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Modeling vibrational dephasing and energy relaxation of intramolecular
anharmonic modes for multidimensional infrared spectroscopies
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Starting from a system-bath Hamiltonian in a molecular coordinate representation, we examine an
applicability of a stochastic multilevel model for vibrational dephasing and energy relaxation in
multidimensional infrared spectroscopy. We consider an intramolecular anharmonic mode
nonlinearly coupled to a colored noise bath at finite temperature. The system-bath interaction is
assumed linear plus square in the system coordinate, but linear in the bath coordinates. The
square-linear system-bath interaction leads to dephasing due to the frequency fluctuation of system
vibration, while the linear-linear interaction contributes to energy relaxation and a part of dephasing
arises from anharmonicity. To clarify the role and origin of vibrational dephasing and energy
relaxation in the stochastic model, the system part is then transformed into an energy eigenstate
representation without using the rotating wave approximation. Two-dimensional �2D� infrared
spectra are then calculated by solving a low-temperature corrected quantum Fokker-Planck
�LTC-QFP� equation for a colored noise bath and by the stochastic theory. In motional narrowing
regime, the spectra from the stochastic model are quite different from those from the LTC-QFP. In
spectral diffusion regime, however, the 2D line shapes from the stochastic model resemble those
from the LTC-QFP besides the blueshifts caused by the dissipation from the colored noise bath. The
preconditions for validity of the stochastic theory for molecular vibrational motion are also
discussed. © 2006 American Institute of Physics. �DOI: 10.1063/1.2244558�
I. INTRODUCTION

Ultrafast nonlinear spectroscopy plays a pivotal role in
investigating inter- and intramolecular motions in complex
molecular systems.1 Over the last decade, extensive
theoretical,2–20 computational,21–25 and experimental26–35 ef-
forts have been made for multidimensional vibrational spec-
troscopy to have a variety of information for molecular mo-
tion and interactions.

Owing to recent technological progresses in the genera-
tion of stable ultrashort infrared �IR� laser pulses, third-order
spectroscopic experiments have been extended in the IR re-
gion and can, therefore, be utilized to investigate intramo-
lecular vibrational transition rather than electronic one. As an
intramolecular vibrational motion is sensitive to local fluc-
tuation of surroundings, it provides an important window to
insight into the structure and dynamics of complex mol-
ecules, solvents, and protein environments. While the line
shapes observed in IR absorption spectroscopy are broad-
ened due to static inhomogeneity, we can separate the con-
tribution of homogeneous vibrational motion, which contains
important microscopic dynamics, by third-order IR spectros-
copy such as an IR photon echo measurement.36 Theoreti-
cally, static inhomogeneity has been treated by using the
slow modulation limit of the stochastic theory, and homoge-
neity by the fast modulation limit. However, there is also a
wide intermediate range of modulation times between the
inhomogeneous and homogeneous limits, which gives rise to
what is called vibrational spectral diffusion. The spectral dif-
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fusion process was analyzed by means of three-pulse photon
echo measurement. Hamm et al.37 performed the first femto-
second IR three-pulse echo experiment on a mode of the
azide ion N3

− in deuterium water. Employing the stochastic
theory of frequency fluctuation,38,39 they quantified the mag-
nitudes and time scales of dynamic solvent fluctuations that
cause spectral diffusion. Hamm et al.40 also achieved the first
two-dimensional infrared �2D-IR� measurement by means of
double-resonance or dynamic hole burning experiments on
the amide I bands of N-methylacetamide and small globular
peptides, and gained access to the detailed information on
the structures of peptides that could not be obtained from
linear absorption spectra. These works stimulated many ex-
perimental and theoretical studies41–48 and sparked off the
pulsed Fourier transform 2D-IR spectroscopy by means of
the heterodyne-detected photon echo experiments.49–52 Ob-
jects under study of 2D-IR spectroscopic experiments have
definitely spread very wide: conformation and conforma-
tional fluctuations of small peptides53–57 and dipeptides,58,59

conformational changes in proteins,60–63 hydrogen-bonded
complexes,64–67 and water dynamics.68 In the immediate
past, heterodyned fifth-order 2D-IR measurements69 were re-
ported on ions in glasses.70,71

In this paper, we explore roles of vibrational dephasing
and energy relaxation involved in the multidimensional IR
spectroscopy to establish a reasonable system-bath model to
discuss these dissipative processes from a microscopic point
of view. To study vibrational dephasing, the stochastic theory
of transition frequencies was introduced72 and intensively
used to analyze the signals from IR echo and 2D-IR spec-

troscopy. The stochastic model was extensively utilized in
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the nuclear magnetic resonance �NMR� or electronically
resonant spectroscopy.39 The character of spectroscopic ex-
periments is, however, different for vibrational and electronic
transitions. While the decay time of population in electroni-
cally excited state is invariably long compared with the
dephasing of optical transitions, that in vibrational excited
states is sometimes comparable to the time scale of vibra-
tional dephasing; the system relaxes toward the thermal equi-
librium on time scale comparable with the vibrational
dephasing. Nonetheless, the stochastic theory involves only
frequency fluctuations without any accounts of the contribu-
tions from temperature and dissipation. Then, the effects of
vibrational energy relaxation were sometimes included in a
phenomenological manner independently from the stochastic
theory. A simple one is a Bloch picture which accounts for
the effects of energy relaxation and dephasing by a longitu-
dinal relaxation time constant T1, a transversal relaxation
time constant T2, and a pure dephasing time T2

*, i.e., 1 /T2

=1/2T1+1/T2
*. The validity of such phenomenological ap-

proach is an open question, since such simple relation is
based on the assumption of a weak coupling or a white noise
bath within the rotating wave approximation �RWA�. The
stochastic theory and Bloch-Redfield theory also have inher-
ent difficulty to treat a finite temperature system.

