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We discuss the interplay of various quantum effects on barrier crossing for a one-dimensional
system with dissipation. This is based on a numerical study using a hierarchy of kinetic
equations introduced by Tanimura and Kubo. The numerical work uses a grid in phase space
for the Wigner distribution and deals with both the classical limit and the tunneling regimes.

1. INTRODUCTION

The study of the effect of a dissipative environment on
barrier crossing in the classical and quantum regimes has
been a central concern of theoretical chemical physicists in
the last decade. Numerous insights have been obtained from
the interplay of qualitative arguments, quantitative analyti-
cal calculations, and experiments, and for the classical sys-
tems, definitive numerical studies.! As far as numerical work
goes, the quantum case presents some problems. Quantum
activated events, in the absence of dissipation, can be easily
studied by a wide variety of numerical methods based on
wave functions.? When dissipation is important, wave-func-
tion-based methods are not appropriate since dissipation re-
quires the presence of many degrees of freedom. Integrating
out degrees of freedom is most naturally done in the path
integral formulation of quantum mechanics, where it leads
to influence functionals.>> The resulting path integrals are
highly coupled and many dimensional, thus grid-based
methods do not work very well for evaluating these integrals
because of the infamous crisis of dimensionality.® One is
forced to examine the Monte Carlo approaches.” ' Monte
Carlo methods work best when the integrand is of one sign or
has only weak oscillations about zero. Fortunately, it turns
out that the tunneling aspects of chemical rate phenomena
can be treated largely with imaginary time path integrals
which have positive integrands. A variety of successes in
determining the tunneling aspects of chemical reaction dy-
namics can be cited, ranging from systems as simple as sche-
matic double well potentials®'® through H + H,,” all the
way to the electron transfer reactions of inorganic complexes
in water'""'2 and biological macromolecules.®'* These stud-
ies, however, focus on only one of the quantum aspects of
activated events. A complete picture of reaction dynamics
must deal with phenomena that can only be described easily
in real time.

Qualitative arguments about rates suggest that such ef-
fects as energy diffusion and quantum interference effects
such as resonance may be important in some regimes for
quantum activated events. None of these effects are captured
adequately by imaginary time methods. A great deal of effort
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has, therefore, been expended on trying to evaluate numeri-
cally path integrals in real time.'*"” Here, straightforward
Monte Carlo methods become problematic because of the
oscillating phases of wave functions. Attempts to ameliorate
this problem via stationary phase methods and nonrandom
sampling methods have been moderately successful, but in
all likelihood, do not solve the problem in general. In any
event, at the moment these methods are so computationally
costly that they have not given a complete picture of the role
of dissipative environments on quantum activated events in
all regimes.

An alternative, but perhaps even more venerable ap-
proach to integrating out degrees of freedom leads to a de-
scription in terms of equations of motions for reduced den-
sity matrices. These equations are entirely analogous to the
classical kinetic equations which proved to be useful for clas-
sical barrier crossing. Indeed, from the earliest days, they
have been used to describe some features of quantum barrier
crossing.'® They have been limited by two features, however.
First, equations of motion for the reduced density matrix
were originally applicable and derivable only in the weak
coupling to the bath. Because of this, they took into account
none of the important effects that were first seen through
imaginary time path integral methods, such as the change of
the equilibrium probability densities through dissipative
coupling. Second, the reduced density matrix equations are,
per force, of twice the dimensionality of the time-dependent
Schrodinger equation. Thus, until the advent of fast comput-
ers, grid-based methods for their solution were too difficult,
even in the case of one-dimensional problems with dissipa-
tion.

