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We consider a quantum mechanical system represented in phase space (referred to hereafter as
“Wigner space”), coupled to a harmonic oscillator bath. We derive quantum hierarchal Fokker-Planck
(QHFP) equations not only in real time but also in imaginary time, which represents an inverse
temperature. This is an extension of a previous work, in which we studied a spin-boson system,
to a Brownian system. It is shown that the QHFP in real time obtained from a correlated thermal
equilibrium state of the total system possesses the same form as those obtained from a factorized
initial state. A modified terminator for the hierarchal equations of motion is introduced to treat the
non-Markovian case more efficiently. Using the imaginary-time QHFP, numerous thermodynamic
quantities, including the free energy, entropy, internal energy, heat capacity, and susceptibility, can
be evaluated for any potential. These equations allow us to treat non-Markovian, non-perturbative
system-bath interactions at finite temperature. Through numerical integration of the real-time QHFP
for a harmonic system, we obtain the equilibrium distributions, the auto-correlation function, and
the first- and second-order response functions. These results are compared with analytically exact
results for the same quantities. This provides a critical test of the formalism for a non-factorized
thermal state and elucidates the roles of fluctuation, dissipation, non-Markovian effects, and system-
bath coherence. Employing numerical solutions of the imaginary-time QHFP, we demonstrate the
capability of this method to obtain thermodynamic quantities for any potential surface. It is shown
that both types of QHFP equations can produce numerical results of any desired accuracy. The
FORTRAN source codes that we developed, which allow for the treatment of Wigner space dynamics
with any potential form (TanimuranFP15 and ImTanimuranFP15), are provided as the supplementary
material. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4916647]

I. INTRODUCTION

A Brownian oscillator (BO) model, which consists of a
primary system coupled to a harmonic oscillator bath, is a
versatile model that has been used to investigate fundamental
problems in physics, chemistry, and biology.1–8 The key feature
of the Brownian model is that it describes irreversible dy-
namics through which the system evolves toward the thermal
equilibrium state at finite temperature. This feature arises from
interaction with the heat bath, which exhibits the canonical
distribution at temperature T . To make the heat bath an unlim-
ited heat source that possesses infinite heat capacity, the num-
ber of heat bath oscillators is effectively made infinitely large
by replacing the spectral distribution of the system-oscillator
coupling, J(ω), which was originally defined as the discretized
distribution J(ω) = 

c2
jδ(ω − ω j) (where cj is the coupling

strength between the system and the jth bath oscillator with
frequency ω j), with a continuous distribution, for example,
J(ω) ∝ ω. Because the time-evolution of the total system is
described by the Schrödinger equation, the total energy is
conserved and the dynamics are reversible. In the reduced
description of the system obtained by tracing over the bath
degrees of freedom using such methods as the path integral

a)Electronic mail: tanimura@kuchem.kyoto-u.ac.jp.

method1 or the projection operator method,4,7 however, the
energy is no longer conserved, and its dynamics are irrevers-
ible, because the reduced system is merely a part of the total
system. Heat bath effects arise in the reduced dynamics as
fluctuation and dissipation in the reduced main system. These
satisfy the classical or quantum version of the fluctuation-
dissipation theorem. The reduced system evolves in an irre-
versible manner toward the thermal equilibrium state, in which
the energy supplied by the fluctuations and the energy lost
through dissipation are balanced, while the bath temperature
does not change, because its heat capacity is infinite.

With the above described features, the Brownian model
exhibits wide applicability, despite its simplicity. This is be-
cause the influence of the environment can in many cases be
approximated by a Gaussian process, due to the cumulative
effect of the large number of weak environmental interactions,
in which case the ordinary central limit theorem is applicable,9

while the distribution function of the harmonic oscillator bath
itself also exhibits a Gaussian distribution. By adjusting the
form of the spectral distribution, the properties of the bath can
be adjusted to represent a variety of environments consisting
of, for example, solid state materials, solvates, and protein
molecules. This model has been used to solve various problems
of practical interest, in particular to investigate tunneling pro-
cesses,2,3,10 chemical reaction,11,12 non-adiabatic transition,13,14

0021-9606/2015/142(14)/144110/20 142, 144110-1 © Author(s) 2015
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quantum device systems,15 ratchet rectification,16,17 to evaluate
the efficiency of SQUID rings18,19 and to analyze the line
shapes in laser spectra.20,21

While the Brownian model itself is fairly simple, it is
somewhat difficult to apply in the quantum mechanical case
not only analytically but also numerically, due to the infi-
nite number of bath degrees of freedom. Analytically exact
solutions of Green’s function for the BO Hamiltonian have
been obtained only in the cases of a harmonic oscillator,5,6

a free particle,22 and a free rotator,23 using the path integral
approach. Several approximate approaches have been devel-
oped to facilitate application of the Brownian model to more
complicated systems. These approaches involve variational
methods to study polarons24,25 and the optical response of an
anharmonic oscillator26 using a damped oscillator as a trial
function, an instanton method for estimating the tunneling
rate using instantaneously jumping paths between tunneling
wells,2,3 a WKB method for evaluating the density matrix
along a classical minimal action path,10,11 and diagrammatic
expansion methods to study the anharmonicity of potentials
and the nonlinearity of the system-bath coupling.27–29 The
analytical expressions obtained in these studies are helpful
to gain insight into the role of dissipative environments in
the dynamics of systems, but they do not allow us to study
situations investigated in modern experiments that are usually
described by complex potentials driven with time-dependent
external forces.

A great deal of effort has been dedicated to numeri-
cally calculating the time evolution of BO systems under
external perturbations. Widely used approaches employ a
reduced equation of motion that can be derived from the quan-
tum Liouville equation with the full Hamiltonian by reducing
the heat bath degrees of freedom. To obtain reduced equa-
tions of motion in a compact form, one usually employs the
Markovian assumption, in which the correlation time is very
short in comparison to the characteristic time of the system
dynamics. In this case, the noise can be regarded as white.
The quantum Langevin equation and the quantum Fokker-
Planck equation have been derived with the projection operator
method and the path integral method, for example.30–35

In the classical case, the Langevin equation36 and the
Fokker-Planck (or Kramers) equation37,38 have proved to be
useful in the treatment of transport problems, and they have
even been included in algorithms employed in molecular dy-
namics simulations. However, the applicability of the quantum
forms of these equations is very limited, because they cannot
be derived in a quantum mechanical framework without severe
approximations and/or assumptions. For example, in the treat-
ment of the quantum Langevin equation expressed in operator
form, it is generally assumed that the antisymmetric correlation
function of the noise is very short (the Markovian assumption)
and positive. A similar Markovian assumption has been used
in the treatment of the quantum Fokker-Planck equation. But
in order for these assumptions to be valid, the heat bath must
be at a sufficiently high temperature, in which case most of the
important quantum dynamical effects play a minor role. This
implies that the Markovian assumption is incompatible with
obtaining a quantum mechanical description of dissipative dy-
namics at low temperature.39

An Ohmic spectral distribution is generally assumed to
realize Markovian noise. As we show in Appendix B, however,
even if the dissipation process is Markovian, the fluctuation
process may not be, because it must satisfy the fluctuation-
dissipation theorem.8 For this reason, if we apply the equation
of motion under Markovian assumption to low temperature
systems, then the positivity of the probability distributions of
the reduced system cannot be maintained.40 This is a funda-
mental limitation, known as the “positivity problem,” which is
particularly significant for the quantum master equation.41–48

If the system is not time dependent and if the system Hamil-
tonian and the system-bath interaction commute, the time-
convolutionless (TCL) master equation becomes exact.49–51

For the time-dependent case and/or non-commuting case, how-
ever, this master equation is valid only to second order with
respect to the system-bath interaction, and the positivity condi-
tion is again broken. As a method to preserve positivity, the
rotating wave approximation (RWA), which modifies the inter-
action between the system and the heat bath, has been applied
in order to put the equation of motion in the Lindblad form.
However, the RWA alters the thermal equilibrium state and the
dynamics of the reduced system. These changes are particu-
larly large in the case of a strong system-bath coupling and
at low temperature. Moreover, in a typical quantum transport
problem, the system is described by continuous energy states,
and the energy levels of the heat bath and the system overlap.
For this reason, the RWA cannot be used. Treatments of these
kinds are therefore not sufficient to construct fully quantum
mechanical descriptions of broad validity.

Path integral Monte Carlo simulations do not have any
of the limitations of the approaches discussed above, but this
approach is computationally intensive, because the number of
paths to be evaluated grows rapidly with time, while sampling
fails, due to the phase cancellation of wave functions.52–54

Much effort has been made to overcome these problems and
extend the applicability of this method.55–64 Because this
approach can easily incorporate the semi-classical approx-
imation for the bath, it may be advantageous in the study
of polyatomic systems treated in multi-dimensional coordi-
nates, but applications to this point incorporating full quantum
mechanical dynamics have been limited to relatively small
systems without time-dependent external force.

Wave function based methodologies for the full Hamilto-
nian have been developed in order to avoid the reduced descrip-
tion of the system. The multi-configurational time-dependent
Hartree (MCTDH) approach65–72 employs time-dependent ba-
sis sets to represent the total wave function. Then, a varia-
tional principle is applied to derive the optimal equation of
motion in order to reduce the bath degrees of freedom. This
approach can be used to treat nonlinear system-bath coupling
and anharmonic bath modes.68 However, the number of bath
modes must be increased until convergence is reached. This
implies that the study of long time behavior requires more
basis sets, which makes the calculation more difficult. In the
effective-mode approach, the heat bath degrees of freedom are
mapped to a linearly coupled harmonic oscillator chain. Then,
the dynamics of the system are described by the wave function
of the system with a finite number of chained oscillators using
a truncation scheme73–75 or by utilizing the density matrix
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renormalization group method.76 Strictly speaking, the time
evolution obtained with the wave function based approach
describes time-reversible processes and thus, within this ap-
proach, there exists no thermal equilibrium state. However, in
practice, this kind of approach has wider applicability than the
reduced equation of motion. At this stage, the results obtained
from these approaches have been limited to relatively simple
systems. In particular, the inclusion of time dependent external
forces is not as straightforward in these approaches as in the
case of reduced equation of motion, because the energy of the
total system changes due to the presence of an external force if
the perturbation is strong, and hence the optimal basis set may
also be changed.

The reduced hierarchal equations of motion (HEOM),
which are derived by differentiating the reduced density ma-
trix elements defined by path integral, are reduced equations
of motion that can describe the dynamics of the system for
non-perturbative and non-Markovian system-bath interactions
with any desired accuracy under strong time-dependent pertur-
bations at finite temperature.8 In this formalism, the effects
of higher-order non-Markovian system-bath interactions are
mapped into the hierarchal elements of the reduced density
matrix. In their original formulation, these equations of motion
were limited to the case in which the spectral distribution
function takes the Drude form (i.e., the Ohmic form with a
Lorentzian cut-off) and the bath temperature is high.77 How-
ever, with the inclusion of low temperature corrections terms,
this temperature limitation has been eliminated.78–81 In addi-
tion, with the extension of the dimension of the hierarchy, in
its present form, this approach is capable of treating a great
variety of spectral distribution functions.82–90 This formalism
is valuable because it can be used to treat not only strong
system-bath coupling but also quantum coherence between the
system and bath, which is essential to study a system subject to
a time-dependent external force8 and nonlinear response func-
tions.91–93 The system-bath coherence becomes particularly
important if the bath interaction is regarded as non-Markovian,
as found from femtosecond nonlinear optical measurements,
which are carried out on time scales that are much shorter than
the noise correlation time of environmental molecules.20

For a Brownian system, the reduced hierarchal equations
of motion are expressed in the Wigner space representa-
tion.94–107 In the Markovian limit, these equations of motion
reduce to the Caldeira-Leggett quantum Fokker-Planck equa-
tion,30,31 and in the classical limit, they reduce to the classical
Fokker-Planck (Kramers) equation.37,38

Recently, the author derived the HEOM not only in real
time but also in imaginary time, which represents an inverse
temperature, starting from correlated initial conditions for a
system described by discretized energy states.108 Reduction of
these HEOM to a system represented in Wigner space is not
straightforward, because they involve derivatives with respect
to the position and momentum that require a careful treatment
with regards to the order of time slices in the path integral
formalism. In this paper, we present the derivation of real- and
imaginary-time HEOM in Wigner space and demonstrate the
validity of these equations.

