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Abstract

Ž .We analyze the two-dimensional 2D line shape obtained by 2D Fourier transforming the time-domain response of a
photon-echo signal as a function of the two coherence periods, t and t . The line shape obtained for a two-level system1 3

with homogeneous and inhomogeneous broadening is shown to be sensitive to the magnitude of both of these line-broad-
ening mechanisms. It is shown that the ellipticity of the 2D line shape can be related to the ratio of homogeneous to
inhomogeneous broadening. q 1999 Elsevier Science B.V. All rights reserved.

The molecular spectrum in the condensed phase is
usually broad and featureless from a convolution of
all the dynamical and static information within it.
Accordingly, much of the efforts of researchers have
been paid to how one can extract information on the
broadening mechanisms from these peaks. In the
simplest sense, the broadening arises from two dif-
ferent aspects of the solvent. One is the dynamical
evolution induced by the fluctuation of the solvent
molecules, i.e., by the solvent–solute interaction.
Another is the distribution of local environments
about each molecule. Historically, the former has
been referred as homogeneous or fast modulation,
and the latter as inhomogeneous or the static contri-
bution. The separation of these contributions from a
conventional line-shape analysis fails because the
signal is a convolution of these line-broadening

w xmechanisms 1 . It is generally the case for one-di-
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Ž .mensional 1D observables – those that have one
independent time or frequency variable – that one
cannot uniquely extract information on multiple su-
perimposed dynamical time scales.

One of the most effective tools at distinguishing
multiple time scales in the dynamics of liquids is the

w xphoton-echo experiment 1 . Various approaches to
this rephasing experiment have been applied to ex-
tracting the dynamic and static contributions to elec-
tronic and vibrational line shapes. In the classic
integrated two-pulse photon echo, an initially created
coherence is rephased by a time-delayed rephasing
pulse, and the time-integrated amplitude of the field
radiated from the induced polarization is measured.
This experiment is particularly selective to the mi-
croscopic dynamics for a system with a clear separa-
tion of time scales, i.e. homogeneous dynamics
masked by inhomogeneous broadening. Thus, these
types of methods have been most successful in the
study of low-temperature electronic dephasing in

w xglasses 2 and the vibrational dynamics in liquids
w x3 . Electronic dephasing in liquids shows no such
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separation of time scales, a limit under which the
w xintegrated echo becomes ambiguous 1,4 . Other ver-

sions of this experiment have been used to accom-
modate these problems. The three-pulse photon echo
w x w x2,5 and three-pulse photon-echo peak shift 6,7

Žhave been used to extract a spectral density or
.distribution function for spectral diffusion dynam-

ics. The fundamental goal of extracting the dynamics
of the ensemble is present in this experiment, if the
time evolution of the polarization induced by the
final interaction field can be observed rather than the
integrated intensity. This has been the motivation for

w xthe gated photon echo 8 and the heterodyne-de-
w x Žtected stimulated photon echo 9 . The Raman echo

w x .10 is in essence a gated photon echo. These two
experiments are remarkably powerful by virtue of

Ž .being two-dimensional 2D ; they measure the mag-
nitude of a non-linear polarization as a function of
the two independent coherence evolution periods.
The gated photon echo is proportional to the modu-
lus squared of the third-order response function while
the heterodyne-detected stimulated photon echo is a

Žphase-sensitive measure of that quantity. Function-
ally, the methods of spectral interferometry in the

w x .detection of the echo are equivalent 11 . The 2D
nature of these experiments is only beginning to be

w xexploited 12 . In this Letter, we aim to demonstrate
that the line shape obtained from the spectral repre-
sentation of a gated photon echo provides a clear
qualitative picture and quantitative description of the
static and dynamic contribution to a condensed-phase
line shape. We will show that 2D Fourier trans-
formed data enables us to obtain the dephasing times
of both homogeneous and inhomogeneous broaden-
ing at the same time. We refer this type of analysis

Ž .2D line-shape 2DLS analysis contrasting it with the
conventional linear line-shape analysis.

In the following, we briefly review the theoretical
w xbackground 1 of the photon echo. There are two

reasons for this; one is to specify our notation while
the other is to clarify some points which have not
been properly or coherently discussed in the litera-
ture.

