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ABSTRACT: The vibrational motion of molecules in dissipative environments, such as solvation and protein molecules, is
composed of contributions from both intermolecular and intramolecular modes. The existence of these collective modes introduces
difficulty into quantum simulations of chemical and biological processes. In order to describe the complex molecular motion of the
environment in a simple manner, we introduce a system−bath model in which the intramolecular modes with anharmonic mode−
mode couplings are described by a system Hamiltonian, while the other degrees of freedom, arising from the environmental
molecules, are described by a heat bath. Employing a machine-learning-based approach, we determine not only the system
parameters of the intramolecular modes but also the spectral distribution of the system−bath coupling to describe the intermolecular
modes, using the atomic trajectories obtained from molecular dynamics (MD) simulations. The capabilities of the present approach
are demonstrated for liquid water using MD trajectories calculated from the SPC/E model and the polarizable water model for
intramolecular and intermolecular vibrational spectroscopies (POLI2VS) by determining the system parameters describing the
symmetric-stretch, asymmetric-stretch, and bend modes with intramolecular interactions and the bath spectral distribution functions
for each intramolecular mode representing the interaction with the intramolecular modes. From these results, we were able to
elucidate the energy relaxation pathway between the intramolecular modes and the intermolecular modes in a nonintuitive manner.

1. INTRODUCTION

Elucidating the effects of molecular environments on chemical
and biological processes in both classical and quantum regimes
has been an important problem in chemical physics over the last
four decades.1−5 Theories of quantum open systems have been
used to construct models of practical interest,6−29 in particular
to account for line shapes in NMR25,26 and linear and nonlinear
laser spectra.27−29 The key feature of the environment is that it
gives rise to irreversible dynamics through which the system
evolves toward the thermal equilibrium state at finite temper-
ature.5 The environmental effects that arise from solid state
materials, solvation, and protein molecules are generally
described by an interaction between a primary molecular system
coupled to a harmonic oscillator bath (HOB). Two commonly
used models of this kind are the Brownian Oscillator model
(BOM), and the spin-Boson model.2 The HOB model, whose
distribution takes a Gaussian form, exhibits wide applicability,

despite its simplicity. This is because the influence of the
environment can in many cases be approximated by a Gaussian
process, which is due to the cumulative effect of the large
number of weak environmental interactions. In such a situation,
the ordinary central limit theorem is applicable, and hence, the
Gaussian distribution function is appropriate.5 The distinctive
features of the HOB model are determined by the spectral
distribution function (SDF) of the coupling strength, J(ω) =
∑cj

2δ(ω − ωj), where cj is the coupling strength between the
system and the jth bath oscillator, with frequencyωj. By properly
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choosing the form of the SDF, the properties of the bath can be
adjusted to represent a variety of environments consisting of, for
example, solvates and protein molecules.
Several analytical and numerical approaches have been

developed for such models to treat the quantum and classical
motion of molecules in condensed phases. These include the
generating functional approach,30−32 the Redfield equation
approach,33−35 the quasi-adiabatic propagator path integral
(QUAPI) approach,36,37 the multiconfigurational time-depend-
ent Hartree (MCTDH) approach,38−41 and the reduced
hierarchy equations of motion (HEOM) approach.42−51

These approaches have been applied to problems of practical
interest, in particular to the investigation of chemical reaction
processes,6−9 nonadiabatic transitions,10−13 quantum device
systems,14,15 ratchet rectification,16−18 exciton transfer,19−24

