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ABSTRACT
The partition function (PF) plays a key role in the calculation of quantum thermodynamic properties of a system that interacts with a heat
bath. The imaginary-time hierarchical equations of motion (imHEOM) approach was developed to evaluate in a rigorous manner the PF of a
system strongly coupled to a non-Markovian bath. In this paper, we present a numerically efficient scheme to evaluate the imHEOM utilizing
the β-differentiated imHEOM (BD-imHEOM) that are obtained by differentiating the elements of the imHEOM with respect to the inverse
temperature. This approach allows us to evaluate the system, system–bath interaction, and heat-bath parts of the PF efficiently. Moreover, we
employ a polyharmonic decomposition method to construct a concise hierarchical structure with better convergence, thus reducing the cost
of numerical integrations. We demonstrate the proposed approach by compute thermodynamic quantities of a spin-boson system and a 2 × 2
antiferromagnetic triangular spin lattice system with an Ohmic spectral distribution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091468

I. INTRODUCTION

The Boltzmann principle and the maximum entropy principle
are the central dogmas of statistical mechanics, and they allow us to
compute the thermodynamic variables of a dynamical system, char-
acterized by its temperature T. In the framework of canonical statis-
tical physics, a widely used assumption is that of a heat bath interact-
ing with the main system and yielding the system in its equilibrium
state ρ̂0

A = exp[−βĤA]/Z0
A(β), where ĤA is the Hamiltonian of the

main system and β = 1/kBT represents the inverse temperature, with
kB being the Boltzmann constant. Various thermodynamic variables
of the main system can be computed from the partition function
(PF), which is defined as Z0

A(β) = trA{exp[−βĤA]}.1,2

While conventional statistical mechanics is concerned with
equilibrium states, nonequilibrium statistical mechanics has been
developed to deal with the irreversible dynamics of a system toward
thermal equilibrium states.3–5 The key feature of this approach is
the introduction of a harmonic heat bath, which is modeled by an
infinite number of harmonic oscillators in the canonical distribu-
tion ρ̂0

B = exp[−βĤB]/Z0
B(β), where ĤB is the heat bath Hamiltonian

and Z0
B(β) = trB{exp[−βĤB]}. In this model, it is important to have

an explicit treatment of the system–bath (SB) interaction, with the
corresponding Hamiltonian being denoted by ĤI in the rest of this
paper.

Such a treatment is particularly important in the quantum case
because, in microscopic systems, the energy of the SB interaction
cannot be neglected and the quantum coherence due to the SB inter-
action characterizes the quantum nature of the dynamics. Under
these conditions, the thermal equilibrium state of the total system
is not the product of the system and bath equilibrium states, namely,
ρ̂eq

tot = ρ̂eq
A ⊗ ρ̂eq

B , but is instead an entangled state of the system and
bath described by ρ̂eq

tot = exp[−βĤtot]/Ztot(β), where the total Hamil-
tonian Ĥtot includes ĤI , and Ztot(β) = tr{exp[−βĤtot]}. Because the
bath has an infinite number of degrees of freedom, direct evaluation
of Ztot(β) is not easy, except in the case of a harmonic system with
bilinear SB interaction.6

To extend the description to a generic model of this kind,
Feynman–Vernon influence functional theory,7,8 which reduces the
bath degrees of freedom through functional integration, allows us
to describe the thermodynamics and dynamic properties of the
reduced system accurately. Therefore, influence functional the-
ory has become the foundation for conducting thermodynamic
investigations in a variety of problems.9–17

Among a variety of formalisms, the hierarchical equa-
tions of motion (HEOM) approach has proved to have broad
applicability18,19 for a system described in both discretized
energy space20 and Wigner space21 under nonperturbative and
non-Markovian SB interactions.22–25 Within this formalism, the
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imaginary-time evolution can also be computed as a definite inte-
gral along complex-time planes.20,21 Although the construction of a
hierarchy in the real-time formalism is well established, and a wide
variety of problems have been investigated, such investigations have
not been conducted in any detail in the imaginary-time case.

