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ABSTRACT: Simulating the irreversible quantum dynamics of
exciton- and electron-transfer problems poses a nontrivial
challenge. Because the irreversibility of the system dynamics is a
result of quantum thermal activation and dissipation caused by the
surrounding environment, it is necessary to include infinite
environmental degrees of freedom in the simulation. Because the
capabilities of full quantum dynamics simulations that include the
surrounding molecular degrees of freedom are limited, employing a
system−bath model is a practical approach. In such a model, the
dynamics of excitons or electrons are described by a system
Hamiltonian, while the other degrees of freedom that arise from
the environmental molecules are described by a harmonic oscillator
bath (HOB) and system−bath interaction parameters. By
extending on a previous study of molecular liquids [J. Chem. Theory Comput. 2020, 16, 2099], here, we construct a system−bath
model for exciton- and electron-transfer problems by means of a machine learning approach. We determine both the system and
system−bath interaction parameters, including the spectral distribution of the bath, using the electronic excitation energies obtained
from a quantum mechanics/molecular mechanics (QM/MM) simulation that is conducted as a function of time. Using the analytical
expressions of optical response functions, we calculate linear and two-dimensional electronic spectra (2DES) for indocarbocyanine
dimers in methanol. From these results, we demonstrate the capability of our approach to elucidate the nonequilibrium exciton
dynamics of a quantum system in a nonintuitive manner.

1. INTRODUCTION

Quantum dynamics play a significant role in many chemical
physics and biochemical physics problems. Frequently studied
problems of this kind include exciton- and electron-transfer
processes1,2 that are involved in photosynthetic systems,3−20

charge-transfer,21−25 DNA,26−28 and photovoltaic systems.29−34

In these problems, the environments (baths), for example,
proteins and solvents, play a central role; these baths are
complex and strongly coupled to a molecular system of interest
at finite temperatures. Recent theoretical studies have
demonstrated that such systems and baths are quantum
mechanically entangled (bath entanglement), and an under-
standing of these baths is essential to properly elucidate the
quantum dynamics displayed by the system.35,36 For example, it
has been shown that the optimal condition for excitation energy
transfer in light-harvesting complexes is realized under non-
Markovian system−bath interactions in a strong coupling
regime, in which the noise correlation time of the bath is
comparable to the time scale of the system dynamics.10 To
conduct high-accuracy simulations with reduced computational
costs, some approaches have utilized machine learning methods
to develop models that reproduce open quantum dynam-
ics,37−40 analyze two-dimensional spectroscopy images,41,42 and

estimate chemical properties for classical molecular dynam-
ics.43−47

Although irreversibility of the system dynamics results from
quantum thermal activation and dissipation caused by the
surrounding environment, it is difficult to conduct a quantum
molecular dynamics simulation that exhibits such a character-
istic feature arising from macroscopic degrees of freedom. Thus,
we introduce a system−bath model in which the dynamics of
excitons or electrons are described by a system Hamiltonian,
while the other degrees of freedom that arise from environ-
mental molecules are described by a harmonic oscillator bath
(HOB). The HOB, whose distribution takes a Gaussian form,
exhibits wide applicability in simulating bath effects, despite its
simplicity; this is because the influence of the environment can,
in many cases, be approximated by a Gaussian process due to the
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cumulative effect of a large number of environmental
interactions. In such a situation, the ordinary central limit
theorem is applicable, and hence, the Gaussian distribution
function is appropriate.35,48 The distinctive features of the HOB
model are determined by the spectral distribution function
(SDF) of the coupling strength between the system and the bath
oscillators for various frequency values. By choosing the
appropriate form of the SDF, the properties of the bath can be
adjusted to represent various environments consisting of, for
example, solid-state materials49,50 and protein molecules.3−5

Because the SDF can be different for different forms of a system
Hamiltonian and system−bath coupling, it is difficult to find an
optimized Hamiltonian associated with an optimized SDF, in
particular, for a bath describing a fluctuation in site−site
interaction energy.
In a previous study,51 we employed a machine learning

approach to construct a system−bath model for the
intermolecular and intramolecular modes of molecular liquids
using atomic trajectories obtained from molecular dynamics
(MD) simulations. In this study, we extend the previous
approach to investigate an exciton- or electron-transfer problem
that is characterized by electronic states embedded in the
molecular environment using quantum mechanics/molecular
mechanics (QM/MM) calculations to determine the atomic
coordinates of molecules. In particular, we focus on the exciton-
transfer process of the photosynthesis antenna system to
investigate how natural systems can realize such highly efficient
yields, presumably by manipulating quantum mechanical
processes. As a demonstration, we consider a molecular dimer
made of two dipole-coupled dye monomers as a model system
that is often studied experimentally and theoretically.52−54

Then, we construct a model Hamiltonian of an indocarbocya-
nine dimer compound.52 The accuracy of this model is examined
by calculating linear and two-dimensional electronic spectra.
This paper is organized as follows. In Section 2, we introduce a

model that can be used for either exciton or electron transfer and
is coupled to a harmonic heat bath. We then describe the
machine learning approach that we use to determine the system
parameters, the system−bath interactions, and the SDFs on the
basis of QM/MM simulations. In Section 3, we present results
for an indocarbocyanine dimer model constructed from the
analysis of QM/MM trajectories. Linear absorption and two-
dimensional spectra are calculated from analytical linear and
nonlinear response functional expressions. Section 4 is devoted
to concluding remarks.