and the analysis of the linear and nonlinear laser spectra.27−29

Because the key feature of environments is determined by the
system−bath coupling and the SDF, a methodology to
determine these is significant. Typically, the SDF is estimated
from linear and nonlinear infrared and Raman spectra, both
experimentally52−57 and numerically.21−23,58−63 The SDFs of
entire molecular systems have also been evaluated directly from
molecular dynamics (MD) trajectories on the basis of normal
modes,64−75 the velocity−velocity autocorrelation function,65,69
and Fourier transformations.76 While the method based on
optical spectra does not allow estimation of optically inactive
system modes, the approaches based on MD trajectories have
the capability to describe all intermolecular and intramolecular
vibrational motions. However, in such trajectory-based
methods, it is not easy to separate the system and the heat
bath, in particular, in the case of the intermolecular modes. This
is because these methods are based on naive statistics of the
complex and irregular motion of molecular trajectories, and
thus, with these methods, it is not easy to distinguish the bath
modes from the background noise. Moreover, because the SDF
generally depends on the system parameters, for example
depending on the intermolecular mode−mode coupling
strengths, with the existing methods, it is not easy to obtain
the system parameters and the bath SDF simultaneously.
In this study, we employ a machine learning approach, which

allows us to obtain variable information from massive data in
physics and chemistry77−79 on the basis of the statistical
analysis.80,81 We then develop an efficient algorithm to optimize
both the system parameters and the SDF through analysis ofMD
trajectories. This algorithm allows us to obtain not only the SDF
of each intramolecular mode but also the variance of the bath-
correlation function that describes the vibrational dephasing of
molecular modes. We demonstrate this approach for liquid
water using MD trajectories obtained from SPC/E model82,83

and POLI2VS model.58,59

This paper is organized as follows. In Sec. 2, we introduce a
multimode system−bath model and describe the machine
learning approach that we use to determine the system
parameters, the system−bath interaction, and the SDFs. In
Sec. 3, we present model potentials for intramolecular modes of
liquid water in the framework of BOM. In Sec. 4, we present the
details of the calculation. In Sec.5, we present the results for
liquid water obtained through analysis of the MD trajectories
obtained using various force fields. Section 6 is devoted to
concluding remarks.

2. THEORY
A Model with Multiple Heat Baths. In order to describe

the vibrational modes of molecular liquids, we consider a model
that consists of primary intramolecular modes coupled to
intermolecular environmental modes, which are regarded as
bath systems. These bath systems are represented by ensembles
of harmonic oscillators.27 The model is constructed by
extending a BOM (or Caldeira−Leggett) Hamiltonian to
include a nonlinear system−bath interaction,84−92 which causes
the frequency and amplitude of the intramolecular modes to
vary in time or to be inhomogeneously distributed. We can
describe both situations within a unified framework by adjusting
the nonlinear system−bath coupling strength.5,29 The total
Hamiltonian is expressed as

∑ ∑= + + +
≠ ′

′ ′H H H H U q q( ) ( , )
s

s s s

s s
s s s sS

( )
B
( )

I
( )

,
(1)

where

= +H
p

m
U q

2
( )s s

s
s sS

( )
2

(2)

is the Hamiltonian for the sth mode, with massms, coordinate qs,
momentum ps, and potential Us(qs). The interaction between
the modes s and s′ is given by

= + +′ ′ ′ ′ ′U q q g q q g q q g q q( , )
1
2

( )s s s s s s s s s s, 11 21
2

12
2

(3)

The forms of the potentials and interactions should be chosen to
accurately describe the system dynamics in a simple manner.
The bath Hamiltonian for the sth mode is expressed as

∑ ∑
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ω
= + +
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where the momentum, coordinate, mass, and frequency of the
jsth bath oscillator are given by pjs, xjs, mjs and ωjs, respectively.
The last term in the above equation is is a counter term, which
maintains the translational symmetry of the system in the case
Us(qs) = Us,s′(qs, qs′) = 0.1 The system−bath interaction is given
by

∑ α= −H V q x( )s
s s

j
j jI

( )

s

s s
(5)

which consists of linear−linear (LL) and square-linear (SL)
interactions

≡ +V q V q V q( )
1
2s s

s
s

s
sLL

( )
SL
( ) 2

(6)

with coupling strengths VLL
(s), VSL

(s), and αjs.
5 As shown in refs 5, 29,

while the LL interaction contributes mainly to energy relaxation,
the SL system−bath interaction leads to vibrational dephasing in
the slowmodulation case, due to the frequency fluctuation of the
system vibrations.88−93 Then, combining eq 4 and eq 5, we
obtain