In this paper, we present a more detailed discussion of
imaginary-time HEOM (imHEOM). We also introduce an addi-
tional BD-imHEOM that are obtained from the derivative of the
elements of imHEOM with respect to inverse temperature β. We use
both imHEOM and BD-imHEOM to evaluate the thermodynamic
properties of not only the reduced system but also the system–bath
interaction and the bath, in a numerically rigorous manner. In
addition, we introduce the polyharmonic decomposition (PHD)
method26–28 to construct both the imHEOM and the BD-imHEOM
in a concise hierarchical structure that makes it possible to improve
the numerical performance with high precision.

The rest of this paper is organized as follows: In Sec. II, we
introduce the influence functional formalism for the thermal equi-
librium state. In Sec. III, we present the derivation of the imHEOM
and BD-imHEOM with the use of the PHD method. We also
describe a scheme to calculate various thermodynamic variables
based on the imHEOM theory. Numerical demonstrations for a
spin-boson system and a 2 × 2 antiferromagnetic triangular spin lat-
tice system with Ohmic spectral distribution are presented in Sec. IV.
Section V is devoted to our conclusions.

II. INFLUENCE FUNCTIONAL FORMALISM
FOR EQUILIBRIUM STATE
A. System–bath model

We consider a system described by a total Hamiltonian
expressed as

Ĥtot = ĤA + ĤI + ĤB, (1)

where ĤA denotes the reduced system. The heat bath is modeled by
an ensemble of harmonic oscillators,

ĤB =
N

∑
j
(

p̂2
j

2mj
+

1
2

mjω2
j x̂2

j ), (2)

where p̂j, x̂j, mj, and ωj are the momentum, position, mass, and fre-
quency of the jth oscillator, respectively. The SB interaction is given
by

ĤI = −V̂
N

∑
j

gjx̂j, (3)

where V̂ is the system part of the interaction and g j is the jth
coupling constant. The heat bath is characterized by the spectral
distribution function (SDF),

J(ω) ≡
N

∑
j

h̵g2
j

2mjωj
δ(ω − ωj), (4)

and the inverse temperature β.

Next, we define the reduced partition function (RPF) as

Zrd
A (β) =

Ztot(β)
Z0

B(β)
. (5)

In the case of a weak interaction, the RPF is solely determined by
the canonical distribution of the system part alone, Zrd

A (β) ≃ Z0
A(β),

which is consistent with statistical physics. However, because Zrd
A (β)

also involves the SB interaction, rigorous evaluation is limited to
cases for which the main system is described by a harmonic poten-
tial or the SB interaction is treated as a second-order perturbation,
where the quantum nature of the heat bath does not play a major
role.29–31

To evaluate Eq. (5), we define a reduced partition operator as

σ̂rd
A (β) =

1
Z0

B(β)
trB{e−βĤ tot}, (6)

which implies that Zrd
A (β) = trA{σ̂rd

A (β)}. In the path integral
approach, we can eliminate the heat bath degrees of freedom and
express Eq. (6) as6–10

σrd
A (q, q′, βh̵) = ∫

q(βh̵)=q

q(0)=q′
D[q(⋅)] e−S A[q,βh̵] F[q, βh̵], (7)

where {q} represents a functional of the system coordinates or
eigenstates, and

SA[q, βh̵] =
1
h̵∫

βh̵

0
dτ′ HA(τ′), (8)

is the Euclidean action of the system Hamiltonian. The imaginary-
time influence functional is expressed as F[q, βh̵] = exp{Φ[q, βh̵]},
where Φ[q, βh] is the influence phase defined as6–10,20,21

Φ[q, βh̵] =
1
h̵2∫

βh̵

0
dτ′∫

τ′

0
dτ′′ V(τ′)V(τ′′)C(τ′ − τ′′), (9)

with V(τ) ≡ V[q(τ)], and the correlation function,

C(τ) =
1
π∫

∞

0
dω J(ω)[coth(

βh̵ω
2
) cosh(ωτ) − sinh(ωτ)]. (10)

As in the real-time case, the term with coth(βh̵ω/2) cosh(ωτ)
describes the thermal fluctuation from the bath, while −sinh(ωτ)
describes the dissipation to the bath. The temperature-dependent
factor arises from the mean of the jth bath coordinate,
⟨x̂2

j ⟩ = coth(βh̵ωj/2)/(2mjωj), and V̂gj⟨x̂2
j ⟩ represents the thermal

energy supplied by the bath.
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III. HIERARCHICAL EQUATIONS OF MOTION
FOR EQUILIBRIUM STATE
A. Imaginary-time HEOM (imHEOM)