To clarify the above-mentioned problems, here, we start
from a Hamiltonian consisting of an anharmonic molecular
system coupled to a heat bath. The bath degrees of freedom
are described by an ensemble of oscillators, which corre-
spond to optically inactive modes such as solvent modes.
The key to the relation between the coordinate and energy-
level pictures is on a form of a system-bath interaction. To
make our discussion more concrete, here, we denote the in-
teraction potential between the vibrational mode of interest
and the heat bath by F�q , �xj�� as a function of vibrational
coordinate q and the bath coordinates �xj�, where xj is the jth
bath coordinate. We assume that F�q , �xj�� can be expanded
in q as follows:

F�q,�xj�� =
1

1!
qF1��xj�� +

1

2!
q2F2��xj�� + ¯ . �1.1�

The second term in Eq. �1.1� alters the curvature of the po-
tential energy surface U�q� for vibrational motion in time for
the evolution of �xj�; hence, the system frequency is fluctu-
ated on a time scale of bath dynamics. The first term with the
linear dependence on q mainly gives rise to energy dissipa-
tion from the vibrational mode to the heat bath.73,74 For an-
harmonic vibrational modes, the term also contributes to
dephasing, i.e., anharmonicity-induced dephasing, due to the
nonvanishing diagonal elements �v�q̂�v	�0 �v=0,1 ,2 , . . . �,
where �v	 and �v� are the vth energy eigenstate for modes and
its Hermitian conjugate, respectively.

Starting from the coordinate representation of the
system-bath interaction, we can identify the origin of vibra-
tional dephasing and energy relaxation in the energy-level
model. We calculate signals for coordinate model without
employing such approximation as the RWA and compare the
results with signals for an approximated expression of
energy-level models. We then check the validity of the ap-

proximated Hamiltonian for various strengths of the system-
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bath coupling and temperatures. The major difficulty to cal-
culate signals for the system-bath Hamiltonian with
interaction potential �Eq. �1.1�� is on the derivation of the
equation of motion for a reduced density matrix. If tempera-
ture is high compared with vibrational excitation energy, one
can use the quantum Fokker-Planck equation for nearly Mar-
kovian noise bath.75 The case we want to discuss here is,
however, the intramolecular vibrational modes, where the
temperature is much lower than vibrational excitation en-
ergy; therefore, the system is regarded as in a low tempera-
ture where the quantum description of the system becomes
important. For this purpose, we extended the quantum
Fokker-Planck equation and included low-temperature cor-
rection terms.76 We show how one can handle low-
temperature system using this formalism. For the interaction
potential in Eq. �1.1�, we include terms up to the second
order in q and take into account only the linear dependence
on �xj�, i.e., F1��xj��=−vLL
 jcjxj and F2��xj��=−vSL
 jcjxj.
Integrating the reduced equation of motion, we calculate
2D-IR signals and discuss the importance of dissipative and
anharmonic effects which arise from the first term in Eq.
�1.1� by comparison to the resultants from the energy-level
picture with stochastic modulation.

This paper is organized as follows: In Sec. II we give a
brief review of nonlinear optical responses and the stochastic
theory. In Sec. III we introduce the quantum dissipative
equation applicable to a low-temperature coordinate system,
low-temperature corrected quantum Fokker-Planck �LTC-
QFP� equation to analyze vibrational dephasing and energy
relaxation in an intramolecular mode. In Sec. IV numerical
results are presented as 2D-IR correlation spectra and are
discussed. Finally, Sec. V is devoted to concluding remarks.

II. NONLINEAR RESPONSE FUNCTIONS

We consider a system consisting of a single intramolecu-
lar vibrational mode described by the Hamiltonian

Ĥ =
p̂2

2m
+ U�q̂� , �2.1�

where m, q, p, and U�q̂� denote the effective mass, the coor-
dinate, the conjugate momentum, and the potential of the
vibrational mode, respectively. Using the energy eigenstates
of the system ��v	� �v=0,1 , . . . ,vmax�, we can rewrite Eq.
�2.1� as

Ĥ = 

v=0

vmax

��v�v	�v� , �2.2�

where ��v is the energy of the vth eigenstate �v	. We intro-
duce transition frequencies between levels as � jk�� j −�k.
As we will show below, the primary contribution of 2D-IR
signals arises from the transitions between the lowest three
energy levels. Then, the anharmonicity of the mode is ex-
pressed as

�anh � �10 − �21. �2.3�

We assume that all other degrees of freedom, e.g., other in-

ternal modes or solvent modes, are optically inactive and
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treat as a heat bath. The Hamiltonian of the system plus bath

is denoted by Ĥtot.
The first-order IR response function R�1��t1� is defined

by1

R�1��t1� =
i

�
���̂�t1�,�̂�0��	 , �2.4�

where �̂�t��e�i/��Ĥtot t��q̂�e−�i/��Ĥtot t is the Heisenberg repre-
sentation of the dipole-moment operator and �¯	
�Tr�¯�̂tot

eq�, with �̂tot
eq =e−�Ĥtot /Tr e−�Ĥtot. Using the hyper-

operator notations,

Ô� f̂ � Ô f̂ − f̂Ô, Ô� f̂ � Ô f̂ + f̂Ô �2.5�

for any operator Ô and operand operator f̂ , we can recast Eq.
�2.4� into

R�1��t1� = Tr���q̂�Ĝ�t1�
i

�
��q̂���̂tot

eq
 , �2.6�

where Ĝ�t� is the Liouville space propagator defined by

Ĝ�t� f̂ =e−�i/��Ĥtot t f̂e�i/��Ĥtot t for any operator f̂ .
For resonant 2D-IR experiments, we consider the three

pulses, tuned to the molecular vibration of interest, with
wave vectors k1, k2, and k3 which are sequentially applied to
samples. These pulses cross in a sample to generate a third-
order polarization, which radiates a signal field in the phase-
matched directions. The rephasing �echo� response detected
in the direction kI= +k3+k2−k1 is described by the follow-
ing correlation function:

RI
�3��t3,t2,t1�

= Tr��̂←Ĝ�t3�
i

�
�̂→

� Ĝ�t2�
i

�
�̂→

� Ĝ�t1�
i

�
�̂←

� �̂tot
eq
 , �2.7�

where �̂→ and �̂← are defined by

�̂→ � 

v

�v + 1	�v+1,v�v� , �2.8a�

�̂← � 

v

�v	�v,v+1�v + 1� , �2.8b�

with the abbreviation � j,k= �j���q̂�k�	. The nonrephasing �vir-
tual echo� response detected in the direction kII= +k3−k2

+k1 is described by

RII
�3��t3,t2,t1�

= Tr��̂←Ĝ�t3�
i

�
�̂→

� Ĝ�t2�
i

�
�̂←

� Ĝ�t1�
i

�
�̂→

� �̂tot
eq
 . �2.9�

Note that the directions of the subscript arrows in Eqs.
�2.7�–�2.9� correspond to those of the arrows depicted in
Fig. 1.