∑
ω

+ = +
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where x̃js = xjs − (αjsVs(qs))/(2mjsωjs
2) is the reoriented bath

coordinate. This model has been used to derive predictions for
the study of single-mode systems employing 2D Raman,88−91

2D THz-Raman,62 and 2D IR signals,92,93 and for the study of
two-mode systems employing 2D IR94,95 and 2D IR-Raman
signals.63 Here, we apply this model to describe the
intermolecular modes of molecular liquids. We assume that
the influences of the fluctuation and dissipation on individual
modes are all independent and that the correlations of the
fluctuations among different modes can be ignored.94,95 Then,
the SDF is defined as

∑ω
α

ω
δ ω ω≡ ℏ −J

m
( )

2
( )s

j

j

j j
j

2

s

s

s s
s

(8)

This definition characterizes the nature of the bath.
Optimizing the Likelihood Probability Distribution.

Let us onsider the trajectory of the kth molecule in phase space,
expressed as (qk(t), pk(t)), describing the intramolecular motion
of interest obtained from the MD simulation. We compute the
set of trajectories (qk(ti + iΔt), pk(ti + iΔt)) with time stepΔt for
all integer i satisfying 0≤ i≤N− 1, whereN is the total number
of time steps. Using a machine learning approach, we attempt to
reproduce the MD trajectories for the intramolecular modes by
adjusting the system parameters in eq 1 and the SDF for each
systemmode. The trajectory of the jsth bath oscillator for the sth
system mode in eqs 4 and 5 is assumed to take the form

ω ϕ̃ = +x t A t( ) sin( )j j j js s s s (9)

where Ajs and ϕjs are the amplitude and phase of the jsth bath

oscillator. The phase ϕjs is chosen randomly to avoid recursive
motion of the oscillator. This implies that the bath oscillators
described by eq 7 are harmonic for any form of the system−bath
coupling.
In the LL coupling case, the bath parameters and the system−

bath interactions are expressed as a set of latent variables in the
machine learning context, defined as

= { } { } ··· { }c c cz ( , , , )k j
k

j
k

j
k
N1 2 (10)

where {cjs
k} is the set of bath coupling parameters with the

element

α=c V Aj
k s

j
k

j
k

LL
( )

s s s (11)

for the mode s.
A set consisting of the system potential parameters and the

SDFs is denoted by Σ. In the present approach, these are
optimized in the same manner. The trajectory at time ti + iΔt for
integer i (1 ≤ i ≤ N) that is calculated using the HOB model on
the basis of theMD trajectories at ti + (i− 1)Δt is then expressed
as

Σ

̃ + Δ ̃ + Δ

= ̂ Δ + − Δ + − Δ

t i t t i t

L t t i t t i t

q p

z q p

( ( ), ( ))

( ; , )( ( ( 1) ), ( ( 1) ))
k i k i

k k i k i

(12)

where L̂(Δt; zk, Σ) is the Liouville operator of qk and pk for the
model Hamiltonian (1) with the bath functions given in eq 9.
The differences between the coordinates and momenta for a
given MD trajectory and the corresponding HOB trajectory are

defined as Δqk(ti + iΔt) ≡ (q̃k(ti + iΔt) − qk(ti + iΔt)) and
Δpk(ti + iΔt) ≡ (p̃k(ti + iΔt) − pk(ti + iΔt)).
It should be noted that the influence of the environmental

molecules can in many cases be approximated by a Gaussian
process, because it can be treated as the cumulative effect of a
large number of weak environmental interactions, in which case
the ordinary central limit theorem is applicable. In this case, the
distribution function of the HOB model, which is Gaussian, is
appropriate. Thus, the difference between the actual influence of
the environmental molecules and that described by the HOB
model is due to the non-Gaussian aspect of the molecular
motion.
Moreover, if we choose the time step, Δt, to be sufficiently