The elements of σ̂rd
A (β) can be evaluated under the imHEOM

approach. To construct the hierarchy, we first introduce a set of
functions {ϕk(τ)} that satisfy a closed differential equation,

∂

∂τ
ϕk(τ) =

K

∑
j

Dk,jϕj(τ). (11)

The correlation function (10) is then expanded in terms of ϕk(τ) as

C(τ) =
K

∑
k

λkckϕk(τ). (12)

Next, we replace the βh in Eq. (7) that appears as the upper
limit of the imaginary-time integrals in Eqs. (8) and (9) by τ ∈ [0, β],
while leaving coth(βhω/2) in Eq. (10) unchanged. The imHEOM
are obtained by differentiating σrd

A (q, q′, τ) with respect to τ as20,21

(see Appendix A)

∂

∂τ
σ̂[n⃗](τ) = −ĤA σ̂[n⃗](τ) +

K

∑
k

λk V̂ σ̂[n⃗+e⃗k](τ)

+
K

∑
k

nk ckϕk(0)V̂ σ̂[n⃗−e⃗k](τ)

+
K

∑
k,j

nk
ck Dk,j

cj
σ̂[n⃗−e⃗k+e⃗j](τ), (13)

where e⃗k is the kth unit vector.
To obtain the RPF defined as in Eq. (5), we integrate Eq. (13)

from τ = 0 to β with the initial condition σ̂[0⃗](τ = 0) = IA, where IA
is the unit matrix. Thus, we have

Zrd
A (β) = trA{σ̂[0⃗](β)}. (14)

Various thermodynamic quantities can be obtained from Zrd
A (β).

For example, the reduced Helmholtz free energy is evaluated as

Frd
A (β) = −

1
β

ln Zrd
A (β). (15)

From Eq. (5), we also have

Ftot(β) = Frd
A (β) + F0

B(β), (16)

where Ftot(β) ≡ −ln Ztot(β)/β and F0
B(β) ≡ − ln Z0

B(β)/β. Although
F0

B(β) is a divergent function regardless of β, this is not a hindrance
because Ftot(β) is a state variable that can be defined by the value
with or without external perturbation. Therefore, for the perturbed
system denoted by A′, the change in the total free energy is expressed
as

ΔFtot(β) = ΔFrd
A (β), (17)

where ΔFrd
A (β) = Frd

A′(β) − Frd
A (β). Note that if the system is in a

quasi-static equilibrium state, the above equality does not hold
because heat is generated in the system.24,25

The reduced internal energy and reduced entropy are obtained
as

Urd
A (β) = −

∂

∂β
ln Zrd

A (β)

= −
1

Zrd
A (β)

trA{
∂

∂β
σ̂rd

A (β)} (18)

and

Srd
A (β) = β2 ∂

∂β
Frd

A (β). (19)

They satisfy the relation:

Srd
A (β) = β[Urd

A (β) − Frd
A (β)], (20)

which is equivalent to Stot(β) = β[Utot(β) − Ftot(β)].

B. Polyharmonic decomposition (PHD) method
The imHEOM were originally constructed based on a Fourier

series in terms of the Matsubara frequencies.20,21 However, this
scheme has slow convergence and requires a large number of hier-
archical elements, particularly at low temperatures. To reduce the
numerical cost, in this work, we adopt the PHD method, which
represents a nonperiodic and holomorphic function F(x) as26,27

F(x) =
Q−1

∑
q=0

F0,q f0,q(x) +
L

∑
l=1

Fl f l(x), (21)

where x ∈ (0, 1), Q and L are positive integers that represent the
order of expansion, and f0,q(x) = Pq(2x − 1) is the qth Legendre
polynomial. The coefficients are given by

F0,q = (2q + 1)∫
1

0
dx F(x) f0,q(x), (22)

Fl = 2∫
1

0
dx F(x) f l(x). (23)

Originally, fl(x) was expressed as a sum of complex-valued expo-
nential functions, whose coefficients had to be determined by diag-
onalizing specified matrices. Here, to simplify the calculation while
maintaining accuracy, we employ an asymptotic approximation,27

f l(x) = cos(αl x + θ), (24)

with parameters given by

αl =
2l +Q − 1

2
π, θ =

Q − 1
4

π. (25)