We describe the two lowest electronic levels by
the Hamiltonian

< : ² < < : ² <H s g g H q e e H q"v , 1Ž .Ž .0 g e e g

where "v is the electronic transition energy. Thee g

nuclear dynamics is described by the two nuclear
Ž .coordinates and their conjugate momenta P ,QH H

Ž .and P ,Q . These degrees of freedom are coupledI I

to the heat bath and correspond to the homogeneous
and inhomogeneous dynamics, respectively. The nu-

Ž .clear Hamiltonian H and H are given by asg,eg e

2Ž .°2 sP pŽ .s jŽ .s ~H s qV Q qŽ .Ý Ýa a s Ž .s¢2 M 2m� s jssH,I j

22Ž . Ž . Ž . ¶s s sm v c QŽ .j j j sŽ .s •q q y .j 2Ž . Ž .s s ß2 0m vŽ .j j

2Ž .

Ž .In this model, the two modes Q ,Q are indepen-I H

dent. Note that different sets of bath oscillators are
introduced for each primary mode Q , while onlys

Ž . w xone set is introduced in Eq. 8.61b of Ref. 1 . It is
our Hamiltonian that leads to the simple and physical
classical equation of motion

d2 Q t dV Žs. QŽ . Ž .s a s
M qs 2 dQ td t Ž .s

dQ tXŽ .t sX XqM d t g ty t sR t . 3Ž . Ž . Ž .H Xs s sd t0

Ž .The friction kernel g t and the fluctuating forces
Ž .R t are a function of the bath parameterss

Ž Žs. Žs. Žs.. ² Ž .:c ,m ,v , and satisfy the relations, R t s0j j j s
² Ž . Ž X.: Ž X.X X Xand R t R t sd 2 M g ty t rb. Here, ds s ss s s ss

and 1rb are the Kronecker delta and the tempera-
Ž .ture multiplied by the Boltzmann constant , respec-

Ž .tively. When asg or ase in the above Langevin
equation of motion, it corresponds to the nuclear

Ž .dynamics in the electronic ground or first-excited
state.

In the above, we have assumed the two modes QI

and Q do not interact with each other and that theH

random forces associated with them are also inde-
pendent. These assumptions should be acceptable at
least at the first level of approximation, considering
that the two modes represent the two limiting cases,

Ž .i.e., homogeneous and inhomogeneous see below .
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< : < :The two state g and e are independent except
for the dipole interaction with the external electric
field

H sE r ,t V , 4Ž . Ž .I

where

< : ² < < : ² <Vsm Q ,Q g e q e g . 5Ž . Ž .Ž .H I

The system is then described by the total Hamilto-
nian

HsH qH .0 I

This two-level system is initially in the thermal
equilibrium in the electronic ground state, which is
characterized by the density matrix,

yb Hg < : ² < yb Hgw xr se g g rTr e . 6Ž .I

In the photon-echo experiment, we apply the elec-
Ž . Ž . 3 Ž .tric field see Fig. 1 , E r,t sÝ E r,t , whereis1 i

Ž . Ž .Ž i k iPryi v i t .E r,t s E t e q c.c. . Here, the en-i i
Ž . Ž .velopes are given as E t sE d ty t , wherei 0 phys i

t s t yT yT yT , t s t yT yT , t s t y1 m 3 2 1 2 m 3 2 3 m

T . Here, t is the time of measurement of the signal3 m
Ž .while d t implies a Gaussian-type functionphys

Ž .whose width is larger than optical cycle 1rv buti

much smaller than the nuclear time scale. We as-
sume that these three pulses are well separated com-

Ž .pared with the width of d t ; T , T , T arephys 1 2 3

positive and larger than the width. Throughout this
Letter, T , T , and T always represent the first,1 2 3

second, and third delay times, respectively.

Fig. 1. The pulse configuration of the photon-echo experiment. By
the first pulse E , the system is brought in the electronic coher-1

< :² < < :² <ence state, which is characterized by g e and e g . The
< :² <second pulse brings the system back to a population state g g

< :² <or e e . The third pulse makes the system again in the coher-
ence state. Thus, the first and last delay times correspond to the
coherence dephasing times, while the second to the population
relaxation. E stands for the local oscillator field used in theL

heterodyne detection.

