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ABSTRACT: By employing the Dirac−Frenkel time-depend-
ent variational principle, we study the dynamical properties of
the Holstein molecular crystal model with diagonal and off-
diagonal exciton−phonon coupling. A linear combination of
the Davydov D1 (D2) ansatz, referred to as the “multi-D1
ansatz” (“multi-D2 ansatz”), is used as the trial state with
enhanced accuracy but without sacrificing efficiency. The time
evolution of the exciton probability is found to be in perfect
agreement with that of the hierarchy equations of motion,
demonstrating the promise the multiple Davydov trial states
hold as an efficient, robust description of dynamics of complex
quantum systems. In addition to the linear absorption spectra computed for both diagonal and off-diagonal cases, for the first
time, 2D spectra have been calculated for systems with off-diagonal exciton−phonon coupling by employing the multiple D2
ansatz to compute the nonlinear response function, testifying to the great potential of the multiple D2 ansatz for fast, accurate
implementation of multidimensional spectroscopy. It is found that the signal exhibits a single peak for weak off-diagonal coupling,
while a vibronic multipeak structure appears for strong off-diagonal coupling.

1. INTRODUCTION

Thanks to recent advances in ultrafast spectroscopy, femto-
second photoexcitation has became a major technique in
probing elementary excitations, which brought about numerous
studies on relaxation dynamics of photoexcited entities, for
example, polarons in inorganic liquids and solids,1−3 charge
carriers in topological insulators,4,5 trapped electrons and holes
in the semiconductor nanoparticles,6−8 and electron−hole pairs
in light-harvesting complexes of photosynthesis.9−13 Emerging
technological capabilities to control femtosecond pulse
durations and down-to-1-Hz bandwidth resolutions offer
unpreceded windows on vibrational dynamics and excitation
relaxation. For example, progress in femtosecond spectroscopy
has enabled the observation of a coherent phonon wave packet
oscillating along an adiabatic potential surface associated with a
self-trapped exciton in a crystal with strong exciton−phonon
interactions.14 Taking advantage of ultrashort pulse widths of
recent lasers, the femtosecond dynamics of polaron formation
and exciton−phonon dressing have been observed in pump−
probe experiments.15−17 These experiments have revealed a
complex interplay between a single exciton and its surrounding
phonons under nonequilibrium conditions, while theoretical
developments have not been kept in parallel. In particular,
modeling of polaron dynamics have not received much-
deserved attention over the last six decades.18,19

From a theoretical point of view, capturing time-dependent
polaron formation requires an in-depth understanding of the

combined dynamics of the particle and the phonons in its
environment.20 A simple Hamiltonian is that of the extended
Holstein molecular crystal model21,22 with simultaneous
diagonal and off-diagonal exciton−phonon coupling, as shown
in Figure 1a, where the diagonal coupling represents a
nontrivial dependence of the exciton site energies on the
lattice coordinates, and the off-diagonal coupling, a nontrivial
dependence of the exciton transfer integral on the lattice
coordinates.23−27 A large body of literature exists on the study
of the conventional form of the Holstein Hamiltonian with the
diagonal coupling only.28,29 It seems fundamental to take into
account simultaneously diagonal and off-diagonal coupling to
characterize solid-state excimers24,25 as a variety of experimental
and theoretical studies imply a strong dependence of electronic
tunneling upon certain coordinated distortions of neighboring
molecules in the formation of bound excited states. However,
complete understanding of the off-diagonal coupling and out-
of-equilibrium phenomena remains elusive. Early treatments of
the off-diagonal coupling include the Munn−Silbey
theory,26,27,30 which is based upon a perturbative approach
with additional constraints on canonical transformation
coefficients determined by a self-consistency equation. The
global-local (GL) ansatz,31,32 formulated by Zhao and co-
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workers in the early 1990s, was subsequently employed in
combination with the dynamic coherent potential approxima-
tion (with the Hartree approximation) to arrive at a state-of-
the-art ground-state wave function as well as higher
eigenstates.33

Because an exact solution to the polaron dynamics still eludes
us, several numerical approaches have been developed. For
example, the time-dependent Schrödinger equation can be
numerically integrated in real space for a few phonon time
periods to probe the time evolution of electron and phonon
densities and electron−phonon correlation functions.34 How-
ever, the method is time-consuming and impractical when the
size of the system is large. Fortunately, time-dependent
variational approaches are still valid to treat the polaron
dynamics in such cases as long as a proper trial wave function is
adopted. Previously, static properties of the Holstein polaron
and the spin-boson model were studied by Zhao and his co-
workers with a set of trial wave functions based upon phonon
coherent states, including the Toyozawa ansatz,31,35,36 the GL
ansatz,31,32,36,37 a delocalized form of the Davydov D1 ansatz,

38

and the multi-D1 ansatz.39 The results of these extended
Davydov ansa ̈tze exhibit great promises in the investigation of
the polaron energy band and other static properties of the
Holstein polaron. However, difficulties surround accurate
simulations of the polaron dynamics from an arbitrary initial
state, such as a localized state for which the aforementioned
Bloch states are not well suited. Thus, the question of what type
of the variational trial state is suitable for the polaron dynamics
of the Holstein model is still open.
By using the Dirac−Frenkel time-dependent variational

principle, a powerful apparatus to reveal accurate dynamics of
quantum many-body systems,40 one can study the polaron
dynamics of the Holstein model with simultaneous diagonal
and off-diagonal exciton−phonon coupling. Time-dependent
variational parameters, which specify the trial state, are obtained
by solving a set of coupled differential equations generated

from the Lagrangian formalism of the Dirac−Frenkel variation.
Validity of the trial states is carefully examined by quantifying
how faithfully they follow the Schrödinger equation.28,29,41 The
hierarchy of the Davydov ansa ̈tze includes two trial states of
varying sophistication, referred to as the D1 and D2
ansa ̈tze,42−46 with the latter being a simplified version of the
former. The D1 ansatz is sufficient to describe the Holstein
polaron dynamics with the diagonal coupling, but fails in the
presence of the off-diagonal coupling. In comparison, the D2
ansatz exhibits a nice dynamical performance with the off-
diagonal coupling, though the deviation from the exact solution
to the Schrödinger dynamics is not negligible.41 Instead,
superposition of the D1 or the D2 ansa ̈tze will be adopted in our
work, which offers significant improvements in the flexibility of
the trial state,47 thus yielding accurate polaron dynamics of the
Holstein model with simultaneous diagonal and off-diagonal
coupling.
Recently, two-dimensional (2D) electronic spectroscopy has