To apply these to the imHEOM, we set x = τ/β and substitute
Eq. (23) into Eq. (10). Integrating over ω, we now express C(τ) as

C(τ) =
Q−1

∑
q=0

λq+1 c0,qϕ0,q(τ) +
L

∑
l=1

λQ+l clϕl(τ), (26)
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where λn = [1 − (−1)n
]/2 for any positive integer n. The basis

functions are given by

ϕ0,q(τ) = Pq(
2τ
β
− 1), (27)

ϕl(τ) = cos(
αl

β
τ + θ). (28)

The first derivatives of the above functions are further decomposed
into the same function set {ϕk(τ)} to satisfy Eq. (11). In this way, we
construct the imHEOM based on the PHD. The numerical accuracy
of the PHD scheme is verified in Appendix B.

The key to the PHD method lies in the exponential function
exp(−ωτ). However, due to the integration with respect to ω in
Eq. (10), the numerical accuracy of the PHD method is reduced in
the region of ω≪ 1/βh and ω≫ 1/βh , where the function asymp-
totically approaches a constant. To improve accuracy, we introduce
here the cut-off frequencies ωmin and ωmax for βhωmin ≪ 1 and
βhωmax ≫ 1 and divide the integration in Eq. (10) as follows:

∫

∞

0
dω → ∫

ωmin

0
dω + ∫

ωmax

ωmin

dω + ∫
∞

ωmax

dω. (29)

The first and last terms are then solved analytically using appropriate
approximations, while the second term is evaluated using the PHD
method.

C. The β-derivative imaginary-time HEOM
(BD-imHEOM) for internal energy calculation

The internal energy can be evaluated from Eq. (18) using a
finite-difference expression for Zrd

A (β) with respect to β. Instead, we
introduce a more straightforward approach by deriving a new set of
equations for ∂σ̂rd

A (β)/∂β in Eq. (18). Using the definition in Eq. (7),
we can evaluate the derivative with respect to β as

∂

∂β
(e−S A[q,βh̵] eΦ[q,βh̵]

)

= {−
1
h̵

HA(βh̵) +
1
h̵2 V(βh̵)∫

βh̵

0
dτ′′ V(τ′′)C(βh̵ − τ′′)

+Ψ[q, βh̵]}e−S A[q,βh̵]eΦ[q,βh̵], (30)

where

Ψ[q, τ] =
1
h̵2∫

τ

0
dτ′∫

τ′

0
dτ′′ V(τ′)V(τ′′) ∂βC(τ′ − τ′′), (31)

and

∂C(τ)
∂β

= −
1
π∫

∞

0
dω J(ω)

h̵ω
2 sinh2

(
βh̵ω

2 )
cosh(ωτ) (32)

can be regarded as the heat capacity of the bath as a function of
the inverse temperature. Using the definitions of the hierarchical
elements, we have

∂

∂β
σ̂rd

A (βh̵) = − ĤAσ̂[0⃗](βh̵) +
K

∑
k

V̂ σ̂[e⃗k](βh̵) + Ϛ̂rd
A (βh̵), (33)

where the density matrix elements of the last term at τ are defined as

Ϛrd
A (q, q′, τ) = ∫

q(τ)=q

q(0)=q′
D[q(⋅)] e−S A[q,τ] F[q, τ]Ψ[q, τ]. (34)

To evaluate Ϛ̂rd
A (βh̵), we derive the BD-imHEOM for the hier-

archical elements involving Eq. (32). Using the PHD method, we
have

∂C(τ)
∂β

=
K

∑
k

c′kϕk(τ). (35)

The BD-imHEOM are then expressed as (see Appendix A)

∂

∂τ
Ϛ̂[n⃗](τ) = −ĤA Ϛ̂[n⃗](τ) +

K

∑
k

V̂ Ϛ̂[n⃗+e⃗k](τ)

+
K

∑
k

nk ckϕk(0)V̂ Ϛ̂[n⃗−e⃗k](τ)

+
K

∑
k,j

nkck Dk,j

cj
Ϛ̂[n⃗−e⃗k+e⃗j](τ)

