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Abstract

Molecular vibrational modes of liquids are studied using the multi-mode Brownian motion model. We examine the
effects of inhomogeneity on anharmonic contribution to the 2D Raman spectroscopy. We consider three types of
inhomogeneous distribution of local oscillators and present analytical expressions for the 2D signal where the lowest-order
anharmonicity is taken into account. Numerical estimations of them in the case of a simple single-mode system clarify the
effects of the inhomogeneity. A multi-mode system with anharmonicity and nonlinear polarizability is also studied and
numerically compared with a recent experiment on CS , which suggests a minor role of the inhomogeneity in this substance.2

q 1997 Elsevier Science B.V.

1. Introduction

w xAfter the initial proposal 1 , the fifth-order off-
Ž .resonant experiment or two-dimensional 2D Raman

spectroscopy has received considerable attention.
This 2D technique has been shown to be sensitive to

w xheterogeneous dynamics in condensed phases 1 .
This prediction has led to a number of experiments
to investigate the low frequency intermolecular

w xmodes of liquid molecules such as CS 2–9 . Re-2

cently, a novel heterodyne detection of 2D Raman
w xspectroscopy has been carried out 10 , and has made

it possible to probe intramolecular modes through
the fifth-order processes.

w xThe original theory 1 as well as subsequent
w xworks 11,12 assumed that the vibrational modes of

molecules are harmonic and roles of inhomogeneity
were examined by assuming a spatial distribution of

w xsuch harmonic modes. In our previous work 13,14 ,
we demonstrated the sensitivity of this experiment to

weak anharmonicity of the vibrational modes. In
there, we assumed the homogeneous distribution of
the vibrational modes for simplicity. In realistic situ-
ation, however, one can expect to observe the effects
of inhomogeneous or heterogeneous distribution of
vibrational modes in addition to the effects of anhar-
monicity. Such a heterogeneity is expected especially
for fast dynamics, since, during the fast motion, the
local structure of the environment is essentially fixed
and the local property affects observables directly
without randomization. In the present article, we
study the interplay of anharmonicity and inhomoge-
neous distribution of the mode.

In Section 2, we present analytical results for a
single mode, which are estimated numerically. In
Section 3, we consider a bimodal system and take
into account the effects of both anharmonicity of the
potential and nonlinear coordinate dependence of
polarizability at the same time, making allowance for
inhomogeneous distribution of the mode parameters.
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The results are compared with the experimental data
w xobtained by Tokmakoff and Fleming 9 , which indi-

cates a minor role of inhomogeneity in CS . Final2

section comments on possible future directions of the
theory. Details of derivation can be found in our

w xseries of papers 13–17 .

2. Single-mode case

We consider the effective Hamiltonian for a sin-
gle-mode system, which is given by

2HsH yaE r ,t , 2.1Ž . Ž .ˆm

where

P 2 MV 2
2H s q Q qV QŽ .m 2 M 2

22 2N p m v c Qi i i i
q q q y . 2.2Ž .Ý iž /2m 2 m vi i iis1

Here, polarizability and anharmonicity are assumed
to be

1
2asa qa Qq a Q q PPP , 2.3Ž .ˆ 0 1 22!

and

1 1
3 4V Q s g Q q g Q q PPP . 2.4Ž . Ž .3 43! 4!

This system can be completely characterized by the
parameters associated with the mode Q,

M ,V ,a , g ,i i

and those associated with the bath modes q ,i
m ,v ,c .i i i

In the following we assume the Ohmic dissipation in
Ž .which all the bath parameters m ,v ,c are repre-i i i

sented by the single parameter g . This g can be
interpreted as the strength of damping, since the
classical equation of motion in the Ohmic case is

w xexpressed as 17

d2 Q t dQ t dV Q tŽ . Ž . Ž .Ž .
M qg q sR t ,Ž .2 d t dQ td t Ž .

2.5Ž .
Ž .where R t is the fluctuating force.