been widely used to probe ultrafast energy transfer and charge
separation processes in photosynthetic light harvesting
complexes.48−54 Compared to linear spectroscopy techniques
in which the spectral lines are often congested, ultrafast
nonlinear spectroscopies can resolve dynamical processes with
various time scales. In a 2D electronic spectroscopy experiment
and apparatus, for example, three ultrashort laser pulses,
separated by two time delays, namely, the coherence time and
the waiting time, are incident on the sample, and the resultant
signal field is spectrally resolved in a given phase-matched
direction. The 2D contour plots of the signals provide direct
information about excitonic relaxation and dephasing in a
variety of molecular systems. Simulation of 2D electronic
spectra of molecular aggregates was previously carried out for
the Holstein model with the diagonal exciton−phonon
coupling. However, the effect of off-diagonal coupling on the
2D spectra is yet to be addressed.
In this paper, the multiple Davydov trial states, called the

multi-D1 and multi-D2 ansa ̈tze, will be adopted to simulate the
polaron dynamics of an extended Holstein Hamiltonian that
includes the off-diagonal exciton−phonon coupling. Validity of
these trial states is carefully examined with the linear absorption
spectra compared closely with the ground-state energy band. In
addition, 2D spectra for systems with off-diagonal exciton−-
phonon coupling will be calculated by employing the multiple
D2 ansatz. The remainder of the paper is organized as follows.
In section 2, we introduce the Holstein Hamiltonian and two
novel variational wave functions on the basis of the multiple
Davydov trial states, together with a criterion that quantifies the
deviation of our trial states from the exact solution to the
Schrödinger equation. In section 3, results are analyzed
including the time evolution of the exciton amplitudes and
the phonon displacements, the quantitative measurement for
the trial state validity, and the linear absorption and 2D spectra.
Finally, conclusions are drawn in section 4.

2. METHODOLOGY

2.1. Model. The Hamiltonian of the one-dimensional
Holstein polaron is composed of

̂ = ̂ + ̂ + ̂ + ̂− −H H H H Hex ph ex ph
diag

ex ph
o.d.

(1)

where Ĥex, Ĥph, Ĥex−ph
diag and Ĥex−ph

o.d. represent the exciton
Hamiltonian, the bath (phonon) Hamiltonian, the diagonal

Figure 1. (a) Schematic of the Holstein ring. A simplified molecular
crystal is treated as a ring where each point represent a two level
molecule and the coils denote the phonons. (b and c) Phonon wave
functions of the Davydov D1 and D2 ansa ̈tze, respectively. The phonon
part of the D1 ansatz depends on both sites and momentum, while that
of the D2 ansatz is site independent.
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exciton−phonon coupling Hamiltonian and the off-diagonal
coupling Hamiltonian, respectively, which are defined as

∑

∑

∑

∑

ω

ω

ϕ ω

̂ = − ̂ ̂ + ̂

̂ = ̂ ̂

̂ = − ̂ ̂ ̂ + ̂

̂ = ̂ ̂ − ̂ +

+ ̂ ̂ − ̂ +

†
+ −

†

−
† − †

−
†

+

†
−

−

H J a a a

H b b

H g a a b b

H a a b

a a b

( ),

,

(e e ),

1
2

{ [e (e 1) H. c. ]

[e (1 e ) H. c. ]}

n
n n n

q
q q q

n q
q n n

iqn
q

iqn
q

n q
q n n

iqn iq
q

n n
iqn iq

q

ex 1 1

ph

ex ph
diag

,

ex ph
o.d.

,
1

1

(2)

where H.c. denotes the Hermitian conjugate, ωq is the phonon
frequency with momentum q, an̂

† (a ̂n) is the exciton creation
(annihilation) operator for the nth molecule, and b ̂q† (bq̂) is the
creation (annihilation) operator of a phonon with the
momentum q,

∑ ∑̂ = ̂ ̂ = ̂† − † † − − †
b N b b N be , eq

n

iqn
n n

q

iqn
q

1/2 1/2

(3)

The parameters J, g and ϕ represent the transfer integral,
diagonal and off-diagonal coupling strengthes, respectively, and
N is the number of sites in the Holstein ring. In this paper, a
linear phonon dispersion is assumed

ω ω
π

= +
| |

−
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥W

q
1

2
1q 0

(4)

where ω0 denotes a central phonon frequency, W is the
bandwidth falling between 0 and 1, and q = 2πl/N represents

the momentum index with = − +l 1, ...,N N
2 2

.

2.2. Multiple Davydov Trial States. In the past, two
typical Davydov trial states, i.e., the D1 and D2 ansa ̈tze, were
used to obtain the time evolution of the Holstein polaron
following the Dirac−Frenkel variation scheme. The D2 ansatz is
a simplified version of the D1 ansatz, since the phonon
displacements of the D1 (D2) trial state is site-dependent (site-
independent), as illustrated in Figure 1b,c. Multiple Davydov
trial states with the multiplicity M are then introduced in this
paper, which can be constructed as follows

∑ ∑

∑ ∑ ∑

ψ λ

ψ λ λ

| ⟩ = | ⟩| ⟩

= ̂ | ⟩ ̂ − * ̂ | ⟩† †

t n

a b b

D ( ) ,

0 exp{ [ ]} 0

M

i

M

n

N

i n i n

i

M

n

N

i n n
q

inq q inq q

1 , ,

, ex ph

(5)

and

∑ ∑

∑ ∑ ∑

ψ λ

ψ λ λ

| ⟩ = | ⟩| ⟩

= ̂ | ⟩ ̂ − * ̂ | ⟩† †

t n

a b b

D ( ) ,

0 exp{ [ ]} 0

M

i

M

n

N

i n i

i

M

n

N

i n n
q

iq q iq q

2 ,

, ex ph

(6)

where ψi,n and λinq are related to the exciton probability and the

phonon displacement, respectively, n represents the site index

in the molecular ring, and i labels the coherent superposition

state. If M = 1, both the |D1
M(t)⟩ and |D2

M(t)⟩ ansa ̈tze are

reduced to the usual Davydov D1 and D2 trial states,

respectively. The equations of motion for the variational

parameters ψi,n and λinq are then derived by adopting the

Dirac−Frenkel variational principle,

ψ ψ

λ λ

∂
∂ *̇

− ∂
∂ * =

∂
∂ *̇

− ∂
∂ * =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

t
L L

t
L L

d
d

0,

d
d

0

i n i n

inq inq

, ,

(7)

For the multi-D1 ansatz defined in eq 5, the Lagrangian L1 is

given as

= ⟨ | ℏ ∂⃡
∂

− ̂ | ⟩

= ℏ ⟨ | ∂⃗
∂

| ⟩ − ⟨ | ∂⃖
∂

| ⟩

−⟨ | ̂ | ⟩

⎡
⎣⎢

⎤
⎦⎥

L t
i

t
H t

i
t

t
t t

t
t

t H t

D ( )
2

D ( )