+
K

∑
k

c′k
ck

V̂ σ̂[n⃗+e⃗k](τ). (36)

We integrate Eq. (13) and the above equations simultaneously
over τ ∈ (0, βh) with the initial condition Ϛ̂[0⃗](τ = 0) = 0. We then
evaluate the internal energy of the system and the SB interaction as

UA(β) = ⟨ĤA⟩

= trA{ĤA
σ̂[0⃗](β)
Zrd

A (β)
} (37)

and

UI(β) = ⟨ĤI⟩

= −
K

∑
k

trA{V̂
σ̂[e⃗k](β)
Zrd

A (β)
}, (38)

where ⟨⋅ ⋅ ⋅⟩ represents the thermodynamic average of the total sys-
tem. The above results are consistent with the expressions obtained
from the real-time HEOM.22,23,32 The internal energy of the heat
bath is evaluated using the solution of Eq. (36) as

UB(β) = ⟨ĤB⟩

= −trA{
Ϛ̂[0⃗](β)
Zrd

A (β)
} +U0

B(β). (39)

The total internal energy Utot(β) = Urd
A (β) +U0

B(β) is now
expressed as

Utot(β) = UA(β) +UI(β) +UB(β). (40)

Through the use of the BD-imHEOM, we can evaluate the contri-
butions to the internal energy from each part of the Hamiltonian
separately.
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IV. NUMERICAL RESULTS
In this section, we report the results of numerical simula-

tions that demonstrate the validity and applicability of the present
approach.

A. Spin-boson system
We first investigate the changes in internal energy for ther-

mal transitions between isothermal and adiabatic states of the
total system. With regard to the isothermal state, we consider the
Hamiltonian

Ĥtot(g) = ĤA + g ĤI + ĤB, (41)

where g ∈ (0, 1) is a dimensionless factor representing the strength
of the coupling between system and heat bath. The PF is then
expressed as

Ztot(g, β) = tr{e−βĤ tot(g)}. (42)

The adiabatic state is described by the case f = 0, with a factorized
form of the PF, Ztot(0, β) = Z0

A(β)Z0
B(β). Thus, the change in the

total PF is expressed as

ΔZtot(g, β) =
Zrd

A (g, β)
Z0

A(β)
, (43)

where Z0
A(β) is evaluated from the eigenstates of the system Hamil-

tonian. Using Z0
A(β), we can calculate the free energy F0

A(β), internal
energy U0

A(β), and entropy S0
A(β) of the system. The change in the

total free energy is now given by

ΔFtot(g, β) = Frd
A (g, β) − F0

A(β), (44)

where Frd
A (g, β) is obtained from Eq. (15) using the imHEOM.

Accordingly, the change in the internal energy is evaluated as

ΔUtot(g, β) = Urd
A (g, β) −U0

A(β), (45)

where Urd
A (g, β) is obtained from Eqs. (18) and (33) through use of

the BD-imHEOM. From Eq. (20), we can evaluate the change in the
entropy as

ΔStot(g, β) = Srd
A (g, β) − S0

A(β). (46)

We now conduct our numerical computations for a simple
spin-boson system, with

ĤA =
h̵ω0

2
ŝ z
+

h̵Δ
2

ŝ x, (47)

where ŝ z and ŝ x are the spin operators in the z and x directions,
and Δ represents the strength of the transverse external field. The
SB interaction, Eq. (3), is given by

V̂ = ŝ x. (48)

We then chose ω0 as the unit for all other variables and set Δ = ω0.
The SDF is chosen as the Ohmic form with an exponential cutoff,

JO(ω) =
ζ ω
γ

e−
∣ω∣
γ , (49)

where ζ is the dimensionless coupling strength and γ is the cutoff fre-
quency. Here, we choose ζ = 0.5ω0 and γ = ω0. The decomposition
parameter values are set as Q = 2 and L = 10–20. The truncation of
the hierarchy level is N ≤ 10, Moreover, we use only auxiliary opera-
tors that satisfy∏K

k ∣ck∣ > 10−10 for calculation (see Appendix B) We
numerically integrate the imHEOM and BD-imHEOM using the
fourth-order low-storage Runge–Kutta method (LSRK4), with the
imaginary-time step δτ = 10−4

(ω−1
0 ).