The organization of the paper is as follows. In Sec. II, we
present a model Hamiltonian and its influence functional with

correlated initial conditions. In Sec. III, we derive the real-
time quantum hierarchal Fokker-Planck (the real-time QHFP)
equations using the influence functional given in Sec. II. In
Sec. IV, we derive the imaginary-time QHFP equations, which
are convenient for evaluating thermodynamic quantities of the
system. In Sec. V, the validity of our approach is demonstrated
through numerical integration of the real- and imaginary-time
QHFP equations for a harmonic system and comparing the
calculated results with the exact results obtained from analyt-
ical calculations. Section VI is devoted to concluding remarks.

II. REDUCED HIERARCHAL EQUATIONS OF MOTION
FROM CORRELATED INITIAL CONDITIONS

We consider the situation in which the system interacts
with a heat bath that gives rise to dissipation and fluctuation
in the system. To illustrate this, let us consider a Brownian
Hamiltonian expressed as1–8

Ĥtot = ĤA(p̂, q̂) +

j



p̂2
j

2m j
+

m jω
2
j

2
*
,

x̂ j −
α jq̂

m jω
2
j

+
-

2
,

(1)

where

ĤA(p̂, q̂) = p̂2

2m
+U(q̂) (2)

is the Hamiltonian for the system with mass m and potential
U(q̂) described by the momentum p̂ and position q̂. The bath
degrees of freedom are treated as an ensemble of harmonic
oscillators, and the momentum, position, mass, and frequency
of the jth bath oscillator are given by p̂j, x̂ j, m j, andω j, respec-
tively. In the conventional Brownian model, the system-bath
interaction is represented by a bilinear function of the system
and bath coordinates as HI = −q̂


j α j x̂ j. Brownian models

employing this bilinear interaction have been studied with
various approaches.4–7 In this paper also we restrict our inves-
tigation to this bilinear form to simplify the derivation, but we
note that extension to the non-bilinear case is possible.8,98–102

To maintain translational symmetry in the case of U(q̂) = 0,
required to describe the motion of a free Brownian particle,
we include the counter-term


j α

2
j q̂

2/2m jω
2
j in Eq. (1).

The heat bath we consider is characterized by the spectral
distribution function defined by J(ω) ≡ 

j(~α2
j/2m jω j)δ(ω

− ω j) and the inverse temperature, β ≡ 1/kBT , where kB is
the Boltzmann constant. The path integral used here to derive
the HEOM is expressed in terms of an influence functional
with correlated initial conditions. The influence functional that
we employ, FCI[t, β~], is calculated by taking the trace over
the heat bath degrees of freedom, starting from the thermal
equilibrium state of the total Hamiltonian. The calculation of
the influence functional for a heat bath consisting of harmonic
oscillators is analogous to that of the generating functional for
a Brownian oscillator system if we regard the system operator
in the system-bath interaction q̂ as an external force acting on
the bath.109–111 As shown in Appendix A, the reduced density
matrix elements of the system with correlated initial conditions
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can be expressed as

ρ(q,q′; t)
=

1
Ztot

 q=q(t)

q0=q(0)
D[q(t)]

 q′=q′(t)

q′0=q
′(0)

D[q′(t)]
 q′0=q̄(β~)

q0=q̄(0)
D[q̄(τ)]

× e
i
~ SA[q, t]FCI[q,q′, q̄; t, β~] ρ̄eq[q̄; β~]e− i

~ SA[q′, t], (3)

where SA[q; t] is the action for the Hamiltonian of the system,
Eq. (2), given by

SA[q; t] =
 t

0
dτ


1
2

mq̇2(τ) −U(q(τ))

, (4)

and ρ̄eq[q̄; β~] is the initial thermal equilibrium state, with the
heat bath defined by Eq. (A12).

We assume that the spectral density J(ω) has an Ohmic
form with a Lorentzian cut-off and write8

J(ω) = ~mζ
π

γ2ω

γ2 + ω2 , (5)

where the constant γ represents the width of the spectral distri-
bution of the collective bath modes and is the reciprocal of
the correlation time of the noise induced by the bath. The
parameter ζ is the system-bath coupling strength, which repre-
sents the magnitude of damping. This spectral distribution
approaches the Ohmic distribution, J(ω) ≈ ~mζω/π, for large
γ. In Appendix B, we present several profiles of fluctuation
and dissipation terms for the Drude distribution to illustrate the
origin of the positivity problem in the Markovian master and
Redfield equations.

With J(ω) given by Eq. (5), the influence functional with
correlated initial conditions is expressed as108

FCI[q,q′, q̄; t, β~] = e
−
 t

0 dt′′e−γt
′′
Φ(t′′)

 t′′
0 dt′eγt

′
γΘ0(t′)+G0(0)− 1

~ Θ̄(β~)


× e
−
 t

0 dt′′
K
k=1

e−νk t
′′
Φ(t′′)

 t′′
0 dt′eνk t

′
νkΘk(t′)− 1

~ Ψ̄k(β~)

−
 t

0 dt′′Ξ(t′′)
, (6)

where for the Matsubara frequency νk ≡ 2πk/β~, we have
defined

Φ(t) ≡ i
~
[q(t) − q′(t)] , (7)

Θ0(t) ≡ mζ
2


[q̇(t) + q̇′(t)] − iγ cot

(
β~γ

2

)
[q(t) − q′(t)]


,

(8)

G0(0) ≡ mζγ
2

[q(0) + q′(0)] , (9)

Θ̄(β~) ≡ 2mζγ2

β

 β~

0
dτ′q̄(τ′)

×



1
2γ
+

∞
k=1

[γ cos(νkτ′) − iνk sin(νkτ′)]
γ2 − ν2

k



,

(10)

and for k ≥ 1,

Θk(t) ≡ − i
~

2mζγ2

β

1
ν2
k
− γ2

[q(t) − q′(t)] , (11)

Ψ̄k(β~) ≡ −2mζγ2

β

 β~

0
dτ′q̄(τ′) νk [cos(νkτ′) − i sin(νkτ′)]

γ2 − ν2
k

,

(12)

and

Ξ
′(t) = −mζ

β



∞
k=K+1

2γ2

γ2 − ν2
k

Ck


[q(t) − q′(t)]2, (13)

where Ck ≡ ν2
k
/(ν2

k
+ ω2

c) is the correction factor that coun-
teracts the overestimation of the contribution of higher-order

Matsubara frequencies approximated by the delta function
with cut-off number, K , introduced in Appendix B for the
characteristic frequency of the system, ωc. This modification
improves the convergence of hierarchies at lower temperature.
We now introduce the hierarchal elements that play an essential
role in our formalism,

ρ
(n)
j1, ..., jK

(q,q′; t)

=
1

Ztot

 q=q(t)

q0=q(0)
D[q(t)]

 q′=q′(t)

q′0=q
′(0)

D[q′(t)]
 q′0=q̄(β~)

q0=q̄(0)
D[q̄(τ)]

× e
i
~ SA[q, t]F(n)

j1, ..., jK
[q,q′, q̄; t, β~] ρ̄eq[q̄; β~]e− i

~ SA[q′, t],
(14)

where

F(n)
j1, ..., jK

[q,q′, q̄; t, β~]
=


e−γt

 t

0
dt ′eγt

′
γΘ0(t ′) + G0(0) − 1

~
Θ̄(β~)

n

×
K
k=1


e−νk t

 t

0
dt ′eνk t

′
νkΘk(t ′) − 1

~
Ψ̄k(β~)

 jk

× FCI[q,q′, q̄; t, β~], (15)

for non-negative integers n, j1, . . . , jK . From the above defini-
tion, the first hierarchal element and the reduced density matrix
given by Eq. (3) are identical: ρ(q,q′; t) = ρ(0)0, ...,0(q,q′; t). As
shown in Appendix C, we then have the following equations
of motion:
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∂ρ
(n)
j1, ..., jK

(q,q′; t)
∂t

= −


i
~

L (q,q′) + nγ +
K
k=1

jkνk + Ξ′(q,q′)

ρ
(n)
j1, ..., jK

(q,q′; t) − nγΘ̄0(q,q′)ρ(n−1)
j1, ..., jK

(q,q′; t)

−
K
k=1

jkνkΘk(q,q′)ρ(n)j1, ..., jk−1, ..., jK
(q,q′; t)

−Φ(q,q′) *
,
ρ
(n+1)
j1, ..., jK

(q,q′; t) +
K
k=1

ρ
(n)
j1, ..., jk+1, ..., jK

(q,q′; t)+
-
, (16)

where

L (q,q′) = − ~
2

2m
∂2

∂q2 +
~2

2m
∂2

∂q′2
+U(q) −U(q′), (17)

Θ̄0(q,q′) = i~ζ
2

(
∂

∂q
− ∂

∂q′

)
+

mγ
~

cot
(
β~γ

2

)
(q − q′)


, (18)

and Φ(q,q′), Θk(q,q′), and Ξ′(q,q′) are defined by Eqs. (7), (11), and (13) by making the replacements q(t) → q
and q′(t) → q′. In the HEOM formalism, only the first element ρ(q,q′; t) = ρ(0)0, ...,0(q,q′; t) has a physical meaning

and the other elements ρ
(n)
j1, ..., jK

(q,q′; t) are introduced in numerical calculations in order to treat the non-perturbative

and non-Markovian system-bath interaction. We can evaluate ρ
(0)
0, ...,0(q,q′; t) through numerical integration of the above

equations.
We next explain the truncation scheme that we use for the hierarchical equations, which is different from the scheme used

in previous studies.102–105 First, we choose the number of Matsubara frequencies to be included in the HEOM, K , such that it
satisfies K ≫ ωc/ν1. Then, we introduce the scaled integer Kγ as Kγ ≡ int(Kν1/γ) for ν1 > γ and Kγ ≡ K for ν1 ≤ γ, which
allows us to make calculations in the highly non-Markovian case more efficiently. The index for the hierarchy, denoted by n, for
a given value of γ, then runs from 0 to Kγ. The total number of hierarchy members to be included in the calculations is then
given by N ≡ (Kγ + K + 1)!/(K + 1)!/Kγ!. For the case

K
k=1 jk > K , we truncate the hierarchal equations by replacing Eq. (16)

with

∂

∂t
ρ
(n)
j1, ..., jK

(q,q′; t) = − �L̂ + Ξ̂′� ρ(n)j1, ..., jK
(q,q′; t). (19)

