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Abstract

We developed a theoretical method that can systematically treat the phase-matching condition of nonlinear infrared
or Raman measurements. This method might be a rational tool for the analysis of observed signals from various di-
rections based on the response function especially under non-impulsive excitation. Model calculations of the third-order
nonlinear IR spectroscopy for a Brownian harmonic oscillator system are performed. We discuss the variation of
signals that depend on the observation direction and the temporal width of excitation pulse in comparison with the
behavior within the impulsive limit approximation. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The fundamental aim of time-resolved vibra-
tional spectroscopies is to observe various optical
responses of the system, which reflect the dynamics
of molecular vibrations in condensed phases, col-
lective motions of liquids, solvent reorganization
motions, structural change of proteins in biologi-
cal systems and so on, to construct physical pic-
tures of the underlying dynamical processes.

Since the theoretical proposal of the higher-or-
der ultrafast two-dimensional off-resonant Raman
spectroscopy [1,2], considerable experimental and
theoretical investigations have been made [3-19] to
model the vibrational properties and dynamics in
ultrafast time region. Raman measurements are by
no means the only method for obtaining vibra-

*Corresponding author. Tel.: +81-564-55-7311; Fax: +81-
564-53-4660.
E-mail address: tanimura@ims.ac.jp (Y. Tanimura).

tional information. An alternative route will be to
use infrared pulses to probe the molecular vibra-
tional transition directly [11,12,20]. Recent tech-
nological advances to generate femtosecond
terahertz pulses by exciting the photocarriers in
semiconductor wafer enabled the far-infrared an-
alog of time-resolved Raman spectroscopies to be
applicable for the low-frequency vibrational
modes in condensed phases [21]. Time-resolved
nonlinear IR spectroscopies are direct means to
access the molecular vibrations in the electronic
ground state and are supposed to provide com-
plement information on the vibrational dynamics
to the Raman spectroscopy [2,11,12,22,23].

In practice, to describe the vibrational proper-
ties and dynamical responses such as the vibra-
tional anharmonicity and time-scales of relaxation,
detailed analysis of the experimental data with the
aid of the theoretical response function calculation
has to be done. Either Raman or IR spectroscopy,
the optical signals may be generated in various
phase-matched directions from a sample according
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to the configurations of the incident pulses in
nonlinear spectroscopies. Therefore, comparisons
from a viewpoint of the variations of the experi-
mental signals emitted into possible directions to
the theoretical predictions would provide addi-
tional tool for the modeling [24]. In this Letter, we
propose a systematic method to calculate optical
signals into various phase-matching directions
within a perturbative treatment that is applicable
to various nonlinear optical spectroscopies. In
Section 2, the three-pulse third-order nonlinear IR
spectroscopy is described as an example, starting
from a basic formula based on the nonlinear re-
sponse function description. In Section 3, model
calculations of third-order nonlinear spectroscop-
ies with two and three incident pulses for a
Brownian oscillator system are performed to
demonstrate the performance of our method and
we examine the variation of signals that depend on
the observation direction and the excitation pulse
temporal width in comparison with the behavior
within the impulsive limit approximation.

2. Theory
2.1. Evaluation of directionally separated signals

In this subsection, we show how the induced
nonlinear polarizations can be separated according
to their phase-matching directions. Here, as an
example, we shall describe the third-order nonlin-
ear spectroscopy which uses three incident infrared
laser pulses within a perturbative treatment. The
total external electric field is given by

E() = Y E(0), (1a)
where
E;(t) = &,(¢t) exp{i(k; - r — Q;t)} + c.c. (1b)

and &;(¢), k; and Q; denote, respectively, the pulse
envelope function, the wave vector and the angular
frequency of jth laser field (j=1, 2 and 3). The
wave vectors are assumed not to be collinear with
each other. The third-order total nonlinear polar-
ization, P(t), is formally calculated by using the
third-order nonlinear response function [25] as