FIG. 1. The change in the (a) free energy, (b) internal energy, and (c) entropy as
a function of g. The red, green, and blue curves represent different temperature
cases.
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Figures 1(a)–1(c) illustrate the changes in the free energy
ΔFtot(g, β), internal energy ΔU tot(g, β), and entropy ΔStot(g, β),
respectively, from the adiabatic state to the isothermal state at fixed
inverse temperatures. The changes in free energy and internal energy
are decreasing functions of g, whereas the change in entropy is an
increasing function. This is because as g increases, the excitation
energy of the system also increases due to the presence in HI of
the operator V̂ . In this example of an adiabatic–isothermal transi-
tion, gĤI can be regarded as the work done for the entire system to
insert the adiabatic wall. Thus, the entropy production ΔStot(g, β) is
always positive, and it is larger for lower temperatures. We should
note that the difference in thermodynamic quantities between the
adiabatic state and the isothermal state is useful for validating the
simulation when the reduced system is infinite while the heat bath is
comparatively small.33,34

B. A 2 × 2 antiferromagnetic triangular Ising system
with transverse field

Next, we demonstrate the scalability of this approach. For this
purpose, we employ the 2 × 2 transverse Ising model. The system
Hamiltonian is defined as35,36

ĤA = −J∑
⟨i,j⟩

ŝz
i ŝz

j − μ∑
i

ŝx
i , (50)

where J is the interaction between nearest-neighbor pairs ⟨i, j⟩ and
μ represents the transverse field. To conduct the numerical calcu-
lation, we choose an antiferromagnetic case J = −0.5ω0. The system
part of the SB interaction has the same form as in the transverse field
and is expressed as

V̂ =∑
i

ŝx
i . (51)

The SDF is chosen as that in Eq. (49), with ζ = 0.1ω0 and γ = ω0
fixed. The other parameter values for the hierarchy and the PHD
decomposition are the same as in Sec. IV A.

Each component of the internal energy is obtained from
Eqs. (37)–(39). In addition to these, we calculate the heat capacity
defined as Cα ≡ ∂Uα(β)/∂β. The derivatives of the internal energy
with respect to β for α = A, I, and B are evaluated by the first-order
finite-difference method as

Cα(β) = lim
δβ→0

Uα(β + δβ) −Uα(β)
δβ

(52)

with δβ = 10−4–10−3
(ω−1

0 ).
Figures 2(a)–2(c) depict the internal energy of the system

UA(β), that of the SB interaction UI(β), and that of the heat bath
ΔUB(β) = UB(β) −U0

B(β) as functions of βh for μ = 0.1, 0.3, and
0.5. The system’s internal energy UA(β) decreases monotonically as
β increases because thermal excitation is suppressed. Moreover, the
value of UA(β) becomes smaller for larger μ because the transverse
field enhances the excitation energies of the spin lattice system. Such
a tendency is also observed in an isolated system where there is no
interaction with a heat bath.

The absolute values of UI(β) correspond to the strength of the
SB interaction. As shown in Figs. 2(b) and 2(c), UI(β) and ΔUB(β)
roughly exhibit an opposite β dependence. This is because, as a con-
sequence of Eq. (16), the internal energy of the total system is the

FIG. 2. The internal energy of the (a) system, (b) SB interaction, and (c) heat
bath are plotted as a function of β h for a weak SB coupling case. The colored
curves represent the results for different transverse field strength cases: μ = 0.1
(red curve), μ = 0.3 (green curve), and μ = 0.5 (blue curve).

same as the internal energy of the reduced system. Because we set
V̂ parallel to the transverse field, UI(β) and ΔUB(β) become almost
flat for small μ, as shown in Figs. 2(b) and 2(c).

In Figs. 3(a)–3(c), we plot the heat capacity Cα(β) for α
= A, I, and B corresponding to the cases in Figs. 2(a)–2(c), respec-
tively. The heat capacity of the system, CA(β), exhibits a maxi-
mum near the inverse temperature corresponding to the excita-
tion energy. As a result, the position of the maximum shifts in
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FIG. 3. The heat capacity of the (a) system, (b) SB interaction, and (c) heat bath are
plotted as a function of β h. The colored curves represent the results for different
transverse field strength cases.

the high-temperature direction for larger μ. Because UI(β) and
ΔUB(β) exhibit monotonic behavior, CI(β) and CB(β) also behave
monotonically.