The photon echo is generated through the third-
order process in terms of electric field. The relevant
macroscopic polarizability is formally given as

` ` `
Ž3. Ž3.P r ,t s d t d t d t R t ,t ,tŽ . Ž .H H H3 2 1 3 2 1

y` y` y`

=E r ,ty t E r ,ty t y tŽ . Ž .3 3 2

=E r ,ty t y t y t , 7Ž . Ž .3 2 1

where the third-order response function is given by

RŽ3. t ,t ,tŽ .3 2 1

3i
²s u t u t u t V t q t q t ,Ž . Ž . Ž . Ž .1 2 3 1 2 3ž /"

:V t q t ,V t ,V 0 , 8Ž . Ž . Ž . Ž .1 2 1

Ž .where, u t is the step function. Here and hereafter,
the average and the Heisenberg representation of

² : w x w xoperator are defined as X 'Tr r X rTr r andI I
Ž . i H0 tr " yi H0 tr "Y t 'e Ye .

The photon-echo measurement is a resonant ex-
periment, which implies that v s are resonant withi

the electronic transition frequency v . Thus, we aree g

allowed to use the rotating wave approximation
Ž .RWA . Furthermore, we introduce two approxima-
tions: the Condon approximation and the approxima-
tion of the second-order cumulant expansion. The
former implies that we expand the dipole moment
Ž .m Q , Q in terms of the nuclear coordinates andH I

keep only the first-order term, m , which does not0

depend on nuclear coordinates. The latter is exact for
Ž .harmonic or Gaussian nuclear dynamics as in the

specific case considered below. Note that one can
include anharmonicity of the potential perturbatively

w xby using the generating functional approach 13 .
Under these approximations, the macroscopic po-

larizability in the echo direction specified by k ss

yk qk qk is given by1 2 3

P Ž3. r ,t se i k sPryi v s tP Ž3. , 9Ž . Ž .k ks s

where v syv qv qv , ands 1 2 3

P Ž3.sE2 E) eyi v 1T1 e iŽv 2yv 1.T2 e iŽv 3qv 2yv 1.T3
k 0 0s

=R T ,T ,T . 10Ž . Ž .ech 3 2 1
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Here, we have employed the impulsive pulse limit
Ž .where d t can be treated as the Dirac deltaphys

function for the nuclear dynamics; as a result of the
integration over time variables, the first, second, and

Ž .third delay times T , T , T appear in the above1 2 3

expression.
Ž .The echo response function R t ,t ,t is givenech 3 2 1

by

R t ,t ,tŽ .ech 3 2 1

34sm ir" u t u t u tŽ . Ž . Ž . Ž .0 1 2 3

= i v e gŽ t1yt 3.w f1Ž t1 , t2 , t3. f 2Ž t1 , t2 , t3. xe e qe , 11Ž .
where the auxiliary function has been introduced by

) )

f t ,t ,t syg t yg t q tŽ . Ž . Ž .1 1 2 3 1 1 2

)

qg t q t q t qg tŽ . Ž .1 2 3 2

)

yg t yg t q t , 12Ž . Ž . Ž .3 2 3

) )

f t ,t ,t syg t yg t q tŽ . Ž . Ž .2 1 2 3 1 1 2

) )

qg t q t q t qg tŽ . Ž .1 2 3 2

)

yg t yg t q t , 13Ž . Ž . Ž .3 2 3

Ž .where the line broadening function g t is given as
the correlation of fluctuation of the electronic transi-
tion energy:

t tX
X XX X XX 2² :g t s d t d t U t U t r" , 14Ž . Ž . Ž . Ž .H H

0 0

where UsH yH . We employ a model withe g
Ž Ž . Ž ..² :U s0 below see Eqs. 15 and 16 , in which

case U is the fluctuation around the transition en-
ergy "v.