2
D ( ) D ( ) D ( ) D ( )

D ( ) D ( ) ,

M M

M M M

M M

1 1 1

1 1 1 1

1 1 (8)

where the first term yields

∑ ∑

∑ ∑ ∑

ψ ψ ψ ψ

ψ ψ
λ λ λ λ

λ λ λ λ
λ λ λ λ

⟨ | ∂⃗
∂

| ⟩ − ⟨ | ∂⃖
∂

| ⟩

= * ̇ − ̇*

+ *
*̇ + * ̇

−
̇ * + ̇*

+ * ̇ − *̇

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

t
t

t t
t

t

S

S

D ( ) D ( ) D ( ) D ( )

( )

2

2

M M M M

i j

M

n
jn in jn in ji

i j

M

n
jn in ji

q

jnq jnq jnq jnq

inq inq inq inq
jnq inq inq jnq

1 1 1 1

,

,

(9)

and the second term is

⟨ | ̂ | ⟩

= ⟨ | ̂ | ⟩ + ⟨ | ̂ | ⟩

+ ⟨ | ̂ | ⟩ + ⟨ | ̂ | ⟩− −

t H t

t H t t H t

t H t t H t

D ( ) D ( )

D ( ) D ( ) D ( ) D ( )

D ( ) D ( ) D ( ) D ( )

M M

M M M M

M M M M

1 1

1 ex 1 1 ph 1

1 ex ph
diag

1 1 ex ph
o.d.

1 (10)

Detailed derivations of the equations of motion for the

variational parameters are given in Appendix A.
Similarly, the equations of motion for the multi-D2 ansatz

can be derived using the Dirac−Frenkel variational principle in
eq 7 with the Lagrangian L2 defined as
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= ⟨ | ℏ ∂⃡
∂

− ̂ | ⟩

= ℏ ⟨ | ∂⃗
∂

| ⟩ − ⟨ | ∂⃖
∂

| ⟩

− ⟨ | ̂ | ⟩

⎡
⎣⎢

⎤
⎦⎥

L t
i

t
H t

i
t

t
t t

t
t

t H t

D ( )
2

D ( )

2
D ( ) D ( ) D ( ) D ( )

D ( ) D ( )

M M

M M M M

M M

2 2 2

2 2 2 2

2 2
(11)

Assuming the trial wave function |D1,2
M (t)⟩ = |Ψ(t)⟩ at time t,

we introduce a deviation vector δ ⃗(t) to quantify the accuracy of
the variational dynamics based on the multiple Davydov trial
states

δ χ γ⃗ = ⃗ − ⃗

= ∂
∂

|Ψ ⟩ − ∂
∂

| ⟩

t t t

t
t

t
t

( ) ( ) ( )

( ) D ( )M
1,2 (12)

where the vectors χ ⃗(t) and γ(⃗t) obey the Schrödinger equation
χ ⃗ = ∂|Ψ ⟩ ∂ = ̂ |Ψ ⟩ℏt t t H t( ) ( ) / ( )

i
1 and the Dirac−Frenkel varia-

tional dynamics γ(⃗t) = ∂|D1,2
M ⟩/∂t in eq 7, respectively. Using

the Schrödinger equation and the relationship |Ψ(t)⟩ = |
D1,2

M (t)⟩, the deviation vector δ ⃗(t) can be calculated as

δ ⃗ =
ℏ

̂ | ⟩ − ∂
∂

| ⟩t
i

H t
t

t( )
1

D ( ) D ( )M M
1,2 1,2 (13)

Thus, deviation from the exact Schrödinger dynamics can be
indicated by the amplitude of the deviation vector Δ(t) =
∥δ⃗(t)∥. In order to view the deviation in the parameter space
(W,J,g,ϕ), a dimensionless relative deviation σ is calculated as

σ = Δ ∈t
N t

t t
max{ ( )}

mean{ ( )}
, [0, ]

err
max

(14)

where Nerr(t) = ∥χ ⃗(t)∥ is the amplitude of the time derivative of
the wave function,

= ⟨ ∂
∂

Ψ | ∂
∂

Ψ ⟩

= ⟨ | ̂ | ⟩

≈ Δ

N t
t

t
t

t

t H t

E

( ) ( ) ( )

D ( ) D ( )M M

err

1,2
2

1,2

(15)

since ⟨E⟩= ⟨D2
M(t)|Ĥ(t)|D2

M(t)⟩ ≈ 0 in this paper.
Two types of initial states are considered, i.e., the exciton

either sits on a single site for diagonal coupling cases or on two
nearest-neighboring sites for off-diagonal coupling cases. Other
initial states, such as Gaussian and uniform distributions for the
exciton occupation, have also been investigated, leading to
similar results but with larger relative errors. To avoid
singularity, noise satisfying the uniform distribution [−10−5,
10−5] is added to the variational parameters ψi,n and λiq (λinq) of
the initial states. With the wave functions |D1

M(t)⟩ and |D2
M(t)⟩

at hand, the energy of the Holstein polaron Etotal = Eex+ Eph+
Ediag+ Eoff is calculated, where Eex = ⟨D1,2

M |Ĥex|D1,2
M ⟩, Eph = ⟨D1,2

M |
Ĥph|D1,2

M ⟩, Ediag = ⟨D1,2
M |Ĥex−ph

diag |D1,2
M ⟩ and Eoff = ⟨D1,2

M |Ĥex−ph
o.d. |D1,2

M

⟩. In addition, the exciton probability Pex(t, n) and the phonon
displacement Xph(t, n) are defined as follows

= ⟨ | ̂ ̂ | ⟩

= ⟨ | ̂ + ̂ | ⟩

†

†

P t n a a

X t n b b

( , ) D D ,

( , ) D D

M
n n

M

M
n n

M

ex 1,2 1,2

ph 1,2 1,2 (16)

Optical spectroscopy is another important aspect for the
investigation of the polaron dynamics, as it provides valuable
information on various correlation functions. First of all, the
linear absorption spectra F(ω) calculated from the polaron
dynamics on the basis of different ansa ̈tze will be
comprehensively studied. The autocorrelation function F(t)
of the exciton−phonon system is introduced

= ⟨⟨ | | ̂ ̂ | ⟩ | ⟩

= ⟨⟨ | ⟨ | ̂ ̂ | ⟩ | ⟩

̂ − ̂ †

− ̂ †

F t P P

P P

( ) 0 0 e e 0 0

0 0 e 0 0

iHt iHt

iHt

ph ex ex ph

ph ex ex ph (17)

with the polarization operator

∑μ̂ = ̂ | ⟩ ⟨ | + | ⟩ ⟨ | ̂†P a a( 0 0 0 0 )
n

n nex ex ex ex
(18)