P(t) = <%)3/Oxdf3/ooodfz/oxdm(1_13)

XE({t—13—1)E(t—13—1— 1)
X R<3)(T37T2,T1) (23)
with
R (13,12, 11) = Tr{[[[u(ts + 12 + 1),
w( +1)], 1)) 10)]peg }
(2b)
where u(t) and p,, represent, respectively, the di-
pole operator p in the interaction picture at time t
and the canonical density operator of the system.
In the corresponding seventh-order off-resonant

Raman experiments, the total electric field is ex-
pressed as

3

E(t) = Ej(t) + Ex(0), (3a)
where |
E;(1) = &;(t){exp{i(k; - r — 1)}

+ exp{i(k;-r — Qt)}} +cc. (3b)

and Er(¢) is the probe pulse that generates the
signal,

Er(t) = &1(¢) exp{i(kr - r — Qrt)} + c.c. (3¢)

The seventh-order total nonlinear polarization is
expressed as

P(t) = <;i>3/09C dr; /Oood‘cz

X /oc du Er()E(t — 13)

X Eo(t — T3 — ‘52)2E(t — T3 — Ty — ‘cl)2

x RD (13,15, 71), (4a)
with the response function defined by
R (13,15, 11) = Tr{[[[e(t3 + 72 + 1),

(2 + 1), (1)), 2(0)] peg }
(4b)

where «(7) represents the polarizability operator in
the interaction picture. Because the electronically
off-resonant optical fields are used, the square of
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the field appeared in Eq. (4a) is approximated as
[2,25]

E(1)} ~ 4i(5”j(t)2+2i@@j(t)2
X [exp{i[(k/—k;)-r—(Q,—Q})Z)]}—FC.c.}

+D6(06(0) [explilll —k) - r— (@i~ 2)0)]}

i
+exp{i[(k; —k)) -r — (2, = Q))1)]}
+2explil(k — k) -r — (2, — 2)0)]} +c.c.] .
(5)

The formal appearance of E(¢)” term is similar to
that of the E(¢) term in Eq. (2a) when we regard
E (t)2 term as being composed of a spatially uni-
form component (the first term on the right-hand
side of Eq. (5)) and propagating components (the
second and third terms). If pulse pairs are well
separated in time, we can neglect the cross terms
&:(t)&,(t) (i # j), and differences of wave vectors
Aky = k; — k; and frequencies 4Q; = Q; — Q) ap-
peared in Eq. (5) play the same role as {k;} and
{€;} in Eq. (1b), respectively. Thus, in general we
can apply the same method as described below for
the Nth-order IR spectroscopy to the (2N + 1)th-
order off-resonant Raman spectroscopy. For sim-
plicity, we will investigate third-order IR spec-
troscopies in this Letter.

By considering the third power of the electric
field given by Eq. (la), one can easily count the
number of independent phase-matching directions
for the induced polarizations. There are n = 22
independent  phase-matched  directions,  k;
(j=1,2,...,n), which are summarized in Table 1.
The third-order total nonlinear polarization may
be written in the form of

PO = 3B +ce. (©)

where ¢; = k; - r and P;(t) denote the spatial phase
and the induced polarization component along
with the jth direction, respectively. Note that the
value of the total nonlinear polarization depends
on the choice of wave vectors but those of the
polarization components do not. This is the point
for the argument below. The expression of Eq. (6)
is common one, however, it has been actively uti-
lized by Seidner et al. [26,27] to study directional
dependence of optical response for electronic ex-
cited state modeled by a two-level system within
the rotating-wave approximation (RWA). In order
to pull out individual polarization component
from the total nonlinear polarization, we rewrite
Eq. (6) into a matrix form of

P(t)=C-P(1) (7a)
with the total polarization vector being
P(t) = (Pt (1), P(1), - .., Pa(1))', (7b)

the polarization component vector being

P(r) = (13,:1@),152(;), ., B(1),

~ ~ ~ t
ORAONN ACY (7¢)
and the (2n x 2n) coefficient matrix C defined as

(©), = {ewliel] (1<i<n),
Vo expl=ig),] (n+1<j<2m).

