They assumed Ohmic dissipation JLL(ω) ∝ ζω,
but later Tanimura and Wolynes derived the quantum
Fokker-Planck equation in the tridiagonal hierarchy form
for Gaussian-Markovian noise by assuming JLL(ω) ∝
ζωγ2/(γ2 + ω2) and βh̄γ ¿ 1.17-20) The equation of
motion has then a similar structure as Kubo’s stochas-
tic Liouville equation.9) The Fokker-Planck equation for
arbitrary colored noise has also been studied.64-66) All
of these studies are, however, limited to LL coupling.
In the previous paper, we derived the quantum Fokker-
Planck equation for SL coupling and Gaussian-white
noise by considering the Hamiltonian eq. (6) with cou-
pling Fj(Q) = gjQ

2/2.10) In this study, we generalize
it to Gaussian-Markovian noise. For the derivation of
the Gaussian-Markovian Fokker-Planck equation in the
SL model, which is given in the Appendix, one has to
assume the spectral density eq. (8) and a high temper-
ature bath βh̄γ ¿ 1. In the hierarchy form it can be
expressed as:
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∂

∂t
W (0)(P,R; t) = −LSW

(0)(P,R; t) + 2R
∂

∂P
W (1)(P,R; t), (9)

∂

∂t
W (1)(P,R; t) = −(LS + γ)W (1)(P,R; t) + 2R

∂

∂P
W (2)(P,R; t)

+2ζSLγ

[
R

(
P +

M

β

∂

∂P

)
+
h̄2

4

∂2

∂P∂R

]
W (0)(P,R; t), (10)

and

∂

∂t
W (n)(P,R; t) = −(LS + nγ)W (n)(P,R; t) + 2R

∂

∂P
W (n+1)(P,R; t)

+n2ζSLγ

[
R

(
P +

M

β

∂

∂P

)
+
h̄2

4

∂2

∂P∂R

]
W (n−1)(P,R; t), (11)

where the quantal Liouvillian is expressed by the Fourier
representation of the potential, which is convenient for
numerical calculations:

−LSW (P,R; t)

≡ −
P

m

∂

∂R
W (P,R; t)

−
1

h̄

∫
dP ′

2πh̄
V (P − P ′, R)W (P ′, R; t), (12)

with

V (P,R)

= 2

∫ ∞
0

dr sin(Pr/h̄)[U(R+ r/2)− U(R − r/2)].

(13)

The definition of hierarchy elements W (n)(P,R) is given
in the Appendix. The equation of motion is derived by
calculating the time derivative of these hierarchy ele-
ments. Physically, one can think of this hierarchy of
equations as dealing with a set of Wigner functions, mod-
eling the states of the system with various numbers of

quanta exchanged between the system and the bath. In
this formulation, W (0) includes all orders of the system-
bath interaction; it is the exact solution for the Hamil-
tonian eq. (6) with the Gaussian-Markovian distribution
eq. (8). Then W (1), W (2), . . ., W (n) describe the distri-
bution functions with a smaller set of the system-bath
interactions, corresponding to the complete set of the
system-bath interactions minus 1st, 2nd, . . ., nth order
of the system-bath interaction, respectively. Thus, this
formulation takes the opposite direction to the conven-
tional perturbation approaches, where the 0th member
does not include any system-bath interaction, then the
first, second, third, etc., members gradually take into
account the higher-order interactions and approach the
exact solution. We shall be interested only in the 0th
member of the hierarchy, W (0), which is identical to
the original Wigner distribution W . The other elements
n 6= 0 are not directly related to any physical observable
and are introduced for computational purposes only. At
large n = N À ω0/γ the inclusion of even more system-
bath interactions does not yield any significant change
anymore. The above hierarchy can then be terminated
by

∂

∂t
W (N)(P,R; t) = −(LS +Nγ)W (N)(P,R; t) + ΓSLW

(N)(P,R; t)

+N2ζSLγ

[
R

(
P +

M

β

∂

∂P

)
+
h̄2

4

∂2

∂P∂R

]
W (N−1)(P,R; t), (14)

where ΓSL is the damping operator in the Gaussian-
white case (see paper I):

ΓSL = 4R2ζSL
∂

∂P

(
P +

M

β

∂

∂P

)
+RζSLh̄

2 ∂3

∂2P∂R
.