2. THEORY

2.1. Hamiltonian. We consider the situations in which an
exciton- or electron-transfer system interacts with molecular
environments that give rise to dissipation and fluctuation in the
system. The Hamiltonian of the system is expressed as

∑ ∑ω̂ = ℏ | ⟩⟨ |+ ℏΔ | ⟩⟨ |
≠

H j j j k
j

j
j k

jkS
(1)

where the jth exciton or electron states with energies ℏωj are
represented by bra and ket vectors as |j⟩ and ⟨j|. The interaction
energy between the jth and kth states is described by ℏΔjk. In our
model, each state is coupled to a different molecular environ-
ment (labeled a) that is treated as Na harmonic oscillators. The
total Hamiltonian is then given by
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where the momentum, position, mass, and frequency of the lth
oscillator in the ath bath are given by p̂l

a, x̂l
a, ml

a, and ωl
a,

respectively. The system part of the system−bath interaction is
expressed as

∑̂ = | ⟩⟨ |V V j ka

j k
jk
a

, (3)

where Vjk
a is the coupling constant for the ath bath between the j

and k states. The ath heat bath can be characterized by the
spectral distribution function (SDF), defined as

∑ω
α

ω
δ ω ω≡

ℏ
−

=

J
m

( )
( )

2
( )a

l

N
l
a

l
a

l
a l

a

1

2a

(4)

and the inverse temperature is β ≡ 1/kBT, where kB is the
Boltzmann constant. Various environments, for example, those
consisting of nanostructured materials, solvents, and protein
molecules, can bemodeled by adjusting the form of the SDF. For
the heat bath to act as an unlimited heat source possessing an
infinite heat capacity, the number of heat-bath oscillators Na is
effectively made infinitely large by replacing Ja(ω) with a
continuous distribution. The above model has been frequently
used in the analysis of photosynthetic systems,6−20 electron-
transfer,21−25 DNA,26−28 and solar battery systems.29−34

2.2. Learning Data: QM/MM Simulations. We next
consider the pigments in a molecular system, whose electric
excitation or exciton states are described by eq 1. The electric
states of the pigments depend on the configurations of the
surrounding atoms at time t. The time evolution of the excited
states of the system and environmental molecules is described by
QM/MM simulations. Because our goal in constructing a
system−bath model is to perform a full quantum simulation of
the entire system, we should use quantum molecular dynamics
(MD) simulations to provide data on the basis of all atomic
coordinates. In practice, however, it is impossible to consider
large environmental degrees of freedom accurately from a
quantummechanical perspective. Fortunately, we expect that we
already have reasonable SDFs for quantum simulation, even
though we evaluated them using the classical MD simulation.
Such evaluations were conducted utilizing an ensemble of
molecular trajectories that exhibit a Gaussian distribution in
which the difference between the quantum and classical
trajectories is expected to be minor. Further, the dynamics of
harmonic oscillators are identical in both the classical and
harmonic cases because both the classical and quantum
Liouvillian for the lth oscillator in the ath bath are expressed
as L̂l

a = −(pla/ml
a)(∂/∂xl

a) − (m(ωl
a)2)(∂/∂pl

a). We thus use the
classical MD simulation technique to acquire the atomic
coordinates of the pigments and the molecular environment.
We then conduct quantum chemistry calculations to obtain the
desired electronic states, typically the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) states of the pigments as a function of time.
The excited energy of the jth pigment is denoted by ϵjj(t), and
the interaction energy between the jth and kth pigments that
includes the bath-induced fluctuation is denoted by ϵjk(t); these
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values can be obtained using any kind of numerical program for
quantum chemistry calculations. If the main system is too large
to enable the evaluation of all electronic states, we evaluate the
site energy ϵjj(t) and the interaction energy ϵjk(t) separately.
From the calculated ϵjj(t) and ϵjk(t), we evaluate the system−
bath coupling strength in V̂jk

a and its SDF, in addition to the
excitation energy ℏωj and the interaction energy Δjk, based on
the machine learning approach.
While the SDFs evaluated based on the MD simulations are

temperature dependent, the SDFs for the HOB are temperature
independent; we therefore eliminate the temperature depend-
ence of optimized parameters, assuming that the sampled MD
trajectories exhibit canonical ensembles at finite temperatures.
2.3. Machine Learning. For n exciton or electronic

excitation sites, we express the simulated data in terms of
ϵjk(t) when describing the excited and site−site interaction
energies of interest obtained from the QM/MM simulation. The
learning Hamiltonian is then expressed as