large in comparison with the time scale of the frequency
fluctuations of the intramolecular modes, we can regard the
dynamics to be Markovian, in which case Δqk(ti + iΔt) and
Δpk(ti + iΔt) for different i are not correlated. Here, we indeed
consider this situation. Thus, we assume that the time evolution
of these variables obeys a Gaussian−Markovian process, while
the intramolecular modes themselves are described by the
system Hamiltonian.
Themean squares of the differences given above are expressed

as

∑σ δ Δ = Δ + Δ
=

t
N

t i tq q( )
1

( )qq k
i

N

k i
2

1

2

(13)

and

∑σ δ Δ = Δ + Δ
=

t
N

t i tp p( )
1

( )pp k
i

N

k i
2

1

2

(14)

where σqq and σpp represent the deviations between the BOM
and MD trajectories. We next introduce a joint probability
distribution function δP(qk(Δt), pk(Δt)|qk, pk; zk, Σ), which
describes the time evolution of the probability distribution from
the state at time t to that at time t + Δt for a given set of system
parameters, Σ, and bath parameters, zk:

δ

σ δ σ δ

ΣΔ Δ |

= [− Δ − Δ ]

P t t

t t

q p q p z

q p

( ( ), ( ) , ; , )

exp ( ) ( )
k k k k k

qq k pp k
2 2

(15)

The parameters σqq and σpp indicate the accuracy of the BOM.
In ordinary situations, these take finite values, because the
description of molecular trajectories based on the simple BOM
is limited and because the choice of the parameters zk may not
yield the best fit. We determine these parameters using the
maximum likelihood series estimating method (MLSEM) and
the gradient estimating method. To use MLSEM, we maximize
the logarithm likelihood ratio, defined by

δ Σ= [ Δ Δ | ]G P t tz q p q p z( ) log ( ( ), ( ) , ; , )k k k k k k (16)

Then, using eqs 13−16, we obtain

∑= [Δ + Δ + Δ + Δ ]
=

G
N

t i t t i tz q p( )
1

( ) ( )k
i

N

k i k i
1

2 2

(17)

which can be interpreted as the mean squared error of the BOM
trajectories from the MD trajectories.
We then estimate zk using the gradient estimating method for

a given trajectory for the kth molecule,

= Gz zargmin ( )k k
zk (18)
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We repeat this procedure for all system molecules, and we
compute the average over these molecules in order to obtain the
optimized set of z.
The Bath Spectral Distribution Functions. The total

energy of the js th oscillator is given by

ω=E m A( )j j j j
k2 2

s s s s (19)

We assume that the probability distribution for each harmonic
oscillator is described by the canonical ensemble with energy Ejs.

The expectation values of the amplitude Ajs
k are then evaluated as

πβ ω
⟨ ⟩ =A

m

1
j
k

j j
2s

s s (20)

where β = 1/kBT is the inverse temperature of the system.
Substituting αjs

k into eq 8, and using eqs 11 and 20, we obtain

ω π βω∼J
V

c( )
2

( )k
j s j j

k
2

LL
( )

2
s s s (21)

The SDF for the sth mode is evaluated as the average of Jk(ωjs)
over the samples k.

3. INTRAMOLECULAR SYSTEM MODEL FOR LIQUID
WATER

Here, we demonstrate the machine learning approach for liquid
water to construct the system−bath Hamiltonian. The system
Hamiltonian for the intramolecular vibrational modes of a water
molecule consists of the symmetric-stretch, asymmetric-stretch,
and bending modes, which we assume to take the form

∑ ∑ θ= ⃗ +
α

α α
∈{ }

i
k
jjj

y
{
zzzH m v U r r

1
2

( , , )
s

s
S
( )

O,H ,H

2
1 2

1 2 (22)

where mα and vα⃗ represent the mass and velocity of the O, H1,
and H2 atoms, and U(r1, r2, θ) is the water model potential.
We employ two models, a harmonic oscillator (HO) based

model, defined as

θ θ θ= − + − + −U r r k r r k r r k( , , ) ( ) ( ) ( )r r tHO 1 2 1 0
2

2 0
2

1 0
2

(23)

where kr and kt are the force constants for the OH stretching and
HOH bending motion, and a Morse oscillator (MO) based
model, defined as