(15)

The depth of the hierarchy N , i.e., the number of Wigner
functions W (n), can be estimated from numerical simu-
lations and should fulfill Nγ > 4ω0 and Nγ > 4ζ. The
error caused by the cutoff is easily checked by changing
N . Using this hierarchal structure, we may deal with
strong system-bath interactions in addition to the finite
correlation time of the noise. In the white noise limit,
γ À ω0, we may terminate the hierarchy of eqs. (9)–(14)
by setting N = 0, obtaining the quantum Fokker-Planck
equation for a Gaussian-white noise bath:

∂

∂t
W (P,R; t) = −LSW (P,R; t) + ΓSLW (P,R; t), (16)

which agrees with the equation derived in paper I. Since
we assumed βh̄γ ¿ 1, the temperature requirement in
the Gaussian-white case is more stringent than in the
Gaussian-Markovian case.

The physical observable in optical measurements can
be expressed by the multi-time correlation function of
polarizability or dipole moment. In vibrational spec-
troscopy, the optical responses of resonant IR and Ra-
man are formally identical besides the fact that the Nth-
order IR spectroscopy corresponds to the (2N + 1)th-
order Raman spectroscopy as shown in paper I.10) For
off-resonant excitation, the response functions are ex-
pressed in terms of the polarizability α(Q) as21, 25, 26)

R(3)(T1) =
i

h̄
tr{[α(T1), α(0)]ρg}, (17)
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R(5)(T2, T1) = −
1

h̄2 tr{[[α(T1 + T2, α(T1)], α(0)]ρg},

(18)

and

R(7)(T3, T2, T1)

= −
i

h̄3 tr{[[[α(T1+T2+T3), α(T1+T2)], α(T1)], α(0)]ρg}.

(19)

Here, ρg is the equilibrium distribution

ρg = exp[−βH]/tr{exp[−βH]}, (20)

and α(τ ) is the Heisenberg representation of the polar-
izability operator α(Q):

α(τ ) ≡ exp

(
i

h̄
Hτ

)
α(Q) exp

(
−
i

h̄
Hτ

)
. (21)

For resonant IR excitation, the polarizability α(Q) is
replaced by the dipole moment µ(Q). In both cases,

the polarizability and dipole moments are expanded in
the molecular coordinate as α(Q) = α1Q + α2Q

2 . . ., or
µ(Q) = µ1Q+µ2Q

2 . . ., and the two results are formally
identical. Therefore, hereafter we do not distinguish be-
tween the Nth-order IR and (2N + 1)th order Raman
processes and present only the results for Raman spec-
troscopy.

§3. Optical Response of the Pure Inhomoge-
neous Model

Before discussing the results for the Gaussian-
Markovian model, in particular the role of the finite cor-
relation time, it is instructive to discuss the response of
a set of purely inhomogeneously broadened oscillators to
explain the underlying physics in the higher-order op-
tical processes. This is identical with the slow modu-
lation limit discussed in §1, where the frequency of the
harmonic oscillators are distributed with the distribution
function S(ω) (Fig. 1(b)). As shown in ref. 21, the third-,
fifth-, and seventh-order signals can be expressed as

R
(3)
inhomo(T1) =

α2
1

2M

∫
dω

S(ω)

ω
sin(ωT1), (22)

R
(5)
inhomo(T2, T1) =

α2
1α2

4M2

∫
dω

S(ω)

ω2
sin(ωT2)[sin(ωT1) + sin(ω(T1 + T2))], (23)

R
(7)
inhomo(T3, 0, T1) =

α2
1α

2
2

4M3

∫
dω

S(ω)

ω3
sin(ωT1)[sin(ωT3)]2. (24)

In Fig. 2, we plot the third-, fifth- and seventh-
order signals for S(ω) = exp[−δ2(ω − ω0)2]. The
Gaussian distribution function is chosen because of
the central limit theorem and, moreover, it is the
static limit of the stochastic model. Figure 2(a)
presents the imaginary part of the Fourier transforma-
tion of the third-order response function, Im{R(3)(ω)} ≡
Im{

∫
dT1 exp[iωT1]R(3)(T1)} = S(ω)/ω for δ = 2/ω0

(short dashed line), 3/ω0 (solid line) and 5/ω0 (dot-
ted line), where ω0 = 38.7 cm−1 (1/ω0 = 861 fs) which
is a typical value for low-frequency intermolecular mo-
tions and which has been used in a previous study of a
Morse potential.25) For small inhomogeneity δ = 5/ω0

and 3/ω0, the spectrum is Gaussian. The peak shifts to
the red and becomes broader as δ decreases. For large
inhomogeneity (δ = 2/ω0), the line shape becomes bi-
modal: In addition to a broad feature around ω0 there is
a (nearly) Lorentzian peak close to zero frequency. This
is because, in the large inhomogeneity case, the low fre-
quency oscillators can contribute to the signal due to
the large distribution. Their contribution to the signals
are proportional to t, since sin(ωt)/ωt → 1 for ωt ¿ 1,
causes the low frequency peak in frequency domain.