These expressions provide us an intuitive picture upon
the response function. For instance, the right-hand side of
Eq. �2.6� can be read from right to left as follows. The ther-
mal equilibrium state is modified by the first interaction with
a laser pulse via the dipole moment at time t=0, and then it

ˆ
evolves in time for the interval t1 by the propagator G�t�.
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Finally, the state of the system is probed at t= t1 through its
dipole moment. The third-order response functions �Eqs.
�2.7� and �2.9�� can also be read accordingly.

Many analyses of 2D-IR responses are based on the sto-
chastic approach, which has been extensively used in elec-
tronically resonant spectroscopy.1,39 This theory assumes that
the bath induces Gaussian stochastic fluctuation ���v�t� on
the energy levels of the oscillator mode and replaces the total
Hamiltonian with neglecting any dissipation by the effective
Hamiltonian,

Ĥtot�t� = 

v=0

vmax

���v + ��v�t���v	�v� . �2.10�

For intramolecular vibrational modes satisfying ���10/2
	1, we can derive the expressions for the rephasing and
nonrephasing response functions as1,37

RI
�3��t3,t2,t1� � � i

�
�3

e−i�10�t3−t1� � e−g�t3�−g�t1�+f�t3,t2,t1�

� �2�10
4 − �10

2 �21
2 ei�anht3� �2.11a�

and

RII
�3��t3,t2,t1� � � i

�
�3

e−i�10�t3+t1� � e−g�t3�−g�t1�−f�t3,t2,t1�

� �2�10
4 − �10

2 �21
2 ei�anht3� , �2.11b�

respectively. Here, g�t� is the line shape function defined as

g�t� � �
0

t

d
�
0




d
�C���
�� �2.12�

for the classical time correlation function of the vibrational

FIG. 1. The double-sided Feynman diagrams contributing to the �a� rephas-
ing and �b� nonrephasing Liouville space pathways. The variables tn �n
=1,2 ,3� represent the delays between the three input pulses to generate a
third-order nonlinear polarization.
frequency,

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



084501-4 A. Ishizaki and Y. Tanimura J. Chem. Phys. 125, 084501 �2006�
C���t� � ���10�t���10�0�	0, �2.13�

and f�t3 , t2 , t1� is the auxiliary function given by

f�t3,t2,t1� � g�t2� − g�t2 + t1� − g�t3 + t2� + g�t3 + t2 + t1� .

�2.14�

Due to this handiness, the stochastic approach has been
employed to study not only the electronic dephasing but also
vibrational dephasing. We should notice that the above-
mentioned formalism involves only frequency fluctuation
without any accounts of excited energy relaxation. In con-
trast with the electronic case, the vibrational modes in mol-
ecules strongly coupled to the bath modes that often relax
excitation energy on a time scale comparable with the vibra-
tional dephasing. In addition, as we will show in Sec. IV, if
the mode is anharmonic, the energy relaxation process also
induces vibrational dephasing, which may not be separated
from the other dephasing effects. The interplay between the
energy relaxation and dephasing is also nontrivial. To take
into account the effect of energy relaxation, one often em-
ploys a simple Bloch picture. However, it is an open question
that the phenomenological treatment of energy dissipation is
valid, because the Bloch picture assumes a white noise bath
and a weak system-bath coupling with the RWA. Such treat-
ment cannot overcome the difficulty inherent in the stochas-
tic approach; the stochastic theory itself does not account for
the dissipation and temperature effects, both of which cause
the energy relaxation toward the thermal equilibrium state.
Generally, the dissipation relaxes the system to a “dead”
state, while the fluctuation keeps the system “alive.”77 The
balance between the fluctuation and dissipation is required to
have a thermal equilibrium state at long times �fluctuation-
dissipation theorem�. Hence, the stochastic theory without
indwelling the dissipation corresponds to the unphysical pic-
ture where the fluctuation continues to activate the system
toward the infinite temperature.39

Experimental studies have indicated that the correlation
function of ��10�t� decays on �at least� two time scales,37 an
ultrafast component on a several tens of femtoseconds time
scale and a slower diffusion-controlled component. The ul-
trafast component is typically discussed in the motional nar-
rowing limit. Then, Eq. �2.13� is assumed to be a sum of �at
least� two exponentials. In order to focus on the validity of
the employed stochastic model for the intramolecular vibra-
tions, hereafter, we assume that the fluctuation ��10�t� can be
described as a Markovian process, that is, Eq. �2.13� is a
single exponential decay form �Anderson-Kubo process�:

C���t� = �2e−�t, �2.15�

where � is the root-mean-squared amplitude of the fluctua-
tion ��10�t� and �−1 is their correlation time. The line shape
function g�t� is then be expressed as

g�t� =
�2

�2 ��t + e−�t − 1� . �2.16�

We will use the above expression to obtain optical signals for

stochastic cases.
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III. ANHARMONIC OSCILLATOR NONLINEARLY
COUPLED TO HEAT BATH: REDUCED EQUATION
OF MOTION APPROACH

To remedy the drawback of the stochastic theory men-
tioned in Sec. II, we consider an oscillator nonlinearly
coupled to a heat bath composed of harmonic oscillators. The
total Hamiltonian is expressed as

Ĥtot = Ĥ + 

j
� p̂j

2

2mj
+

mj� j
2

2
�x̂j −

cjV�q̂�
mj� j

2 �2� , �3.1�

where the parameters x̂j, p̂j, mj, and � j are the coordinate,
momentum, mass, and frequency of the jth bath oscillator,
respectively. In Eq. �3.1�, the system-bath interaction is ex-
pressed as F�q̂ , �xj��=V�q̂�
 jcjx̂j, where V�q̂� is a function
whose dimension is the same as q̂. We have included the
counterterm 
 jcj

2V�q̂�2 /2mj� j
2 in Eq. �3.1� to maintain the

translational symmetry of the Hamiltonian for U�q̂�=0.39,78

We expand V�q̂� up to the second order in q̂ as follows:

V�q̂� =
vLL

1!
q̂ +

vSL

2!
q̂2. �3.2�

In Eq. �3.1�, we refer to the terms proportional to vLL and vSL

as the linear-linear �LL� and square-linear �SL� couplings,
respectively. For anharmonic vibrational modes, the LL cou-
pling term deforms the potential curve and induces fre-
quency fluctuation.79,80 The SL coupling10,11,81,82 mainly
modulates the curvature of U�q� in accordance with the time
evolution of �xj�. Hence, the frequency in the present model
fluctuates on a time scale of bath dynamics based on two
distinct scenarios �see Fig. 2�.