θ

θ θ

= −

+ − + −

− − − −

− − − −

U r r D e

D e k

( , , ) ( 2e )

( 2e ) ( )

a r r a r r

a r r a r r
t

MO 1 2
2 ( ) ( )

2 ( ) ( )
1 0

2

1 0 1 0

2 0 2 0

(24)

whereD is the dissociation energy, and a is the width parameter.
In the present study, the other intermolecular vibrational modes
are treated as the bath oscillators, described by HI

(s) and
HB

(s).62,63,88−95 When the intramolecular and intermolecular
modes are not well-separated, the profiles of SDFs become very
sensitive for a choice of system potential. We found that the
optimized SDFs for the HO and MO models differ significantly
in the POLI2VS case, while they are similar in the SPC/E flexible
case. For this reason, here we employ theHOmodel in the SPC/
E flexible case and the MO model in the POLI2VS case, setting
D = 444.188 kJ/mol. The equilibrium values of r0 and θ0 for
these models are evaluated through use of ⟨r⟩ and ⟨θ⟩. The
trajectories obtained with this procedure are described in the xyz
coordinates for each atom. The loss function given in eq 16 is

evaluated by comparing the predicted xyz trajectories with the
MD xyz trajectories.
We describe the intravibrational modes in terms of the two

HO bond lengths and the HOH bond angle of a water molecule
as

= | ⃗ − ⃗ |r x x1 O H1 (25)

= | ⃗ − ⃗ |r x x2 O H2 (26)

θ = ⃗ − ⃗ · ⃗ − ⃗i
k
jjjjj

y
{
zzzzz

x x x x
r r

arccos
( ) ( )O H1 O H2

1 2 (27)

where xO⃗ and xH⃗k
are the positions of the oxygen atom and the

kth hydrogen atom.
The system coordinates for the symmetric-stretch, asym-

metric-stretch, and bend modes are expressed as

= + −q r r r
1
2

( 2 )sym 1 2 0 (28)

= −q r r
1
2

( )asym 1 2 (29)

θ θ= −qbend 0 (30)

where r0 is the equilibrium length of the OH bond. The system
and system−bath interaction, HB

(s) and HI
(s), are described with

these system coordinates. The intramolecular mode−mode
interaction, Us,s′(qs, qs′), in the system Hamiltonian can be
obtained by rewriting the intramolecular potentials appearing in
eqs 23 and 24 in terms of eqs 28−30, respectively. In the present
approach, the system parameters, such as kr and kt, may vary
during optimization. For this reason, we also optimize the
mode−mode coupling constants gij given in eq 3.

4. CALCULATION DETAILS
The MD trajectories were obtained by carrying out the
simulations for liquid water with 216 molecules in a cubic box
with periodic boundary conditions. We employed GROMACS
2018 for the flexible SPC/E model82,83 and the code developed
by Hasegawa for the POLI2VS model.58 The equations of
motion were integrated using the velocity-Verlet algorithm with
Δt = 0.1 fs. The MD trajectories were constructed for each 0.2 fs
up to 300 fs at the temperature about 300 K.
Because we model the fast intermolecular modes, which arise

from short-range intermolecular interactions, it is not necessary
to carry out large-scale simulations with many molecules.96 The
external motion of molecules (i.e., the translational and
rotational motion) was then eliminated from the obtained
trajectories. The time step Δt for the BOM Hamiltonian, given
in eq 1, was set to 0.1 fs. The initial phase,ϕjs

k, was generated from
a random number uniformly distributed over [0, π) at every
iteration step. We chose the number of bath oscillator for the sth
mode as Ns = 1500. The frequency of oscillators ωjs was set to
jsΔωwithΔω = 1 ps−1≈ 5.31 cm−1; however, almost all features
of spectroscopic signals of water can be described within this
resolution, the highest frequency of bath modes is 8000 cm−1