Figure 2(b) shows the fifth-order two-dimensional (2D)
Raman signal I(5)(T1, T2) = R(5)(T2, T1) for δ = 3/ω0.
The dashed lines represent the negative part of the sig-
nal. This signal has two prominent features: (i) a peak
along T2 for small T1 and (ii) a peak along the diagonal
at T1 = T2. Such directions are the stationary points of
the response function, as we can easily see from eq. (23)
by transforming the trigonometric functions in the re-

sponse function into cos(ωT1) and cos[ω(T1 − T2)]. The
origin of these two peaks was discussed in ref. 27: The
first peak involves a coherent state during the (short)
first propagation time and a population during the sec-
ond propagation time. Since the latter state is not af-
fected by pure dephasing we find a plateau. The sec-
ond peak along the diagonal is due to an inversion of
the phase coherence leading to a vibrational echo. Fig-
ure 2(c) presents the seventh-order 2D Raman signal
I(7)(T1, T3) = R(7)(T3, 0, T1) for δ = 3/ω0. The sta-
tionary point of the response function is now T1 = 2T3

as can be seen from eq. (24) with transforming its
trigonometric functions. Figures 2(b′) and 2(c′) illus-
trate the same result as Figs. 2(b) and 2(c) but in the fre-
quency domain (R(5)(ω1, ω2) = |

∫
dT1

∫
dT2 exp[iω1T1 +

iω2T2]R(5)(T2, T1)| and R(7)(ω1, ω3) = |
∫

dT1

∫
dT3

exp[iω1T1 + iω3T3]R(7)(T3, 0, T1)|). The peak along T1 =
0 and T1 = T2 in Fig. 2(b) and T1 = 2T3 in Fig. 2(c)
correspond to the spectral peaks along ω2 = 0 and
ω1 = −ω2, and ω1 = −2ω3, respectively. In the fre-
quency domain representation the line narrowing char-
acter of the 2D spectroscopies is clearly evident: The
“length” of the peaks at ω1 = −ω2 and ω1 = −2ω3, i.e.,
the range of values ω1 is a direct image of the distribu-
tion function S(ω). The “width” of the peaks, i.e., the
range of values ω2(3) for a given ω1 which almost fulfill
ω1 = −ω2 and ω1 = −2ω3, is a measure for the homo-
geneity of the system. In our simulation of purely inho-
mogeneous broadening the width is solely determined by
the finite size of S(ω). Note that the peaks at ω1 = ω2

in Fig. 2(b′) are very small since the corresponding term



4100 Yoshitaka Tanimura and Thomas Steffen (Vol. 69,

cos[ω(T1 + T2)] does not rephase.
One may expect that the SL model with Gaussian-

Markovian noise reduces to the above results in the slow
modulation limit analogous to the two-level case. This
is not always true in the higher-order optical processes
as will be shown in the following sections.

§4. Optical Response of the SL Model with
Gaussian-Markovian Modulation

In this Section we present the third-, fifth- and
seventh-order Raman signals in the SL model for
Gaussian-Markovian noise. For the calculation of the
optical onse upon multiple system-light interactions,
we have first to generate the initial equilibrium state.
This phase space distribution is obtained by integrating
the equation of motion from time t = −ti to t = 0 with
the temporally initial condition,

W (0)(P,R;−ti) = exp[−β(P 2/2M + U(R))],

W (n)(P,R;−ti) = 0. (25)

Note that eq. (25) is the equilibrium state of the uncou-

resp

pled system, but it is not the equilibrium state of the
total system and the bath, since it neglects the interac-
tion between the system and the bath,

∑
Fj(Q)xj . In

the Gaussian-Markovian Fokker-Planck equation formal-
ism, such interaction can be taken into account by the
nonzero hierarchy elements, i.e., W (n)(P,R; t) 6= 0.17, 18)

By integrating the equation of motion from time t = −ti
to t = 0, the density matrix comes to the “true” equilib-
rium state described by the full set hierarchy elements
W (n)(P,R; t = 0), if we chose |ti| sufficiently large com-
pared to the characteristic time of the system. In the
simulation, we set |ti| > 1/ζ for γ ¿ ω0. To evaluate
the response function, we used the calculated full set of
hierarchy elements W (n)(P,R; t = 0) as the “true” initial
condition.