The advent of fast computational methods and fast com-
puters has led to a reexamination of quantum kinetic equa-
tions as an approach to quantum dynamics of low-dimen-
sional systems. Bull’® has studied the quantum Fokker—
Planck equation for a hindered rotor, determining the corre-
lation functions of relevance to nuclear magnetic resonance
(NMR). Jean, Fleming, and Friesner?® have studied the
multilevel Redfield equations appropriate to a curve cross-
ing problem modeling the initial events of photosynthesis.
These studies have been limited to the strict weak coupling
regime. In 1989, Tanimura and Kubo®' showed how one
could obtain a hierarchy of kinetic equations for reduced
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density matrices that was valid in the strong coupling re-
gime. Physically, one can think of this hierarchy of equations
as dealing with a set of density matrices modeling the states
of the system with various numbers of phonons excited in the
bath. In this respect, the method has much in common with
the recent work of Makri*? which has been implemented for
finite-dimensional heat baths. Tanimura and Wolynes®
showed how this hierarchy of kinetic equations could be
solved numerically on a grid and illustrated with calcula-
tions on harmonic oscillators, as well as one representative
calculation on a double well system.

In this paper, we present a more complete study of the
various regimes of quantum barrier crossing using the quan-
tum kinetic equations. The present numerical study allows
one to demonstrate many of the features of the interplay
among tunneling, resonance, and dissipation in barrier
crossing. Individually, many of the aspects have been dis-
cussed from a qualitative viewpoint (Ref. 1). For example, it
is now understood that tunneling becomes more important
at low temperature—that it is diminished through the effects
of dissipation. It is also widely believed that resonance ef-
fects can be smeared out by dissipation and that resonance
effects have an interesting interplay with the energy activa-
tion events.!®® The numerical studies here show all of these
qualitative features and their interaction. These results are
displayed in a three-dimensional plot of rate constant vs dis-
sipation and temperature which generalizes the extremely
familiar rate coefficient vs friction curves used in discussing
classical barrier crossing.

The organization of this paper is as follows: In Sec. II,
the Fokker—Planck equations and the hierarchy equations
are summarized and the numerical aspects of studying the
Wigner function representation of a quantal density opera-
tor are described. Second, the methodology of obtaining rate
coefficients is explained in some detail. In Sec. III, the nu-
merical results are presented for activation and tunneling in
a cosinusoidal potential, and the Kramers turnover curves
for classical and quantum cases are presented, both for a
white noise heat bath and for a Gaussian—-Markovian heat
bath. Finally, in the last section, the strength and weakness
of kinetic equation approaches are discussed briefly.

Il. METHODOLOGY

A. The quantum Fokker-Planck equation for a
Gaussian-Markovian bath

In our previous work (Ref. 23, Tanimura and Wolynes,
hereafter TW), we derived the quantum Fokker—Planck
equation for the Gaussian—-Markovian colored-noise bath.
Here we summarize briefly the previous results. Let us con-
sider a reaction system §' (inertial mass /, coordinate 0 and
momentum P) moving in a potential U (0) and interacting
linearly with the harmonic oscillators bath B (mass m; ;5 CO-
ordinate X;, and momentum p;). The Hamiltonian with the
counterterm is*

A
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All information about the bath is specified by the spectral
density

J(w) = Z(

and the initial temperature of the bath ky T'= 1/f3. Here we
assume the Ohmic dissipation with the Lorentzian cutoff

AL oy (3)
27 P+ o

where ¢ is the zero frequency friction and ¥ is a relaxation
time for the bath. With the assumption of the high tempera-
ture bath S#iy<1, this spectral density produces exponen-
tially correlated noise (Q(#)Q(z')) cexp[ —y(z—1t")],
where €)(¢) represents the noise produced by the bath. Since
the bath of harmonic oscillators has the character of the
Gaussian, thus the bath system considered here is Gaussian—
Markovian. The Markovian property is produced not only
by the delta-correlated noise, but also the exponentially cor-
related noise.?* As shown in TW, the equation of motion for
the Hamiltonian equation (1) with Eq. (3) at the high tem-
perature bath S#y<1 is expressed in the operator form as

)[5(w o) +é(0+w)] (2)
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and to truncate the hierarchy for the deepest level
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for Ny> w,, where o, is the characteristic frequency of the
reaction system. In the above,
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with the hyperoperators
A*B=4B— B4, 4°B=4B+ B4, (8)

for any operators 4 and fi, respectively. The hierarchical
elements p, represent the n phonon dressed state with the
decay rate ny and the conventional density operator g corre-
sponds to p,. Each equation in Egs. (4)-(6), e.g., for p,,,
represents the rate law among the three elements p,, g, _ |,
and p, , ,, namely the time evolution of p,, is determined by
its time evolution (i/#)H §* + ny and the incoming and out-
going contribution from p, _, and p, , ,. Because of this
hierarchical structure, we may deal with the strong system—
bath interactions.