that covers the overtone of OH stretching mode.
We developed the Python code using the TensorFlow

library98 to employ the Adam algorithm97 for minimization of
the loss function eq 16. The learning rate of the Adam algorithm
was set to 0.01. The training data were obtained from the
classical MD simulations: the 3888 trajectories for POLI2VS
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and the 216 trajectories for SPC/E were provided, respectively.
The initial values for zk was set to 0. The optimizations for the
system parameters and zk were then carried out. We chose 22
and 108 trajectories as a minibath for the SPC/E flexible case
and the POLI2VS case, respectively. The same trajectories were
used for each optimization epoch. The iterations were repeated
until the optimization parameters of the potentials converged
(Table 1).

5. RESULTS AND DISCUSSION
The optimized parameters for the potential, the intramolecular
mode−mode coupling, and the linear and nonlinear system−
bath couplings are listed in Table 2.We employed approximately

50 000 epochs for the optimization of the potential parameters,
while we needed around 10000 epochs for the optimization of
Js(ω). We display the learning curves for the mean square of the
coordinate,Δq, and themode−mode coupling parameters, gij, in
Figures 1 and 2. The frequencies of the modes determined from
the force constants and the parameters in the HO and MO
models are found to be smaller than the values determined from
the force field model used in the MD simulations. This is
because the LL and SL interactions enhance the system
frequency, as shown by analytical and numerical analyses in
the harmonic case.87−92 The anharmonic mode−mode coupling
constants differ significantly in the HO and MO cases. This is
because some of the contributions to the anharmonic mode−
mode coupling have already been taken into account by the
anhrmonicity of the MO potential, as explained in Sec. 3. The
obtained VSL/VLL values indicate that the SL interaction plays a
larger role in the symmetric-stretch case than in the asymmetric-
stretch case, while the effect of the SL interaction is negligibly
small in the bend case. This is due to the formation of the
hydrogen bonding (HB) between the system molecule and the
surrounding molecules, which changes the vibrational frequen-

cies of the O−H1 and O−H2 bonds. The formation of the HB
bonds for both the O−H1 and O−H2 bonds occurs in a
correlated manner in the symmetric case, while it occurs in an
anticorrelated manner in the asymmetric case. Because the two
formations occur simultaneously in the correlated case, the
symmetric-stretch mode exhibits a larger SL effect. Contrast-
ingly, because the O−H bond lengths do not change
significantly in the bending case, the effect of SL coupling is
very small.
In Figure 3, we display the results of the SDF for the

symmetric-stretch (orange curve), asymmetric-stretch (blue
curve), and bend (black curve) of H2O molecules evaluated for
(a) the SPC/E flexible and (b) POLI2VS cases. It should be
noted that the present results for each intramolecular mode with
the LL+SL interaction are similar to those obtained in the case
with the LL interaction only (not presented). This indicates that
the SL interaction is important in the system dynamics, while it
plays a minor role for the bath modes.
In each case, the intramolecular symmetric-stretch, asym-

metric-stretch, and bend peaks are observed near 3100, 3200,

Table 1. Equilibrium OH Bond Length and HOH Angle for
SPC/E Flexible and POLI2VS Force Field Models

model r0 θ0

SPC/E flexible 0.10282 nm 1.8177 rad
POLI2VS 0.09779 nm 1.8379 rad

Table 2. Optimized Potential Parameters

SPC/E
flexible POLI2VS

kt [kJ/mol/rad2] 382.168 364.963
kr [kJ/mol/nm2] 311708 -
a [nm−1] - 21.1293
bend. [rad−1] −0.0485218 0.17656853