In practice, we can simply set ρ(n)j1, ..., jK
(q,q′; t) = 0 instead of employing the above equation, because ρ(n)j1, ..., jK

(q,q′; t) decays
to zero as t becomes large.79 For the Kγ and Kγ + 1 members of the hierarchy, we have the following relation, valid to order
δt:

ρ
(Kγ+1)
0, ...,0 (q,q′; t) ≃ γ−1



−γΘ̄0(q,q′)ρ(Kγ)

0, ...,0(q,q′; t) − 1
N + 1

Φ(q,q′)

ρ
(Kγ+2)
0, ...,0 (q,q′; t) −

K
k=1

ρ
(Kγ+1)
0, ...010...(q,q′; t)






≃ −Θ̄0(q,q′)ρ(Kγ)
0, ...,0(q,q′; t). (20)

This asymptotic relation allows us to obtain the terminator for given γ in the form

∂ρ
(Kγ)
0, ...,0 (q,q′; t)

∂t
= −


i
~

L (q,q′) + Kγγ − Φ(q,q′)Θ̄0(q,q′) + Ξ′(q,q′)

ρ
(Kγ)
0, ...,0 (q,q′; t)

−KγγΘ̄0(q,q′)ρ(Kγ−1)
0, ...,0 (q,q′; t) . (21)

This equation reduces to the quantum Fokker-Planck equation
in the Markovian limit, i.e., the Ohmic distribution (γ → ∞)
with the high-temperature limit.30,94

While the terms Θ̄ and Ψ̄k from the correlated initial state
do not appear in Eqs. (16) and (21), they define the hierar-
chal elements for the correlated initial equilibrium state.108 To
demonstrate this point, we consider the initial states of the

density operators, obtained by setting t = 0 in Eq. (14),

ρ
(n)
j1, ..., jK

(q,q′; 0) =
n

m=0

( n
m

)
(G0(0))n−m ρ̄(m)

j1, ..., jK
(q,q′; 0),

(22)

where
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ρ̄
(m)
j1, ..., jK

(q,q′; 0) = 1
ZA

 q′0=q̄(β~)

q0=q̄(0)
D[q̄(τ)]

(
−1
~
Θ̄(β~)

)m
×

K
k=1

(
−1
~
Ψ̄k(β~)

) jk

ρ̄[q̄; β~] (23)

are the equilibrium hierarchal elements. Here, ZA, Ztot, and
ZB are the partition functions of the system, total system,
and bath, respectively, related as ZA = Ztot/ZB. We then have
ρeq[q̄; β~] = ZB ρ̄[q̄; β~]. It is important to note that the steady
state of ρ(n)j1, ..., jK

(t) for n > 0 in Eq. (16) is slightly shifted
from the initial thermal equilibrium state as a result of the
influence of the sum in Eq. (22). However, because ρ

(0)
0, ...,0(t)

is not influenced by this effect, expectation values calculated
using ρ

(0)
0, ...,0(t) do not change.

From the above definition, it is clear that the HEOM
members at time t = 0 represent a correlated initial state,
while the zeroth member, ρ(0)0, ...,0(0) = ρ̄[q̄; β~], involves the
static correlations. In Fig. 9, the correlations responsible for
the correlated initial state are represented by green arcs, and
the static correlations are represented by red arcs. After the
time evolution, the elements ρ

(n)
j1, ..., jK

(q,q′; t) describe the
dynamical correlation, represented by the blue arcs and lines in
Fig. 9.

III. REAL-TIME QUANTUM HIERARCHAL
FOKKER-PLANCK EQUATIONS

We now introduce the Wigner distribution function, which
is the quantum analog of the classical distribution function in

phase space. For the density matrix element ρ(n)j1, ..., jK
(q, q′; t),

this is defined as112–115

W (n)
j1, ..., jK

(p,q; t) ≡ 1
2π~

 ∞

−∞
dxeipx/~

× ρ(n)j1, ..., jK

(
q − x

2
, q +

x
2

; t
)
. (24)

The Wigner representation of the reduced density matrix de-
fined in Eq. (3), W (p,q; t), and the first member of the hier-
archal elements are then identical: W (p,q; t) = W (0)

0, ...,0(p,q; t).
The Wigner distribution function is a real function, in contrast
to the complex density matrix. In terms of the Wigner distri-
bution, the quantum Liouvillian takes the form115

− L̂QMW (n)
j1, ..., jK

(p, q) ≡ − p
m

∂

∂q
W (n)

j1, ..., jK
(p, q)

− 1
~

 ∞

−∞

dp′

2π~
UW(p − p′, q)

×W (n)
j1, ..., jK

(p′, q), (25)

where UW(p, q) is given by

UW(p, q) = 2
 ∞

0
dx sin

( px
~

) 
U

(
q +

x
2

)
−U

(
q − x

2

)
.

(26)

The quantum Liouvillian can also be expressed as113,114

− L̂QMW (n)
j1, ..., jK

(p, q) =

− p

m
∂

∂q
+

1
i~


U

(
q − ~

2i
∂

∂p

)
−U

(
q +
~

2i
∂

∂p

)
W (n)

j1, ..., jK
(p, q). (27)

While the above expression is easier to integrate in the case
that the potential is nearly harmonic, the expression in Eq. (25)
is numerically stable, and it can be applied with any form of
potential, including an unbounded potential.

Using the Wigner distribution and quantum Liouvillian,
the equations of motion appearing in Eq. (16) can be expressed
in the form of QHFP equations in real time as

∂

∂t
W (n)

j1, ..., jK
(p,q; t)

= −

L̂QM + nγ +

K
k=1

jkνk + Ξ̂′


W (n)
j1, ..., jK

(p,q; t)

+ Φ̂


W (n+1)

j1, ..., jK
(p,q; t) +

K
k=1

W (n)
j1, ..., jk+1, ..., jK

(p,q; t)


+ nγ ˆ̄Θ0W
(n−1)
j1, ..., jK

(p,q; t)

+

K
k=1

jkνkΘ̂kW
(n)
j1, ..., jk−1, ..., jK

(p,q; t), (28)

where Φ̂ = ∂/∂p,

ˆ̄Θ0 ≡ ζ

p +

m~γ
2

cot
(
β~γ

2

)
∂

∂p


, (29)

Θ̂k ≡ −
2mγ2ζ

β(ν2
k
− γ2)

∂

∂p
, (30)

and

Ξ̂′ ≡ −mζ
β



∞
k=K+1

2γ2

γ2 − ν2
k

Ck



∂2

∂p2 . (31)

As in the case of the energy eigenstate representation,108 the
above equations are identical to the equations derived from fac-
torized initial conditions.102–105 The above equations are then
truncated by using the modified “terminators” expressed in the
Wigner representation. As explained in Sec. II, the number
of Matsubara frequencies to be included in the calculation,
K , is chosen to satisfy K ≫ ωc/ν1. The upper limit for the
number of hierarchy members for given γ is then chosen to
be Kγ ≡ int(Kν1/γ) for ν1 > γ and Kγ ≡ K for ν1 ≤ γ. Then,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.54.50.111 On: Tue, 14 Apr 2015 23:07:19



144110-7 Yoshitaka Tanimura J. Chem. Phys. 142, 144110 (2015)

for the case
K

k=1 jk > K , we truncate the hierarchal equations
by replacing Eq. (28) with

∂

∂t
W (n)

j1, ..., jK
(p,q; t) = − (

L̂QM + Ξ̂′
)

W (n)
j1, ..., jK

(p,q; t),
(32)

while for the case n = Kγ, we employ

∂

∂t
W (Kγ)

0, ...,0(p,q; t)
= −


L̂QM + Kγγ − Φ̂ ˆ̄Θ0 + Ξ̂′


W (Kγ)

0, ...,0(p,q; t)
−Kγγ

ˆ̄Θ0W
(Kγ−1)
0, ...,0 (p,q; t). (33)

We can evaluate W (n)
j1, ..., jK

(p,q; t) through numerical integra-
tion of the above equations. While only the first element
W (p,q; t) ≡ W (0)

0,0, ...,0(p,q; t) has a physical meaning and the
other elements W (n)

j1, ..., jK
(p,q; t) are initially introduced to avoid

the explicit treatment of the inherent memory effects, it turns
out, however, that these elements allow us to take into ac-
count the system-bath coherence,8 entanglement,88,116,117 and
expectation values that include the bath operators as ⟨ĤI⟩
≡ −⟨q̂ 

α j x̂ j⟩.108 The HEOM consist of an infinite number of
equations, but they can be evaluated with the desired accuracy
by depicting the asymptotic behavior of the hierarchal elements
for different K and using this to determine whether or not there
are sufficiently many members in the hierarchy. Essentially, the
error introduced by the truncation to be negligibly small when
K is sufficiently large.

The correlated initial equilibrium state defined by Eq. (22)
is expressed in the Wigner representation accordingly. The
correlated initial equilibrium state can be set in the HEOM
formalism by running the HEOM program until all of the
hierarchy elements reach the steady state and then use these
elements as the initial state,8 or by integrating the imaginary-
time HEOM that we discuss in Sec. IV.108 In practice, the
former approach is simpler, because it requires the real-time
HEOM only. This approach has been used to set the correlated
initial conditions of the HEOM derived from factorized initial
conditions that are identical to those used with the present
HEOM.

The HEOM in Wigner space is ideal for studying quantum
transport systems, because it allows the treatment of contin-
uous systems, utilizing open boundary conditions and peri-
odic boundary conditions.103,104 In addition, the formalism
can accommodate the inclusion of an arbitrary time-dependent
external field.95–97,105

In the Markovian limit, γ → ∞, which is taken after the
high temperature limit, yielding the condition β~γ ≪ 1, we
have the quantum Fokker-Planck equation3,10

∂

∂t
W (0)(p, q; t) = −L̂QMW (0)(p, q; t)

+ζ
∂

∂p

(
p +

m
β

∂

∂p

)
W (0)(p, q; t), (34)

which is identical to the quantum master equation without
the RWA.8 Because we assume that the relation β~γ ≪ 1 is
maintained while taking the limit γ → ∞, this equation cannot
be applied to low-temperature systems, in which quantum
effects play a major role. As in the case of the master equation

without the RWA, the positivity of the population distribution,
P(q) = 

dpW (p,q; t), cannot be maintained if we apply this
equation in the low temperature case.