Here, we should also mention that correlated initial con-
ditions play an important role for the colored noise or the
strong system-bath interaction case. Let us denote the total
Hamiltonianas H = H, + H, + Hyz, where Hy,, Hg,and H,
represent the Hamiltonian of S, B, and these interactions,
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respectively. To obtain the conventional quantum Fokker—
Planck equation,” or equivalently the quantum master
equation,? one usually uses the factorized assumption
Ps4s(t;) =exp(—BHp )p(t;), where p(¢;) is the density
operator of S. In this chemical reaction problem, the initial
condition for the total system is assumed to be the equilibri-
umonepg, (t;) =exp[ —B(H+ H, + Hjy)], however,
the equilibrium state we can define for the conventional
quantum Fokker-Planck equation based on the white noise
is ps. p(t;) =exp( — BHg)exp( — BH,) because of the
factorization assumption. The differences between the true
equilibrium state and the factorized one are the terms such as
BH, exp[ —B(H,+ Hp) ], ﬂzexp[—B(HQ+HB)]
H,H,, etc. The initial conditions taking into account these
terms are sometimes called correlated initial conditions. We
may neglect correlated terms for the white noise case, where
the factorization assumption works well, but we must take
them into account for the strong interaction or the correlat-
ed noise case. In our approach, these terms are expressed by
using the hierarchal elements p,, ,, etc. The true equilibri-
um state can be obtained by continuing the calculation until
all elements p,, reach steady state. Then using these elements
as the initial conditions 3, (¢;) defines the correlated equilib-
rium initial condition.

In TW, we demonstrated the calculation using the coor-
dinate representation of the density matrix, however, here
we use the Wigner function based on the phase space to study
the tunneling effects. The relationship between the quantal
density operator and phase space distribution such as that of
classical mechanics is obtained from the Wigner transforma-
tion, which is presented in the form®®

W(P,e;t) — _1_ J eiP@'/ﬁ
2l J -

X{(0—0'/2[p(t)|6+6'/2)d6’.  (9)

The rule is that all voperators consisting of Pand 6 have tobe
replaced according to”’

A Ao i 9
AP 4P+ 2, 6————)WP,0;t,
(PO(1) (+2i86 2 ap) VEeD

A\ i 9 i3
sAdPy-a(P— 22 042 9 wpo )
PNALED) ( 0 Ctaiap” B

(10)

where A (?,9) is any operator of ﬁand 6. Then Egs. (4)-(6)
are replaced by

%Woz — LouWo+ W, (11)
Jd A
B W,= — Loy +nNW, +3pW, 1 +nOp(PYW, _,
(n>1), (12)
and
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for the Wigner function W, =W, (P,6;t). Here,
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The quantal Liouvillian for the Wigner function is defined
by

(14)
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Equation (16) is the Fourier transform representation of the
potential term which is convenient for studying the quantum
effects (see Ref. 28). Equations (11)—(13) are the quantum
Fokker-Planck equations for the Gaussian-Markovian
noise bath. This hierarchical equation can be numerically
evaluated by using the finite difference expression of the dif-
ferential operators and the Wigner function.

If we take the classical limit, the Liouvillian equation
(15) with Eq. (16) reduces to

P 9

I 96
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The operators given by Eq. (14) are identical in the classical
and the quantal cases. Thus, we may obtain the classical
Fokker—Planck equation for the Gaussian—Markovian bath
simply by replacing Ly, by Lcy,- Although the classical and
the quantal equations have similar form, the quantal equa-
tion can be applied only for the high temperature system or
the long correlated noise because of the limitation Sfiy<1.