∑= ϵ | ⟩⟨ |
=

H t t j k( ) ( )
j k

n

jk
, 1 (5)

We then attempt to reproduce the trajectories of ϵjk(t) for the
total Hamiltonian, eq 2, with eqs 1 and 3. Although the system−
bath model considers an infinite number of degrees of freedom,
here, we employ a finite number of bath oscillators to estimate
the SDFs. Then, the sampling used for machine learning training
is considered the average of the classical bath oscillators for a
certain selection of the system and system−bath parameters.
The site energy and interaction energy can be expressed as

ω δϵ = ℏ −t t( ) ( )jj j jj (6)

and

δϵ = ℏΔ −t t( ) ( )jk jk jk (7)

respectively, where δjk(t) is expressed in terms of the linear
function of the bath coordinates as

∑δ α=t x t( ) ( )jk
a

jk
a

jk
a

(8)

Here, the ath bath coordinate for the jk site is described as a
function of time as

ϕ ω= +x t A t( ) sin( )jk
a

jk
a

jk
a

jk
a

(9)

where Ajk
a and ϕjk

a are the amplitude and phase of the ath bath
oscillator for the jk site, respectively. The phase ϕjk

a is randomly
chosen to avoid recursive oscillator motion. Although we can
consider such correlated modes separately by introducing
additional baths, here, we assume that the influences of the
individual bath modes are all independent and that the
correlations between the fluctuations among different modes
can be ignored.
From eqs 8 and 9, δjk(t) can be expressed as

∑δ ϕ ω= +t c t( ) sin( )jk
a

jk
a

jk
a

jk
a

(10)

where

α=c Ajk
a

jk
a

jk
a

(11)

and we treat the system−bath coupling parameters as the
product of these two variables. In the machine learning context,

the bath parameters and the system−bath interactions are
expressed as a set of latent variables, defined as

θ ω= { } {Δ } { }c( , , )j jk jk
a

(12)

where {...} is the set of system and bath parameters. The
trajectories of ϵjj(t) and ϵjk(t), obtained from the QM/MM
calculations, are described as the vibrational motions of the
pigment molecule and the surrounding molecules. We then
assume that the probability distribution of the pure state energy
λi is determined based on a Gaussian process and is described by
a set of bath parameters αjk

a and ϕjk
a by optimizing the probability

distribution defined as

∫ ∏λ θ ϕ λ θ ϕ ϕ| = |P P P( ) d ( ; ) ( )i
k j a

jk
a

i jk
a

jk
a

, , (13)

which represents the marginalization of the phase of the
oscillators ϕjk

a that is introduced to avoid trapping in a local
minimal state due to the gradient method. Here, P(ϕjk

a ) is the
uniform distribution of [0, 2π) and

λ θ ϕ σ λ| ∝ [− − ]P E( ; ) exp ( )i jk
a

i i
2

(14)

where Ei ≡ Ei(θ; ϕjk
a ) is the predicted energy as a function of the

parameter set θ and initial phase ϕjk
a for the model Hamiltonian,

eq 5, and σ is the error width. Our goal in employing a machine
learning method is to choose the optimal parameter set in Ei(θ;
ϕjk
a ) that maximizes the probability distribution for given data λi.

Among several optimization methods, we use the maximum
likelihood method (MLE), where the loss function is expressed
in terms of the negative log of the probability as

∑ λ= −L E( )
i

i i
2

(15)

To find the maximum value of L, we employ the Adam gradient
method for optimization of the parameter set as

θ θ γ
θ

← + ∂
∂

L
(16)

where γ is the learning rate. In this way, we obtain the Jjk element
of the SDF for the jk site. Because the energy distribution of each
bath oscillator Ejk

a = (1/2)m(ω)2 is assumed to obey a canonical
ensemble, the oscillator amplitude can be expressed as

πβ ω
⟨ ⟩ =A

m

1

( )
jk
a

jk
a

jk
a 2

(17)

Integrating eqs 11 and 17 into eq 4, we obtain

∑ω πβ ω δ ω ω= ℏ −
=

J c( )
1
2

( ) ( )jk
a

N

jk
a

jk
a

jk
a

1

2
a

(18)

Because Jjk(ω) rapidly changes over time in accordance with the
structural changes in the pigment molecules and environments,
we evaluate Jjk(ω) by averaging the different sample trajectories.
From a mathematical perspective, cjk is the frequency domain
expression of the time domain data and Jjk(ω) can be obtained
by averaging the power spectra cjk

2 using the Wiener−Khinchin
theorem.
It should be noted that the absolute intensity of Jjk(ω) cannot

be determined in the framework of the present study because,
for simplicity, we do not evaluate the dipole moment of this
complex material; we evaluate the intensity of Jjk(ω) from the

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00104
J. Chem. Theory Comput. 2021, 17, 3618−3628

3620

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00104?rel=cite-as&ref=PDF&jav=VoR


width of the experimentally obtained linear absorption
spectrum.