The classical HEOM can be derived by taking ~ → 0.94,95

The Wigner distribution function reduces to the classical one in
this limit. The classical equation of motion is helpful, because
knowing the classical limit allows us to identify the purely
quantum mechanical effects.95,102,105

IV. IMAGINARY-TIME QUANTUM HIERARCHAL
FOKKER-PLANCK EQUATIONS

The equilibrium reduced density matrix has been evalu-
ated with several approaches.118,119 By applying the method-
ology developed in Ref. 108, we can derive the QHFP equa-
tions in imaginary time. This allows us to calculate the thermal
equilibrium distribution W eq(p,q) at inverse temperature β~.
Instead of the quantum Liouvillian, this equation involves the
left-sided operators HA(p̂, q̂) and q̂. While the Wigner trans-
formations of these operators become complex operators, the
Wigner distribution W eq(p,q) is a real function. In order to
make the numerical calculations easier to carry out, we rewrite
Âρ̂ as (Âρ̂ + ρ̂Â)/2 to perform the Wigner transformation,
where Â is an arbitrary operator. Other than this, the deri-
vation of the imaginary-time QHFP is parallel to that of the
imaginary-time HEOM in the energy eigenstate representa-
tion.108 By introducing the Wigner distribution for imaginary
time, W̄ [m:l]

k1, ...,km
(p,q; τ), which is defined by the Wigner trans-

formation of the density operator that in path integral form is
given by

ρ̄
[m:l]
k1, ...,km

(q0,q′0; τ)

=

 q̄(τ)=q′0

q̄(0)=q0

D[q̄(τ)]
m−l
g=1

( τ

0
dτg cos(νkgτg)q̄(τg)

)

×
2m

g ′=m−l+1

( τ

0
dτg ′ sin(νkg ′τg ′)q̄(τg ′)

)
ρ̄[q̄, q̄′; τ],

(35)

we obtain the imaginary-time QHFP equations as

∂

∂τ
W̄ [m:l]

k1, ...,km
(τ)

= −H̄AW̄ [m:l]
k1, ...,km

(τ)

+
1
~

K
km+1=0

c̄km+1 cos(νkm+1τ)qW̄ [m+1:l]
k1, ...,km+1(τ)

+
1
~

K
km+1=0

c̄km+1 sin(νkm+1τ)qW̄ [m+1:l+1]
k1, ...,km+1(τ)

+
1
~

m−l
h=1

cos(νkhτ)qW̄ [m−1:l]
k1, ...,kh−1,kh+1, ...,km

(τ)

+
1
~

m
h=m−l+1

sin(νkhτ)qW̄ [m−1:l−1]
k1, ...,kh−1,kh+1, ...,km

(τ), (36)

where the factors c̄k are expressed as c̄0 = mζγ/β and c̄k
= 2mζγ2/β(γ + νk), for k ≥ 1. We set W̄ [m:l]

k1, ...,km
(τ) = 0 for

higher-order elements in hierarchy denoted by m to truncate.
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The Euclidean Liouvillian is expressed as

H̄AW̄ =
1

2m

(
p2 − ~

2

4
∂2

∂2q

)
W̄ (p′, q)

+
1
~

 ∞

−∞

dp′

2π~
Ū ′(p − p′, q)W̄ (p′, q), (37)

with

Ū ′(p, q) =
 ∞

0
dx sin

( px
~

) 
U ′

(
q +

x
2

)
+U ′

(
q − x

2

)
,

(38)

for the potential, U ′(q) = U(q) + mζγq2/2, including the cou-
nter-term. This can also be expressed in differential form as

H̄A =
1

2m

(
p2 − ~

2

4
∂2

∂2q

)
+

1
2


U ′

(
q − ~

2i
∂

∂p

)
+ U ′

(
q +
~

2i
∂

∂p

)
. (39)

If the anharmonicity of the potential is small, the above expres-
sion is useful. The initial conditions ρ[0:0](q,q) = 1 and
ρ[0:0](q,q′) = 0 for q,′ are expressed as W̄ [0:0](p,q; 0)
= 1/2π. By integrating Eq. (36) from τ = 0 to τ = β~, we can
evaluate the equilibrium distribution function W̄ (p,q; β~).

Once we obtain the equilibrium distribution, we can calcu-
late the partition function employing the relation

ZA(β~) =


dp


dqW̄ [0:0](p,q; β~). (40)

This allows us to calculate the Helmholtz free energy, FA

= − ln(ZA)/β, the entropy, SA = kB β
2∂FA/∂ β, the inter-

nal energy, UA = −∂ ln(ZA)/∂ β, and the heat capacity, CA

= −kB β
2∂UA/∂ β for any potential. If the system is subject to

an external force ∆ f (p̂, q̂), where f (p̂, q̂) is any function of the
momentum and position, p̂ and q̂, we can also calculate the
susceptibility, χA = −(∂F/∂∆), from ZA.

It should be noted that even if the potential is a function of
time, we can calculate thermodynamic quantities as functions
of time through ZA(β~; t), assuming that the system reaches
the thermal equilibrium state faster than the change of the
potential.

V. NUMERICAL RESULTS

In principle, the HEOM provide an asymptotic approach
that allows us to calculate various physical quantities with
any desired accuracy by adjusting the number of hierarchal
elements. Here, we demonstrate the applicability and valid-
ity of the real-time and imaginary-time QHFP equations, by
presenting the results obtained from numerical integrations of
Eqs. (28)–(33) and (36)–(38). For this purpose, we consider the
harmonic potential

ĤA(p̂, q̂) = p̂2

2m
+

1
2

mω2
0q̂2. (41)

From our numerical solutions of Eqs. (28)–(33), we have
computed the equilibrium distributions, the auto-correlation
functions, and the first- and second-order response functions
and examined the roles of a non-factorized thermal state, and

the roles of fluctuation, dissipation, and system-bath coher-
ence. From those of Eqs. (36)–(38), we have computed the
equilibrium distributions and thermodynamic quantities. Be-
low, we compare these results with the same quantities calcu-
lated from analytically exact expressions for the Brownian
oscillator system5–7 and from the TCL Redfield equation both
with and without the RWA49–51 (see Appendix D) as critical
non-perturbative and non-Markovian tests. Note that the TCL
equation is exact if the system Hamiltonian is time independent
and if the system Hamiltonian and the system-bath interaction
commute. However, here we consider the non-commuting
case.

Below we also present our results for calculations of
thermodynamic quantities obtained from the imaginary-time
QHFP and compared them with analytical results.

A. Steady state distribution: Static system-bath
coherence and mixed state

For a harmonic system, the equilibrium distribution in the
Wigner representation is analytically expressed as

W eq(p,q) = 1
N̄

exp

− 1

2⟨p2⟩ p2 − 1
2⟨q2⟩q2


, (42)

where N̄ ≡ 2π
⟨p2⟩⟨q2⟩ is the normalization factor and ⟨q2⟩

and ⟨p2⟩ are the mean squares of the position and momentum,
respectively.

The Wigner distribution for an isolated oscillator is written
as W eq

A
(p,q). For Hamiltonian Eq. (41), we have113

⟨q2⟩A = ~

2mω0
coth

(
β~ω0

2

)
(43)

and

⟨p2⟩A = m~ω0

2
coth

(
β~ω0

2

)
. (44)

The Wigner distribution for a harmonic Brownian system is
denoted by W eq

BO(p,q). In this case, we have5–7

⟨q2⟩BO =
1

mβ

∞
k=−∞

1
ω2

0 + ν
2
k
+
�
δΓ2(νk)� (45)

and

⟨p2⟩BO =
m
β

∞
k=−∞

ω2
0 +

�
δΓ2(νk)�

ω2
0 + ν

2
k
+
�
δΓ2(νk)� , (46)

with δΓ2(ω) ≡ ζγ2ω/(γ2 + ω2). In the Wigner representation,
the thermal equilibrium state under the factorized assumption,
exp(−βĤA) exp(−βĤB), is denoted by W eq

A
(p,q), while the

true thermal equilibrium state of the reduced density operator,
trB{exp[−β(ĤA + ĤI + ĤB)]}, is denoted by W eq

BO(p,q); the
difference between the two distributions arises from the static
system-bath coherence and represents the non-factorized effect
of the thermal equilibrium state.

To obtain the thermal equilibrium state from the real-time
QHFP, we integrated Eqs. (28)–(33) from a temporal initial
state until all of the hierarchy elements reach the steady state.
In principle, the initial state can have any form, but to elucidate
the difference between the factorized (pure) equilibrium state
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and the true correlated (mixed) equilibrium state, we chose
W (0)

0, ...,0(p,q; 0) = W eq
A
(p,q) and W (n)

j1, ..., jK
(p,q; 0) = 0 for other

elements in the QHFP case. For the TCL Redfield case, we
chose ρ j j(0) = exp(−βE ′j)/Z ′A, where E ′j is the jth eigenen-
ergy of Eq. (41) with the counter-term Ĥ ′A = (ĤA + mζγq̂2/2),
and Z ′A =


j exp(−βE ′j), as explained in Appendix D.

For all of our computations, we fixed the oscillator fre-
quency as ω0 = 1.0. Then, we chose the coupling strength,
inverse correlation time, and inverse temperature as ζ = 1,
γ = 1, and β = 3. We thus consider the case of intermediate
coupling strength and low temperature. For the QHFP, we set
K = 7, which leads to the depth in terms of γ as Kγ = 2 and the
total number of hierarchy elements N = 4268. The mesh size
of the Wigner function was optimized for the Liouvillian given
in Eq. (25),115 and we used nq = 80 and np = 30 for the region
|q| < 2.8. For the TCL Redfield equation, we employed six
eigenstates. The calculated results and factorized initial state
were translated into the Wigner distribution through Eqs. (D8)
and (D9), respectively.

In Fig. 1(a), we display W (0)
0, ...,0(p,q; t) for the factorized

initial state at t = 0 given by W eq
A
(p,q) (blue curves) and the

steady state distribution at t = 100 (red curves) obtained from
the real-time QHFP calculation. We found that even if we start
from the factorized initial state, the steady state solution is
the true thermal equilibrium state, denoted by W eq

BO(p,q). This
indicates that the real-time QHFP has the capability to produce
the thermal equilibrium state with a static system-bath correla-
tion through the fluctuation and dissipation terms. In the TCL
Redfield equation cases, Figs. 1(b) and 1(c), the calculated
steady states (red curves) are similar to the factorized initial
states (blue curves). The peak intensity of the TCL result in the

FIG. 1. (a) The initial conditions (blue curves) and steady state solutions
(red curves) for the low temperature case β~= 3.0, calculated from (a) the
real-time QHFP, (b) the TCL Redfield equation, and (c) the TCL Redfield
equation with the RWA. The other parameter values are ω0= 1.0, γ = 1.0,
and ζ = 1.0. The factorized initial state given by W

eq
A
(p,q) with Eqs. (43)

and (44) is set as the temporally initial state at time t = 0. After integrating
the real-time QHFP and the TCL Redfield equations for a sufficiently long
time (t = 100), the distribution reaches the steady state. In the real-time QHFP
case, the obtained steady state is identical within numerical error to the
thermal equilibrium state W

eq
BO(p,q) with ⟨q2⟩ and ⟨p2⟩ given by Eqs. (45)

and (46), while that from the TCL Redfield equations is similar to the original
factorized initial state. This implies that the TCL Redfield equation cannot
take into account the static system-bath correlation properly.

case without the RWA is slightly higher than that in the case
with the RWA, because the ground and first excited populations
in the former case are ρ00(t) = 1.083 and ρ11(t) = −0.090,
due to the breakdown of the positivity condition, which is
a physical requirement for the reduced equations of motion
necessary for the population state of the density matrix to be
positive.41–48 Other than this difference, the TCL distributions
are similar to the factorized distribution. This indicates that
the TCL Redfield equation cannot take into account the static
system-bath coherence, because the TCL theory in the present
case is valid only to second order in the system-bath coupling.

As explained in Appendix A, the effects of the system-
bath coherence consist of the imaginary-time (static) part
and complex-time (correlated) part represented by the red
and green arcs in Fig. 9, respectively. From the equilibrium
distribution, we can only observe the effects of the static part.
To elucidate the correlated part, we need to calculate the
nonlinear response function, as will be discussed in Sec. V C.