The simulations are performed for a harmonic mode
with the frequency ω0 = 38.7 cm−1 (1/ω0 = 861 fs).25)

Since we have studied the temperature effects in paper I
for Gaussian-white noise, we here fixed the temperature
at T = 300 K and concentrate on the effect of the finite
correlation time of the noise. We consider three cases
of the inverse correlation time γ = 0.1ω0, ω0, and 10ω0

for the different coupling strengths ζ ′ = 0.01ω0, 0.1ω0,
and 0.5ω0, where we set ζ ′ = h̄ζSL/Mω2

0 . The nonlinear
polarizability α2 is chosen to be very small, i.e. α2/α1 =
0.01.

The kinetic equations were integrated numerically us-
ing the second order Runge-Kutta method for finite dif-
ference expressions of the momentum and the coordinate
space. The size of the mesh was chosen to be 220 × 80
in the mesh range −11 < r < 11 and −15 < p < 15 in
dimensionless momentum and coordinate (cf. paper I).
We have taken into account 2 ∼ 40 hierarchy elements for
W (n). The time steps for the finite difference expression
∂W/∂t were between 0.001 and 0.005 fs. The accuracy
of the calculations was checked by changing the mesh
size and the number of terms in the hierarchy. Using
the procedure to calculate multi-time correlation func-

of

tions given in ref. 25, we calculated various orders of the
signal.

4.1 Third-order Raman signals (first-order IR signals)
In Fig. 3, we present the imaginary part of the

Fourier transformation of the third-order response func-
tion, R(3)(ω) =

∫
dT1 exp[iωT1]R(3)(T1) for different cou-

pling strength ζ ′ and inverse correlation time γ. We
chose the depth of the hierarchy n = 2 ∼ 6 for Fig. 3(a),
n = 2 ∼ 10 for Fig. 3(b), and n = 4 ∼ 40 for Fig. 3(c).
For all calculations we checked that a further increase
of n does not change the response function. In the LL
case, R(3)(ω) directly relates to the spectral distribu-
tion JLL(ω), but here we do not have such a relation to
JSL(ω). For small ζ ′, Fig. 3(a) the line shapes are mainly
Lorentzian and similar to those of the LL model shown
in Fig. 4 in Paper I. In the LL model the Lorentzian
line is due to population relaxation as was discussed in
the introduction. The same line shape found in Fig. 3(a)
for the SL model has, however, a different origin: At low
coupling the elastic system-bath interaction governed by
the term (aa++a+a)

∑
(bj+b

+
j ) is dominant, which leads

to homogeneous pure dephasing. As pointed out by Stef-

Fig. 2. The third-, fifth-, and seventh-order response for pure in-
homogeneous case calculated from eqs. (22)–(24). (a) presents
the third-order spectrum for 2/ω0 (short dashed line), 3/ω0

(solid line) and 5/ω0 (dotted line), where ω0 = 38.7 cm−1. (b)
and (c) present the fifth- and seventh-order two-dimensional
Raman signal, I(5)(T1, T2) = R(5)(T2, T1) and I(7)(T1, T3) =
R(7)(T3, 0, T1) for δ = 3/ω0. 2(b′) and 2(c′) illustrate the same
result as 2(b) and 2(c) but in the frequency domain.
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fen and Duppen, ref. 13, the fifth-order 2D Raman signal
is well suited to experimentally distinguish these two ef-
fects, which cannot be identified in the third-order 1D
signals. The assignment to homogeneous pure dephas-
ing will be further motivated in the next section where
the 2D Raman signal in the SL model is discussed.