3. NUMERICAL DEMONSTRATION
3.1. Indocarbocyanine Dimer. We now demonstrate our

numerical approach for a dimer of identical indocarbocyanine
molecules.52 Figure 1 displays the structure of the pigment

molecule. The ground and excited states of each pigment are
expressed as |0⟩j and |1⟩j for j = 1 and 2, respectively. The
ground-state energies are each set to zero. The system
Hamiltonian is then expressed as

ω̂ = | ⟩ ⟨ | + | ⟩ ⟨ | + Δ | ⟩ ⟨ | + | ⟩ ⟨ |H ( 1 1 1 1 ) ( 0 1 1 0 )0 11 22 12 12
(19)

where ω0 is the excitation energy of a pigment and Δ is the
interaction energy between the dimers. By diagonalizing H, we
obtained the eigenvalues ωk for the k = + and − eigenstates of |
1+⟩ = (|1⟩1|0⟩2 + |0⟩1|1⟩2)/√2 and |1−⟩ = (|1⟩1|0⟩2− |0⟩1|1⟩2)/
√2, respectively, as

ω ω= ± Δ± 0 (20)

The excitation energy and interaction energy fluctuations as
functions of time, arising from intramolecular motions of the
pigment and intermolecular motions of surrounding molecules,
are expressed as δω±(t) and δΔ(t), respectively. These functions
are evaluated based on the quantum chemistry calculations for
given atomic trajectories of the entire molecular system
determined by MD simulations.
In our model, because each exciton state is delocalized and the

effects of the environmental modes are site specific, we employ
an individual heat bath expressed as the sum of site-specific
oscillators to describe the energy fluctuation at each exciton site.
The distribution of the exciton−oscillator coupling strength is
then evaluated based on the machine learning approach.
Although it is possible to introduce a global heat bath to induce

low-frequency environmental modes that are coupled to
multiple exciton states, we find that such effects are not
significant in the present case. Therefore, the excitation energy
and interaction energy fluctuations are expressed as

∑ ∑δω ω ϕ= +ω ω± ±t w t c t( ) ( ) sin( )
m

m
a

m
a a

m
a

1,2

, 0 0 (21)

and

∑δ ω ϕΔ = +Δ Δ Δt w t c t( ) ( ) sin( )
a

a a a

(22)

where cbm
a is the amplitude (scaled by α, as described in eq 11)

and ϕbm
a is the initial phase of the ath oscillator for the state

indices b = 11 (or 22) and 12. We introduce the localization
weight functions w±,m(t) and wΔ(t), as obtained from the
diagonalization of the pigment-based Hamiltonian, expressed in
eq 19, to describe the pigment-specific environment effects in
the delocalized exciton-state representation. These localization
weight functions are evaluated based on the electronic states of
the pigmentm = 1 and 2 established by the atomic orbitals (AO)
obtained from quantum chemistry calculations.
Thus, the targeting eigenenergies to be described by the

system−bath model, λ±(t; θ), are expressed as

λ θ ω δω δ= + ± Δ + Δ± ±t t t( ; ) ( ) ( ( ))0 (23)

where θ is a set of parameters θ = (ω0, {c±,m
a }, Δ, {cΔa }). As

learning data, we compute the exciton energy E±(t), the
molecular orbital (MO) coefficients for each exciton state, and
wave functions (atomic orbital (AO) coefficients for each MO)
from quantum chemistry calculations for the given atomic
coordinates as a function of time. Additionally, the movements
of all atoms in the system are evaluated from the classical MD
simulation. Using these data, we optimize the set of parameters
θ. To evaluate the weight function wk,m(t), we calculate the
exciton and hole populations pk,m

ex (t) and pk,m
h (t) that are

obtained as the summation of the absolute square of the AO
coefficients, which are evaluated from the AO coefficients
involved in the MO in pigmentm for excited state k. The weight
function is then evaluated as wk,m(t) = pk,m

ex (t)pk,m
h (t) and wΔ(t) =

∑k=±(pk,1
h (t)pk,2

ex (t) + pk,2
h (t)pk,1

ex (t)). As these definitions indicate,
the exciton states are localized when w±,m is close to 1, whereas
the exciton states are distributed among the pigments whenwΔ is
close to 1.
To optimize the system and bath parameter set, we minimize

the loss function

∑ ∑

∑ ∑ λ θ

λ θ

=

= [ −

+ − ]

− −

+ +

L L t

t E t

t E t

( )

( ( ; ) ( ))

( ( ; ) ( ))

n t

n

n t

n n

n n

2

2

(24)

where E−
n (t) and E+

n(t) are the lowest (|1−⟩) and second lowest
(|1+⟩) excitation energies, and the index n indicates the nth
sample. Using the MLE method, we optimize cω0m

a and cΔ
a for

each time series as a sample set. To apply the machine learning
algorithm, the time series of the tuple (E−

n (t), E+
n(t), wk,m

n (t)) are
regarded as the input feature variables. In the indocarbocyanine
case, the two pigments are symmetric, and the bath SDFs for
each pigment are considered to be identical. Therefore, we use