In the white noise limit > o, Where @, is the character-
istic frequency of the reaction system, we may terminate the
hierarchy in Eqs. (11)—(13) by setting N = 0, obtaining the
quantum Fokker-Planck equation for the Gaussian-white
noise bath

J A a( I a)
W= — Lo Wot 2 P+, (18
at ° oMo Z 5P g or) ° (18

Since we have assumed S#iy<1, the temperature restriction
to the Gaussian-white case [Eq. (18)] is more strict than
that for the Gaussian-Markovian case [Egs. (11)-(13)].
Violation of the limitation ¥> w, with S#iy<1 in Eq. (18)
may cause unphysical results such as the negative probabili-
ty P(0)=J dp W(p,0) <0.**° Note that the low tempera-
ture correction of Eq. (18) can be made by using Eqgs. (A9)
and (A10) of TW. We may also obtain Eq. (18) by assum-
ing the very weak system-bath interaction, since, in this
case, the multiple interactions do not play a role and the
higher-order hierarchy can be terminated. Thus, we may ap-
ply Eq. (18) to the low temperature system if the system-
bath interaction is weak enough. In the classical limit, the
quantum Fokker-Planck equation for the Gaussian-white
bath reduces to the classical Fokker—Planck equation
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The fully classical equation never violates the positivity cri-
terion, if the initial condition does not. In Sec. III, we focus
on the Gaussian-white case and discuss secondly the Gaus-
sian—-Markovian case since the numerical integration of the
quantum Gaussian-Markovian equation using present com-
puters is time consuming and, as shown in TW, the effects in
the white noise and Markovian noise cases are qualitatively
similar. Although the quantum Fokker—Planck equation for
the Gaussian-white bath cannot be applied for the strong
system-bath interaction at the low temperature, we may fol-
low up the results in this case by comparing the results from
the quantum Fokker—Planck equation for the Gaussian—
Markovian bath.

The advantages of using Wigner functions instead of
using density elements are the following: first, the phase
space description allows us to make direct interpretations of
the dynamics. Thus, we may easily discuss the classical and
the quantum systems on the same basis. Second, we may
suppress the periodic boundary conditions as we will show in
Sec. II1. Third, numerical calculations are easier. Since the
elements of the Wigner function are real, we may save on
memory compared with that needed for the complex density
elements. In our approach, memory consumption is one of
the major limitations for numerical computation, since we
must take into account the many-leveled hierarchy for the
strong system-bath interaction.

A current limitation of our approach is that it is most
easily applied to the Gaussian-Markovian bath. Also the
temperature limitation S#iy<1 for the quantum system can
give problems. There is also a computational limitation. Be-
cause we must take into account the many-leveled hierarchy
for the strong system-bath case, it is difficult to calculate
two- or higher-dimensional systems with today’s computers.

B. Numerical-linear-response experiment for activation
events

To study the transition between the wells, we computa-
tionally carry out a linear response experiment using the
Fokker—Planck equations summarized in Sec. IT A. Consid-
er, as the simplest possible model of a two state system, the
double well potential of Fig. 1, representing the potential
U(0) corresponding to the rotational motion along the angle
6 of the intermolecular degree of freedom. The two internal
states L and R are specified by a dividing point 6 = 7 and
boundary points 6 = 0 and 27 with the periodical boundary
condition. Let us denote the population of L and R states as
N, (1) and N (), then the rate law capturing the traditional
phenomenology is

dN, (1)

= ki g N (2) + kg Np (1),

(20)
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probability

potential

FIG. 1. The perturbed (solid line) and unperturbed potentials (dashed
line) and corresponding equilibrium states in the quantum case.

where N, (t) + N (t) =const. If N, (2) =N° 4+ 6N(¢),
where N, is the equilibrium population, we obtain a simple
linear relaxation law for the deviation from equilibrium
dsN(1) _
dt

where k = k;  + kg,. We can determine k by taking the
ratio

— kbN(1), (21)

doN(t)/dt _  d
ON(1) dt
where the second equality can apply only to the case
ON(t) > 0. As is well known, if the traditional phenomeno-
logy is correct, there is a plateau regime in which k(?) is
essentially constant k., and we have

k(1) = In[6N(D)], (22)

SN (1) xexp( — k1),

for large ¢. The value of k,,,, can be determined by looking at
the asymptotic limit of the slope of a semilog plot of
dON(t)/dt vs t.