B. Two-body correlation functions: The roles
of fluctuation, dissipation, and non-Markovian effects

We next calculate the two-body correlation functions
to investigate the roles of dissipation, fluctuation, and non-
Markovian dynamics. The symmetric correlation and linear
(first-order) response functions of the position are defined by
C(t) ≡ ⟨q̂(t)q̂ + q̂q̂(t)⟩/2 and R(1)(t) ≡ i⟨[q̂(t), q̂]⟩/~, respec-
tively. While the auto-correlation function of the position
is given by C(t), the observable of a linear measurement
involving infrared and THz spectra, which are expressed in
terms of a dipole proportional to q, corresponds to R(1)(t).
The Fourier transformation of these functions is denoted by
C[ω] and R(1)[ω]. They are expressed as the real and imaginary
parts of the normalized spectral distribution for the Brownian
oscillator as5,6

J ′(ω) = ~
m

1
(ω2

0 − ω2) + iωI[iω] , (47)

where I[s] is the Laplace transformation of B(t) defined by
Eq. (A8) as

I[s] =
 ∞

0
dt

1
m

B(t) exp(−st). (48)

For the Drude distribution, Eq. (5), we have I[s] = ζγ/(s + γ)
and

C[ω] = ~
m

δΓ2(ω) coth
(
β~ω

2

)
�
ω2 − ω2

0 − δΩ2(ω)�2 + (δΓ2(ω))2
(49)

and

R(1)[ω] = ~
m

δΓ2(ω)
�
ω2 − ω2

0 − δΩ2(ω)�2 + (δΓ2(ω))2
, (50)

where δΩ2(ω) ≡ ζγω2/(γ2 + ω2).
In order to calculate the above functions using an equation

of motion approach, we employ the following forms:8,120

C(t) = 1
2

tr
�
q̂Ĝ(t)q̂◦ ρ̂eq

tot
	

(51)
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and

R(1)(t) = i
~

tr
�
q̂Ĝ(t)q̂× ρ̂eq

tot
	
, (52)

where q̂×Â ≡ q̂ Â − Âq̂, q̂◦Â ≡ q̂ Â + Âq̂, Ĝ(t)Â
≡ e−i Ĥtot t/~Âei Ĥtot t/~ for any operator Â, and ρ̂

eq
tot

= e−βĤtot/Ztot with Ztot = tr{ ρ̂eq
tot}.

In the reduced equation of motion approach, the density
matrix is replaced by a reduced one. In the QHFP case, ρ̂eq

tot is
replaced by the hierarchy member W (n)

j1, ..., jK
(p,q; t), whereas in

the TCL Redfield case, it is replaced by ρ̂ jk(t). The Liouvillian
in Ĝ(t) is replaced using Eqs. (28)–(33) and (D2)–(D6).

We evaluate Eqs. (52) and (51) in the following four
steps.8,120 (i) We first run the computational program to eval-
uate Eqs. (28)–(33) in the QHFP case and Eqs. (D2)–(D6)
in the TCL Redfield case for sufficiently long times from the
temporal initial conditions to obtain a true thermal equilibrium
state, as illustrated in Sec. V A. In the QHFP case, the full
hierarchy members W (n)

j1, ..., jK
(p,q; 0) are then used to set the

correlated initial thermal equilibrium state. (ii) The system
is excited by the first interaction q̂× or q̂◦ at t = 0. In the
Wigner representation, they are expressed as ∂/∂p and 2q,
respectively. (iii) The evolution of the perturbed elements is
then computed by running the program for the QHFP or TCL
up to time t. (iv) Finally, the functions defined in Eqs. (52)
and (51) are calculated from the expectation value of q. By
performing a fast Fourier transform, we obtain their spectra.

In computing the results reported below, we chose the
number of Matsubara frequencies for the QHFP equation as
K = 5–8, which leads to the depth in terms of γ as Kγ = 3–6
and the total number of hierarchy member N = 601–16093.
The mesh size of the Wigner function was optimized for the
Liouvillian given by Eq. (25),115 and we used nq = 80–120
for the region |q| < 4–6 and np = 30–120 for the region |p|
< 2.8–11.2. In the TCL Redfield cases with and without the
RWA, we varied the number of energy levels between 6 and
16 depending on the temperature.

1. Auto-correlation function: Fluctuation
and temperature effects

First, we study the temperature dependence of the auto-
correlation function for the fixed coupling strength ζ = 1 and
the inverse noise correlation time γ = 1. In Fig. 2, we compare
the calculated real-time QHFP results obtained from Eqs.

(28)–(33) with analytical results obtained from Eq. (49) and
results obtained from the TCL Redfield equation, given in
Eqs. (D2)–(D4) without the RWA using Eq. (D5) and with
the RWA using Eq. (D6), for three values of the inverse
temperature: (a) β~ = 3.0, (b) β~ = 1.0, and (c) β~ = 0.5. At
high temperature, in the QHFP case, the calculations are easier,
because there are fewer Matsubara frequency terms, while the
TCL Redfield calculations are more difficult, because more
energy eigenstates are needed to account for the high energy
excitations. Here, we included up to 16 states in the TCL
case.

While the QHFP results (red curves) coincide with the
exact results (black dots), the TCL-Redfield results without the
RWA (blue curves) and with the RWA (blue dashed curves)
are close only near the maximum peak, regardless of temper-
ature. The low-frequency parts of the spectra arise from the
slow dynamics of the reduced system near the thermal equilib-
rium state, and the discrepancy between the TCL results and
exact results arises from the equilibration process discussed in
Sec. V A.

2. Linear response function: Dissipation
and non-perturbative effects

As can be seen from Eq. (50), R(1)[ω] is temperature
independent. Therefore, this function is convenient to study
the non-perturbative effects of the system-bath coupling, ζ ,
and non-Markovian effects for slow modulation, controlled by
the parameter γ, apart from the temperature effects. In Fig. 3,
we compare the linear response functions for the coupling
strengths (a) ζ = 0.1, (b) ζ = 1.0, and (c) ζ = 3.0 with fixed
inverse temperature β~ = 1 and γ = 1.

While the QHFP results (red curves) coincide with the
exact results (black dots), the TCL-Redfield results without
the RWA (blue curves) and with the RWA (the blue-dashed
curves) are close only in the weak coupling case considered in
Fig. 3(a). For the strong coupling case considered in Fig. 3(c),
both the QHFP and analytical results exhibit a peak near ω0
= 0.2. This peak arises from the strong coupling between the
harmonic mode and the low frequency bath mode character-
ized by γ2ω/(γ2 + ω2) and only appears in the simultaneous
non-Markovian (γ ≤ ω0) and non-perturbative (ζ ≫ ω0)
case.121 The existence of this peak, which we call a “non-
Markovian bosonic peak,” is a good indication of the appli-
cability of non-perturbative and non-Markovian theories.

FIG. 2. The auto-correlation (symmetric correlation)
function of the Brownian oscillator system for several
inverse temperatures: (a) β~= 3.0, (b) β~= 1.0, and
(c) β~= 0.5. The dotted, red, blue, and blue-dashed
curves represent the results obtained from analytic ex-
pression Eq. (49), the QHFP, the TCL-Redfield, and
TCL-Redfield with the RWA, respectively. The intensity
of each line is normalized with respect to its maximum
peak intensity. The other parameters values are fixed as
ω0= 1.0, γ = 1.0, and ζ = 1.
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FIG. 3. Linear response function for the Brownian os-
cillator system, R(1)[ω], for three values of the system-
bath coupling strengths: (a) ζ = 0.1, (b) ζ = 1.0, and
(c) ζ = 3.0. This function is temperature independent in
the harmonic case, and we set the inverse temperature
to β~= 1. The other parameter values are the same as
in Fig. 2. The dots represent the analytically calculated
exact results obtained from Eq. (50). The red, blue, and
blue-dashed curves were calculated using the real-time
QHFP equation, the TCL Redfield equation, and the
TCL Redfield equation with the RWA, respectively. The
intensity of each line is normalized with respect to its
maximum peak strength.

Because the TCL Redfield theory is valid only to second
order in the system-bath coupling, the TCL results cannot
reproduce this peak. Moreover, the spectrum calculated from
the TCL Redfield equation without the RWA in the strong
coupling case, shown in Fig. 3(c), is not positive for ω ≈ 5,
due to the breakdown of the positivity condition. Despite this
problem, however, the difference between the TCL results with
and without the RWA is minor. This is because the spurious
behavior caused by the positivity problem is suppressed in
the non-Markovian treatment of the reduced dynamics, as ex-
plained in Appendix B.

3. Linear response function: Noise correlation
and non-Markovian effects

We next discuss the non-Markovian effects in the Brow-
nian oscillator system. It should be noted that when the in-
verse noise correlation time, γ, is decreased, the effective
coupling strength becomes stronger, even if we fix ζ , because
the bath can interact with the system multiple times when
the correlation time is long. In order to study the pure non-
Markovian effects, here we employ an effective coupling
strength ζeff ≈ δΓ2(ω0) = ζγ2ω0/(γ2 + ω2

0)95 and fix it while
varying γ.

In Fig. 4, we plot R(1)[ω] in the weak coupling regime
corresponding to Fig. 3(a). Hereafter, we do not consider the
TCL Redfield equation with the RWA, because the difference
between the TCL results with and without the RWA is minor.
While all of the peak profiles are similar if we fix ζeff , the
peak position shifts slightly in the high-frequency direction,
because a change of γ results in a change of δΩ2(ω0). As
the exact results and the QHFP results in Fig. 4 indicate,
there is no clear indication of non-Markovian dynamics in this

weak coupling regime, once we have normalized the effective
coupling strength.

While the TCL Redfield results are close to the exact
results in the fast modulation (weak non-Markovian) case de-
picted in Fig. 4(a), they differ significantly in the slow modula-
tion (strong non-Markovian) case considered in Fig. 4(c). This
is because the perturbative description of the TCL Redfield
equation breaks down as a result of the fact that multiple
system-bath interactions arise due to the slow modulation,
even in the weak coupling case. Thus the TCL-Redfield result
without the RWA becomes negative for ω > 4.

In Fig. 5, we plot R(1)[ω] in the intermediate coupling
regime corresponding to Fig. 3(b). It is seen that while the
QHFP results always coincide with the exact results, the
discrepancy between the TCL Redfield and exact results is
large in the slow modulation (strong non-Markovian) case, due
to the non-perturbative nature of the interactions. Specifically,
the lack of a non-Markovian bosonic peak becomes apparent
even at this intermediate coupling strength if the modulation
is slow. Moreover, the TCL result without the RWA becomes
negative in the region ω > 2.2. Because the non-Markovian
effects in dynamics make the non-perturbative nature of the
interaction conspicuous in the case of slower modulation, due
to the existence of the multiple system-bath interactions for
slow modulation, the TCL Redfield equation does not have
the capability of treating pure non-Markovian effects even it
reproduces the high-frequency part reasonably well.