Under the assumption of weak anharmonicity of
potential and weak nonlinearity of polarizability, the
fifth-order signal can be divided into two component

w x— the anharmonic and nonlinear components 13 .
Suppose that all the nonlinear parameters a in Eq.i
Ž . Ž .2.3 and the anharmonic parameters g in Eq. 2.4j

i jy2 Ž .are proportional to a and g jG3 , respec-
tively, where a and g are dimensionless small pa-

w xrameters. We can show 13 that, if a is much larger
Ž .than g but still less than unity , the nonlinear

Ž 2 .component proportional to a a dominates the1 2
Ž .signal, while in the opposite case a<g the anhar-

Ž 3 .monic component proportional to a g governs it.1 3
w xWe can also show 13 that even if g and g are3 4

the same size the term proportional to a 3g van-1 4

ishes and only the a 3g term contributes to the1 3

anharmonic component. In this sense, the cubic an-
harmonicity g is especially important in the fifth-3

Žorder signal. In the same way, we can show the
Ž .nq1 th-order anharmonicity g is important innq1

Ž . w x .the 2nq1 th-order experiment 14 .
In this section we focus on the anharmonic com-

ponent to clearly exhibit the interplay of inhomo-
geneity and anharmonicity. Then the signal is given
by
Ž5. < AH < 2I T ,T s R T ,T . 2.6Ž . Ž . Ž .1 2 1 2

An inhomogeneous distribution of the frequency and
damping constant can be taken into account by in-

Ž .cluding the distribution function S g ,V :
` `

X X X XAH AH
X XR T ,T s dV dg S V ,g R T ,T .Ž . Ž . Ž .H H1 2 V g 1 2

0 0

2.7Ž .
Here, the response function of the homogeneous

Ž X X. w xsystem with the parameters V ,g is given by 13

RAH
X X T ,TŽ .V g 1 2

2i i T qT1 23 Žyq.
X Xs a y g d t DH1 3 V gž / ž /" " T1

= T qT y t DŽyq.
X X tyT DŽyq.

X X t .Ž . Ž . Ž .1 2 V g 1 V g

2.8Ž .
The propagator in the above can be expressed as

`4"
X XŽyq.

X XD t su t dv J v ,V ,g sinv t ,Ž . Ž . Ž .HV g iM 0

2.9Ž .
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Ž . Ž .where u t is the Heaviside function step function
and

1 vg
X

X XJ v ,V ,g s . 2.10Ž . Ž .2X 2 X 22 22p v yV qv gŽ .
Ž .We note here that the time integration in Eq. 2.8

can be carried out analytically as shown below.
In the following, we consider three cases of distri-

Ž X X .bution S V ,g .
1. Purely homogeneous distribution,

S V
X ,g X sd V

X yV d g
X yg . 2.11Ž . Ž . Ž . Ž .

Ž .2. Gaussian frequency distribution width s ,

eyŽ V
XyV .2 r2 s 2

X X XS V ,g sd g yg . 2.12Ž . Ž . Ž .'2p s

3. Purely inhomogeneous distribution,

S V
X ,g XŽ .

2 V
X 2

g
Xs lim d g ye .Ž . 2X 2 X 22 2pe™0 V yV qV gŽ .

2.13Ž .

This purely inhomogeneous case was introduced in
w xRef. 1 so that the third-order signal in this case

coincides with that in the purely homogenous case.
In the purely homogenous case, an analytical

w xexpression for the response function is given by 13

a 3
0AH 3 4R T ,T sy a g V F T yF T qT ,Ž . Ž . Ž .˜ ˜1 2 1 3 0 1 1 22

"

2.14Ž .

where

4 yg ŽT qt .r221 eiF t s y1Ž . Ž .Ý3 224z g r4q z aŽ .is1 i

=
g

sinz a tqb qz a cosz a tqb ,Ž . Ž .i i i i i½ 52
2.15Ž .

with

a ,a ,a ,a s 1,y1,y3,y1 2.16Ž . Ž . Ž .1 2 3 4

and

b ,b ,b ,b s T ,T ,2T qT ,2T qT .Ž . Ž .1 2 3 4 2 2 1 2 1 2

2.17Ž .