Figure 1. Molecular structure of the indocarbocyanine dimer. Two
pigments are connected by methylene chains. The gray/blue/white
atoms represent carbon/nitrogen/hydrogen, respectively. The red
square represents pigment 1, whereas the blue square represents
pigment 2.
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the averaged value cω0a = (cω01
a + cω02

a )/2. We then evaluate Jjj(ω)

(j = 1, 2) and J12(ω), namely, J(ω) forω0 andΔ, from cω0

a and cΔ
a ,

respectively, using eq 18.
3.2. Fourier-BasedApproach versusMachine Learning

Approach.A commonly used approach for evaluating the SDFs
of ϵij(t) utilizes the Fourier transformation of the autocorrelation
function expressed as δ δ[⟨ ϵ ϵ ⟩]t(0) ( )ij ij , where δϵij(t) ≡ ϵij(t)
− ⟨ϵij⟩. In the actual calculation, the time series ϵij

n(t), where n is
the sample index, is evaluated as the average of the
autocorrelation function expressed as

∑ δ δ= ⟨ ϵ ϵ ⟩C t
N

t( )
1

(0) ( )ij
n

ij
n

ij
n

(25)

where N is the total sample number. We then obtain the SDF as

ω = [ ]J C t( ) ( )ij ij (26)

Alternatively, using the Wiener−Khinchin theorem for sta-
tionary random processes, we can obtain the SDF as an average
of power spectrum ω = | [ϵ ]|P t( ) ( )ij

n
ij

2 as

∑ω ω=J
N

P( )
1

( )ij
n

ij
n

(27)

Although this Fourier-based approach is simple and straightfor-
ward, for the system−bath Hamiltonian, the obtained SDFs are
not necessarily the optimal choice for describing the QM/MM
data because the exciton and interaction energies are mutually
dependent on each other; thus, Jij(ω) and Jik(ω) cannot be
evaluated separately. In the machine learning approach,
however, it is possible to optimize not only Jij(ω) and Jik(ω)
but also ω0 and Δ without assuming explicit relationships
between the SDFs and the system parameters. Moreover, if
necessary, we can introduce additional conditions for
optimization of the SDFs and system parameters because we
employed wk,m(t) to account for the effects of the indocarbo-
cyanine dimer exciton localization.
3.3. Calculation Details. 3.3.1. Step 1: Classical MD. We

prepared a system consisting of an indocarbocyanine dimer
molecule with 1024 methanol molecules as the solvent. The
classical MD simulations were carried out with the GROMACS
software package.55−57 The conditions for preparation MD
simulations were set as 1 atm and 300 K with an NPT ensemble.
The equilibrium MD run was carried out for 20 ps in an NVT
ensemble, followed by a sampling MD run for 5 ps in an NVE
ensemble. These equilibrium MD runs and sampling MD runs
were repeated 100 times. The entire MD simulation was
performed with a time step of 0.1 fs.
3.3.2. Step 2: Data Preparation Using Quantum Chemistry

Calculations.To obtain the sample trajectories of the excitation
energies, we conducted ZINDO calculations58,59 and natural
transition orbital analysis60 for a 1 fs period in one sample using
the ORCA software package.61 We then obtained 100 (E−(t),
E+(t), w(t)) samples that were 5 ps in length.
3.3.3. Step 3: Parameter Optimization for the Machine

Learning Approach. We arranged the data with 5 ps lengths
obtained from step 2 according to the starting time in each of
175 steps. We then extracted 604 trajectories containing 1000
data points in an interval of 4 fs. These sampling data were used
as the input feature values in the machine learning calculations.
To perform learning calculations, we developed Python codes
using the TensorFlow library.62 The training was performed
with the learning rate α = 1× 10−4 for the first 200 steps and then

the rate was reduced to α = 1 × 10−5 for the next 200 steps. The
number of epochs was chosen to avoid the overfitting problem
arising from the MLE that occurs with a gradient method. In the
present case, this effect appears in the very low frequency region
below 10 cm−1 of J(ω) (see the Appendix B). Because such slow
dynamics of the environment are not important in the present
exciton-transfer problem, we avoided this effect by simply
choosing a shorter epoch known as the early-stopping
technique. To minimize the loss function, we employed the
Adam algorithm. The bath oscillator number N is 600. The
frequency of the ath bath oscillator ωa is aΔω for a = 1, 2, ..., N,
where Δω is approximately 8.3391 cm−1.
The initial values of the target optimization variables for the

SDF amplitudes were set as cω0m
a = 1 × 10−5 and cΔ

a = 1 × 10−5,
and the exciton and interaction energies were set asω0 = (⟨E+⟩ +
⟨E−⟩)/2 and Δ = (⟨E+⟩ − ⟨E−⟩)/2. The initial phases ϕb

a were
randomized 5 times for each series of samples. The loss
functions were averaged over each set of 64 samples as a
minibatch, while the parameters were optimized for every
minibatch. For the 604 samples, each epoch contained 9
iterations.