The character of bath is specified by the spectral distri-
bution function J����
 j�cj

2 / �2mj� j�����−� j�. We consider
the nearly Gaussian-Markovian noise bath, whose distribu-
tion function is given by the Ohmic form with the Lorentzian
cutoff:83

J��� =
m�




�2

�2 + �2� , �3.3�

where � represents the width of the spectral distribution of

FIG. 2. Schematic illustrations of effects of �a� the linear-linear �LL� and �b�
the square-linear �SL� system-bath couplings on an anharmonic potential.
The black lines represent the unperturbed potential, while the colored lines
the perturbed ones. LL coupling swings the position of the potential mini-
mum and deforms the potential, whereas SL coupling alters the curvature of
the potential. Hence, both couplings induce the frequency fluctuation. Note
that the LL and SL couplings mainly cause the one- and two-quantum tran-
sitions, respectively, as can be seen from the system-bath coupling ex-
pressed by the one-quantum creation and annihilation operators â+ and â−.
the bath modes and is related to the correlation time of the
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noise induced by the bath: 
=�−1. This can be seen from the
symmetrized correlation function of the collective bath coor-
dinate,

X̂ � 

j

cjx̂j . �3.4�

Within the condition of ��� /2�1, we have39

1

2
�X̂�t�X̂�0� + X̂�0�X̂�t�	b �

m

�
��e−�t, �3.5�

where X̂�t� is the Heisenberg representation of X̂ and �¯	b is
the canonical thermal average with respect to the bath de-
grees of freedom. This indicates that the bath oscillators dis-
turb the system with the Gaussian-Markovian noise. Using
some characteristic frequency of the system �c, we introduce

the dimensionless coordinate Q̂� q̂�m� /� and coefficients
c

k=1 k=1

Downloaded 24 Aug 2006 to 130.54.50.111. Redistribution subject to
VLL�vLL and VSL�vSL
�� /m�c and rewrite Eq. �3.2� as

V�q̂� =� �

m�c
�VLLQ̂ +

VSL

2
Q̂2� �� �

m�c
V�Q̂� . �3.6�

Here, we define the LL and SL coupling strengths by

�LL = VLL
2 �, �SL = VSL

2 � , �3.7�

respectively. Thus the effects of the system-bath interaction
can be characterized by a set of four parameters �, �LL, �SL,
and � for �c.

The reduced description of the system can be introduced
by tracing over the optically inactive bath degrees of free-
dom denoted by �xj� from the total density operator.78,84,85 As
shown in Ref. 76, dynamics of the reduced density operator
for the system equation �3.1� with Eq. �3.3� is described by
the LTC-QFP equation expressed as
�

�t
�̂ j1,. . .,jK

�n� �t� = − �iL̂ + n� + 

k=1

K

�jk�k + �̂�̂k� + �̂��̂ j1,. . .,jK
�n� �t� − �̂�̂ j1,. . .,jK

�n+1� �t� − n��̂�̂ j1,. . .,jK
�n−1� �t�

− 

k=1

K

�̂�̂ j1,. . .,jk+1,. . .,jK
�n� �t� − 


k=1

K

jk�k�̂k�̂ j1,. . .,jk−1,. . .,jK
�n� �t� �3.8�
for non-negative integers n , j1 , . . . , jK, where we determine
the value of K so as to satisfy

�K � �c, �3.9�

for bosonic Matsubara frequencies �k=2
k / ����. In Eq.

�3.8�, iL̂��i /��Ĥ� is the quantal Liouvillian of the system

and �̂, �̂, �̂k, and �̂ are the bath-induced relaxation opera-
tors defined by

�̂ �
i

�
V��q̂� , �3.10a�

�̂ � i
m�

��
�− i

���

2
V��q̂� +

���

2
cot����

2
�V��q̂�� ,

�3.10b�
�̂k � i
m�

��

2�2

�k
2 − �2V��q̂� , �3.10c�

and

�̂ �
m�

��2�1 −
���

2
cot����

2
��V��q̂�V��q̂�

+ i
m�

��2

���

2
V��q̂�V��q̂� . �3.10d�

In Eq. �3.10d�, the second term is derived from the counter-
term mentioned above. Note that only �̂0,. . .,0

�0� �t�= �̂�t� has a
physical meaning, and the other elements �̂ j1,. . .,jK

�n� for
�n ; j1 , . . . , jK�� �0;0 , . . . ,0� are the auxiliary operators being
introduced for computational purposes only; the expression
of � j1,. . .,jK

�n� �t� is given by the Appendix. The K+1 dimen-
sional hierarchy equations given by Eq. �3.8� continue to
infinity, which is not easy to solve numerically. To terminate

Eq. �3.8� at finite stages, we solve Eq. �3.8� formally as
�̂ j1,. . .,jK
�n� �t� = �

ti

t

dse−�iL̂+n�+
k=1
K �jk�k+�̂�̂k�+�̂��t−s��− �̂�̂ j1,. . .,jK

�n+1� �s� − n��̂�̂ j1,. . .,jK
�n−1� �s�

− 

K

�̂�̂ j1,. . .,jk+1,. . .,jK
�n� �s� − 


K

jk�k�̂k�̂ j1,. . .,jk−1,. . .,jK
�n� �s�� . �3.11�
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If n�+
k=1
K jk�k is large enough compared with �c, the kernel

of time integral can be replaced by Dirac’s delta function as

�n� + 

k=1

K

jk�k�e−�n�+
k=1
K jk�k��t−s� � ��t − s� , �3.12�

and then Eq. �3.8� becomes

�

�t
�̂ j1,. . .,jK

�n� �t� � − �iL̂ + 

k=1

K

�̂�̂k + �̂��̂ j1,. . .,jK
�n� �t� , �3.13�

which works as the terminator for Eq. �3.8�. This termination
is valid for the integers n , j1 , . . . , jK, satisfying