VSL/VLL sym. [nm−1] 10.8475 18.41797858
asym. [nm−1] −1.73348 −0.219222965
qbendqsym [kJ/mol/rad/nm] −217.080 −468.367

gss′ qbendqasym [kJ/mol/rad/nm] −2.03171 0.06029
qsymqasym [kJ/mol/nm2] −103.004 −516.444
qbend
2 qsym [kJ/mol/rad2/nm] −212.825 −3019.51

gsss′ qbend
2 qasym [kJ/mol/rad2/nm] 101.093 100.569
qsym
2 qasym [kJ/mol/nm3] 250917 −4511.28
qbendqsym

2 [kJ/mol/rad/nm2] 4123.39 64048.4
gss′s′ qbendqasym

2 [kJ/mol/rad/nm2] −624.620 −14091.7
qsymqasym

2 [kJ/mol/nm3] 241830 345203

Figure 1. Learning curve of the mean squared error for q between the
predicted trajectories and the actual MD trajectories for the SPC/E
flexible (blue curve) and the POLI2VS force fields (orange curve).

Figure 2. Learning curve of the intramolecular mode−mode coupling
strength for the trajectories of the SPC/E flexible model. The bend-sym
curve, for example, represents g11 for the bending-symmetric coupling,
while the bend-bend-sym and bend-sym-sym curves, for example,
represent g21 and g12 for the bending-symmetric coupling, respectively.
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and 1600 cm−1, respectively, while the intermolecular hydrogen
bonded (HB) librational and HB translational peaks are
observed in the range of 800−400 cm−1 and near 300 cm−1,
respectively. In each intramolecular mode, we observe the peak
at a frequency similar to that of its own mode, because each
intramolecular mode can interact with the modes of the
surrounding water molecules as an intermolecular interaction.
For the asymmetric-stretch mode (blue curve), the peak near

2200 cm−1 arises from the coupling between the HB translation
and the bend modes, whereas, for the bend mode (black curve),
the peak near 3800 and 2600 cm−1 arise from the coupling
between the HB liberation and symmetric-stretch modes and
the HB translation and bending modes, respectively. These
combination bands indicate the existence of energy transfer
pathways among the modes: They are predicted on the basis of
analysis of the energy transfer process.69 In the case of POLI2VS,
we further observed combination bands between the bend and
asymmetric-stretch modes and the symmetric- and asymmetric-
stretch modes in the ranges of 5000−5500 cm−1 and 7000−
7500 cm−1, respectively (see Appendix). The assigned
intermolecular modes and combination bands are considered
in Table 3. In the POLI2VS case, we found that the combination
band peak of the HB transitional mode and bending mode is
merged with the symmetric-stretch mode peak, and together
they appear as a broadened peak. Such features that describe the
coupling between the inter- and intramolecular vibrational

modes have not been thoroughly explored on the basis of the
infrared and Raman spectroscopic analysis, because they are
optically inactive. The present machine learning approach has
the capability to estimate optically inactive combination bands
that may be different for different force fields and different
simulation approaches.
The intermolecular mode frequencies obtained using

POLI2VS are higher than those obtained using SPC/E, because
POLI2VS was constructed for quantum simulations, while here
we used it for classical simulations. For this reason, the
appearance of the combinational bands is also different in the
POLI2VS case. In order to obtain an accurate description, we
must employ quantum trajectories.59

In the present system−bath model, it is not necessary that the
frequency of the system mode be the same as the frequency of
the molecular mode in the MD simulations, because the
system−bath interaction modifies the central frequency of the
system oscillator, as has been found in investigations employing
Brownian motion theory3 and optical spectroscopic theory with
the LL and SL interactions.87−92 Although the peak heights in
the evaluated spectral distribution may depend on the
conditions of the optimization, for example, on the value of Δt
in the HOB simulations, the overall features of the results are
insensitive to such details. Verifying the validity of the system
Hamiltonian and the system−bath interaction must be done in a
case-by-case manner by, for example, evaluating the reaction
rates and vibrational spectrum in any given application of
interest