The change in the internal energy of the system from the
adiabatic to isothermal states is presented in Appendix C. The dif-
ferences in thermodynamic quantities between these two states are
useful for validating the simulation of an isolated infinite system
with a small coupled heat bath.33,34

V. CONCLUSIONS
The imHEOM provide a formalism for studying the thermo-

dynamic properties of open quantum mechanical systems based on
partition functions. In this paper, we have extended the imHEOM
formalism and derived the so-called BD-imHEOM to solve for the
temperature gradient. Numerical solution of the imHEOM enables
evaluation of the thermodynamic variables of the system and the
system–bath interaction, while solution of the BD-imHEOM enables
evaluation of those for the heat bath. We have also introduced
the PHD method to perform numerical calculations with both
approaches more concisely and efficiently.

The capability of this formalism has been verified through
numerical demonstrations. We have employed a spin-boson model
and a 2 × 2 transverse Ising model to clearly reveal the behavior of
various quantities in a straightforward manner. Although this work
has been restricted to an Ohmic form of the SDF, we note here that
the PHD method imposes no restrictions on the SDF and could
have broader applications. Other forms, for example, sub-Ohmic
and super-Ohmic, can also be treated, as long as the solutions for
ω < ωl and ω > ωu are properly constructed. Moreover, our analysis
can also be extended to a system described by Wigner distribution
functions. On this basis, we can investigate not only quantum cases
but also classical cases by taking the classical limits.

To make the present approach more useful, further computa-
tional efforts will have to be made to treat larger systems. For exam-
ple, we can extend our imHEOM to the wavefunction-based case by
utilizing some other techniques, such as the stochastic hierarchy of
pure states (HOPS),37 the stochastic Schrödinger equation (SSE),38

the hierarchical stochastic Schrödinger equations (HSSE),39 and the
hierarchical Schrödinger equations of motion (HSEOM).33,34 The
scalability of all the above-mentioned approaches is the same as
that of the typical Schrödinger equation, which incurs less compu-
tational cost than the density-matrix-based approach. We believe
that the present results clarify the key features of quantum open
dynamics systems with regard to their fundamental thermodynamic
properties.
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APPENDIX A: DERIVATION OF imHEOM
AND BD-imHEOM

In this appendix, we illustrate the derivation of the imHEOM
and BD-imHEOM. The path integral representation of the reduced
density matrix elements at τ is expressed as
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σA(q, q′, τ) = ∫
q(τ)=q

q(0)=q′
D[q(⋅)]e−S A[q,τ] eΦ[q,τ]. (A1)

Employing the linear summation (12), we can rewrite Eq. (9) as

Φ[q, τ] =
1
h̵2∫

τ

0
dτ′∫

τ′

0
dτ′′ V(τ′)V(τ′′)C(τ′ − τ′′)

=
K

∑
k

λk

h̵2∫

τ

0
dτ′∫

τ′

0
dτ′′ V(τ′′)Θk(τ

′, τ′′), (A2)

where

Θk(τ
′, τ′′) = ckϕk(τ

′
− τ′′)V(τ′′). (A3)

To obtain the imHEOM, we introduce the following set of auxiliary
operators:

σ[n⃗](q, q′, τ) = ∫
q(τ)=q

q(0)=q′
D[q(⋅)]e−S A[q,τ] F[q, τ]

×
K

∏
k
[∫

τ

0
dτ′ Θk(τ, τ′)]

nk

, (A4)

where [n⃗] = [. . . , nk, . . . ] is the index vector. Thus, the zeroth ele-
ment at τ = β corresponds to Eq. (A1), while all of the other ele-
ments are introduced for computational purposes. Taking the partial
derivative with respect to τ, we obtain Eq. (13).