N � n + 

k=1

K

jk �
�c

min��,�1�
, �3.14�

because n�+
k=1
K jk�k� �n+
k=1

K jk�min�� ,�1�. This termina-
tion is simple and easy to utilize in numerical calculations. In
practice, as demonstrated numerically in Ref. 76, we may
use the lower values of K and N which do not satisfy Eqs.
�3.9� and �3.14�, respectively. This formalism has applicabil-
ity to a low-temperature system ���c /2�1� strongly
coupled to the heat bath without employing RWA for the
system-bath interaction. Namely, Eq. �3.8� with Eqs. �3.10�
and �3.13� is free from the positivity problem,86 where the
populations of the excited states calculated from the reduced
equations of motion such as the quantum master equation
and the Redfield equation without RWA become negative at
low temperatures. The advantage of Eq. �3.8� deserves ex-
plicit emphasis.

To calculate the optical responses �Eqs. �2.6� and �2.7��
from the equation of motion approach, we adapt the proce-
dure presented in Ref. 39. We first have to generate the initial
equilibrium state by integrating the equations of motion, Eqs.
�3.8� and �3.13�, until all hierarchical elements attain steady-
state values. To have the equilibrium state, we set a tempo-
rally initial condition for the integration by

�̂0,. . .,0
�0� �t = ti� =

exp�− �Ĥ�

Tr exp�− �Ĥ�
� �̂�can	, �3.15�

and �̂ j1,. . .,jK

�n� �t= ti�=0 for �n ; j1 , . . . , jK�� �0;0 , . . . ,0�. The
generated initial state is then modified by the first laser pulse
via the dipole operator as �i /����q̂���̂tot

eq. The perturbed den-
sity operator then evolves in time for the t1 period following
the equations of motion �Eqs. �3.8� and �3.13��. First-order
IR response function, Eq. �2.4�, is then obtained by calculat-
ing the trace of ��q̂�. The third-order IR response functions
�Eqs. �2.7� and �2.9�� can also be calculated in a similar

manner.

Downloaded 24 Aug 2006 to 130.54.50.111. Redistribution subject to
The connection between the present approach and the
stochastic approach can be seen as follows. When the tem-
perature effects and vibrational energy relaxation are ig-
nored, the LTC-QFP equation �Eq. �3.8�� reduces to

�

�t
�̂�n��t� = − �iL̂ + n���̂�n��t� −

i

�
Ŵ��̂�n+1��t�

− in
m��

��
Ŵ��̂�n−1��t� , �3.16�

where Ŵ is the adiabatic component of V�q̂� defined by

Ŵ � 

v

�v	�v�V�q̂��v	�v� . �3.17�

Equation �3.16� is the extension of the stochastic Liouville
equation38,39 to a potential system �see Fig. 6�. The compari-
son between Eq. �3.16� and the original stochastic Liouville
equation tells us that the amplitude of the fluctuation ��10�t�
is expressed as

� = abs�Tr�Ŵ��1	�0���m��

��2 � �3.18a�

=abs�sgn� �LL

�SL
��Q11 − Q00�� �LL�

���c

+
1

2
�Q11

2 − Q00
2 �� �SL�

���c
� . �3.18b�

From Eq. �3.18�, we can estimate the amplitude of the fre-
quency fluctuation in the system in accordance with the LTC-
QFP �Eq. �3.8��.

IV. 2D-IR SPECTRA FOR MORSE SYSTEM
WITH LL+SL COUPLING

We present the numerical results for Morse potential de-
fined by

U�q̂� = De�1 − e−�q̂�2, �4.1�

where De denotes the dissociation energy. The vth eigenen-
ergy for the Hamiltonian with the potential Eq. �4.1� is ex-
pressed as

��v = ��c��v +
1

2
� −

�

2m�c
�2�v +

1

2
�2� , �4.2�

where �c=�2De�
2 /m. Then, the anharmonicity �anh��10

−�21 and the fundamental frequency �10 are given by �anh

=��2 /m and �10=�c−�anh, respectively. The fundamental
frequency and the anharmonicity of the system are set to be
�10=1600 cm−1 �2
 /�10=20.8 fs� and �anh=16 cm−1

��anh/�10=0.01�, which are in the typical range for intramo-
lecular vibrational motion. We consider a room temperature
heat bath, T=300 K ����10=7.67�. To carry out calcula-
tions, we employ the lowest six energy eigenstates to repre-
sent the system. The fourth-order Runge-Kutta method is
used to numerically integrate the equation of motion. The
time step for the finite difference expression for ��̂ j1,. . .,jK

�n� /�t

is �t= �1/ ��10�0.01. We chose the depth of the hierarchy

and the number of the Matsubara frequencies N=3–25 and
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K=1–4, respectively. The accuracy of the calculations is
checked by changing the number of the energy eigenstates
and the values of �t, N, and K. The dipole moment is as-
sumed to be ��q̂�=�1q̂, and we set �1=1 to calculate the
2D-IR signals. Under these conditions, we calculate 2D-IR
correlation spectrum87 defined as

SC��3,�1;t2� � SR��3,− �1;t2� + SNR��3,�1;t2� , �4.3�

where

SR��3,�1;t2� � Im �
0

�

dt3ei�3t3�
0

�

dt1ei�1t1RI
�3��t3,t2,t1�

�4.4�

is 2D rephasing spectrum and

SNR��3,�1;t2� � Im �
0

�

dt3ei�3t3�
0

�

dt1ei�1t1RII
�3��t3,t2,t1�

�4.5�

is 2D nonrephasing spectrum.