Ž .In general, g t is essential for all linear or
non-linear resonant optical measurements. This is
because all kinds of signal can be calculated only if

Ž .we know the form of g t under the assumption of
the second-order approximation of the cumulant ex-

w xpansion 1 .
We assume that the adiabatic potentials for the

nuclear coordinates in the ground and first excited
states are both harmonic:

M V 2
s sŽs. 2V Q s Q , 15Ž . Ž .g s s2

M V 2
s s 2Žs.V Q s Q qd . 16Ž . Ž . Ž .e s s s2

Ž .Thus, the line-broadening function g t is given by
² Ž . Ž .:the double time integration of Q t Q 0 in thiss s

case. We further assume that the damping constant in
Ž . Ž . Ž . Ž .Eq. 3 is given by g t sg d t , where d t is thes s

Dirac delta function. This implies that we represent
all the information of the bath parameters
Ž Žs. Žs. Žs..c ,m ,v by a single constant g . In this Ohmicj j j s

² Ž . Ž .:case, the correlation function Q t Q 0 is analyt-s s
Žically given and, under the approximation precisely

.specified below , the line-broadening function re-
w xduces to the Kubo’s line-broadening function 14,1

g t s g t , 17Ž . Ž . Ž .Ý s
ssH,I

where, for t)0,

g t sD2t 2 eyt rt s q trt y1 . 18Ž . Ž .Ž .s s s s

Here, D is the mean-square distribution of transitions
2 2 2 Žs.Ž .energies, i.e., D s U r" , where U sV Q² :s s s e s

Žs.Ž .yV Q and UsÝ U , while t is the correlationg s s s s

time of the transition energy fluctuations, i.e., t sH`

s 0
2 Ž .² :U t U 0 d trD . For t-0, g t is given by theŽ . Ž .s s s

same expression as the above one. Note here that
Ž . Ž . Ž .)g t always satisfies the relation g yt sg t .

Ž .The approximations involved in the above are 1
that the nuclear dynamics for the two modes, Q andI

Ž . Ž .Q , are both overdamped V <g r2 and 2 thatH s s

the temperature satisfies the relation 1rb 4

Ž ."V V rg . It should be noticed that this tempera-s s s

ture condition is rather weak in this overdamped case
Ž .V rg <1 , although it is sometimes called highs s

temperature limit.
As had been discussed by Kubo from the stand-

point of the stochastic theory, the overall feature of
Ž .the 1D line shape 1DLS looks Gaussian for D t )s s

1, while it looks Lorentzian for D t -1. The formers s

has been called inhomogeneous while the latter ho-
Ž .mogeneous in the literature but not by Kubo ; we

assume the relations D t )1 and D t -1. AsI I H H
Ž .suggested by Kubo, we can approximate g t by itsH

Ž .long-time approximation, while g t by its short-I

time one:

g t sD2 t t , 19Ž . Ž .H H H

g t sD2 t 2r2 . 20Ž . Ž .I I

The absorption spectrum corresponding to these
line-broadening functions reduce to the homoge-
neous Lorentzian distribution with the width G 'H
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D2 t and the inhomogeneous Gaussian distributionH H

with the widths G 'D , respectively.I I

We note here that, from the standpoint of the
stochastic theory, the above two simple forms of the
line-broadening function can be deduced not only

Ž .from Eq. 18 but also from a quite general form. In
this sense, these two simple forms can represent
rather general features.

Although we have used the conventional words
‘inhomogeneous’ for g , dissipation by the Q modeI I

results from the solute–solvent coupling or the ho-
mogeneous origin. The term ‘inhomogeneous’ is used
to refer to the Gaussian shape. In the limit t ™`,I

the Q mode is actually inhomogeneous. However,I

we should note that, unless the ratio D rD is fixed,I H

the relation t -t does not necessarily hold in theH I

present model; the inhomogeneous correlation time
t can be shorter than the homogeneous time t ifI H

the inhomogeneous energy gap fluctuation D isI

larger than the homogeneous gap fluctuation D . InH

addition, there is no restriction on the Õalue G rGI H

in general. This might be the reason Kubo avoid
using the word homogeneous or inhomogeneous.

If both the Lorentzian and Gaussian modes exist,
the absorption spectrum takes on the form of a
convolution of the Lorentzian and Gaussian contribu-

Ž .tions. The interpretation of the 1D line shape 1DLS
in this limit becomes ambiguous. As shown below,
in the 2DLS analysis in which two variables are
introduced, we can make a clear separation of these
two components.

In this simple model, the echo response function
Ž .R t ,t ,t reduces toech 3 2 1

34R t ,t s2m ir" u t u t u tŽ . Ž . Ž . Ž . Ž .1 2 0 1 2 3

=e i v e gŽ t1yt 3. eyG I
2Ž t1yt 3.