In Eq. (7d), the integer argument s (1 <s<2n)
specifies a certain set of spatial phases {¢;} gener-
ated by a certain choice of the fundamental wave
vectors, (ki,ky, k3). For example, if one takes a set
of numerical values (vy,v,,v3) for (ky-r,ky -1 k3 - 7)

(7d)

Table 1
Twenty-two independent phase-matched directions of polarizations induced by interactions with three laser fields with wave vectors 4,
kg and k]

K| = k[ Ky = k2 K3 = k3 K4 = 31{1

K5 = 3]{2 K = 3]{3 K7 = 2k1 + k2 Kg = 2k1 - k2

K9 :2k1 +k3 K10:2k1 7k3 K11 :2k2+k1 K12 :2](27]{1

Kiz = 2k2 +k3 Kig = 2k2 — k3 Kis = 2k3 + k[ Kig = 2k3 - kl

K17 :2]{1 Jrkz Klgzzkgsz K19:k1+k2 +k3 K20:k17k2+k3

Ko = ki +ky — k3 Ky = —ky +ka + k3
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as the sth set all the sgatlal phases are generated as
q’)l =1, qbz =0, d)3 =3, q’>4 =3uvy, ..., accord-
ing to the relation in Table 1. The total nonlinear
polarization calculated from Egs. (1a) to (2b) im-
plicitly depends on the choice of the set to give the
elements in the total polarization vector of
Eq. (7b). If the spatial phases {q’)}”} are generated
so that the inverse of the coefficient matrix C exists,
then the polarization components can be extracted
from the total nonlinear polarization by the in-
version of Eq. (7a) as,

P()=C" - P(), (8)
which is the key expression in this Letter. This
relation holds without the RWA and by using this
we can properly take into account relative contri-
butions of each quantum pathway to all possible
phase-matched signals simultaneously without
classifying the quantum pathways by time-order-
ings of the field-matter interactions and by the type
of the vibrational transitions. The selection of
quantum pathways is performed though the con-
volution of the response function with the electric
field of the laser pulses depending on the fre-
quencies of lasers and the coordinate dependence
of dipole (polarizability) operator. As shown in
Section 3, the selection is effective in modifying the
signals not only for non-impulsive excitation but
also for spectroscopies in which laser pulses rec-
ognized as impulsive are utilized.

Essentially the same mathematical procedure is
needed for the applications to other nonlinear IR
spectroscopies. For example, in the case of spec-
troscopies that utilize two external fields, k; and 4,
including the two-pulse IR echo and the IR pump-
probe spectroscopy and so on, we have n = § in-
dependent phase-matched directions (see Table 2).

2.2. Model system

To demonstrate our method, we consider a
Brownian harmonic oscillator system [2,11,12,28].

Table 2

The third-order response function is analytically
expressed by using the two-point correlation
function of the system coordinate, C(7), as

R(3>(‘L’3,‘Cz,‘[1) 321;;1#2 C( )[C<12+T1)C<’C3+‘L’2)
+C(t3+ 12+ 11)C(12) + C13 + 12)
C(n) + C(n)C(n)] (9a)
with

i1 7)e /2
Cle) = 0(2) 5,7 sin(Ce)e ™, o

{=1/w§—7?/4,

where wg, m and y are the fundamental frequency,
the reduced mass and damping constant
{=+/w}—y?/4, respectively. We assumed the
form of the transition dipole moment as

=G+ mg* (1 > ).