3.3.4. Step 4: Calculations of Optical Spectra.We assumed
that the dipole operator for the indocarbocyanine dimer was
given by μ̂1 + μ̂2 = μ(|0⟩11⟨1| + |1⟩11⟨0| + |0⟩22⟨1| + |1⟩22⟨0|),
which created a transition between the ground state |00⟩ and the
excitation states, |1+⟩, and |11⟩, while optical transitions from
these states to the state |1−⟩ were forbidden. Thus, the optical
transitions in the present system were modeled by a three-level
system with eigenenergies of 0, Ω+, and 2ω0. This allowed us to
apply analytical expressions of the linear and nonlinear response
functions, as presented in Appendix A. We then calculated the
linear absorption and two-dimensional (2D) electronic spec-
troscopy signals using line shape functions.

3.4. Results and Discussion. Representative examples of
the prepared data set are plotted in Figure 2. The abrupt change
in the exciton energies in Figure 2b occurs due to the exciton

Figure 2. Samples of the data used in learning calculations for (a) the
excitation energy Ek for k = ± and (b) the weight functions wΔ (green
dashed curve), wk,m(t) for pigments m = 1 (blue), and m = 2 (orange)
for k = + (solid line) and k =− (dotted line), respectively. (c) Plot of the
differences between the energy levels E± to illustrate the relationship
between the energies and the weight functions.
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transfer between pigments 1 and 2 that takes place in the time
period of 10−100 fs. As illustrated in Figure 2c, the difference in
the exciton energies E+− E− exhibits minima with respect to the
exciton-transfer processes. As depicted by the red circles in
Figure 2c, although such minimal points are significantly
narrower and deeper than the minimal point caused by energetic
fluctuation, it is difficult to separate the effects of exciton transfer
from the energy fluctuation due to environmental motions. By
introducing the localization weight functions w±,m(t) and wΔ(t)
in eqs 21 and 22 to eliminate the effects of the nonenvironmental
origin involved in the learning trajectories, we can stabilize and
enhance the efficiency of the machine learning process.
In Figure 3, we depict the learning curve of the loss function,

as defined in eq 24. Upon gathering random samplings of ϕ, the

loss function converged monotonically to a certain positive
value, which demonstrated the efficiency of the present
algorithm. The initial parameter values of the excitation energy
and the interaction energy were set asω0 = 17 736 cm

−1 andΔ =
1004 cm−1, whereas the optimized values of the excitation
energy and the interaction energy were given by ω0 = 17 794
cm−1 andΔ = 963 cm−1, which are closer to the values that fit the
experimentally obtained spectra.52 Here, to avoid overfitting
problems, we employed the early-stopping technique (see the
Appendix B).
In Figure 4, we present the results of SDFs for the excitation

energy J11(ω) (= J22(ω)) and the interaction energy J12(ω).

Various intermolecular modes below 2000 cm−1 are observed as
prominent sharp peaks near 450, 570, 1185, 1393, 1541, 1791,
1842, and 1923 cm−1. In the region above 2000 cm−1, only two
tiny peaks are observed at approximately 3000 and 3850 cm−1.
The normal mode analysis (B3LYP/def-SV(P)) indicates that
these peaks under 3300 cm−1 arise from the intramolecular
modes of the indocarbocyanine dimer, whereas the peak at 3850
cm−1 arises from a molecular vibration of the solvent methanol
molecules. We found that each sharp peak can be fitted by the
Brownian spectral distribution,24,25 whereas the broadened
background peak in the range from 0 to 2000 cm−1 corresponds
to the intramolecular modes fitted by the Drude−Lorentz
distribution.63 The intensities of the peaks in J12(ω) are
considerably weaker than those in J11(ω): only the peaks near
456, 562, 1840, and 1920 cm−1 are identified. As we expected,
the intermolecular peak positions are governed by the classical
MD simulation, whereas the heights of these peaks are
predominately governed by the quantum chemistry calculation
(Figure 5).

To verify the descriptions of the obtained SDFs and system
parameters, we computed the linear absorption and two-
dimensional electronic spectra (2DES) for the cases in which
the experimentally obtained spectra were available.52 In general,
these spectra should be calculated in the framework of open
quantum dynamics that considers the complex interactions
between the exciton sites. However, for demonstration
purposes, here, we employ the analytical expressions for
response functions, ignoring the transitions to the state that
are usually forbidden. The details of these calculations are
presented in Appendix A.
The linear absorption spectrum calculated from eqs A.1 and

A.2 is presented in Figure 6. Here, the calculated peak is fitted by
the Gaussian function λ exp[−((ω − ωc)/γ)

2], where the
amplitude, central frequency, and width are λ = 351,ωc = 18 583
cm−1, and γ = 464 cm−1, respectively. Note that we could not
determine the absolute SDF intensities because, for simplicity,
we did not calculate the amplitude of the dipole operator. Here,
we chose to use the intensity of J11(ω) to fit the experimentally
obtained signal. As shown in Figure 6, we observe a single
broadened absorption peak at ω0 + Δ corresponding to the
transition between |00⟩ and |1+⟩, while the transition between |
00⟩ and the state |1−⟩ is forbidden (see Figure 5). Although the
experimentally observed linear absorption spectrum exhibits a

Figure 3. Learning curve of the loss function for the indocarbocyanine
dimer model. The vertical line at epoch 200 indicates the epoch where
the learning rate changed, and the vertical line at epoch 400 indicates
early stopping.