The linear absorption F(ω) is then calculated by means of the
Fourier transformation,

∫ω
π

= ω
∞

F F t t( )
1

Re ( )e di t

0 (19)

In addition to the information provided by the linear
absorption spectra, 2D electronic spectra provide direct
knowledge on coupling between different exciton states and
dephasing and relaxation processes that are elusive in the
output from the traditional 1D spectroscopy. Theoretical
simulation of 2D spectra involves the calculation of third
order polarization P(t), which can be expressed in terms of the
nonlinear response functions Ri, where i goes from 1 to 4.55−57

The 2D electronic spectra are measured in two configurations
that correspond to the rephasing (subscript R) and non-
rephasing (subscript NR) contribution to the third order
polarization P(t), which, in the impulsive approximation, can be
written as

τ τ τ

τ τ τ

∼ − +

∼ − +

P t T i R t T R t T

P t T i R t T R t T

( , , ) [ ( , , ) ( , , )],

( , , ) [ ( , , ) ( , , )]

R

NR

(3)
2 3

(3)
1 4 (20)

where τ (the so-called coherence time) is the delay time
between the first and second pulses, T (the so-called population
time) is the delay time between the second and third pulses,
and t is the delay time between the third pulse and measured
signal. The rephasing and nonrephasing 2D spectra can be then
obtained by performing 2D Fourier−Laplace transformation of
eq 20 as follows

∫ ∫

∫ ∫

ω ω τ τ

ω ω τ τ

=

=

τ
ω τ ω

τ
ω τ ω

∞ ∞
− +

∞ ∞
+

τ

τ

S T t iP t T

S T t iP t T

( , , ) Re d d ( , , )e ,

( , , ) Re d d ( , , )e

R t R
i i t

NR t NR
i i t

0 0

(3)

0 0

(3)

t

t

(21)

The total 2D signal is defined as the sum of the nonrephasing
and the rephasing part

ω ω ω ω ω ω= +τ τ τS T S T S T( , , ) ( , , ) ( , , )t R t NR t (22)

In this work, we will apply the multiple D2 states to calculate
the nonlinear response functions Ri with special attention paid
to the role of the off-diagonal exciton−phonon coupling on the
2D spectra. The reader is referred to the Appendix D for more
details on the applications of the multiple D2 ansa ̈tze to the
simulation of 2D spectra.
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3. NUMERICAL RESULTS
3.1. Validity of Variational Dynamics. Figure 2 illustrates

the time evolution of the system energies, including the exciton

energy Eex, the phonon energy Eph and the exciton−phonon
interaction energy Ediag for a diagonal coupling only case with
transfer integral J = 0.1, bandwidth W = 0.5 and coupling
strength g = 0.1. For a molecular ring of 16 sites, the energies
obtained with three different ansa ̈tze are compared (the open
circles, the solid triangles and the solid line correspond to the
single D2, D2

M−32, D1
M−5 ansatz, respectively ). Results obtained

with the multi-D2 ansatz with M = 32 display obvious
deviations from those by the single D2 ansatz, demonstrating
the improvement produced by the multiple Davydov trial states
over its single ansatz counterpart. In addition, the dynamics
generated on the D1 trial state can be made more accurate by
the D1

M=5 ansatz, and results of Eex, Eph and Ediag by the D1
M=5

ansatz are in perfect agreement with those obtained with the
D2

M=32 ansatz, which indicates the robustness of the polaron
dynamics based on the multiple Davydov trial states when the
multiplicity M is sufficiently large.
A comprehensive test of the validity for our new trial states

consisting of the multiple Davydov ansa ̈tze is performed for
various parameters sets (J,W,g,ϕ). In Figure 3a, the relative
deviation σ, given by eq 14, is displayed as a function of 1/M,
for the diagonal coupling case of J = 0.1, W = 0.5, g = 0.1 and ϕ
= 0. AsM increases, the relative error σ monotonically deceases,
and the value σ = 0.067 obtained at 1/M = 0.2 is very small,
which indicates the length of the deviation vector δ ⃗(t), as
defined in eq 12, is negligibly small with respect to those of the
vectors χ ⃗(t) and γ(⃗t). Moreover, the result that the deviation
obtained by the D1

M=5 ansatz is comparable with σ = 0.033
obtained with the D2

M=32 ansatz demonstrates the accuracy of
the multiple Davydov trial states when M is sufficiently large.

In Figure 3b, the relative deviation σ is displayed as a
function of the transfer integral J with circles and triangles

Figure 2. Energies of the exciton, the phonons, and the exciton−
phonon interaction, i.e., Eex(t), Eph(t), and Ediag(t), are displayed as a
function of the time t for the weak coupling case of J = 0.1, g = 0.1, W
= 0.5, and ϕ = 0. The open circles, the solid triangles and the solid line
correspond to the results obtained with the single D2, D2

M=32, and D1
M=5

ansa ̈tze, respectively.

Figure 3. (a) Relative deviation σ of the multi-D1 ansatz in a 16-site
molecular ring is displayed as a function of 1/M. The set of parameters
J = 0.1, g = 1, W = 0.5, and ϕ = 0 is used. Moreover, the relative
deviation σ for the diagonal coupling case is also plotted as a function
of the transfer integral J in part b and diagonal coupling strength g in
part c. For both cases, the lines with circles and triangles correspond to
the results obtained with the multiplicity M = 1 and M = 4,
respectively.
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corresponding to results obtained by the multi-D1 ansa ̈tze with
M = 1 and 4, respectively. Other parameters used in the
simulation are g = 0.1,W = 0.5 and ϕ = 0. An obvious reduction
in the relative error σ has been found when the multiplicityM is
increased for the entire J regime. Similarly, the relative error σ
against the diagonal coupling strength g is displayed in Figure
3c for M = 1 and 4, respectively. The relative error σ is
obviously reduced for the multiplicity M = 4 in comparison
with that for M = 1 when g < 0.3. However, these two curves
overlap for g > 0.3 as the exciton is self-trapped in one of the
sites. The above results indicate that the multiple Davydov trial
states will significantly improve the accuracy of the delocalized
state, while in the localized state the single D1 ansatz is
sufficient. In addition, the multiple Davydov trial states in the
off-diagonal coupling case are also investigated with the
nonzero value of ϕ. Taking the set of parameters ϕ = 0.4
and g = J = W = 0 as an example, the relative error σ is
displayed as a function of 1/M in Figure 4. As M increases, the

relative error σ decreases, similar to the diagonal coupling case
as shown in Figure 3a, although the value of σ for M = 6 (σ =
0.54) remains relatively large. For off-diagonal coupling,
considerable improvements in accuracy can be achieved by
utilizing multi-D2 with the increase of multiplicity M (see
discussions in ref 47).
3.2. Exciton Probabilities and Phonon Displacements.