A. Motional narrowing regime

Figure 3 presents 2D-IR correlation spectra
SC��3 ,�1 ; t2=0� for � /�10=0.5 ��−1=6.6 fs�. In the figure,
the panels �a� are calculated by integrating the LTC-QFP
equation, Eq. �3.8�, while the panels �b� by the stochastic
model, Eq. �2.11�. The system-bath coupling ��LL,�SL� /�10

for panels �a� are chosen to be �i� �+0.05,0�, �ii� �0, +0.05�,
�iii� �+0.05, +0.05�, and �iv� �−0.05, +0.05�, respectively.
The parameters for the stochastic case shown in �b� are
evaluated from those in �a� using Eq. �3.18� and the values of
Qvv and Qvv

2 ; for the present system, we have Q00=0.074,
Q11=0.226, Q00

2 =0.509, and Q11
2 =1.567. The amplitude of

frequency fluctuation � for each panel are calculated as �i�
13.7 cm−1 �� /�=0.01�, �ii� 48.1 cm−1 �� /�=0.06�, �iii�
61.8 cm−1 �� /�=0.08�, and �iv� 34.3 cm−1 �� /�=0.04�. As
seen from the gradient of the 2D line shapes, these are in the
motional narrowing regime without the inhomogeneity.

In this large � case, the spectra calculated by the LTC-
QFP equation are quite different from the stochastic results
due to energy relaxation missing in the stochastic approach.
The linewidth of the spectra from the stochastic approach
�b-i� is very small in this motional narrowing regime,
whereas the spectra from the LTC-QFP equation case �a-i�
are broad because vibrational dephasing is dominated by en-
ergy relaxation rather than elastic pure dephasing.

We now consider the SL coupling case ��a-ii� and �b-ii��.
As mentioned in Fig. 2, the SL coupling term, q̂2
 jcjx̂j,
mainly induces the two-quantum transition as well as the
curvature modulation of the potential. The population relax-
ations 1→0 and 2→1 are almost prohibited, whereas the
relaxation 2→0 is allowed. �The one-quantum relaxations
are not completely prohibited because of the anharmonicity

of potential.� As a result, energy relaxation destroys only the
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1–2 coherence. Hence, the positive-going peaks �1–2 transi-
tion� in the two panels are different, while the negative-going
peaks �0–1 transition� have similar characteristics.

Next, we discuss the difference between the +LL+SL
and −LL+SL coupling cases. As is evident from Eq. �3.18�,
the +LL+SL coupling reinforces the amplitude of frequency
fluctuation, while the −LL+SL coupling diminishes the am-
plitude. The amplitude of fluctuation affects the strength of
pure dephasing in the stochastic case. Therefore the line
shapes from the stochastic approach ��b-iii� and �b-iv�� are
different. The primary relaxation processes in the LTC-QFP
equation case shown in �a-iii� and �a-iv� are, however, energy
relaxation rather than pure dephasing; therefore, the profiles
in �a-iii� and �a-iv� are also different from those in �b-iii� and

FIG. 3. �Color� 2D-IR correlation spectra SC��3 ,�1 ; t2=0� of the Morse
oscillator ��10=1600 cm−1, �anh=16 cm−1� in the motional narrowing re-
gime. The spectra were calculated from �a� the LTC-QFP approach with Eq.
�3.8� and �b� the stochastic approach with Eq. �2.11� with the coupling
strength and the amplitude of fluctuation adjusted by Eq. �3.18�. The panels
from the top to bottom show the signals for �i� LL, �ii� SL, �iii� +LL+SL,
and �iv� −LL+SL system-bath coupling cases, respectively. The noise cor-
relation time is in the motional narrowing regime ��−1=6.6 fs�. The
negative-going peaks arise from the 0-1 transition, whereas the positive-
going peaks from the 1-2 transition.
�b-iv�. The difference between �a-iii� and �a-iv� is caused

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



084501-8 A. Ishizaki and Y. Tanimura J. Chem. Phys. 125, 084501 �2006�
from the cross term contribution between the LL and SL
couplings.18,82 To explain this, we consider the classical gen-
eralized Langevin equation �GLE� for the Hamiltonian equa-
tion �3.1�,74

�4.6�
where the fluctuation ��t� and the dissipation ��t� are related
by the fluctuation-dissipation theorem ���t���s�	0=m
���t−s� /�, in which �¯	0 denotes the statistical average.
For +LL+SL coupling V�q�= +vLLq+vSLq2 /2, the integral
kernel ��t−s�=V��qt���t−s�V��qs� in Eq. �4.6� is expressed
as

��t − s� = �vLL
2 +

vSL
2

4
qtqs���t − s� +

vLLvSL

2
�qt + qs���t − s� ,

�4.7�

whereas for −LL+SL coupling V�q�=−vLL+vSLq2 /2,
��t−s� is given by

��t − s� = �vLL
2 +

vSL
2

4
qtqs���t − s� −

vLLvSL

2
�qt + qs���t − s� .

�4.8�

The difference between Eqs. �4.7� and �4.8� is on the sign of
the term proportional to vLLvSL; the difference between the
panels �a-iii� and �a-iv� arises only from the cross term con-
tribution between the LL and SL couplings.

In the stochastic case �b�, the negative-going peaks �0–1
coherence� and the positive-going peaks �1–2 coherence� are
located on ��1 ,�3�= ��10,�10� and ��10,�10−�anh�, respec-
tively. In the LTC-QFP equation case �a�, however, we can
see that the spectral peak locations shift toward the upper
right. These 2D blueshifts arise purely from the dissipation
with the finite noise correlation time. To illustrate this, we
consider a harmonic potential U�q�=m�10

2 q2 /2 in the pres-
ence of only the LL coupling V�q�=q with the Markovian
noise bath ��t�=��e−�t and depict linear absorption spectra.
The analytic expression of the absorption spectrum �first-
order response� for this system is obtained as

I��� � Im �
0

�

dtei�t�− �
d

dt
�q�t�q�0�	0� �4.9a�

=
�10

2 �q�0�2	0���

��2 − �10
2 �2 + �2�2G����

, �4.9b�

with

G���� � ��2 − �10
2

��
− 1�2

. �4.9c�

If �→�, the result reduces to the white noise case with
G����→1. We show the linear absorption spectra calculated
for Markovian noise and white noise cases in Fig. 4. Here,
we set � /�10=0.5 and � /�10=0.05, which are the same val-

ues as in Fig. 3. As clearly seen from the figure, the dissipa-
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tion with the finite noise correlation time causes the blueshift
of the spectral peak position. We cannot obtain such analytic
expression for the SL coupling case as Eq. �4.9b�. Notice,
however, that the SL coupling induces the dissipation involv-
ing two-quantum relaxation, and then causes the blueshift.
Since characters of 2D-IR spectra and linear absorption are
both determined from the time propagator as illustrated in
Eqs. �2.7� and �2.6�, the spectral peaks in 2D-IR spectra also
exhibit the blueshifts.