Figure 4. SDFs of the indocarbocyanine dimer in the methanol
environment for the exciton energy J11(ω) (= J22(ω)) (blue) and the
interaction energy J12(ω) (orange) obtained with the machine learning
approach.

Figure 5. Energy-level diagram for a dimer system that undergoes
random fluctuations in the excited energy and coupling strength
described by δω(t) and δΔ(t), respectively. For the description of pure
dephasing, only the difference between the energies involved in the
optical excitation is important: the frequency fluctuation between |00⟩
and |1+⟩ is given by δω(t) + δΔ(t), whereas that between |1+⟩ and |11⟩
is given by δω(t) − δΔ(t). For perfectly uncorrelated fluctuations, we
consider δω(t) and δΔ(t) independently. The dashed line represents
the energy level of the forbidden state |1−⟩.
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0−1 phonon sideband peak near ω = 19 500 cm−1, here, we
observe this phenomenon only as an asymmetry of the Gaussian
peak in the high-frequency region.
The 2D correlation electronic spectra calculated using the

analytical expressions of the response function (eqs A.5−A.7)64
are presented in Figure 7. At t2 = 0 fs, only one peak stretched till

near the ω1 = ω3 line, arising from the |00⟩→ |1+⟩ transition, is
observed. At t2 = 10, 25, and 40 fs, the peak is elongated in the
low-frequency ω1 direction due to a shift in the eigenenergy
caused by the heat-bath-induced exciton−exciton interaction
described by J12(ω). Because the system−bath interaction we
considered here is non-Markovian and its effects appear only
after a period longer than the inverse correlation time of noise,
we do not observe such heat-bath effects for a small t2. Then, at
approximately t2 = 70 fs, the off-diagonal peak near (ω1, ω3) =
(17 800, 20 000), in units of cm−1, corresponding to the
transition of |1+⟩→ |11⟩ is observed, whereas the peak along the

ω1 = ω3 line shifts to (ω1, ω3) = (21 000, 20 000) due to the
transition of |00⟩ → |1+⟩ that arises from the exciton−exciton
interaction described by Δ and J12(ω). As t2 increases, the
intensities of these two peaks oscillate as a result of the
population transitions among |10⟩, |1+⟩, and |11⟩ caused by Δ
and J12(ω). This phenomenon was also observed experimen-
tally.52 The appearance of this oscillatory feature at a finite
period in t2 indicates the importance of the off-diagonal heat
bath, whosemodeling is not easy in the framework of the existing
approach.
While the off-diagonal peak still exhibits oscillatory motion at

t2 ≥ 100 fs, the peak profile gradually elongates in the ω1 = ω3
direction due to the inhomogeneous broadening that arises from
the diagonal bath modulation described by J11(ω) and J22(ω).

35

4. CONCLUSIONS

We introduced a machine learning approach for constructing a
model that can be used to analyze the dynamics of exciton- or
electron-transfer processes in a complex environment on the
basis of considering the energy eigenstates evaluated from QM/
MM simulations as functions of time. The key feature of the
present study is the system−bath model, in which the primary
exciton/electron dynamics are described by a system Hamil-
tonian expressed in terms of discretized energy states, while the
other degrees of freedom are described by harmonic heat baths
that are characterized by SDFs. An optimized system−bath
Hamiltonian obtained from the machine learning approach
allows us to conduct time-irreversible quantum simulations that
are not feasible with a full quantum MD simulation approach.
Here, we demonstrated the above features by calculating

linear and nonlinear optical spectra for the indocarbocyanine
dimer system in a methanol environment in which the quantum
entanglement between the system and bath plays a central
role.35,36 The calculated results can be used to explain the
experimental results reasonably well; we found that the heat bath
plays a key role in describing the exciton-transfer process for the
exciton−exciton interaction in this system. Although here we
ignore the transitions to the state that are usually forbidden due
to applicability of the analytical expression, if necessary, we can
explicitly consider such transitions using the HEOM formal-
ism.34−36,65,66

Finally, we briefly discuss possible extensions of this study. As
shown in a previous paper,51 the machine learning approach can
be applied to a system described by reaction coordinates, which
is useful for investigating chemical reaction processes charac-
terized by potential energy surfaces. By combining the previous
and present approaches, we can further investigate systems
described by not only electronic states but also molecular
configuration space, for example, photoisomerization,67 molec-
ular motor,68 and nonadiabatic transition problems,69 with
frameworks based on the system−bath model. In this way, we
may construct a system−bath model for entire photosynthesis
reaction processes consisting of photoexcitation,1,2 exciton-
transfer,3−20 electron-transfer,21−25 and proton-transfer pro-
cesses,70−72 including conversion processes, such as exciton-
coupled electron-transfer73 and electron-coupled proton-trans-
fer processes.74