Dynamical properties of the Holstein polaron, including the
exciton probabilities and phonon displacements, are inves-
tigated by using the multiple Davydov trial states, and in
comparison with those obtained with the single Davydov ansatz
and the numerically exact HEOM method58−61(see Appendix
B). Figure 5 illustrates the time evolution of the exciton
probability Pex(t, n) for the case of J = 0.5, W = 0.5, g = 0.1 and
ϕ = 0. For simplicity, a small ring with N = 10 sites is used in
the simulations. As depicted in Figure 5a,b, distinguishable
deviation in Pex(t, n) can be found between the variational
results from the D1

M=1 and D1
M=8 ansa ̈tze. Interestingly, the

exciton probability Pex(t, n) obtained from the HEOM method
almost overlaps with that obtained by the D1

M−8 ansatz (see
Figure 5b,c). Furthermore, the exciton probability difference
between the variational method and the HEOM method,
ΔPex(t, n), as depicted in Figure 5d, is two orders of magnitude
smaller than the value of Pex(t, n). It indicates that the

variational dynamics of the Holstein polaron can be numerically
exact if the multiplicity M of the D1 ansatz is sufficiently large.
In Figure 6, the exciton probabilities Pex(t, n) at the site n = 5

and 10 are plotted in the top and the bottom panels with the
solid line, the dashed line and the circles, corresponding to the
variational results obtained with the single D1 and D1

M=8 ansa ̈tze
and the HEOM results, respectively. The near overlap of the
dashed line and the circles further reconfirms the validity of the
multi-D1 ansatz.

Figure 4. Relative deviation σ from the multi-D1 ansatz is displayed as
a function of 1/M for the off-diagonal coupling case with the coupling
strength ϕ = 0.4, and other parameters J = W = g = 0 are set.

Figure 5. Time evolution of the exciton probability Pex(t, n) for the
case of J = 0.5, W = 0.5, g = 0.1 and ϕ = 0 is displayed in parts a−c,
corresponding to the results obtained with the single D1 ansatz, the
D1

M=8 ansatz and the HEOM method, respectively. The difference
ΔPex(t, n) between the HEOM and the D1

M=8 variational method is also
displayed in part d. We set the size of the molecular ring N = 10 in
simulations.

Figure 6. Time evolution of the exciton probability Pex(t, n) at n = 5
and 10 are displayed in the top and bottom panel for the case of J =
0.5,W = 0.5, g = 0.1 and ϕ = 0. In each panel, the solid line, the dashed
lines and the circles correspond to the variational results obtained with
the single D1 and D1

M=8 ansa ̈tze and the HEOM results, respectively.
The size of the molecular ring is set to N = 10.
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Displayed in parts a and c of Figure 7 are the exciton
probability Pex(t, n) and the phonon displacement Xph(t, n)

obtained with the single D1 ansatz, respectively, for the case of
W = 0.5, g = 0.1, J = 0.5, and ϕ = 0. For comparsion,
corresponding results of Pex(t, n) and Xph(t, n) obtained by the
multi-D1 ansatz with M = 4 are presented in parts b and d of
Figure 7, respectively. Quite obvious difference is found in the
excitonic behavior for the two cases when t/(2π/ω0) > 3.
Specifically, the exciton probability calculated by the single D1
ansatz staggers around two sites in the ring before being
eventually trapped near site 8 accompanied by a thickened
phonon cloud (cf. Figure 7c), while that obtained by the multi-
D1 ansatz with M = 4 continues to propagate in two opposite
directions. The former behavior is apparently an artifact as the
combination of J = 0.5 and g = 0.1 places the system firmly in
the large polaron regime, incompatible with any form of self-
trapping at long times. This shows that the single D1 ansatz is
too simplistic to capture accurate polaron dynamics at long
times, especially in the weak coupling regime.
Next, we investigate the improvement on the polaron

dynamics by the multi-D2 trial state for the off-diagonal
coupling case. The exciton probability Pex(t, n) calculated by
the multi-D2 ansatz with M = 16 for two different sets of the
parameters, (J = 0.1, g = 0, ϕ = 0, W = 0.5) and (J = 0.1, g = 0,
ϕ = 0.1, W = 0.5), are displayed in Figures 8a,b, respectively.
Corresponding Pex(t, n) obtained by the single D2 ansatz with
the same two sets of parameters are shown in Figure 8c,d,
which reveals a similar pattern of the exciton motion with the
same speed of the exciton packet, v = ω0/2π, despite the
increase of the off-diagonal coupling strength from 0 to 0.1. In
contrast, the exciton probability obtained with the multi-D2
ansatz shows localization signatures for off-diagonal coupling
strength ϕ = 0.1, which is absent if ϕ = 0. It indicates that the
combined effect of the transfer integral and the off-diagonal
coupling will confine the exciton to the sites of the initial
creation, despite that acting alone, either the transfer integral or
the off-diagonal coupling may propagate the exciton wave
packets. This phenomenon can be better understood after

analyzing the energy band near the zone center where a discrete
self-trapping transition occurs.36 Our calculations show that
effective mass in the case of ϕ = 0.1 is larger than that of ϕ = 0,
resulting in a less mobile polaron. It demonstrates again that
the polaron dynamics obtained with the multiple Davydov trial
states is more accurate than that by the single Davydov trial
state.

3.3. Absorption Spectra. In this subsection, we employ
the multiple Davydov trial states to study the linear absorption
spectra F(ω) defined in eq 19. To facilitate comparisons,
spectral maxima are normalized to unity, and a damping factor
of 0.08 ω0 is used.