We have used the dimensionless parameters

3r2g "3
g s , 2.18Ž .˜3 ž /"V MV0 0

and

1r2
a "1

a s , 2.19Ž .˜1 ž /a MV0 0

where V is the unit of frequency, which can be any0

value. We stress here that z introduced in the above,
which is defined by

2 2(zs V yg r4 , 2.20Ž .

can be an imaginary number in the overdamped case
Ž .V-gr2 .

In the case of Gaussian frequency distribution, we
have

RAH T ,TŽ .1 2

3
`

X
a dV X 2 20 3 4 yŽV yV . r2 ssy a g V e˜ ˜ H1 3 02 '" 2p s0

= X XF T yF T qT , 2.21Ž . Ž . Ž .V 1 V 1 2

Ž . Ž .Xwhere F t is defined by Eq. 2.15 with z re-V

X X 2 2(placed by z s V yg r4 . Note here that, since
the factor V 4 emerged when we made a 3g a0 1 3

Ž .dimensionless quantity by use of Eqs. 2.18 and
Ž . 42.19 , this V should not be averaged over by the0

Ž .integral. Note also here that the expression of F t
Ž . Xgiven in Eq. 2.15 with z replaced by z and thus

Ž . Xthe integrand in Eq. 2.21 are singular at V s
'0, 2 gr3, and gr2. However, these singularities of

Ž .the integrand in Eq. 2.21 are fictitious and can be
removed by subtracting an appropriate constant from

Ž .the expression 2.15 without changing the value of
Ž . Ž .X XF T yF T qT , which is done in numericalV 1 V 1 2

calculations below.
In the purely inhomogeneous case, the response

function can be expressed as

RAH T ,TŽ .1 2

a 3
0 3 4sy a g V G T yG T qT ,Ž . Ž .˜ ˜1 3 0 1 1 22

"

2.22Ž .
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Ž . Ž .Fig. 1. Inhomogeneous effects for a weak damping mode. The width of Gaussian distribution of the frequency is increased from a to c .
The intensity of the signal I Ž5. is presented by contour plots.

Ž . Ž .Fig. 2. Inhomogeneous effects for a strong damping mode. The width of Gaussian distribution of the frequency is increased from a to c .

Fig. 3. Inhomogeneous effects in the purely inhomogeneous cases. The width of a distribution of the frequency of undamped oscillators are
Ž . Ž . Ž5.increased from a to c . The intensity of the signal I is presented by the three-dimensional plots.



( )K. Okumura, Y. TanimurarChemical Physics Letters 277 1997 159–166 163

where

4 yg < a tqb < r2i i1 a eiiG t s y1Ž . Ž .Ý4 2 24zV g a r2 q z aŽ . Ž .is1 i i

= z V 2 yg 2 cosz a tqbŽ .Ž .½ i i

g
2 2 < <q 3V yg sinz a tqb , 2.23Ž .Ž . i i 52

< <where a and b are the same as above and xi i

denotes the absolute value of x. In deriving this
expression, we have used the relation,

lim J v ,V X ,eŽ .
e™0

1
X Xs d vyV qd vqV . 2.24Ž . Ž . Ž .

< <4 v

Note here that, in the purely inhomogeneous case, an
infinite number of undamped oscillators are dis-
tributed around the center frequency V with the
width g ; the parameter g is NOT the strength of the
damping but the width of the inhomogeneous distri-

w Ž .x 1bution see Eq. 2.13 .
Numerical simulations for a single mode are pre-

sented in Figs. 1–3, where the unit of time is 1rV .
In Figs. 1 and 2 we compare the purely homoge-
neous distribution and the Gaussian frequency distri-
bution while in Fig. 3 we present the purely inhomo-
geneous cases.