2 r2yG H Ž t1qt 3. ,
21Ž .

which is independent of T . In general, we can show2
Ž .that, if the real part of g t is at most second order

in t and if the imaginary part is at most first order in
Ž .t, f is independent of T , and, if g t is at most the1 2

Ž . Žsecond order in t, f t is independent of T . This2 2

implies that the T dependence of the signal is a2

clear indication of the deviation of the real system
from this simple model. It is rather sensitive way of

.judging the applicability of this model.

Ž .The signal I T ,T ,T obtained from the gatedHM 1 2 3
< Ž3.Ž . < 2photon echo is proportional to P r,t ;k s

< Ž . < 2 Ž .R T ,T ,T , since the signal field E r,t isech 3 2 1 s

proportional to the polarizability P Ž3.. Here and here-k s

< <after, X denotes the absolute value of X. In our
Ž .simple model, it reduces to I T ,T ,T ;HM 1 2 3

eyG I
2ŽT1yT 3.

2y2 G H ŽT1qT 3.. In the conventional photon-
echo experiment, we observe the integrated quantity

Ž .H dT I T ,T ,T . If the Gaussian width G is3 HM 1 2 3 I

large in the sense that the ‘inhomogeneous’ dephas-
ing time is much smaller than the vibrational time
scales, the factor eyG I

2ŽT1yT 3.
2

can be treated as
Ž .d T yT , and we have a purely homogeneous1 3

Ž . y4 G HT1signal I T ,T ,T ;e . By measuring theHM 1 2 3

signal as the integrated one, we eliminate the ‘inho-
mogeneity’. However, it is sometimes impossible to
treat the factor as the delta function. In such a case,
the elimination of the ‘inhomogeneity’ in the pho-

w xton-echo experiment is incomplete 4 .
The crucial quantity of this Letter is the 2D

Fourier transformation of the echo response function

S v ,T ,vŽ .2D 3 2 1

` `

sRe dT dTH H1 3
y` y`

i v T qi v T1 1 3 3 < <=e R T ,T ,T . 22Ž . Ž .ech 3 2 1

Here and hereafter, v and v are variables conju-1 3
Žgate to the delay times T and T , respectively and1 3

are not the carrier frequencies of the first and third
.impulsive pulses .

In our simple case, we can show S v ,T ,vŽ .2D 3 2 1

reduces to

p 1
S v ,v sŽ . (1 3 2 2 G I

=
i

Re F V qF V� 4Ž . Ž .q y
v q iGq H

23Ž .

where

v q iG "v r2q H y
V s . 24Ž ." '2 G I
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Ž . Ž .Fig. 2. The relation between v ,v axes and v ,v axes.1 3 q y

Ž .Here, F z is the scaled complemented error
2yzŽ .function defined by F z s e 1yF yiz ,Ž .

Ž .where the error function is given by F z s
2z yt '2H d t e r p , and0

v sv yv , 25Ž .y 1 3

v s v qv r2 . 26Ž . Ž .q 1 3

The value of v increases along the diagonal direc-q
tion on the v yv plane, while the value of v1 3 y
increases along the diagonal direction; v and vq y
axes are the diagonal and anti-diagonal axes, respec-

' 'tively. Note here the scale factors 2 and 1r 2 for
Žthe diagonal and anti-diagonal axes, respectively see

.Fig. 2 .
Ž .Eq. 23 is an important result of our Letter. To

shed light on the essential features, we consider the
two limiting case as follows.

( )1. Large inhomogeneous Gaussian broadening
limit. If G <G , the Lorentzian factor in Eq.H I
Ž .23 shows a peak sharp enough to let v q iGq H

Ž .s0 in the remaining factors of S v ,v . Noting1 3
Ž . Ž .the relation, F yz syF z , we have

p 1 G 2 2H yv rŽ8 G .y IS v ,v s e .Ž . (1 3 2 22 G v qGI q H

27Ž .
Ž .Unlike the conventional 1DLS analysis, S v ,v1 3

is a simple product of the Lorentzian and Gauss-
ian with two independent frequency Õariables.

Thus, the diagonal and anti-diagonal widths di-
rectly give the Lorentzian and Gaussian widths,

Ž .respectively see Fig. 2 . The introduction of two
frequency variables allows us to separate the two
contributions as oppose to the conventional 1DLS
analysis.