28,29 In Figure 9, the linear absorption spectra
F(ω) of a 16-site ring is displayed for the case of g = 0.2, J = 0.1,
W = 0.1, and ϕ = 0. In Figure 9a, we compare results obtained
by the single D1 (solid) and single D2 (dashed) ansa ̈tze. Large
differences are found between these two curves, and negative
values in the spectrum obtained by the single D2 ansatz point to
its apparent invalidity. The multiple D1 trial states are capable
to correct such inaccuracies in its single-D1 counterpart, as
demonstrated in Figure 9b for the multiple D1 trial state with
multiplicity M = 4. Similar corrections are also achieved by a
multi-D2 ansatz with a multiplicity of 16, as shown in the same
panel. Moreover, the position of the zero-phonon line, denoted
by ωm (in unit of ω0), is marked by the vertical dash-dotted line
at −0.75(1).
The zero-phonon line can be also determined by the ground-

state polaron energy band Ek, where k is the crystal momentum.
In order to identify the relationship, the transition moment Pk
quantifying the transition probability between the vacuum state
and the exciton state is introduced and defined as Pk= ex⟨0 |ph⟨0|
P̂†|Ψk⟩, where P̂ = μ∑n(an̂

†|n⟩ex ex⟨n| + |n⟩ex ex⟨n|a ̂n) is the
polarization operator, and Ψk is the ground-state trial wave
function with the crystal momentum k. By employing the
variational method with the Toyozawa and delocalized D1
ansa ̈tze (details are shown in Appendix C), the ground-state
wave function Ψk can be obtained, and corresponding polaron
energy band Ek = ⟨Ψk|Ĥ|Ψk⟩ can be calculated accordingly.

Figure 7. Time evolution of the exciton probability Pex(t, n) and the
phonon displacement Xph(t, n) obtained with the single D1 ansatz (left
panel) and the D1

M=4 ansatz (right panel) are displayed in parts a−d for
the case of W = 0.5, g = 0.1, J = 0.5, and ϕ = 0.

Figure 8. Time evolution of the exciton probability Pex(t, n) is
displayed for the case of J = 0.1 and ϕ = 0 in the left column and the
case of J = 0.1 and ϕ = 0.1 in the right column. Other parameters used
are g = 0,W = 0.5, and N = 16 for both cases. Two different trial states,
the D2

M=16 and D2
M = 1 ansa ̈tze, are used in the parts a and b and parts c

and d, respectively.
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Variational calculations carried out for different k values are
independent of each other, and the set of Ek constitutes a
variational estimate (an upper bound) for the polaron energy
band. In Figure 10, polaron energy bands Ek/ω0 calculated
variationally for the case of g = 0.2, ϕ = 0, J = 0.1, and W = 0.1,
are plotted as a function of the crystal momentum k/π with the
solid and open circles corresponding to the delocalized D1 and
the Toyozawa ansa ̈tze, respectively. For simplicity, we set μ =
ω0 = 1. Interestingly, the normalized position of the zero-
phonon line, ωm/ω0 in Figure 9b, is consistent with the value of
Ek=0/ω0. It indicates that Ψk=0 is the bright state responsible for
the zero-phonon line, in perfect agreement with the obtained
transition probability Pk, which is nonzero only at the crystal
momentum k = 0 as depicted in the inset.
Moreover, absorption spectra in the presence of off-diagonal

coupling (ϕ ≠ 0) are investigated with the aid of a multi-D2
ansatz with M = 16 (we set J = g = W = 0 for simplicity). As
shown in Figure 11, with an increase in the off-diagonal
coupling strength ϕ, phonon sidebands of the linear absorption
spectra become broadened and the intensity of the zero-
phonon line is reduced. Vertical dashed lines shown in the 4
panels of Figure 11 denote the positions of the zero-phonon
lines (ωm/ω0 = −0.08, −0.369, −0.956, and −1.93). For strong

off-diagonal coupling, such as the case of ϕ = 1, the linear
absorption spectra, shown in Figure 12, behave quite differently
from those in weak off-diagonal coupling cases, such as ϕ = 0.1
and 0.2 (cf. Figure 11). All of the sharp peaks are smeared out,
and the zero-phonon line almost disappears. In order to better
understand the line shape, we plot the absorption spectrum in a
log−log scale in the inset. A power-law fitting (dashed line)
yields a slope of 2.1(1) indicating that the phonon sideband
deviates from the Gaussian line shape. A Lorentzian line-shape
function (dotted line) is then introduced for the fitting,

Figure 9. Linear absorption spectra F(ω) for a 16-site, one-
dimensional ring of a coupled exciton−phonon system are displayed
in (a) for the single D1 and D2 ansa ̈tze and in (b) for the single D1,
D1

M=4 and D2
M=16 ansa ̈tze. The set of parameters J = 0.1, g = 0.2, W =

0.1, and ϕ = 0 are used. A rescaled factor is adopted to normalize the
spectral maxima to facilitate comparisons. The vertical dash-dotted line
indicates the location of the zero-phonon line ωm/ω0 = −0.75(1).

Figure 10. Polaron energy bands Ek/ω0 are calculated variationally
using the delocalized D1 ansatz (solid line) and the Toyozawa ansatz
(open circles) for the case of g = 0.2, J = 0.1, W = 0.1, and ϕ = 0. The
position of the zero-phonon line ωm/ω0 is marked by the dashed line,
consistent with the values of Ek=0/ω0. A lattice of N = 16 sites is used
in calculations. In the inset, the transition moment Pk is plotted as a
function of the crystal momentum k.

Figure 11. Linear absorption spectra F(ω) obtained with the D2
M=16

ansatz are displayed in parts a−d for the off-diagonal coupling cases
with the nonzero coupling strengths ϕ = 0.1, 0.2, 0.3, and 0.4,
respectively. Other parameters g = W = J = 0 and N = 16 are set. The
vertical dash-dotted lines indicate locations of zero-phonon lines.
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consistent with the absorption spectrum obtained from the
variational method.
3.4. 2D Spectra. In addition to the linear absorption

spectra, fast and accurate implementation of the multidimen-
sional spectroscopy is possible via the time-dependent
variational method developed here. As an example, we present
in this subsection 2D spectra calculated for a molecular ring of
10 sites using the multiple D2 ansatz. For the secondary bath
whose spectral density is defined by eq 53, we adopt the
overdamped Brownian oscillator model with the Drude-
Lorentz type spectral density

ω η γω
ω γ

=
+

D( ) 2 2 2 (23)

The resulting line shape function [cf. eq 58] can be evaluated
analytically,55

∑

η
γ

γβ γ η
γ

γ

ηγ
β

ν
ν ν γ

= + − − + −

+
+ −

−

γ γ

ν

− −

=

∞ −

g t t i t

t

( ) cot
2

[e 1] [e 1]

4 e 1
( )

t t

n

t
n

n n1
2 2

n

(24)

where νn = 2πn/β is the Matsubara frequency. In our
calculations, we set η = 0.1, β = 5, and γ = 0.02.
In Figure 13, 2D spectra of the 10-site ring are displayed for

the case of ϕ = 0.1 (left panel) and ϕ = 0.4 (right panel). For
simplicity, we set J = g = W = 0, and adopt the toy model of J-
aggregates with the tangential (head-to-tail) orientations of the
transition dipoles. We first consider weak off-diagonal coupling
(ϕ = 0.1). The 2D spectra are shown in parts a−c of Figure 13,
corresponding to the population times T = 0, 20, and 40,
respectively. At T = 0, the signal exhibits a single peak located
at (ωτ,ωt) = (−0.08,−0.08), which is elongated along the
diagonal line. As the population time increases, the elongation
becomes less pronounced, and the peak appears more rounded.
We then study the case of strong off-diagonal coupling with ϕ =
0.4, as depicted in the right column of Figure 13 for several

values of the population time (see Figure 13, parts d−f for T =
0, 20, and 40, respectively). Overall, it is found that strong
exciton phonon coupling induces a pronounced vibronic
multipeak structure in the 2D spectra. With increasing
population time, the shapes as well as the strengths for the
peaks change, and we also find population cascades from high
to low energy regions with lower ωt for larger values of T, as
demonstrated in Figure 13d−f.