C. Nonlinear response function: Dynamical
system-bath coherence

As explained in Appendix C, the system-bath interac-
tion induces static effects arising in imaginary time and dy-

FIG. 4. The pure non-Markovian effect of R(1)[ω] in-
vestigated in the weak system-bath coupling regime. Be-
cause the effective coupling strength, ζeff ≈ ζγ2ω0/(γ2

+ω2
0), depends on γ, we adjust ζ in each case to keep ζeff

equal to its value in the case considered in Fig. 3(a). We
chose (a)γ = 0.5 and ζ = 0.25, (b)γ = 0.25 and ζ = 0.85,
and (c) γ = 0.2 and ζ = 1.3 in order to make the widths
of all the peaks similar. The other parameter values are
the same as in the case of Fig. 3. The dots, red solid, and
blue solid curves are the exact, QHFP, and TCL Redfield
without the RWA results, respectively.
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FIG. 5. The pure non-Markovian effect of R(1)[ω]
investigated in the intermediate system-bath coupling
regime. We chose (a) γ = 0.5 and ζ = 2.5, (b) γ = 0.25
and ζ = 8.5, and (c) γ = 0.2 and ζ = 13 in order for the
effective coupling strength ζeff ≈ ζγ2ω0/(γ2+ω2

0) to be
the same as in the case of Fig. 3(b). The dots, red solid,
and blue solid curves are the exact, QHFP, and TCL
Redfield without the RWA results, respectively.

namic effects arising in real time and complex time. While
the static effects can be obtained from the thermal equilibrium
distribution, as illustrated in Sec. V A, we have to study the
nonlinear response function to elucidate the dynamic effects.
It should be noted that, in addition to their inability to treat
strongly non-Markovian dynamics, the conventional reduced
equation of motion approaches involving the TCL Redfield
equation have a severe limitation in studying systems subject
to time-dependent external forces because their description
of the damping kernels is based on energy eigenstates.93 The
capability of an approach to treat external forces can also be
examined by calculating nonlinear response functions, because
nonlinear measurements can capture the effects of multiple
interactions through time-dependent external forces. Here, we
calculate the second-order nonlinear response function of the
position given by

R(2)
TTR(t1, t2) = − 1

~2 ⟨[[q̂2(t1 + t2), q̂(t1)], q̂]⟩. (53)

This is an observable in two-dimensional THz-Raman
spectroscopy system.122,123 Note that because of the
Gaussian integral involved in the expectation value (⟨· · ·⟩
= tr{· · · exp(−βĤtot)}), the contribution from the lowest-order
response, ⟨[[q̂(t1 + t2), q̂(t1)], q̂]⟩/~2, vanishes.8,123 In the har-
monic case, there is also a contribution from R(2)

TRT(t1, t2)
= −⟨[[q̂(t1 + t2), q̂2(t1)], q̂]⟩/~2, which corresponds to an observ-
able in 2D THz-Raman-THz spectroscopy system. We find
that to explore the system-bath coherence, Eq. (53) is suitable,
as we show below. This response function in the harmonic
Brownian case can be calculated analytically as124

R(2)
TTR(t1, t2) = C(t2)C(t1 + t2), (54)

where C(t) is obtained from the Fourier transform of Eq. (49).
To apply the Liouville operator formalism, we rewrite Eq. (53)
as

R(2)
TTR(t1, t2) = − 1

~2 tr
�
q̂2Ĝ(t2)q̂×Ĝ(t1)q̂× ρ̂eq

tot
	
. (55)

Using the above expression, we calculated R(2)
TTR(t1, t2) for

various values of t1 and t2 by extending the method employing
Eqs. (51) and (52).8,120 The response functions evaluated from
Eqs. (54) and (55) are then Fourier transformed to obtain two-
dimensional spectra, R(2)

TTR[ω1,ω2].
In Fig. 6, we plot 2D spectra in the frequency domain

obtained from (a) the analytically exact approach, (b) the
QHFP approach, and (c) the TCL Redfield without the RWA
approach under the same physical conditions as in Fig. 5(b).
We find that while the analytically exact and QHFP results
exhibit peaks at (ω1,ω2) = (0,1) and (ω1,ω2) = (1,1), the TCL
approach cannot reproduce them. As shown in a study of
multi-dimensional spectroscopy, in order to have these peaks,
the dynamical system-bath coherence subject to the second
interaction at time t1 must be maintained throughout the time
evolution described by Eq. (55).93 In the TCL case, however,
the time evolution is described in terms of the reduced operator
trB{Ĝ(t)}, derived from the factorization assumption with
tr
�
q̂2trB{Ĝ(t2)}q̂×trB{Ĝ(t1)}q̂×trB{ ρ̂eq

tot}
	
. While the exact

dynamics maintain the coherence during the period of length
t1 + t2 expressed by C(t1 + t2), the TCL approach cannot main-
tain this coherence. In contrast to the Redfield approach,
because the HEOM approach can store this coherence in
the hierarchal members, it is capable of treating a nonlinear
response function.

Because many modern experiments utilize the nonlinear
response of a system, which is measured by applying a variety
of time-dependent external forces, the capability to calculate

FIG. 6. The second-order response function
R
(2)
TTR[ω1,ω2] of the Brownian oscillator system

corresponding to the intermediate coupling case
considered in Fig. 5(b). The results here were obtained
from (a) analytical expression Eq. (54), (b) the QHFP
approach, and (c) the TCL Redfield approach without
the RWA. The intensity of each graph is normalized with
respect to the maximum peak intensity.
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the nonlinear response function is important. The validity of
the HEOM approach has been demonstrated for systems sub-
ject to time-dependent external forces.82,95–97,105 In addition to
the HEOM approach, the path integral approach has also been
shown to have this capability.60

D. Thermal equilibrium state and thermodynamic
quantities

We finally examine the imaginary QHFP equation by
considering our results obtained through numerical integration
of Eq. (36) from τ = 0 to β~ using the harmonic potential to
compare W eq

BO(p,q) presented in Sec. V A and the partition
function ZA. The number of Matsubara frequencies used in the
imaginary-time QHFP is K = 4. The mesh size was optimized
for the Euclidean Liouvillian, and we chose np = 60–120 and
nq = 120–240. Because the distribution is spread relatively
widely in the higher temperature case, we employed a coarser
mesh in that case.

In Fig. 7, we display solution of the imaginary-time QHFP,
Eq. (36) with β~ = 1 for several values of τ. Because the
damping kernels in the imaginary-time QHFP are defined by
the Matsubara frequency at β~, the solutions τ < β~ do not
correspond to the equilibrium distribution at temperature τ.
While the initial distribution is flat, the distribution approaches
a Gaussian form due to the Euclidean and the damping oper-
ators. At τ = β~, the solution coincides with the analytical
solution given in Eq. (42) with Eqs. (45) and (46).

While the equilibrium distribution can also be obtained
from the real-time QHFP, as shown in Sec. V A, the thermo-
dynamic quantities can only be calculated from the imaginary-
time QHFP. We next demonstrate this point. In the BO case, the
partition function can also be evaluated analytically in terms of
the Matsubara frequencies as5–7

ZBO =
1

β~ω0

∞
k=1

ν2
k

ω2
0 + ν

2
k
+ δΓ2(νk) . (56)

FIG. 7. Solution of the imaginary HEOM at four values of the imaginary
time, τ. Here, we plot the zeroth member, W̄ [0,0](p,q;τ), only. The initial
state is presented in (a) τ = 0, while the final state is presented in (d). We
confirmed that the normalized distribution of the state in (d) is identical to the
distribution given by Eq. (42), within numerical error.

FIG. 8. The partition function, ZA, entropy, SA, internal energy, UA, and
heat capacity, CA, of a Brownian oscillator system calculated using the
imaginary-time QHFP as functions of the inverse temperature, β~. The
dotted curve represents the partition function obtained from the analytical
expression, Eq. (56). Because analytically calculated exact results and the
HEOM results, ZA, are nearly identical, here we plot only SA, UA, and CA

for the HEOM case.

We should note that the normalization constant of the real-time
QHFP is N̄ = 2π

⟨p2⟩⟨q2⟩, whereas that of the imaginary-
time QHFP is ZA obtained from Eq. (40). Because ZBO in-
volves a temperature dependent factor other than N̄ , we cannot
calculate the partition function using the real-time HEOM
approach.

To obtain thermodynamic quantities, we first repeated
the integration of the imaginary-time QHFP from β~ = 0.025
to 3.05 with step size ∆β~ = 0.025 to derive ZA. Then, we
calculated thermodynamic quantities through ZA. In Fig. 8,
we compare the partition function given by Eq. (40) (brown
curve) and that obtained from Eq. (56) (dotted curve). As
expected, the imaginary-time QHFP results coincide with the
exact results. For the purpose of demonstration, we also plot
the entropy, SA, the internal energy, UA, and the heat capacity,
CA, calculated with the imaginary-time QHFP. The behavior
in the high temperature regime is very different from that in
the spin-Boson case,108 because the BO model has an infinite
number of excited states.

VI. CONCLUDING REMARKS

In this paper, we presented real-time and imaginary-
time QHFP equations derived using the influence functional
formalism with correlated initial conditions. While we found
that the QHFP equations in real time possess the same form
as those obtained from a factorized initial state, we introduced
a modified terminator in order to facilitate the more efficient
calculations of non-Markovian dynamics.

The capability of the real-time QHFP was verified through
non-perturbative and non-Markovian tests based on (i) the
steady-state distribution, (ii) the symmetric auto-correlation
function, (iii) the linear response function, and (iv) the non-
linear response function. This was done to test the capability
of the real-time QHFP to properly model the effects of (i)
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static system-bath coherence, (ii) fluctuation, (iii) dissipation
and non-Markovian effects, and (iv) dynamical system-bath
coherence, respectively. The ability of the model to account
for the dynamical system-bath coherence is particularly impor-
tant if we wish to study dynamics under time dependent
external forces. While many of the methodologies developed
for reduced quantum dynamics have been tested only with
regards to the relaxation dynamics of the population state over
short periods of time, the long-time behavior of the dynamics,
represented by the low frequency parts of the correlation
functions, is essential to test the capability of this approach
for non-Markovian dynamics. Because the bath can interact
with the system many times in the case of slow modulation, the
dynamics of the reduced system can only be described with a
non-perturbative treatment when the system is strongly in non-
Markovian. For this reason, the non-perturbative treatment and
the mixed state (or unfactorized) treatment of the system-bath
interactions are both important.

In this paper, we considered only the harmonic case;
the HEOM approach can be used to treat potentials of any
form with time-dependent external forces. Although it had not
been shown until the present paper that the QHFP equations
derived from correlated initial conditions have the same form
as those obtained from factorized initial conditions, the useful-
ness of the real-time QHFP approach has been demonstrated
for various problems involving chemical reactions,94,95 photo-
dissociation,96,97 nonlinear optical response,98–102 resonant
tunneling,103,104 quantum ratchets,105 and tightly bound elec-
tron-phonon system.106 However, with the modified terminator
introduced in this paper, the same calculations can be carried
out more efficiently.