In Figs. 3(b) and 3(c) the third-order 1D signals
are displayed for intermediate and strong coupling with
ζ ′/ω0 = 0.1 and 0.5, respectively. When the correlation
time the bath fluctuations 1/γ is long, see dotted lines
in Figs. 3(b) and 3(c), both spectral lines show clear
Gaussian characteristics. This can be seen by noticing
the similarities between these results and the results of
Fig. 2(a). Also it is instructive to compare the dotted line
of Fig. 3(b) to the dashed line of Fig. 3(a): while the for-
mer line has a larger full-width half maximum (FWHM)
than the latter its wings are much smaller. This feature
is indicative for a considerable inhomogeneous charac-
ter of the underlying dynamics. The inhomogeneous line
broadening can be understood intuitively by considering
the main system bath interaction, which is elastic and
leads to change of the effective frequency (see discussion
above), and its correlation time. For a long correlation
time the individual system oscillators have different fre-

of

tion relaxation proceeses due terms such as a2b+j , are
also found for Gaussian Markovian noise, see Figs. 3(b)
and 3(c). They become more pronounced as γ is in-
creased as follows directly from the factor γ2/(γ2 + ω2)
in eq. (8).18) It should be noted that there is a remarkable
difference compared to the GW case: The high-frequency
peak shows a clear Gaussian line shape which was not
found in the GW SL model of paper I. It is again indica-
tive for the inhomogeneous character of the microscopic
dynamics.

4.2 Fifth-order Raman signals (second-order IR sig-
nals)

We now present the two-dimensional (2D) signals,
I(5)(T1, T2) = R(5)(T2, T1). The laser beam configura-
tion for this experiment was shown in Fig. 2(a) of paper
I.10) Note that we restrict our discussion to the fifth-
and seventh-order off-resonant Raman spectroscopy, but
the same results can be used to analyze other 2D spectro-
scopies such as 2D Infrared45, 49, 50) and 2D frequency do-
main measurements.39, 40, 59-61) Figure 4 shows the fifth-
order 2D signals I(5)(T1, T2) = R(5)(T2, T1) for (a) ζ ′ =
0.01ω0, (b) 0.1ω0, and (c) 0.5ω0, for different γ (the left
graphs are for intermediate modulation, γ = ω0, whereas
the right ones are for slow modulation, γ = 0.1ω0). The
negative part of the signal is denoted by dashed con-
tours. Here, we omitted the case for γ = 10ω0, since the
profiles of the signals are identical to the Gaussian-white
case presented in Fig. 9 of paper I. It should be noticed
that the fifth-order signal is proportional to α2

1α2 in this
SL model. The argument27) why lower-order contribu-
tions such as α3

1〈Q(t′)Q(t)Q〉 vanish is independent of
the system-bath interaction.

In Figs. 4(a) and 4(a′) the signal is shown for small
coupling strength ζ ′ = 0.01ω0. As discussed above, the
third-order 1D onse is a Lorentzian, which resembles
the response also found in the weak coupling limit of the
LL model. The corresponding fifth-order responses of the
LL- and SL-model, however, show some distinct differ-
ences, which are due to the different types of relaxation
processes involved. In the LL model the signal decay
is due to population relaxation which is effective for all
quantum states. In the SL model, on the other hand,
the system-bath interaction is elastic, yielding a loss of
phase coherence, which affects coherent quantum states
such as |1〉〈0| but not population states such as |1〉〈1|,
where |n〉 is the eigenstates of a molecular vibrational

resp

quencies, which do not change, resulting in an inhomo-
geneous Gaussian line shape as found in Fig. 2(a).

It should be noted that the finite size of the correlation
time can be hardly extracted from the third-order signal:
The differences between the pure inhomogeneous case
with γ = 0 (see §3) and the finite correlation shown here
is very small and only higher-order 2D techniques can
be used to clearly determine the correlation time, see
discussion below.

In paper I it was found that with increasing coupling
strength the spectra first shift to the blue and for even
larger coupling become bimodal with a second line close
to zero frequency when the coupling is strong. These
features, which were attributed to higher-order popula-