4. CONCLUSIONS
In this work, we have studied the dynamical properties of the
Holstein polaron in a one-dimensional molecular ring using the
Dirac−Frenkel time-dependent variational principle and an
extended form of the Davydov trial states, also known as the
“multi-D1 ansatz” (“multi-D2 ansatz”), which is a linear
combination of the single Davydov D1 (D2) trial states. For
both diagonal and off-diagonal exciton−phonon coupling, the
relative error quantifying how closely the trial state follows the
Schrödinger equation is found to decrease with the multiplicity
M, reflecting the improvement in accuracy of the multiple
Davydov trial states. Moreover, exciton probabilities calculated
by the multiple Davydov trial states are obtained, in perfect
agreement with those from a numerically exact approach
employing the hierarchy equations of motion, demonstrating
the great promise the multiple Davydov trial states hold as an
efficient, robust description of dynamics of the complex
quantum systems.
An abnormal self-trapping phenomenon is uncovered in the

dynamical behavior of polaron with the increase of the off-
diagonal coupling. Besides, the optical spectrum is also studied

Figure 12. Linear absorption spectrum F(ω) obtained by the D2
M=16

ansatz is displayed for the off-diagonal coupling case with ϕ = 1. In the
inset, the power-law and the Lorentzian fittings are given in the log−
log scale with the dashed and dotted lines, respectively.

Figure 13. 2D spectra of the molecular ring for off-diagonal coupling
strengths ϕ = 0.1 (left column) and ϕ = 0.4 (right column). Upper,
middle and lower panels correspond to the population time T = 0, 20,
and 40, respectively. Other parameters g = W = J = 0 and N = 10 are
set.
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as a sensitive indicator of the accuracy of the variational polaron

dynamics. Among our findings, linear absorption spectra from

the multi-D1 ansatz with a multiplicity of 4 can be reproduced

by the multi-D2 ansatz with a multiplicity of 16, and the

positions of the zero-phonon lines are in good agreement with

ground-state energy bands calculated by the Toyozawa and the

delocalized D1 ansa ̈tze in the weak electronic coupling (transfer

integral) regime. Moreover, for the first time, 2D spectra have

been calculated for systems with off-diagonal exciton−phonon
coupling by employing the multiple D2 ansatz to compute the

nonlinear response function, testifying to the great potential of

the multiple D2 ansatz for fast, accurate implementation of

multidimensional spectroscopy. It is also found that the signal

exhibits a single peak for weak off-diagonal coupling, while a

vibronic multipeak structure appears for strong off-diagonal

coupling.

■ APPENDIX A. THE MULTI-D1 TRIAL STATE

The individual energy terms can be respectively calculated as

follows:
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where the Debye−Waller factor is formulated as
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The Dirac−Frenkel variational principle leads to equations of

motion:
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■ APPENDIX B. HIERARCHY EQUATION OF MOTION

For the Holstein model [eq 1], let us denote |n⟩ = an̂
†|0⟩ex where

|0⟩ex stands for the exciton vacuum. Then the reduced density

matrix element for the exciton system is expressed in the path

integral form with the factorized initial condition as62
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where S[n] is an action of the exciton system and F[n,n′] is the

Feynman−Vernon influence functional
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∫ ∫∑ ω

βω ω

ω
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q q
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(33)

In the above equation, β is the inverse of temperature (β = 1/
kBT), and the abbreviations

= − ′ ° = + ′×V V n V n V V n V n( ) ( ), ( ) ( )q q q q q q (34)

are introduced with V̂q
† = g∑n an̂

† an̂e
iqn.

eq 33 can be rewritten as
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(35)

Taking derivative of eq 32, one has

∫ ∫

∫

∑

ρ ρ
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If we use the following superoperator

ω

βω

Φ̂ = *
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×

±
×

t V t

t V t V t

( ) ( )/2,
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q q q

q q q q
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Equations 35 and 36 then can be simplified as

∫ ∫∑′ = − ′ Φ
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∫ ∫

∫

∑

ρ ρ

ρ

∂
∂

′ = − ′

− Φ ′ ′

× ′ ′ Θ ′

+ ′ Θ ′ × ′ ′

ω

ω

−
+

− −
−

−

t
n n t i n n t

t n n n n t

s s

s F n n t

( , ; ) ( , ; )

( ) ( , ; )

d [e ( )

e ( )] e ( , ; )e

q
q

t
i t s

q

i t s
q

iS n t iS n t

0 0 0

0

( )

( ) [ , ] [ , ]

q

q
(39)

In order to derive the equations of motion, we introduce the
auxiliary operator ρm1±,m2±,···,mN±

(n,n′;t) by its matrix element as

∫ ∫ ∫

∫

∏
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(40)

for non-negative integers m1±,m2±,...,mN±. Note that only
ρ̂0···..0(t) = ρ̂(t) has a physical meaning and the others are
introduced for computational purposes only. Differentiating
ρm1±,m2±,...,mN±

(n,n′;t) with respect to t, we can obtain the
following hierarchy of equations in the operator form:
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1 (41)

The HEOM consists of an infinite number of equations, but
they can be truncated using a number of hierarchy elements.
The infinite hierarchy of eq 41 can be truncated by the
terminator as

∑ρ ω

ρ

∂
∂

̂ = − + −

× ̂

− +± ±

± ±

t
t i i m m

t

( ) ( ( ))

( )

m m
q

q q q

m m

,...,

,...,

N

N

1

1 (42)

The total number of hierarchy elements can be evaluated as Ltot
= (Ntrun + 2N)!/Ntrun!(2N)!, while the total number of
termination elements is Lterm = (Ntrun + 2N − 1)!/(2N − 1)!
Ntrun!, where Ntrun is the depth of the hierarchy for mq±(q = 1,
..., N). In practice, we can set the termination elements to zero
and thus the number of hierarchy elements for the calculation
can be reduced as Lcalc = Ltot − Lterm.