Next, we derive the BD-imHEOM. We employ Eq. (35) and
introduce a new set of auxiliary operators defined as

Ϛ[n⃗](q, q′, τ) = ∫
q(τ)=q

q(0)=q′
D[q(⋅)] e−S A[q,τ] F[q, τ]

×Ψ[q, τ]
K

∏
k
[∫

τ

0
dτ′ Θk(τ, τ′)]

nk

. (A5)

Differentiating these with respect to τ, we obtain Eq. (36).
We note that the BD-imHEOM are more sensitive to temper-

ature changes than the imHEOM. As can be seen from Eq. (32),
∂C(τ)/∂β decays exponentially with β (i.e., ∝ e−β). At very low
temperatures (i.e., βhω0 > 50), however, this term becomes almost
constant, and therefore, we cannot apply the PHD method directly
for the BD-imHEOM in this region, while there is no such limitation
on the imHEOM, as we confirmed from the numerical simulations
for the case of extremely low temperature (βhω0 ≃ 100) and strong
coupling (ζ ≃ 2.0ω0).

APPENDIX B: NUMERICAL ACCURACY OF imHEOM

In this appendix, to verify the accuracy of the imHEOM
approach and PHD method, we compare the equilibrium distribu-
tion,

ρ̂ im
=

σ̂rd
A (β)

Zrd
A (β)

, (B1)

with that obtained from the steady-state solution of the real-time
HEOM.40,41 We use the same spin-boson system as in Sec. IV A. The
SDF is chosen in the Drude form,

JD =
ζγ2 ω

ω0(γ2 + ω2)
, (B2)

with γ = ω0 and ζ = 0.5ω. To conduct the numerical integration in
the real-time HEOM approach, we employ the Padé decomposi-
tion method with dimension K = 10–20 and hierarchy truncation
level N ≤ 10. The time step for the LSRK4 method is chosen as
δt = 10−2ω−1

0 .
The relative difference is defined as

ϵ(β) = −log10∣
ρre

0 (β) − ρim
0 (β)

ρre
0 (β)

∣, (B3)

where ρre
0 and ρim

0 are the ground-state populations obtained from
the real-time and imaginary-time approaches, respectively. Figure 4
shows ϵ(β) for typical weak-coupling (ζ = 0.01), intermediate-
coupling (ζ = 0.1), and strong-coupling (ζ = 0.5) cases. For all
cases, the deviation between the two approaches is less than 1%,
which proves the accuracy of the imHEOM. Although the error
becomes larger in the low-temperature and strong-coupling case,
we can improve the accuracy by increasing the number of decom-
position functions and the hierarchy level. We have found that to

FIG. 4. The relative difference between imaginary- and real-time HEOM is shown
in logarithmic scale. The red, blue, and purple curves correspond to the typical
weak-, intermediate-, and strong-coupling cases, respectively.

J. Chem. Phys. 156, 174112 (2022); doi: 10.1063/5.0091468 156, 174112-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

maintain numerical accuracy, the number of hierarchies for the
imHEOM with the PHD method should satisfy

L ≃
⎧⎪⎪
⎨
⎪⎪⎩

5βh̵ω0 + 10 (βω0 < 10),

10
√

βh̵ω0 (βω0 ≥ 10).
(B4)

Moreover, because ck ∝ β−1, the deeper hierarchy elements decay
rapidly to 0. Thus, to reduce the computational cost, we employ only
auxiliary operators that satisfy ∏K

k ∣ck∣ > 10−10. The accuracy of the
numerical calculation can be adjusted easily by changing the number
of hierarchical elements included in the calculation.

APPENDIX C: CHANGE IN INTERNAL ENERGY
FOR 2 × 2 SPIN LATTICE SYSTEM

In Fig. 5, we plot the change in the system’s internal energy
from the adiabatic state (HI = 0) to the isothermal state, defined
as ΔUA(β) = UA(β) −U0

A(β), where U0
A(β) is the internal energy of

ĤA. The changes in the internal energies for SB interaction and the
bath are identical to those shown in Figs. 2(b) and 2(c), respectively.
While both UA(β) and U0

A(β) are monotonically decreasing func-
tions, their difference ΔUA(β) exhibits a minimum at larger μ. This

FIG. 5. The change of the system internal energy ΔUA(β) = UA(β) − U0
A(β) is

depicted as a function of inverse temperature. The colored curves represent the
results for different transverse field strength cases: μ = 0.1 (red curve), μ = 0.3
(green curve), and (c) μ = 0.5 (blue curve).

is because the curvatures of these functions are greater for larger μ,
and the presence of the SB interaction further enhances the effects of
μ because we have chosen μ and V̂ in the same direction.
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