In Fig. 1, we show results of numerical simula-
Ž . Ž .tions for a weak damping grVs0.1 . In a purely

Ž .homogeneous case ss0 , we see many oscillatory
peaks since the coherence is maintained for a long
period. The frequency of the oscillation along T1

Ž .axis is V while that along T is 2V . In b case of2

Gaussian frequency distribution with the width s'˜
srVs0.1, we observe less oscillatory peaks than in
Ž .a since the distribution of the frequency implies

Ž .destruction of the coherence. In c where ss0.2,˜
we see further less oscillations, which can be under-
stood by the same reason.

In Fig. 2, we present results for a strong damping
Ž . Ž .grVs1.0 . In a purely homogeneous case, we

1 Thus, the result in the purely homogeneous case at g s0 and
that in the purely inhomogeneous case at g s0 should coincide

Ž .with each other, which can be directly confirmed from Eqs. 2.15
Ž .and 2.23 .

Ž . Ž .see only one distinctive peak around T ,T s 0,31 2

since the coherent vibration is hidden due to the
Ž .strong damping. In b case of Gaussian frequency

distribution with the width ss0.1, the peak is˜
slightly more delocalized since many modes with

Ž .different frequencies contribute to the signal. In c
where ss0.2, the peak is further delocalized by the˜
same reason.

In Fig. 3, three cases of purely inhomogeneous
distribution are compared. The parameter g in these
cases corresponds to the width of the frequency
distribution as previously mentioned and the value of

Ž . Ž . Ž .g is increased from a to c . In a , since the
distribution of frequencies is small, a coherent oscil-

Ž . Ž .lation is observed. As we go from a to c , we see
that the time for which this coherence is maintained
gets shorter because the frequency distribution gets

Ž .larger. We note here that the two features in c , the
Ž .sharp ridge along the T axis T ;0 and the echo-2 1

Ž .like peak along the diagonal direction T sT , had1 2

been observed in the result from the nonlinear com-
ponents of the signal in the purely inhomogeneous

Ž w x.case see figure 6 of Ref. 1 .

3. Simulation for carbon disulfide

The experimental data by Tokmakoff and Fleming
w x9 can be modeled by the bimodal Hamiltonian
w x4,13

2HsH qH yaE r ,t , 3.1Ž . Ž .ˆL H

Ž . Ž .where H ssL, H is defined through Eq. 2.2s
Ž . Ž .where M,V ,g , g is replaced by M ,V ,g , g .i s s s i s

Ž .Here, the two modes Q and Q are coupledL H

through the polarizability

˜asa exp a Q , 3.2Ž .ˆ ˜Ý0 1 s s
ssL , H

˜where Q sQ M V r" .(s s s 0

Under the assumption of weak anharmonicity and
weak nonlinear polarizability, the 2D signal in the

w xpurely homogeneous case is given by 13

Ž5. < AH NL < 2I T ,T s R T ,T qR T ,T . 3.3Ž . Ž . Ž . Ž .1 2 1 2 1 2

The anharmonic contribution is expressed as

RAH T ,T s RAH T ,T , 3.4Ž . Ž . Ž .Ý1 2 s 1 2
ssL , H
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AH Ž . Ž .where R T ,T is given by Eq. 2.14 wheres 1 2
Ž .V ,g , g , a , V a r e r e p la c e d b y˜ ˜3 1 0
Ž .V ,g , g ,a ,V . The nonlinear contribution is˜ ˜s s 3 s 1 s 0

given by

a 3
0NLR T ,T s f T f T qT q f T ,Ž . Ž . Ž . Ž .1 2 2 1 2 12

"

3.5Ž .

where

hs yg tr2sf t s e sinz t , 3.6Ž . Ž .Ý s
zsssL , H

2 2 2(with z s V yg r4 and h sV a .˜s s s s 0 1 s

We can extract some of the parameters, almost
w xuniquely, from the third-order experiment 4,13 : the
Ž .set of parameters for the lower mode is h ,V ,gL L L