3. Numerical results and discussions

In the following calculations, we use
/2 =50 cm~! and y = 0.1wy. The carrier fre-
quency of the pulse is taken as Q; = wy (j=1, 2
and 3). We set the pulse sequence as &(¢) =

@1(1), 62() = ex(t ) and E3(1) = et — |t| = T)
with the Gaussian envelope function, ¢,(z), being
€,() = 4;/(V2ra;) exp[—£2/(207)], where 4; de-
notes the amplitude. We assume weak probe pulses
and set 4,/4, = A3/4, = 0.5, and the same pulse
width (fwhm) 4,4 = /8log2s; for all j. Among
infinite sets of spatial phases that make the coef-
ficient matrix C nonsingular, we use a parameter
set, (;’)55) = 1,5, ngY) = 1,5, ¢>§A'> = 1135, ... with con-
stants 7, = 2n/1.2 x 10?2, 5, =2n/1.3 and n, =
21/1.4 x 1072, By using this set we obtain matrix
elements that are not too large or too small com-
pared with other matrix elements in both C and
C'. Other choice of constants #; (i = 1,2, 3) leads
to different elements in P(¢) and C, however, we

Eight independent phase-matched directions of polarizations induced by interactions with two laser fields with wave vectors k; and k,

K :kl K> :kz
K5:2k1 +kz K6:2k2+k1

K3 = 2k1 — kz
K7 = 3k1

K4 = 2k2 — k]
Kg = 3]{2
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obtain the same polarization component vector
P(¢) within the numerical error.

Firstly, we consider the case that utilizes two
external fields, k; and k,, in which n = 8 indepen-
dent phase-matched directions summarized in
Table 2 are considered. The intensity of the emit-
ted light along with the jth direction at observation
time, ¢, is evaluated by calculating the absolute
square of the corresponding polarization compo-
nent, [;(t;1) = |P(t, + l7])|?, as a function of the
separation t between the peaks of pulse &, and i
(which can be negative or positive; T > 0 means k;
pulse proceeds &, pulse and vice versa). The ob-
servation time is measured from the second pulse
peak and we set time zero at the peak position of
the pulse that arrives at the sample for the first
time. The time-integrated signal is defined as
Si(t) = f:o del,(t; 7).

In Fig. 1, S;(7) for six phase-matched directions
are plotted for pulses with the duration
Apuse = 300 fs. These pulses are usually recognized

Log S(r)

t/ps

Fig. 1. Time-integrated signals for six phase-matched direc-
tions in the two-pulse nonlinear spectroscopy for pulses with
Apuise = 300 fs. The corresponding phase-matched wave vectors
are depicted (see text and Table 2 for details).

as impulsive since Ay < 27/wy =667 fs and
Apyse < 1/y=1.1 ps. As shown, our method
clearly separates the directional signals. The
mirror image relations between the signals of
K3 =2ky —k, and x4 =2k, — k;, and those of
Ks = 2k + k, and k¢ = 2k, + k; hold. The signals
for the directions k; = 3k; and kg = 3k, are omit-
ted because they show no t dependence as should
be; signals are generated by interactions with ei-
ther k; or k, pulse alone. It is found that in the
two-pulse photon echo direction, x4 = 2k, — ky,
the signal changes its oscillation frequency at
about w, for negative 7 to 2w, for positive 7. This
frequency change is not predicted by the impulsive
limit approximation, &(¢) o d6(¢), which results in
the oscillation at 2w, for both negative and posi-
tive 7. This is a possible breakdown of the impul-
sive limit approximation even for the use of short
pulses that are usually regarded as impulsive. One
obtains P, (¢, + |t|) o< RO (t, |1],0) for negative t
within the impulsive approximation where zero in
the response function comes from the assumption
that the pulse duration is infinitesimal. Actually we
observe the frequency modulation in the signal
from wy to 2w, by using R¥(t,, |1|,€) with e =
100 fs instead.