B. Spectral diffusion regime

Figure 5 presents 2D-IR correlation spectra
SC��3 ,�1 ; t2=0� for small �. In the figure, the panels �a� are
calculated by integrating the LTC-QFP equation �Eq. �3.8��,
while the panels �b� by the stochastic result �Eq. �2.11��. The
inverse noise correlation time is set to be � /�10=0.005
��−1=0.66 ps�. The system-bath coupling strengths
��LL,�SL� /�10 for panels �a� are chosen to be �i� �+2,0�, �ii�
�0, +0.5�, �iii� �+2, +0.5�, and �iv� �−2, +0.5�, respectively.
As in the motional narrowing cases, we can evaluate the
amplitude of frequency fluctuation � for �b� as follows: �i�
8.7 cm−1 �� /�=1.1�, �ii� 15.2 cm−1 �� /�=1.9�, �iii�
23.9 cm−1 �� /�=3.0�, and �iv� 6.5 cm−1 �� /�=0.8�. As seen
from the profiles of the 2D line shapes, these are in the
spectral diffusion regime with moderate inhomogeneity.

In this small � case, the spectra calculated by the LTC-
QFP equation resemble those from the stochastic approach.
This similarity indicates that vibrational dephasing processes
in the present situation are dominated by elastic pure dephas-
ing rather than by energy relaxation; hence, the stochastic
theory is a good description for 2D line shapes. However,
compared with the cases in �b�, the peak positions for the
LTC-QFP equation case in �a� slightly shift toward the upper
right. The cause of the blueshifts is the dissipation with finite
noise correlation time, as mentioned in Sec. IV A. This fact
indicates that although the effect of vibrational energy relax-
ation in comparison to that of frequency fluctuation process
is small, still there exist effects of dissipation caused by the
system-bath coupling. The stochastic theory, which neglects

FIG. 4. Linear absorption spectra calculated from Eq. �4.9� for the Markov-
ian noise case ��=0.5�10� and the white noise case ��→��. We set the
system-bath coupling strength for both to �=0.05�10. The normalization of
each spectrum is such that the maximum of the spectrum for the Markovian
case is unity.
any dissipation, cannot explain the 2D blueshifts.
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C. Preconditions of stochastic theory for vibrational
dephasing

We now discuss the precondition of the the stochastic
theory to apply molecular vibrational motion. First we
should notice that the system can efficiently exchange energy
quanta with the bath, if there are bath modes whose frequen-
cies are similar to the characteristic frequency of the system
�c. If ���c, however, such bath modes are virtually nonex-
istent. If the condition �	�c is satisfied, the spectral distri-
bution Eq. �3.3� reduces to J��c���m� /
��c, which sug-
gests that there are plenty of bath modes which can
efficiently exchange energy with the system oscillator. On
the contrary, when the condition ���c holds, we have
J��c���m� /
��c�� /�c�2�0, which indicates that the sys-
tem oscillator cannot readily exchange energy with the bath
modes, and therefore the bath modes can barely contribute to

FIG. 5. �Color� 2D-IR correlation spectra SC��3 ,�1 ; t2=0� of the Morse
oscillator ��10=1600 cm−1, �anh=16 cm−1� in the spectral diffusion regime.
The spectra were calculated from �a� the LTC-QFP approach with Eq. �3.8�
and �b� the stochastic approach with Eq. �2.11�. The panels from the top to
bottom show the spectra for �i� LL, �ii� SL, �iii� +LL+SL, and �iv� −LL
+SL system-bath coupling cases, respectively. The inverse noise correlation
time is � /�10=0.005 ��−1=0.66 ps�. The negative-going peaks arise from
the 0-1 transition, whereas the positive-going peaks from the 1-2 transition.
the energy relaxation.
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To estimate the strength of dissipation, we utilize the
correlation function of the collective bath coordinate �Eq.
�3.4��,

�X̂�t�X̂�0�	b � C��t� + iC��t� , �4.10�

where C��t� is the real part of �X̂�t�X̂�0�	b that relates to
fluctuation and C��t� is the imaginary part that relates to
dissipation.39,83 For Eq. �3.3�, they are expressed as

C��t� �
m

�
��e−�t, �4.11�

C��t� = −
���

2

m

�
��e−�t, �4.12�

where we assumed that ��� /2�1 in Eq. �4.11�, and there-
fore we have

�C��t�
C��t�

� � 1. �4.13�

This indicates that the dissipation is negligible relative to the
fluctuation for ��� /2�1.

Summarizing two conditions, we have

� � �c, ���/2 � 1. �4.14�

As long as the above conditions are satisfied, the energy
relaxation plays a minor role compared with the elastic pure
dephasing, and the vibrational dephasing is dominated by the
pure dephasing caused by the frequency fluctuation rather
than the energy relaxation. In such cases, the stochastic
theory may be applied to analyze 2D line shapes although
the theory cannot account such dissipative effects as the
blueshifts.

V. CONCLUDING REMARKS

In this paper, we considered an anharmonic potential
system coupled to a colored noise bath with linear-linear
�LL� and square-linear �SL� system-bath interactions. For the
system, we introduced the low-temperature corrected quan-
tum Fokker-Planck �LTC-QFP� equation, which can describe
an anharmonic intramolecular vibration at temperature much
lower than vibrational excitation energy �a low-temperature
system�. It is noteworthy that the equation is based on the
vibrational coordinate and is not afflicted with the positivity
problem that occurs in a low-temperature system without the
rotating wave approximation, as opposed to the conventional
quantum master equation or Bloch-Redfield equation. By uti-
lizing the equation we calculated 2D-IR correlation spectra
for various system-bath parameters. Our formalism, LTC-
QFP equation, can treat a dissipation-dominant regime �Fig.
3� and a fluctuation-dominant regime �Fig. 5� in a unified
framework. We found the profiles of 2D-IR spectra change
dramatically with a form and strength of system-bath cou-
pling and a noise correlation time. In this anharmonic sys-
tem, the LL coupling leads to not only one-quantum relax-
ation but also the deformation of a potential curve, whereas
the SL coupling gives rise to a curvature modulation of the

potential curve in addition to two-quantum relaxation.
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Through 2D-IR spectra, we clarify the details of the system-
bath coupling as follows: �1� the difference between one- and
two-quantum relaxations, �2� a cross term contribution be-
tween the LL and SL couplings, and �3� the interplay be-
tween the LL and SL mechanisms of frequency fluctuation
�Fig. 2�.