Ž .s 1.00,12.9,43.0 and that for the higher mode is
Ž . Ž . w y1 xh ,V ,g s 2.20,39.2,63.7 cm . The remain-H H H

ing unspecified parameters are only g , since a˜ ˜3 s 1 s
w xare already specified by h . In Ref. 13 , we showeds

that the experimental data is similar to the results of
numerical simulation if we assume g s0 and g˜ ˜3 L 3 H

s0 to y6a . In the following, we consider this˜1 H

parameter region for numerical estimations.
The two modes in CS can be associated with the2

Ž .fast librational motion V and the slow diffusiveH
Ž . w xmotion V , respectively 13 . The diffusive dynam-L

Fig. 4. Inhomogeneous effects in carbon disulfide calculated by using parameters determined from the third-order experiment. The
Ž . Ž . Ž . Ž . Ž . Ž .anharmonic parameter g is y3.0a in a and b and y6.0 a in c and d . The inhomogeneous parameter s is 0.1 in a and c˜ ˜ ˜ ˜3 H 1 H 1 H

Ž . Ž .and 0.2 in b and d .



( )K. Okumura, Y. TanimurarChemical Physics Letters 277 1997 159–166 165

ics can be expected to be homogeneous, since this is
a random process. However, at short times the struc-
ture of the liquid is essentially fixed so that the
librational motion can be influenced by the local
structure. To reflect this situation, here, we take into
account the inhomogeneous distribution of the fre-
quency V and thus we haveH

X
` dV X 2 2HŽ5. yŽV yV . r2 sH HI T ,T s eŽ . H1 2 '2p s0

=
2

AH NL
X XR T ,T qR T ,T ,Ž . Ž .� 4V 1 2 V 1 2H H

3.7Ž .
AH Ž . NL Ž .X Xwhere R T ,T and R T ,T are respectivelyV 1 2 V 1 2H H

Ž . Ž . Ž .defined by Eq. 3.4 and Eq. 3.5 with V in zH H

replaced by V
X . In this paper, we do not present theH

results in the case where anharmonicity of the lower
mode is taken into account. This is because in such a

w xcase, we could not fit the experimental data 13 .
Results of numerical simulations are presented in

Fig. 4. The anharmonic parameter is set as g ra˜ ˜3 H 1 H
Ž . Ž .sy3.0 in a and b , while it is set as g ra s˜ ˜3 H 1 H

Ž . Ž .y6.0 in c and d . From Fig. 4, we see that this
inhomogeneity prolongs decay time along both T1

and T directions. However, decay time in T direc-2 2

tion is elongated more than that in T — this ten-1

dency becomes notable and thus the two decay times
become comparable as the width s or anharmonic-
ity g gets large. These features are consistent with3

the result for the single-mode case: if we compare
Ž . Ž .Fig. 2 a with Fig. 2 c the tendency of the delocal-

ization is stronger in the T direction than in the T2 1

direction. In other words, the decay time in T2

direction divided by that in T direction gets smaller1

as the inhomogeneity gets smaller. However, even in
the homogeneous limit, T decay time divided by T2 1

decay time is larger than the experimental data, as
w xshown in Ref. 13 . Thus, the present analysis indi-

cates that this type of inhomogeneity plays a minor
role in CS .2

4. Discussion

As in the other fifth-order analyses, in this paper,
the pulse bandwidth is assumed to be infinitely short
compared with slow nuclear dynamics. However,

faster intramolecular dynamics has started to be
probed through the fifth-order processes by the re-
cently developed heterodyne technique with shorter

w x w xpulses 10 . As pointed out in Ref. 10 , because of
the finite pulse bandwidth, the response at small T1

is a superposition of two responses due to the sym-
metric nature of the signal. This pulse width convo-
lution effect should be incorporated into theory in
order to interpret short-time dynamics of such exper-
imental data obtained with shorter pulses. This is
now underway.