A confined potential system involving a Brownian oscil-
lator system can also be treated using the HEOM approach
in the energy eigenstate representation108 in the same manner
as in the present study of the TCL Redfield equation, but
quantum transport problems characterized by open or peri-
odic boundary conditions can be studied only with the QHFP
approach,95–97,103–105 because we cannot introduce the en-
ergy eigenstates for this kind of problem. Nonlinear system-
bath coupling, which plays an important role in vibrational
spectroscopy, can also be taken into account in the QHFP
formalism.8,98–102 Extension to multi-potential surfaces is also
possible.96,97 Because this formalism treats the quantum and
classical systems with any form of potential from the same
point of view, it allows identification of purely quantum mech-
anical effects through comparison of classical and quantum
results in the Wigner distribution.95,102,105

We showed that the thermal equilibrium state obtained
from the imaginary-time QHFP is equivalent to the steady state
solution of the real-time QHFP. Because the imaginary-time

QHFP is defined in terms of integrals carried out over the
definite time interval, we were able to calculate the equilibrium
state more easily in this case than in the case of the real-time
QHFP. Moreover, using the imaginary-time QHFP, we were
able to calculate the partition function, and from this, we could
directly obtain several thermodynamic quantities, namely, the
free energy, entropy, internal energy, and heat capacity of the
system in the dissipative environment. Numerical integration
of the real-time and imaginary-time QHFP equations is compu-
tationally intensive. Nevertheless, we were able to study the
dynamics of one-dimensional potential systems using personal
computers.102–105 Great effort has been made to reduce the
computational intensiveness of algorithms used to implement
the real-time HEOM approach. For example, the hierarchy has
been optimized for numerical calculations,125–131 and a graphic
processing unit (GPU)132 and parallel computers133 have been
utilized in order to facilitate the treatment of larger systems
and to treat non-Drude type spectral distribution functions.82–90

The same techniques can be applied to the case of real-time and
imaginary-time QHFP equations.

As the supplementary material, we supply the FORTRAN
codes for the real-time and imaginary-time QHFP, entitled
TanimuranFP15 and ImTanimuranFP15, to help further devel-
opment in this field.134
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APPENDIX A: INFLUENCE FUNCTIONAL
WITH CORRELATED INITIAL CONDITIONS

The reduced density matrix elements of the system are
obtained in path integral form as

ρ(q,q′; t)
=

ZB

Ztot

 q=q(t)

q0=q(0)
D[q(t)]

 q′=q′(t)

q′0=q
′(0)

D[q′(t)]
 q′0=q̄(β~)

q0=q̄(0)
D[q̄(τ)]

× e
i
~ SA[q, t]eΦ̄[q,q

′, q̄; t, β~]e−
1
~ S̄A[q̄;τ]e−

i
~ SA[q′, t], (A1)

where ZB is the partition function of the bath and the Euclidean
action is given by

S̄A[q̄; τ] =
 β~

0
dτ


1
2

m ˙̄q(τ)2 +U(q̄(τ))

. (A2)

The influence functional for the correlated initial state ex-
pressed in terms of the influence phase is given by108

Φ̄[q,q′, q̄; t, β~] =
(
− i
~

)2  t

0
dt ′′

i~
2

B(0)q×(t ′′)q◦(t ′′) +
(
− i
~

)2  t

0
dt ′′

 t′′

0
dt ′ q×(t ′′) �−iL1(t ′′ − t ′)q◦(t ′) + L2(t ′′ − t ′)q×(t ′)�

+
i
~2

 t

0
dt ′′

 β~

0
dτ′q×(t ′′)q̄(τ′)L(t ′′ + iτ′) − 1

2~2

 β~

0
dτ′′B(0)q̄2(τ′′)

+
1
~2

 β~

0
dτ′′

 τ′′

0
dτ′q̄(τ′′)q̄(τ′)L̄ (τ′′ − τ′) , (A3)
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where q×(t) ≡ q(t) − q′(t) and q◦(t) ≡ q(t) + q′(t). Using the spectral density, J(ω), we rewrite these functions for 0 < τ < β~
as

L(t + iτ) = 2
β~

 ∞

0
dωJ(ω)



1
ω
+

∞
k=1

2ω
ν2
k
+ ω2

cos(νkτ)


cos(ωt) + i
2
β~

 ∞

0
dωJ(ω)

∞
k=1

2νk
ν2
k
+ ω2

sin(νkτ) sin(ωt). (A4)

In the case τ = 0, we have L(t) ≡ iL1(t) + L2(t) with

L1(t) =
 ∞

0
dωJ(ω) sin(ωt), (A5)

L2(t) =
 ∞

0
dωJ(ω) coth

(
β~ω

2

)
cos(ωt), (A6)

and in the case t = 0, we have L̄(τ) ≡ L(iτ) with

L̄(τ) = 2
β~

 ∞

0
dωJ(ω)



1
ω
+

∞
k=1

2ω
ν2
k
+ ω2

cos(νkτ)

, (A7)

where the quantities νk ≡ 2πk/β~ are the Matsubara frequencies. For later convenience, we also introduce the canonical
correlation

B(t) = 2
~

 ∞

0
dω

J(ω)
ω

cos(ωt) (A8)

and express the counter-term of the potential using B(0).
The function L2(t) is related to B(t) through the quantum version of the fluctuation-dissipation theorem, L2[ω]

= ~ω coth(β~ω/2)B[ω]/2, which insures that the system evolves toward the thermal equilibrium state, trB{exp[−βĤtot]}, for
finite temperatures in the case that there is no driving force.4

Using the relations

−
 t

0
dt ′′B(0)q×(t ′′)q◦(t ′′) +

 t

0
dt ′′

 t′′

0
dt ′

dB(t ′′ − t ′)
dt ′

q×(t ′′)q◦(t ′)

= −
 t

0
dt ′′B(t ′′)q×(t ′′)q◦(0) −

 t

0
dt ′′

 t′′

0
dt ′ B(t ′′ − t ′)q×(t ′′)dq◦(t ′)

dt ′
(A9)

and

1
~2

 β~

0
dτ′′

 τ′′

0
dτ′q̄(τ′′)q̄(τ′)L̄ (τ′′ − τ′) − 1

2~2

 β~

0
dτ′′B(0)q̄2(τ′′) = 1

2~2

 β~

0
dτ′′

 β~

0
dτ′q̄(τ′′)q̄(τ′)L̄ (τ′′ − τ′) ,

(A10)

the influence functional can be rewritten as

FCI[q,q′, q̄; t, β~] = e(− i
~ )2  t

0 dt ′′ i~2 B(t ′′)q×(t ′′)q◦(0)

× e(− i
~ )2  t

0 dt ′′q×(t ′′)  t′′
0 dt ′ i~

2 B(t ′′−t ′) ∂q◦(t′)
∂t′

× e(− i
~ )2  t

0 dt ′′q×(t ′′)  t′′
0 dt ′L2(t ′′−t ′)q×(t ′)

× e
i

~2

 t
0 dt ′′

 β~
0 dτ′q×(t ′′)q̄(τ′)L(t ′′+iτ′)

,

(A11)

where we have included the bath part in the initial thermal state
of the system ρ̄

eq
A
[q̄; β~] as

ρ̄eq[q̄; β~] = ZBe−
1
~ S̄A[q̄;τ]+ 1

2~2
 β~

0 dτ′′
 β~

0 dτ′q̄(τ′′)q̄(τ′)L̄(τ′′−τ′)
.

(A12)

The contributions arising from the factorized initial conditions
or correlated initial conditions consist of two parts. One is
a static contribution represented by the term containing the
imaginary-time integrals of L̄ (τ′′ − τ′) in Eq. (A12). Because
of this term, the thermal equilibrium state of the system is

not the equilibrium state of the system alone (pure state)
but that of the combination of the system and bath (mixed
state). The other is the correlated state contribution, repre-
sented by the term containing the complex time integrals of
L(t ′ + iτ′) in Eq. (A11). The second contribution involves the
effects of the dynamical correlation and is negligible when
the Markovian assumption is applied, while the first contri-
bution always plays a significant role. It is important to note
that, in addition to the fluctuation and dissipation denoted by
L2(t) and B(t), respectively, there is a dynamical contribution
from the correlated initial conditions. The role of the system-
bath interaction is illustrated in terms of each contribution in
Fig. 9.

APPENDIX B: DRUDE SPECTRAL DISTRIBUTION
AND THE VIOLATION OF THE POSITIVITY CONDITION

With Eq. (5), for 0 < τ < β~, we obtain108
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FIG. 9. The roles of the system-bath interactions illustrated schematically.
The solid black lines represent the wave function of the system A along the
complex counter-path (see Fig. 1 in Ref. 108), and the arcs and blue lines
represent the system-bath interactions. Because the bath degrees of freedom
have been reduced, the bath interactions connect the wave function of the
system A at multiple complex times. The blue arcs and lines correspond to
the fluctuation and dissipation processes described by the terms containing
B(t ′′− t ′) and L2(t ′′− t ′) in Eq. (A11), while the red arcs represent the static
thermal system-bath correlation described by L̄(τ′′−τ′) in Eq. (A12). The
green arcs represent the correlation in complex time described by L(t ′+ iτ′),
which leads to the correlated initial conditions.

L(t + iτ) =



c′′0 +
∞
k=1

�
c′′k cos(νkτ) + ic′k sin(νkτ)�




e−γt

+

∞
k=1

c′k [cos(νkτ) − i sin(νkτ)] e−νk t, (B1)

where c′′0 = mζγ/β, c′
k
= −2mζγ2νk/β(γ2 − ν2

k
), and c′′

k

= 2mζγ3/β(γ2 − ν2
k
) for k ≤ 0. At t = 0, the above equation

reduces to

L̄(τ) =
∞
k=0

c̄k cos(νkτ), (B2)

where ν0 = 0, c̄0 = c′′0 , and c̄k = c′
k
+ c′′

k
for 1 ≤ k, while at

τ = 0, we have

B(t) = mζγe−γt (B3)

and

L2(t) = c′0e−γt +
∞
k=1

c′ke−νk t . (B4)

As shown in Fig. 10, the noise correlation, L2(t), becomes
negative at low temperature. This results from the contribution
of the terms with νk = 2πk/β~ in the region of small t. This
behavior is characteristic of quantum noise.8 We note that the
characteristic time scale over which we have L2(t) < 0 is deter-
mined by the temperature and is not influenced by the spectral
distribution J(ω). Thus, the validity of the Markovian (or δ(t)-
correlated) noise assumption is limited in the quantum case
to the high temperature regime. Approaches employing the
Markovian master equation and the Redfield equation, which
are usually applied to systems possessing discretized energy
states, ignore or simplify such non-Markovian contributions
of the fluctuation, and this is the reason that the positivity
condition of the population states is broken.41–48

As a method to resolve this problem, the RWA (also
known as the “secular approximation”) is often employed, but
a system treated under this approximation will not satisfy the
fluctuation-dissipation theorem, and thus the use of such an
approximation may introduce significant error in the thermal
equilibrium state and in the time evolution of the system toward
equilibrium. Because the origin of the positivity problem lies in
the unphysical Markovian assumption for the fluctuation term,
the situation is better in the non-Markovian case, even within
the framework of the Redfield equation without the RWA, as
discussed in Sec. V. In the classical limit, with ~ tending to
zero, L2(t) is always positive.