We also discussed the precondition for validity of the
stochastic approach. Since the stochastic theory breaks down
for a system where the energy relaxation is significant be-
cause the theory neglects any dissipative effects, we focus on
the case where energy dissipative effects can be ignored.
Then we found that if the noise correlation time 
=�−1 sat-
isfies the following two conditions, �a� ���c for the char-
acteristic frequency of the system oscillator �c and �b�
��� /2�1 for the inverse temperature �, we may disregard
energy dissipation processes in comparison with dephasing
processes �see Fig. 6�. Within the two conditions, the sto-
chastic theory can explain the line shapes of the multidimen-
sional vibrational spectra, regardless of the characteristic fre-
quency of the system such as ���c /2�1 or ���c /2�1�,
besides the blueshifts caused by the dissipation from colored
noise bath.

In this paper, we restricted our discussions to a single
anharmonic mode in a bath characterized by a single decay
constant �. Extension to multimodal anharmonic systems in
more realistic bath is left for future studies.
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APPENDIX: DERIVATION OF LOW-TEMPERATURE
CORRECTED QUANTUM FOKKER-PLANCK
EQUATION

In this appendix, we outline a derivation of the quantal
equation of motion for a reduced density matrix, which has
applicability to a low-temperature system ����c /2�1� that
can be used to analyze an intramolecular vibrational
mode.39,76

FIG. 6. Applicability of various approaches. The low-temperature corrected
quantum Fokker-Planck �LTC-QFP� equation �Eq. �3.8�� reduces to the
Gaussian-Markovian quantum Fokker-Planck �GM-QFP� equation at high
temperature �Refs. 11, 39, 75, and 82�. When the two conditions ���c and
��� /2�1 are satisfied simultaneously, the LTC-QFP and GM-QFP agree
with the results from the stochastic theory besides the effects of blueshifts
due to the dissipation with the finite noise correlation time.
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The reduced density matrix element for the system is
expressed in the path integral form with the factorized initial
condition as

��q,q�;t� =� dqi� dqi�� Dq� Dq� exp� i

�
�S�q�

− S�q����FFV�q,q����qi,qi�;ti� . �A1�

Here, S�q� is the action of the system and FFV�q ,q�� is the
Feynman-Vernon influence functional given by84

FFV�q,q�� = exp�−
1

�
�

0

�

d�J����
ti

t

ds�
ti

s

ds�V��s�

� �V��s��coth����

2
�cos���s − s���

− iV��s��sin���s − s�����
�exp�−

i

�
�

ti

t

ds��U�qs� − �U�qs���� , �A2�

where we have introduced the abbreviations V��t��V�qt�
−V�qt�� and V��t��V�qt�+V�qt��. The counterterm �U�q�
=�0

�d�J���V�q�2 /� found in Eq. �3.1� is taken into account
as the second exponential on the right-hand side of Eq. �A2�.
For the distribution Eq. �3.3�, we can rewrite Eq. �A2� as

FFV�q,q�� = exp��
ti

t

ds�
ti

s

ds���s���s��e−��s−s���
� �

k=1

�

exp��
ti

t

ds�
ti

s

ds���s��k�s���ke
−�k�s−s���

�exp�−
i

�
�

ti

t

ds
m��

2
V��s�V��s�� , �A3�

with

��t� �
i

�
V��t� , �A4�

��t� � i
m�

��
�− i

���

2
V��t� +

���

2
cot����

2
�V��t�� ,

�A5�

�k�t� � i
m�

��

2�2

�k
2 − �2V��t� , �A6�

where �k=2
k / ��� is a bosonic Matsubara frequency.
If we choose K so as to satisfy �K��c, the factor

e−�k�s−s�� in Eq. �A3� can be replaced by Dirac’s delta func-
tion as

�ke
−�k�s−s�� � ��s − s�� �k � K + 1� . �A7�

Thus, by choosing the relevant K, Eq. �A3� can be reduced to
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FFV�q,q�� � exp�− �
ti

t

ds��s�e−�s�− �
ti

s

ds����s��e�s���
��

k=1

K

exp�− �
ti

t

ds��s�e−�ks�− �
ti

s

ds��k�k�s��e�ks���
� �

k=K+1

�

exp��
ti

t

ds��s��k�s��exp�−
i

�
�

ti

t

ds
m��

2
V��s�V��s�� . �A8�

In order to derive the equation of motion, we introduce the auxiliary operator �̂ j1,. . .,jK

�n� �t� defined by its matrix element as

� j1,. . .,jK
�n� �q,q�;t� =� dqi� dqi�� Dq� Dq��e−�t�− �

ti

t

ds���s�e�s�
n

��
k=1

K �e−�kt�− �
ti

t

ds�k�k�s�e�ks�
 jk

exp� i

�
�S�q� − S�q����FFV�q,q����qi,qi�;ti� �A9�
for non-negative integers n , j1 , . . . , jk. Note that only
�̂0,. . .,0

�0� �t�= �̂�t� has a physical meaning, and the other ele-
ments �̂ j1,. . .,jK

�n� for �n ; j1 , . . . , jK�� �0;0 , . . . ,0� are introduced
for computational purposes only. The differentiation of
� j1,. . .,jK

�n� �q ,q� ; t� with respect to t gives rise to the factors
from the time differentiation of the left- and right-hand side
actions and the influence functional. The terms with these
factors constitute the hierarchy members of Eq. �A9� with
different n and �jk�. As a result, we obtain the hierarchy of
equations, Eq. �3.8�.
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