By converting from time-domain to frequency-
domain, discrepancy of the impulsive approxima-
tion from the present results becomes apparent.
We consider the frequency-domain photon echo
technique and the dispersed pump-probe spec-
troscopy. The frequency-domain photon echo
signal corresponds to observe the absolute square
of the Fourier transform of the emitted field along
with the photon echo phase-matched direction.
Such experiment has been done by use of the IR
stimulated photon echo configuration to investi-
gate the anharmonicity and level-dependent
dephasing time in molecular vibrations [23,29].
Here, we calculate signals for the two-pulse pho-
ton echo analog of such experiments. By using the
Fourier transform of the polarization component,
Py, [] = [ dt e Py, 4 (t), we obtain the fre-
quency-domain photon echo signal as I,y
(0;7) = Py, 4, [w]|>. The dispersed pump-probe
spectrum is calculated by the formula [25,30],
S(w;1) = cuIm(Ez(u))Pk*Z [@]), where E,(w) is the
Fourier transform of the probe pulse E;(w)=
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J7dt exp{i(w — Q,)1}&5(¢), and the sign con-
vention is such that the signal is negative for
absorption. (As has already been pointed out by
Park and Cho [31], direct applications of these
formulae may fail in describing real observables
for the THz pulse experiments since the slowly
varying approximation cannot be adopted, how-
ever, they are useful for the sake of demonstration
purpose.)

In Fig. 2a,b we plot I, 4 (w;7) and S(w;1),
respectively, in comparison with signals calculated
by using the impulsive limit approximation. Both
results show the signals at about w/2n = 50 cm™!
if we do not apply the impulsive approximation.
Apparently, they are brought about by the finite-
ness of the pulse duration, and they remain even
for the shorter pulse duration A,y = 100 fs. It can
be shown that both spectroscopies have reso-

150

impulsive

/21 /em
)
o
|

[
o
!

0
150

A =300fs

pulse

100

50

/21 lem-

0
150

A =900 fs

puise

100 7

/21 lem

50

(a) T/ ps

nances at o = 0,4+2{ in the impulsive limit. We
observe signals at (/27 ~ 50 cm~! by substituting
e = 100 fs for zero in the relevant response func-
tions as mentioned for the time-integrated signal.
The suppression of the signal at w/2n =0 cm™!
for S(w;t) (Fig. 2b) is due to the factor @ in the
definition above. In the long pulse duration case,
Apuise = 900 fs, the main portion of the signal is at
w/2n =~ 50 cm~!, which is required by the con-
servation of energy.

Next, we consider the three-pulse spectroscopy,
where the third pulse &3 is applied in addition to
the previous two. Accordingly we have another
time period T( > 0), the separation of the second
pulse peak and the k; pulse peak, which can be
handled experimentally. The intensity of the
emitted light along with the jth direction at the
observation time, f, is defined by [;(t;7,T) =

150 N

£ 100 T
L

B
qQ

3

T

£

L

B

Q

3

0
150
Apuise = 900 fs

£ 100 1
Q

B

Q

3

0 T T T T T
-3 -2 -1 0 1 2 3

(b) T/ ps

Fig. 2. Contour plot of calculated (a) frequency-domain two-pulse photon echo signals and (b) dispersed pump-probe signals. In both
figures the upper panel shows the signal calculated by the impulsive limit approximation, while the middle and the lower one show for
the pulse duration A,y = 300 and 900 fs, respectively. In Fig. 2b, dashed lines show the negative signal.
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|P,(t, + || + T)|*, as a function of the separation t
and T where the observation time is measured
from the k; pulse peak. The time-integrated signal
is also defined as S;(t, T) = [ dt,L;(15;1, 7).

We calculated S;(z,T) for the phase-matched
directions into which the scattering light propor-
tional to 4,4,4; are emitted, e.g., four directions
from k9 to Ky In Table 1. In the left column of
Fig. 3, the results for the pure homogeneous system
are plotted. The signals of xj9 = k; + k» + k3 and
Ko = ki + ko — k3 directions are symmetric with
respect to 7 =0 ps axis, while those of ky =
k] — k2 + k3 (not ShOWl’l) and Ky = 7](1 + k2 + k3

directions are asymmetric. This comes from the
sign of k; and k, wave vectors; in the former the
signs of two wave vector are the same, while in
the latter they have opposite sign. This means that
even in the interaction with relatively short pulses
the two components of the field-matter dipole in-
teraction term, fié (¢) exp{—i(k - r — wt)} and ié(¢)
exp{+i(k - r — wt)}, have relative importance and
the impulsive limit approximation breaks down in
which two components possess the same role. The
static inhomogeneous effect of the vibrational fre-
quency is easily taken into account by averaging
the response function of Eq. (9a) with the Gaussian