While conventional approaches employing reduced equa-
tions of motion eliminate the bath degrees of freedom comple-
tely, the HEOM approach retains information with regard to
the system-bath coherence in the hierarchy elements. Because
of this feature, the HEOM approach can treat the reduced
dynamics in a non-perturbative, non-Markovian manner. To
obtain a more compact form for the HEOM, we use the
following approximate form for L2(t), given in Eq. (B4):
L2(t) ≃ c′0e−γt +

K
k=1 c′

k
e−νk t + δ(t)∞k=K+1 Ckc′

k
/νk, with c′0

= ~mζγ2 cot(β~γ/2)/2. Here, we choose K so as to satisfy
νk = 2πK/(β~) ≫ ωc, where ωc represents the character-
istic frequency of the system. Under this condition, we can
apply the approximation νke−νk |t | ≃ Ckδ(t) (for k ≥ K + 1)
with negligible error at the desired temperature, 1/β, where
Ck = ν

2
k
/(ν2

k
+ ω2

c) is the correction factor that compensates
for the overestimation of L2(t) in the approximation at very
low temperature for small cut-off K . The accuracy of this

FIG. 10. The noise correlation function, L2(t), depicted
as a function of the dimensionless time t for several
values of the inverse noise correlation time: (a) γ = 0.5,
(b) γ = 1, and (c) γ = 5. Note that γ→ ∞ corresponds
to the Markovian (Ohmic) limit, as can be seen from
Eq. (5). The inverse temperatures are, from top to bottom,
β~= 0.5, 1.0, 3.0, and 5. The noise correlation becomes
negative in (b) and (c) at low temperature (large β~) due
to the contribution of the Matsubara frequency terms.
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approximation is verified on basis of the asymptotic behavior
of L2(t) as a function of K . Then, the HEOM can be obtained by
considering the time derivative of Eq. (3).8 When the temper-
ature becomes high (i.e., for β~γ ≪ 1), the noise correlation
function reduces to L2(t) ≃ mζγe−γ |t |/β, and hence the noise
modulates the system as a Gaussian-Markovian stochastic
process.94,95

APPENDIX C: DERIVATION OF THE HEOM
IN CONFIGURATION SPACE

In the present appendix, we construct the equation of
motion for ρ

(n)
j1 j2· · · jK

(q,q′; t). In order to obtain differential
equations in time, we consider the reduced density matrix
elements at t + δt,

ρ
(n)
j1 j2· · · jK

(q,q′; t + δt) = 1
A2


dy


dy ′

 q(t)=q−y

q̄(0)=q0

D[q(t)]
 q′(t)=q′−y′

q̄′(0)=q0′
D[q′(t)]

 q′0=q̄(β~)

q0=q̄(0)
D[q̄(τ)] ρ̄eq[q̄; β~]

×


e−γ(t+δt)
 t+δt

0
dt ′eγt

′
γΘ0(t ′) + G0(0) − 1

~
Θ̄(β~)

n

×
K
k=1


e−νk(t+δt)

 t+δt

0
dt ′eνk t

′
νkΘk(t ′) − 1

~
Ψ̄k(β~)

 jk

× e
i
~ S[q, t+δt]FCI[q,q′, q̄; t + δt, β~]e− i

~ S[q′, t+δt], (C1)

where A is the normalization constant for the integrals over
y and y ′, and we set q = q(t) + y and q′ = q′(t) + y ′ with
q(t + δt) = q and q′(t + δt) = q′. We then expand ρ

(n)
j1 j2· · · jK

(q,
q′; t + δt) in terms of δt up to first order. Because y and y ′

also depend on δt, we have to expand the above equations in
terms of y and y ′. In the following, we expand the components
separately.

The action part can be expressed as

e
i
~ S[q, t+δt] = e

i
~


m
2 ( y

δt )2−U (q−y)

δt

e
i
~ S[q−y, t]

= e
imy2
2~δt

(
1 − iδt

~
U (q)

)
e
i
~ S[q−y, t]. (C2)

The influence functional is evaluated as

FCI[q,q′, q̄; t + δt, β~] =

1 − δt Φ(t)


e−γ(t+δt)

 t+δt

0
dt ′eγt

′
γΘ0(t ′) + G0(0) − 1

~
Θ̄(β~)


− δt Φ(t)




K
k=1

e−νk(t+δt)
 t+δt

0
dt ′eνk t

′
νkΘk(t ′) − 1

~
Ψ̄k(β~)



− δtΞ′(t)


× FCI[q − y,q′ − y ′, q̄; t, β~]. (C3)

In the following, we apply the Gaussian integrals

1
A


dyye

imy2
2~δt = 0 (C4)

and

1
A


dyy2e

im
2~δt y

2
=

i~
m
δt, (C5)

where the normalization constant is chosen to be
A =


dy exp(imy2/2~δt). Gaussian integrals higher than

fourth order can be ignored, because they produce contribu-
tions smaller than o(δt).

With Eqs. (C2) and (C3), the expansion of the last term in
Eq. (C1) is completed by the following:

e
i
~ S(q−y, t)FCI[q − y,q′ − y ′, q̄; t, β~]e− i

~ S(q′−y′, t)

=

(
1 − y ∂

∂q
− y ′ ∂

∂q′
+
y2

2
∂2

∂q2 +
y ′2

2
∂2

∂q′2

)
× e

i
~ S(q, t)FCI[q,q′, q̄; t, β~]e− i

~ S(q′, t). (C6)

Then, collecting the pieces from Eqs. (C2), (C3), and (C6) and
keeping terms up to o(δt), we have the following for the kinetic
term of the Hamiltonian:

dy
A

e
imy2
2~δt

(
1 − y ∂

∂q
+
y2

2
∂2

∂q2

)
= 1 − δt

i
~

(
− ~

2

2m
∂2

∂q2

)
.

(C7)
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We next consider the expansion of the factor {· · · }n in
Eq. (C1), first in terms of y and y ′ and then in terms of δt.
For the expansion in y and y ′ up to second-order, we have

nmζγ
2

(y + y ′)

×
 t

0
dt ′γe−γ(t−t

′)
Θ0(t ′) + G0(0) − 1

~
Θ̄(β~)

n−1

.

(C8)

This term reduces to ρ(n−1)
j1, ..., jK

(q,q′; t), and therefore the contri-
bution of the above to the relevant order in δt can be expressed
as

nmζγ
2


dy
A


dy ′

A
e
imy2
2~δt e−

imy′2
2~δt

×
(
1 − y ∂

∂q
− y ′ ∂

∂q′
+
y2

2
∂2

∂q2 +
y ′2

2
∂2

∂q′2

)
× (y + y ′) ρ(n−1)

j1, ..., jK
(q,q′; t) . (C9)

Then, integrating over y and y ′, we have

− δt
in~ζγ

2


∂

∂q
− ∂

∂q′


ρ
(n−1)
j1, ..., jK

(q,q′; t) . (C10)

For the expansion of {· · · }n in terms of δt, we have

nΘ0(t)
 t

0
dt ′γe−γ(t−t

′)
Θ0(t ′) + G0(0) − 1

~
Θ̄(β~)

n−1

δt

−nγ
 t

0
dt ′γe−γ(t−t

′)
Θ0(t ′) + G0(0) − 1

~
Θ̄(β~)

n

δt .

(C11)

We can expand the factors {· · · } jk in Eq. (C1) similarly
to the {· · · }n factor. We obtain

− jkνk


−
 t

0
dt ′νke−νk(t−t

′)
Θk(t ′) − 1

~
Ψ̄k(β~)

 jk

δt

− jkνkΘk(t)

−
 t

0
dt ′νke−νk(t−t

′)
Θk(t ′)1

~
− Ψ̄k(β~)

 jk−1

δt .

(C12)

Using the definition of the hierarchy elements Eqs. (14) and
(15), we obtain


−nγρ(n)j1, ..., jK

(q,q′; t) + nΘ0(t)ρ(n−1)
j1, ..., jK

(q,q′; t) δt

(C13)

and

− jkνk ρ

(n)
j1, ..., jK

(q,q′; t) − jkνkΘk(t)
× ρ(n)

j1, ..., jk−1, ..., jK
(q,q′; t) δt, (C14)

from Eqs. (C11) and (C12), respectively. Finally, substituting
the results from each of the above expansions, contained in
Eqs. (C7), (C13), and (C14), into Eq. (C1), we construct the
complete form for this expression to o(δt), and from this, we
obtain Eq. (16).

APPENDIX D: TCL REDFIELD EQUATION

The TCL Redfield equation is the reduced equation of
motion in the case of non-Markovian noise whose damping

kernels are expressed in a time-convolutionless form.49–51 The
TCL Redfield equation is exact if the system Hamiltonian,
ĤA, is time-independent and if ĤA commutes with the bath
interaction. However, for the BO model considered in this
paper, defined by Eq. (1), the system Hamiltonian does not
commute with the bath interaction.

In order to apply the Redfield theory, we need to use the
eigenstate representation of the system. For this reason, we
include a counter-term in the system Hamiltonian and consider
the modified Hamiltonian, Ĥ ′A = (ĤA + mζγq̂2/2). For the jth

eigenenergy, E ′j = ~( j + 1/2)ω′0, where ω′0 =

ω2

0 + ζγ, the
eigenfunction for Ĥ ′A is expressed in terms of Hermite poly-
nomials, H j(·), as

ψ j(q) =
(
α2

π

) 1
4 1

2 j j!
exp

(
−α

2q2

2

)
H j(αq), (D1)

where α =


mω′0/~. We denote the ket vector for ψ j(q) by
| j⟩. The TCL Redfield equation for the reduced density matrix
elements, ρ jk(t) ≡ ⟨ j | ρ̂A(t)|k⟩, is then given by

∂

∂t
ρ jk(t) = −iω′jk ρ jk(t) +


l,m

Rjk,lm(t)ρlm(t), (D2)

where ω′
jk
≡ ( j − k)ω′0, and Rjk,lm(t) is the Redfield tensor

defined by

Rjk,lm(t) ≡ Γmk, jl(t) + Γ†l j,km(t) − δkm

n

Γjn,nl(t)

− δ jl

n

Γ
†
kn,nm

(t), (D3)

with

Γjk,lm(t) = Γ̄jklm *.
,

ζγ2e−i
β~γ

2

2 sin
(
β~γ

2

) 1 − e−(γ+iω
′
lm

)t

γ + iω′
lm

− 2
β~

∞
k′=1

ζγ2νk′

γ2 − ν2
k′

1 − e−(νk′+iω
′
lm

)t

νk′ + iω′
lm

+
-
.

(D4)

The interaction tensor is defined by

Γ̄jklm ≡ ⟨ j |q̂|k⟩⟨l |q̂|m⟩. (D5)

The RWA is expressed as q̂ x̂ j =


2~/mω′0(â+ + â−)(b̂−j + b̂+j )
≈ â+b̂−j + â−b̂+j , where â± and b̂±j are the creation and annihila-
tion operators of the BO oscillator and the jth bath oscillator,
respectively. For ⟨ j |â+|k⟩ = 0 and ⟨k |â−| j⟩ = 0, with j , k
= j + 1, the interaction tensor in RWA form is given by

Γ̄
RWA
jklm =

2~
mω′0

�⟨ j |â+|k⟩⟨l |â−|m⟩ + ⟨ j |â−|k⟩⟨l |â+|m⟩� .
(D6)

In the Wigner representation, the eigenstate elements of
the density matrix are expressed as

W jk(p,q) = 1
2π~

 ∞

−∞
dx cos

( px
~

)
ψ j

(
q − x

2

)
ψk

(
q +

x
2

)
.

(D7)
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The total distribution is then given by

W (p,q; t) =
M

j,k=1

ρ jk(t)W jk(p,q), (D8)

where M is the number of energy eigenstates employed to
solve the TCL Redfield equation. The factorized initial state
is expressed as

W (p,q; 0) =
M
j=1

1
Z ′
A

exp(−βE ′j)W j j(p,q), (D9)

where Z ′A =


j exp(−βE ′j). By comparing the steady state
solution of the TCL Redfield equation in the Wigner represen-
tation with the analytical solution of the BO model given by
W eq

BO(p,q) with Eqs. (45) and (46), we can check the accuracy
of the steady-state distribution in the TCL formalism.
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