( )2. Small inhomogeneous Gaussian broadening
limit. When there is no inhomogeneity, from Eqs.
Ž . Ž .21 and 22 , we have

G GH H
S v ,v s = . 28Ž . Ž .1 3 2 2 2 2v qG v qG1 H 3 H

In this purely homogeneous limit, the 2DLS be-
comes symmetric in the homogeneous limit.

Ž .The original expression 23 is plotted in Fig. 3;
the 11 contour lines are drawn where the maximum
is scaled to the unity; only the positive contributions
are explicitly displayed – the lowest contour line

Ž .Fig. 3. The 2DLS calculated from Eq. 23 . The dotted contour
Ž . Ž .line corresponds to the half maximum. a G rG s5. bI H

Ž .G rG s1. c G rG s1r5.I H I H
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corresponding to zero. When the Gaussian width is
fairly large compared with the Lorentzian width, as
in Fig. 3a, we see that the 2D contour map looks
elliptic and its major and minor axes at half maxi-
mum essentially give G and G , respectively,I H

namely, the ellipticity directly corresponds to the
ratio G rG . On the contrary, when the GaussianI H

width is small, as in Fig. 3c, we see that the contour
map looks symmetric with respect to diagonal and
off-diagonal axes. Considering also Fig. 3b, we con-
clude that the ellipticity of the 2D map is a clear
indicator for the relative strength of the Gaussian
width compared to the Lorentzian width; an elon-
gated shape indicates a large ‘inhomogeneity’ while
a symmetric shape corresponds to a ‘homogeneous’
line shape. Generally the diagonal and anti-diagonal
slices through the 2DLS are related to the ‘homoge-
neous’ and ‘inhomogeneous’ broadening, respec-
tively. On the contrary, the projection of the line
shape on to the axis is a convolution of the Gaussian
and Lorentzian contributions, and thus corresponds
to the 1D absorption spectrum, as understood from

Ž .Eq. 27 with setting v s0, or v s0.1 3

As the indicator, the definition of the ellipticity
has arbitrariness to some extent. Here, we define it
as the ratio of the anti-diagonal width at the half
maximum to the diagonal one. In the large Gaussian

Ž .broadening limit represented by Eq. 27 , the former
' 'is given by 2v r 2 s4 ln2 G , while the latter byy I' ' 'Ž2v 2 s2 2 G note the scale factors 1r 2 andq H' .2 mentioned in the above ; we see that the ratio is

Ž Ž ..1.2 G rG . In the opposite limit Eq. 28 , the ratioI H

is the unity. In other words, the ellipticity thus
defined approaches to 1.2 G rG and the unity asI H

the ratio G rG gets large and small, respectively.I H
ŽIn fact, the ellipticity for Fig. 3a,b,c are 7.5 s

.1.5G rG , 2.8, and 2.1 where the ratio G rG areI H I H

5, 1, 1r5, respectively.
In this Letter, we have used two modes to repre-

sent two effective dynamical time scales, which are
independent of one another. Solutions will more
likely be characterized by a broad distribution of
dynamical time scales, which would not lead to a
clear time-scale separation. Our model is the simpler
version, i.e., only two time scales which are indepen-
dent and vary from fast to slow. The effects are clear
in the 2DLS, and thereby this suggests that, in a
more realistic model, similar effects will be ob-

served. From these considerations, we can expect the
present theory has the capability to describe the
principle features even in the well-studied cases of
complex chromophores in solution.

In conclusion, we propose to obtain the 2DLS by
using the photon-echo signal with gated or hetero-
dyne detection, and by 2D Fourier transformation of
the absolute value of the signal with respect to the

Ž .first and last delay times. The homogeneous
Ž .Lorentzian and inhomogeneous Gaussian widths

manifest themselves as the ellipticity of the 2DLS.
The contours of the line shape can be used as a
quantitative measure of the homogeneous and inho-
mogeneous widths. It is also the case that a quantita-
tive analysis of the time-domain data will reveal the
same level of quantitative information as the line-
shape analysis, but only within the confines of this
simple model. In a more complex system, composed
of several lines or overtones, the spectral representa-
tion will be preferable over the oscillator nature of
the time-domain version.
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