Fig. 3. The spectral density corresponds to the first-order IR
or the third-order Raman response of a harmonic mode in the
SL-model. We set (a) ζ′/ω0 = 0.01, (b) ζ′/ω0 = 0.1 and (c)
ζ′/ω0 = 0.5. In each figures, we present the results for different
γ: 0.1(dashed line), 1 (solid line) and 10 (long dashed line).
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a very rapid over-all decay of the signal.
When comparing the result for a finite correlation time

of 10 oscillation periods (Fig. 4(b′)) to the pure inho-
mogeneous limit (Fig. 2(b)) one immediately notices a
remarkable difference which one could not expect by in-
specting the almost identical third-order 1D spectra of
Figs. 3(a) and 2(a), both dotted: In the case of a finite
correlation time the echo feature along T1 = T2 decays af-
ter a few oscillation periods while it does not y at all
in the pure inhomogeneous limit of Fig. 2(b). This effect
is an analogous to the effect first discussed by Loring and
Mukamel12) for a seventh-order 2D Raman process in a
stochastic system. By performing a fifth-order 2D Ra-
man experiment it is thus possible to clearly determine
the correlation time of the bath fluctuations experimen-
tally, while this is hardly possible in third-order 1D Ra-
man experiments. In the analysis of experimental data
the size of the higher-order polarizability derivatives α2,
α3 etc. and the shape of the (inter)molecular potential
are not well known, which makes the interpretation of
the data quite complicated. The simultaneous analysis
of various experiments such as, e.g., 1D Raman, fifth-
and seventh-order 2D Raman, seventh-order 3D Raman,
their IR analoguous and mixtures of IR and Raman tech-
niques will be required to fully map the interactions and
dynamics. This establishes yet another feature of
2D spectroscopy.

In Fig. 5, the absolute value of the double
Fourier transformation of the signals, R(5)(ω1, ω2) =

deca

unique

mode. In impulsive fifth-order 2D Raman experiments a
population state is involved in one of the Liouville path
during the second propagation time. This path will not
decay for pure dephasing, it is decaying only due to pop-
ulation relaxation.13) Closer inspection of Figs. 4(a) and
4(a′) indeed reveals that the signal decays much slower
along T2 as compared to T1, see in particular Fig. 4(a),
and Fig. 9(a) in paper I which is identical to the case
γ = 10ω0 in the present model. This demonstrates one
of the unique features of the higher-order nonlinear ex-
periments.

The signal for intermediate coupling is shown in
Figs. 4(b) and 4(b′). For a long correlation time, i.e.,
a small γ, one might expect to see some indications of
inhomogeneous broadening, since the third-order 1D re-
sults discussed in the previous section showed a partly
Gaussian shape. As discussed §3 inhomogene-
ity should lead to an echo feature along the diagonal at
T1 = T2, see also the seminal paper by Tanimura and
Mukamel, ref. 21. Indeed such a feature is clearly ob-
served in Fig. 4(b′) while it is absent in Fig. 4(b). When
the correlation time is of the order of one oscillation pe-
riod (Fig. 4(b)) the system memory vanishes before an
echo can be formed. This effect is further amplified by
the increasing effective coupling with increasing
γ, see discussion in the previous section, which leads to

line in the

strength

Fig. 4. Contour plot of the fifth-order Raman signal I(5)(T1, T2) =
R(5)(T2, T1) in the SL-model for (a) ζ′/ω0 = 0.01, (b) ζ′/ω0 =
0.1 and (c) ζ′/ω0 = 0.5 for γ = ω0 and (a′) ζ′/ω0 = 0.01, (b′)
ζ′/ω0 = .1 and (c′) ζ′/ω0 = .5 for γ = .1ω0. Dashed contours
are negative.

0 0 0

Fig. 5. Double Fourier transformation of R(5)(T2, T1) shown in
Fig. 4.
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third-order IR echo experiments.49, 50)

As was discussed by Fourkas and coworkers67) the
seventh-order 2D Raman signal is proportional to α2

1α
2
2

in the LL model since the lower-order contribution pro-
portional to α4

1 vanishes due to destructive interference
of the Liouville space pathways involved. In paper I it
was shown that this does not longer hold for the SL
model and Gaussian white noise, where effective level de-
pendent damping destroys the perfect interference. The
same holds for Gaussian Markovian noise investigated
here.

In the fast modulation limit illustrated in Figs. 6(a)–
6(c), the system can be regarded as an ensemble of ho-
mogeneously distributed oscillators (Fig. 1(a)) and the
signals exhibit very similar profiles as in Fig. 12 of paper
I. For γ = 0.1ω0 the inhomogeneous character of the
microscopic dynamics is expected to be clearly present,
cf. discussion of the corresponding fifth-order 2D Raman
response in the previous section. Indeed for large ζ ′ and
small γ (Figs. 6(b′) and 6(c′)) a clear echo response is
predicted along the diagonal T1 = T3. This is a remark-
able difference compared to the inhomogeneous limit of
the LL model discussed in §3 where the echo peak is
found at T1 = 2T3.