6. CONCLUSIONS
We studied a system−bath model to simulate the dynamics of
molecular liquids characterized by molecular trajectories
obtained from MD simulations. We demonstrated that the
machine learning approach is a versatile tool for estimating the
model parameters for the system potential, mode−mode
interactions, the system−bath coupling, and most importantly,
the SDFs of the bath. An optimized system−bath Hamiltonian
evaluated with the present approach allows us to carry out
numerically expensive simulations that are not feasible in the
case of the full quantum MD simulations, for example, for
calculations of 2D infrared92−95,99−101 and 2D infrared-Raman
spectroscopies,63,102,103 where the quantum dynamics of
intramolecular modes play a significant role.
The obtained SDFs can also be used for characterization of

the dynamics that play an important role in vibrational
spectroscopy and energy translation by taking account of the
various combination bands that cannot be explored by
spectroscopic means because they are optically inactive. In
particular, we discovered the existence of intermolecular
interactions between the stretching modes of the system and
the bath modes that consist of the stretching modes of the
surrounding water molecules.

Figure 3. Spectral distribution functions, Js(ω), of the intramolecular
water system plus bath model for the symmetric-stretch (orange curve),
asymmetric-stretch (blue curve), and bend (black curve) modes
obtained from the MD trajectory data with (a) the SPC/E flexible and
(b) the POLI2VS force fields.

Table 3. Peak Positions for the Assigned Intermolecular
Modes and Convention Bands Observed in the Bend Modea

mode SPC/E flexible POLI2VS

HB stretching mode 85 cm−1 69 cm−1

rotation 557 cm−1 509 cm−1

HB trans. + bend. 2623 cm−1 -
HB lib. + sym. 3759 cm−1 4170 cm−1

aResults for the intramolecular bending and stretching modes are not
presented.
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The difference between the model parameters and SDFs for
different MD force fields indicates that we can use such
information to verify the description of the MD force fields in a
critical manner. Moreover, if we use trajectories obtained from
quantum dynamical simulations instead of classical simulations,
such as ab initio MD simulations104−107 or quantum MD
simulations using a force field designed for quantum
simulations,59,108−111 we should be able to obtain a system−
bath Hamiltonian more suitable for quantum dynamical
simulations.
Here, we employed the HO and MO Hamiltonians with an

anharmonicmode−mode interaction as a trial system. Instead of
these, we could also consider a system potential with the same
form as that in the force field model used in theMD simulations.
Although such a system−bath Hamiltonian is much more
difficult to study on the basis of open quantum dynamics
theories, we found that such a model can describe the MD
results better than the simple HO and MO models (results not
presented). In order to model a complex system more
accurately, we should include physical observables, such as the
optical dipole and polarization, in order to obtain the optimized
modelMethodologies andmodel functions developed in various
machine learning approches; for example, an approach
developed for the physics-informed neural network
(PINN)112−114 may be useful.
The key feature of the present study is that it treats a system−

bath model, in which the primary molecular dynamics are
described by a system Hamiltonian, while the other degrees of
freedom are described by a harmonic heat bath that is
characterized by SDFs. This approach can be applied not only
to systems described by molecular coordinates, such as chemical
reaction systems6−9 and vibrational systems,27−29 but also to
systems described by electronic states, such as systems
exhibiting nonadiabatic transitions,10−13 quantum devices,14,15

ratchet rectification,16−18 and exciton-transfer systems,19−24 in
situations in which we havemicroscopic data describing not only
molecular coordinates but also electronic states.115 As a future
investigation, we plan to extend the present study in such a
direction.

■ APPENDIX: OVERTONE OF OH STRETCHING IN
THE POLI2VS MODEL

Figure 4 illustrates the high-frequency overtone area of Js(ω)
obtained from POLI2VS. (The low-frequency part is presented
in Figure 2b.) In the SPC/E flexible case, we could not observe
these peaks. In the symmetric and asymmetric modes, small
peaks appear as overtones of the OH stretching mode. The peak
intensities of these overtones become larger if we employ the
harmonic potential for the OH bonds instead of the Morse
potential. This indicates that the anharmonicity of the MD
potential, which cannot be taken into account by the system
potential, is described by the overtone peak of J(ω).
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