Observation of the intramolecular mode, for which
the mode of the Brownian model has a clear physical
picture such as stretching or bending, has also brought
up the problem of coupling between modes. For such
weakly damped intramolecular modes, the 2D Fourier

Ž .transform of the original 2D time-domain Raman
signal is more suitable for interpretations, and such a
frequency domain signal shows the cross peaks,
suggesting the existence of the coupling of the modes
w x10,18 . However, the coupling in the previous theo-
ries is limited to the one through polarizability
Ž . Žpolarizability-induced coupling . We note here that
this polarizability-induced coupling case has been

w x .studied in the molecular dynamics approach 19 .
We should compare this coupling effect with the

Žeffects of the intrinsic coupling the coupling through
.the term in the Hamiltonian , in order to analyze the

2D experimental data in the frequency domain. This
is also underway.

In conclusion, we derived an analytical expression
of the 2D Raman signal for a multi-mode Brownian
oscillator model with taking into account a weak
anharmonicity of the potential and inhomogeneity of
oscillators. We carried out a model calculation of a
simple single-mode case. The numerical results for
CS are also obtained by using parameters deter-2

mined from the third-order experiment and are com-
pared with a fifth-order experiment of CS . The2

result suggests that inhomogeneity is weak in this
substance.

Acknowledgements

We would like to thank Dr. Andrei Tokmakoff
and Professor Graham R. Fleming for sending some
of their results prior to publication.



( )K. Okumura, Y. TanimurarChemical Physics Letters 277 1997 159–166166

References

w x Ž .1 Y. Tanimura, S. Mukamel, J. Chem. Phys. 99 1993 9496.
w x Ž .2 K. Tominaga, K. Yoshihara, Phys. Rev. Lett. 74 1995

3061.
w x Ž .3 K. Tominaga, K. Yoshihara, J. Chem. Phys. 104 1996

1159.
w x Ž .4 K. Tominaga, K. Yoshihara, J. Chem. Phys. 104 1996

4419.
w x5 K. Tominaga, Off-resonant Fifth and Seventh Order Time-

Domain Nonlinear Spectroscopy on Vibrational Dephasing in
Liquids, Advances in Multi-photon Processes and Spec-

Žtroscopy, Vol. 11 World Scientific, Singapore, 1997, in
.press .

w x Ž .6 T. Steffen, K. Duppen, Phys. Rev. Lett. 76 1996 1224.
w x7 T. Steffen, J.T. Fourkas, K. Duppen, J. Chem. Phys. 105

Ž .1996 7364.
w x Ž .8 T. Steffen, K. Duppen, J. Chem. Phys. 106 1997 3854.

w x Ž .9 A. Tokmakoff, G.R. Fleming, J. Chem. Phys. 106 1997
2569.

w x10 A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, Chem.
Ž .Phys. Lett. 272 1997 48.

w x Ž .11 V. Khidekel, S. Mukamel, Chem. Phys. Lett. 240 1995
304.

w x12 V. Khidekel, V. Chernyak, S. Mukamel, J. Chem. Phys. 105
Ž .1996 8543.

w x13 K. Okumura, Y. Tanimura, J. Chem. Phys., in press.
w x Ž .14 K. Okumura, Y. Tanimura, J. Chem. Phys. 106 1997 1687.
w x Ž .15 K. Okumura, Y. Tanimura, Phys. Rev. E 53 1996 214.
w x Ž .16 K. Okumura, Y. Tanimura, J. Chem. Phys. 105 1996 7294.
w x17 K. Okumura, Y. Tanimura, Phys. Rev. E, in press.
w x18 A. Tokmakoff, private communication; A. Tokmakoff, M.J.

Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, S. Mukamel,
Two-dimensional Raman Spectroscopy of Vibrational Inter-
actions in Liquids, Phys. Rev. Lett., submitted.

w x19 S. Saito, I. Ohmine, private communication.