The different position of the two echo peaks can be
understood by considering the Liouville space path ways
involved. In the LL model the α2 term must be included
to generate a signal at all, cf. the discussion above. This
term, which corresponds to two quantum transitions, i.e.,

|
∫

dT1

∫
dT2 exp[iω1T1 + iω2T2]R(5)(T2, T1)| is given for

the data of Fig. 4. These spectra should be compared
with various two-dimensional frequency domain experi-
ments proposed in literature.39-46, 59-61) For large ζ ′, we
observed peak shifts to the blue as was discussed in §4.1.
The inhomogeneous dynamics observed in Figs. 4(b′) and
4(c′) can be seen also in frequency domain: The peaks
at ω1 = −ω2 are much stronger than those at ω1 = ω2 as
was found also in Fig. 2(b′) for the pure inhomogeneous
case. The finite correlation time shows up here in the
shape of the peaks at ω1 = −ω2, which is distinctly dif-
ferent from those in Fig. 2(b′). The “length” of the peak
is shorter and the “width” is larger for a finite correla-
tion time due to the smaller static and larger dynamic
contribution to the line shape. For an almost homoge-
neous system, see Figs. 5(a) and 5(a′), the peak shapes
and heights are all similar.

4.3 Seventh-order Raman signals (third-order IR sig-
nals)

In this section we discuss the seventh-order 2D Ra-
man response signal I(7)(T1, T3) = R(7)(T3, 0, T1) for the
laser configuration shown in Fig. 2(b) of paper I. Analo-
gously to Fig. 4, the negative signal is depicted by dashed
contours. The results obtained by our quantum Fokker-
Planck approach displayed in Fig. 6 should be compared
with seventh-order Raman echo experiments12, 47, 48) or

Fig. 6. Contour plot of the seventh-order Raman signal
I(7)(T1, T3) = R(7)(T3, 0, T1) in the SL-model. The order of
figures are the same as Fig. 4. Dashed contours are negative.

Fig. 7. Double Fourier transformation of R(7)(T3, 0, T1) shown in
Fig. 6.
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population relaxation and phase relaxation as was dis-
cussed in paper I and demonstrated also here.

Similar observation have been made for the seventh-
order 2D Raman response, where also an echo signal is
predicted at T1 = T3 while the Raman echo in the LL
model is observed at T1 = 2T3. This difference could be
explained in terms of the different Liouville space path-
ways involved. In this respect the seventh-order 2D Ra-
man response in the SL model is quite similar to the
fifth-order 2D Raman response. Analogous to the fifth-
order 2D Raman response the seventh-order 2D Raman
response is very sensitive to the finite correlation time of
the bath fluctuations.

The frequency domain representation of the fifth- and
seventh-order 2D Raman response allows for a clear sep-
aration of the homogeneous and inhomogeneous contri-
butions to the total response. The shape of the 2D echo
peak is a measure for both the width of the static dis-
tribution of frequencies and for the homogeneous line
broadening processes. A second measure is the relative
amplitude of the echo peak height with respect to the
nonrephasing peak. In the inhomogeneous limit the lat-
ter is absent while it is larger than the previous peak in
the homogenous limit.

In this paper, we investigate the LL and SL interaction
separately, but realistic systems may have both interac-
tions. To simulate experiments, it is also necessary to
consider multi vibrational modes. Simple generalization
of the present study allows us to analyze such problems.
In this paper, we restricted our study to the harmonic
model, but the equation of motion presented here can
be applied to any potential system, such as a double
well potential system for chemical reactions17, 18) and a
displaced oscillators system for nonadiabatic electronic
transition.19, 20, 68, 69) Generalizations for such directions
are left for future studies.
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Appendix