Further theoretical and computational efforts must be
initiated that include providing learning data based on accurate
and large quantum simulations, improving learning algorithms,
and developing an accurate and efficient open quantum
dynamics theory to treat a complex system−bath model. We

Figure 6. Linear absorption spectrum of an indocarbocyanine dimer, as
calculated with eqs A.1 and A.2 and the line shape function eq A.3 for
the system parameters and SDFs obtained with the machine learning
approach. The dotted line shows the fitted Gaussian peak centered at
18 583 cm−1, indicating that the calculated peak is asymmetric due to
the 0−1 phonon transition near 19 500 cm−1.

Figure 7. Two-dimensional electronic spectra of an indocarbocyanine
dimer, as calculated with eqs A.5−A.7 and the line shape function eq
A.3 for the system parameters and SDFs obtained with the machine
learning approach. The waiting time t2 for each signal is displayed at the
top left of each panel. The peak intensity of the signal was normalized
for each t2. The waiting time t2 was chosen to illustrate the maximal/
minimal points of the oscillating feature of the peak elongation (see
text).
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leave such additional endeavors to future studies in accordance
with recent progress in theoretical techniques.

■ A: ONE-DIMENSIONAL AND TWO-DIMENSIONAL
SPECTRA

Linear and nonlinear optical spectra can be expressed in the
Fourier transformation of the response functions.75 In the
present dimer case, we can analytically express the response
functions in terms of a line shape function including the
contribution from an exciton−exciton interaction.64

The linear absorption spectrum is given by76

∫ω = −ω
∞

S t R t( ) d e ( ) c. c.t

0

i (1)
(A.1)

where R(1)(t) = ⟨[μ(t), μ(0)]⟩ is the one-dimensional (1D)
response function expressed in terms of the transition dipole
moment μ(t). For a coupled dimer system, the analytical
expression for the response function for eq A.1 is expressed as
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where the line shape function, g±
a (t), for the SDF, Ja(ω), with a =
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For the coupled dimer system, the third-order response
function is
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and can also be evaluated in the analytical form as64
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Here, t12 ≡ t1 + t2, t23 ≡ t2 + t3, and t123 ≡ t1 + t2 + t3. Because the
fluctuations in the |1+⟩ and |11⟩ states are described by J11(ω) +
J12(ω) and J11(ω) + J22(ω) = 2J11(ω), respectively, the line
shape function g±

a (t) in eq A.7 is now expressed as g±
1 (t) = g±

11(t)
+ g±

12(t) and g±
2 (t) = 2g±

11(t). By using third-order diagrams, the
pump−probe spectrum and photon echo spectra are, for
example, calculated from the Q1(t), Q4(t), and Q5(t) elements
and the Q2(t), Q3(t), and Q6(t) elements, respectively (Figure
8).
Although the change in the exciton population can be

explored by pump−probe spectroscopy, if we wish to investigate
not only population dynamics but also system−bath coherence,
two-dimensional electronic correlation spectroscopy is a better
choice. This spectrum can be calculated from

ω ω ω ω ω ω= +I t I t I t( , , ) ( , , ) ( , , )(corr)
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where the nonrephasing and rephasing parts of the signal are
defined by
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■ B: OVERFITTING PROBLEM OF MLE
To illustrate the overfitting problem effect, we present the
optimized results evaluated in the early-stopping case (epoch
400) and overfitting case (epoch 1200). The learning curve of
the loss function for these two cases is presented in Figure 3. As
illustrated in Figure 9, the results are similar and overlap
everywhere, except the low-frequency region, 0−400 cm−1. The
optimized system parameters in the early-stopping case areω0 =
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17 794 cm−1 andΔ = 963 cm−1, whereas those in the overfitting
case are ω0 = 17 795 cm−1 and Δ = 960 cm−1. These results
indicate that the learning process works very well even in epoch
400. We then found that the accuracy of the obtained SDF,
particularly in the region below 400 cm−1, decreases for the case
of epoch 1200, because the fluctuation of the loss function in a
larger epoch period suppresses the convergence of the SDF in
the low-frequency region, as illustrated in Figure 3. This
phenomenon is known as the overfitting (or overtraining)
problem of theMLE for the gradient method. Wemay avoid this
problem by regularizing the model, for example, by adopting an

L2 regularization, or by using the Bayesian inference method to
account for the physical knowledge as a prior probability.77

Nevertheless, here, we use an early-stopping method to simply
reduce the numerical cost because the low-frequency region 100
≤ω≤ 400 cm−1 is no longer significant in the ultrafast dynamics
of the exciton-transfer problem, whereas the region below 10
cm−1 may alter the signal profile significantly due to the quantum
thermal factor, coth(βℏω/2), in the line shape function defined
as eq A.3.
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