■ APPENDIX C. DELOCALIZED D1 ANSATZ AND THE
TOYOZAWA ANSATZ

Our interest in this work includes the polaron ground-state
energy band, computed as

κ κ κ= ⟨Ψ | ̂ |Ψ ⟩E H( ) ( ) ( ) (43)

where |Ψ(κ)⟩ is an appropriately normalized, delocalized trial
state, and Ĥ is the system Hamiltonian. The joint crystal
momentum is indicated by the Greek κ. It should be noted that
the crystal momentum operator commutes with the system
Hamiltonian, and energy eigenstates are also eigenfunctions of
the crystal momentum. Therefore, variations for distinct κ are
independent. The set of E(κ) constitutes a variational estimate

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.5b12483
J. Phys. Chem. A 2016, 120, 1562−1576

1572

http://dx.doi.org/10.1021/acs.jpca.5b12483


(an upper bound) for the polaron energy band. The relaxation
iteration technique, viewed as an efficient method for
identifying energy minima of a complex variational system, is
adopted in this work to obtain numerical solutions to a set of
self-consistency equations derived from the variational
principle. To achieve efficient and stable iterations toward the
variational ground state, one may take advantage of the
continuity of the ground state with respect to small changes in
system parameters over most of the phase diagram and may
initialize the iteration using a reliable ground state already
determined at some nearby points in parameter space. Starting
from those limits where exact solutions can be obtained
analytically and executing a sequence of variations along well-
chosen paths through the parameter space using solutions from
one step to initialize the next, the whole parameter space can be
explored.
The D1 and D2 ansa ̈tze are localized states from the soliton

theory, but without considering a form factor of a delocalized
state. The polaron state have been analyzed with the
delocalized D1 and Toyozawa ansa ̈tze, both of which are
Bloch states with the designated crystal momentum. The D1
and D2 ansa ̈tze can be transformed to the delocalized D1 and
Toyozawa ansa ̈tze via a projection operator P̂κ

∑ δ κ̂ = = − ̂κ
κ− − ̂P N Pe ( )

n

i P n1 ( )

(44)

where

∑ ∑̂ = +† †P ka a qb b
k

k k
q

q q
(45)

The delocalized D1 ansatz are then obtained after the
delocalization onto the usual D1 ansatz

κ κ κ κ|Ψ ⟩ = | ⟩⟨ | ⟩−( )1
1/2

(46)

∑ ∑

∑

κ α

β

| ⟩ =

× − − | ⟩
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−
†

− −
†

a

b

e

exp[ ( H. c. )] 0

n

i n

n
n n n

n
n n n n n

1

,

1 1

2
1 2 2

(47)

where H.c. stands for the Hermitian conjugate, |0⟩ is the
product of the exciton and phonon vacuum states, αn1−n

κ is the

exciton amplitude, and the phonon displacement βn1−n,n2−n
κ

depends on n1 and n2, respectively, the sites at which an
electronic excitation and a phonon are generated.
After the delocalization onto the usual D2 ansatz, the

Toyozawa ansatz is given by

κ κ κ κ|Ψ ′ ⟩ = | ′⟩⟨ ′| ′⟩−( )2
1/2

(48)

∑ ∑

∑

κ ψ

λ

| ′⟩ =

× − − | ⟩

κ κ
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−
′ †

−
′ †

a

b

e

exp[ ( H. c. )] 0

n

i n

n
n n n

n
n n n

1

2

1 1

2 2
(49)

where ψn1−n
κ′ is the exciton amplitude analogous to αn1−n

κ in the

delocalized D1 ansatz, and λn2−n
κ′ is the phonon displacement.

Actually, λn2−n
κ′ is just one column of the phonon displacement

matrix βn1−n,n2−n
κ in the delocalized D1 ansatz.

■ APPENDIX D. SIMULATION OF 2D SPECTRA
USING MULTIPLE D2 ANSÄTZE

In order to describe the population decays and dephasings
induced by solvent, we add additional term HB+HSB to the
Hamiltonian 1

̂ = ̂ + ̂ + ̂ + ̂ + ̂ + ̂

= ̂ + ̂ + ̂
− −H H H H H H H

H H H

ex ph ex ph
diag

ex ph
o d

B SB

S B SB

. .

(50)

where we have included vibrational modes with significant
exciton−phonon coupling into system Hamiltonian, i.e., ĤS =
Ĥex+ Ĥph + Ĥex−ph

diag + Ĥex−ph
o.d. , and treated the rest of vibrational

modes as a heat bath. We assume a harmonic bath with site-
independent and diagonal system bath coupling56,57,63

∑̂ = ℏΩ †H c cB
j

j j j
(51)

∑ ∑ κ̂ = ℏΩ +
=

† †H c c a a( )SB
j n

N

j j j j n n
1 (52)

Here, cj(cj
†) is the annihilation (creation) operator of the jth

bath mode with frequency Ωj, and κj is the corresponding
exciton-bath coupling strength. The bath spectral density is
specified by

∑ω κ δ ω= Ω − ΩD( ) ( )
j

j j j
2 2

(53)

It is noted that system-bath Hamiltonian ĤSB commutes with
the system Hamiltonian ĤS, and as a result, the nonlinear
response function can be represented as a product of the
system and bath. Furthermore, by making use of the fact that
the system-bath coupling is the same for all excitons, the effect
of bath can be taken into account through line shape factors Fi
in the framework of second-order cummulant expansion.
Finally, we arrived at the formulas for the nonlinear response
function56
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∑
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τ τ

τ τ

τ τ
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(54)

Here

μ μ μ μ=′ ″ ‴ ′ ″ ‴C e e e e( )( )( )( )n n n n 1 n 2 n 3 n 4 n, , , (55)
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are the geometrical factors which must be averaged over
orientations of the transition dipole moments μn. For simplicity,
we can assume all laser fields have the same polarization, then
the averaging can be done analytically, leading to

μ μ μ μ

μ μ μ μ μ μ μ μ

=

+ +

′ ″ ‴ ′ ″ ‴

″ ′ ‴ ‴ ″ ′

C
1

15
(( )( )

( )( ) ( )( ))

n n n n n n n n

n n n n n n n n

, , ,

(56)

The line shape factors Fi can be easily evaluated as55
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where g(t) is the line shape function
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The next crucial step is to approximate the propagator in
terms of the multiple D2 ansatz, i.e,

∑ ∑ ∑ψ λ λ| ⟩| ⟩ = ̂ | ⟩ ̂ − * ̂ | ⟩− † †
n a b be 0 0 exp{ [ ]} 0iH t

ph
i

M
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N

i n n ex
q

iq q iq q, ph
s

(59)

Explicitly, we have final expressions for the nonlinear response
function
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