The derivation of the Gaussian-Markovian quantum
Fokker-Planck equation with SL interaction is parallel
to the LL case shown in ref. 17. The density matrix el-
ements for the Hamiltonian (6) with Fj(Q) = V (Q)gj/2
for the distribution function (8) in the high temperature
approximation βh̄γ ¿ 1 is expressed in the path integral
form as17, 18)

overtone transitions, is involved twice in each Liouville
space pathway in the LL model. In a typical path the
system is in a one quantum coherence during the first
propagation time and a two quantum coherence during
the third propagation time, e.g., |0〉〈1| during T1 and
|2〉〈0| during T3. In this case T1 = 2T3 has to hold to
compensate for the inhomogeneous dephasing during T1.
In the SL model, where the generation of the signal re-
lies on the level dependence of the decay mechanism, all
Liouville space pathways involve only one quantum tran-
sitions. Since the system is in a one quantum coherence
during both propagation times, e.g., |0〉〈1| during T1 and
|1〉〈0| during T3, one can immediately see that T1 = T3

has to hold for the echo peak.
Analogously to the fifth-order 2D Raman signal dis-

cussed above the decay of the echo signal in the SL
model for GM noise depends on the correlation time of
the fluctuations. As shown in Figs. 6(b′) and 6(c′) the
echo signal along T1 = T3 decays within a few periods
while it does not decay in the pure inhomogeneous limit
shown in Fig. 2(c). Thus we demonstrated that also the
seventh-order response is a sensitive way to measure the
correlation time of the bath fluctuations.

Figure 7 illustrates the same result but in the fre-
quency domain (R(7)(ω1, ω3) = |

∫
dT1

∫
dT3 exp[iω1T1 +

iω3T3]R(7)(T3, 0, T1)|. The homogeneous character for
ζ ′ = 0.01ω0 is clearly evident also in the frequency do-
main representation, where the echo peaks at ω1 = −ω3

are very weak while the nonrephasing peaks at ω1 = ω3

are rather strong. As the system dynamics are more
inhomogeneous the echo peaks get larger and the non-
rephasing peaks get smaller, see Figs. 1(b′) and 1(c′).
These graphs approach Fig. 2(c′) where the nonrephas-
ing peaks are absent.

§5. Conclusions

In this paper, we derived the quantum Fokker-Planck
equation with square-linear system-bath interaction for
Gaussian-Markovian noise. This approach permits the
treatment of colored noise and strong system-bath inter-
action. The effects of a finite correlation time of the bath
fluctuations and of a large coupling strength were inves-
tigated by calculating the third-, fifth- and seventh-order
Raman response. At intermediate and strong damping
the third-order 1D onse shows clear traces of
inhomogeneous broadening when the correlation time of
the bath is long. Moreover, the spectra show a bimodal
structure in the overdamped case, which is attributed to
higher-order population relaxation as discussed in paper
I.

Numerical calculations of the fifth-order 2D Raman
response demonstrate that this spectroscopic technique
is very sensitive to the correlation time of the bath fluc-
tuations. When the system is partly inhomogeneously
broadened an echo feature is predicted at T1 = T2, which
decays on a time characteristic for the finite correc-
tion time. In the homogeneous limit the fifth-order 2D
Raman response allows one to distinguish the effects of

scale

respRaman

ρ(Q,Q′; t) =

∫ ∞
−∞

dQi

∫ ∞
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∫ Q′(t)=Q′

Q′(ti)=Q′i

D[Q′(t)]
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∂

∂t
W (n)(P,R; t) = −LSW

(n)(P,R; t)− nγW (n)(P,R; t)

+2R
∂

∂P
W (n+1)(P,R; t) + n2ζSLγ

[
R

(
P +

M

β

∂

∂P

)
+
h̄2

4

∂2

∂P∂R

]
W (n−1)(P,R; t). (A.8)

Here, the quantal Liouvillian is given by eq. (12) with eq. (13). As shown in ref. 17, for deep members of the
hierarchy Nγ À ω0 where ω0 is the characteristic frequency of the system such as the frequency of the harmonic
potential, the above hierarchy can be terminated by

∂
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We introduce the hierarchy elements
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Thus, the first member n = 0 corresponds to the density matrix (A.1). By performing the time derivative of
ρ(n)(Q,Q′; t), we have

∂
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where
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Now we chose the square interaction, V (Q) = Q2. We introduce the Wigner distribution function,

W (P,R; t) ≡
1

2πh̄

∫ ∞
−∞

dreiPr/h̄ρ(R− r/2, R+ r/2; t). (A.6)

Then the operators are expressed as
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Thus

+N2ζSLγ

[
R
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∂
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)
+
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]
W (N−1)(P,R; t), (A.9)

where
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ΓSL = 4R2ζSL
∂

∂P

(
P +

M

β

∂

∂P

)
+RζSLh̄

2 ∂3

∂2P∂R
. (A.10)

If we set N = 0 for Nγ À ω0, we recover the square-liner
Fokker-Planck equation presented in paper I.
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