T/ps

o,

T/ps

T/ps

0

3 -2-101 2 3

T/ps

32101 2 3
T/ ps

Fig. 3. Contour plots of logarithm of S(z, T') for three phase-matched directions; (a) 19 = k1 + k2 + k3, (b) k21 = k1 + ky — k3 and (c)
K2 = —ki + ky + k3. The left column shows the homogeneous case, while the right column shows the signals from the system with static
inhomogeneity. (The signal for x,) = k; — k, + k3 is the mirror image of (c) with respect to the 1 = 0 ps axis.) The pulse duration is
Apuse = 300 fs. Each signal has the maximum value at around the origin and the spacing between adjacent thick lines is 1.
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distribution function of the fundamental fre-
quency, S(mp) o< 0(ey) exp[—(wo—  @0)*/(202)],
where @, denotes the center of the distribution, and
the width (fwhm) of the broadening is given by
A4, = +/8log2a,. In the right column of Fig. 3, we
show the same signals from the system with static
inhomogeneity 4,,/2n =20 cm™' for @y/2n =
50 cm~!. Again, the signals along with the 9 and
K,y directions are symmetric with = 0 ps axis, but
their apparent similarity in the pure homogeneous
case is lost. Signals in xj9 and the stimulated pho-
ton echo direction, k,;, show correlation along with
T = |7| line as the photon echo signal from an in-
homogeneously broadened two-level system. It is
not apparent that the system shows such correla-
tions because the system is not just a two-level
system. Detailed analysis of such an echo behavior
needs further study.

We find it necessary to mention about the re-
duction of the calculations depending on the re-
quired phase-matched directions. In the three
incident pulse case, if one only needs the polar-
ization components proportional to A4,4,4; as
demonstrated above, namely four directions from
K19 tO K2, the dimensions of the matrices C and
C! are reduced to 4 x 2 =8 since other polar-
ization components do not couple with these
components, although it is needed to exclude the
contribution that are not proportional to 4;4,4;
in evaluating the integration of Eq. (2a). Similarly,
in the two-pulse case the dimension of matrices are
reduced to 12 for the calculation of the signals that
are proportional to 434, and 4;43.

Finally, we mention about experiments where
electronically off-resonant Raman transition(s) is
involved as well as IR transitions. In this case we
need to evaluate several response functions ac-
cording to the chronological order of the field-
matter interactions [32-35] and to perform time-
integrations as Egs. (2a) and (4a) for each response
function. It is straightforward to apply our method
to such experiments to separate the signals by the
phase-matching directions, however, the proce-
dure will be complicated.

In conclusion we proposed a systematic scheme
to calculate the directionally separated signals for
nonlinear vibrational spectroscopies. Calculations
of the two- and three-pulse nonlinear spectroscopy

for a Brownian harmonic oscillator model were
performed and we demonstrated the variation of
signals depending on the observation direction and
the excitation pulse temporal width to show pos-
sible break downs of impulsive limit approxima-
tion. We emphasize that the comparisons of
experimental signals observed from various phase-
matched directions and theoretical predictions
would make it more feasible to model the vibra-
tional dynamics in condensed phases once the
nonlinear response function is obtained, although
there is another need to treat the tensoral prop-
erties of the response function. We are planning to
calculate directionally resolved signals by using the
method proposed in this Letter from vibrational
systems coupled to the bath degree of freedom by
nonlinear coordinate interactions, in which higher-
order response functions are reported to show
echo-like behaviors [36].
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