To apply Eq. (22), all that is necessary is to perturb the
populations from the equilibrium state. If this perturbation
is small enough, dSN(¢)/dt and SN(t) are expected to be
proportional to the strength of the perturbation as we will
show later in this section and the quantity evaluated from
Eq. (22) does not depend on the form of perturbation. So
one uses the following perturbation:

UB)-U(0) —eF(0)=U(0) — eU,[S(0 —m)

—8S(6—2m)] (0<6<2m),
(23)

where S(0) is the step function, U, is the barrier height, and
€ is the small constant. The equilibrium distribution func-
tions for the unperturbed and the perturbed potentials are
pictured in Fig. 1. By turning on the perturbation for a suffi-
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cient time, the system comes to a perturbed equilibrium
state. By this perturbation, the population of the left well is
shifted to the right well compared with the unperturbed
equilibrium state. After the system comes to the perturbed
equilibrium state, the perturbation is turned off (this defines
time ¢ = 0). Now the populations, equilibrated with the per-
turbation, are no longer in equilibrium and will have to re-
equilibrate to those of the unperturbed system. The change
of the population in the right well SN(¢) is now defined by
using the density operator as follows:

SN(t) =Tr[p(1)G(0)] — Tr[p°G(0)], (24)
where
G(O) =S50 —7m)—S5(0—-2m) (25)

and p° is the equilibrium state for the unperturbed Hamilto-
nian H,

pe=e PH/Tr(e PH). (26)

Thus, by evaluating the time response of the density operator
for the perturbation, we may evaluate k(¢) from Eq. (22).
This is the linear response experiment and we will perform
this procedure numerically in Sec. I1I using the kinetic equa-
tion explained in Sec. IT A. Although this is a cumbersome
procedure, it is necessary for making contact with the experi-
mentally observable rate constant. The rate constant applies
to along-time steady-state situation and it requires dynamics
from a correctly equilibrated state in which the bath is corre-
lated quantum mechanically with the reaction system. The
density state at ¢ = 0 can be regarded as the correlated initial
condition discussed in Sec. IT A.

This linear response analysis is the basis of all correla-
tion function formulas for relaxation rates.*'>* Here we dis-
cuss some details. For a low barrier potential, it may be diffi-
cult to separate the “molecular” from the reaction time
scale. However, for high barrier, the change of SN () is small
at short time and we may set SN (¢) =8N (0). Then, by per-
forming the Kubo transformation, the relaxation rate is ex-
pressed as®'!

k() ~ — d [6N(2)]/dt
S6N(0)
_(GG(1) _ S5 dALG(~ i)G(1)) 27
(G;G) B{(G;G) ’

where G(¢) is the Heisenberg operator of the function G and

8
(4;B) = —;—J dA Tr[exp( — BH)exp(AH)A
0
Xexp( — AH)B 1/Tr{exp( — BH)] (28)

is the canonical correlation for any two operators 4 and B. In

the above, G = [G,H]/ifi and we may replace this by the
Poisson bracket G = {G,H?} in the classical limit #i—0. The

trace operation in the canonical correlation reduce to an in-

tegral over the phase space, in this classical limit, and non-
commutability of operators no longer plays a role. Thus we
have

({G.H}G(8,)) _ (6(dG/d6)G(8,))
(G,G) (G)
_ 26,86, — M G(9))
(G)
where ( ) now represents the thermal average over the
phase space and the dynamics of 6, and 8, follow the classi-
cal Liouville equation. To deduce the final equality, we used
the fact that the terms including 8(6 —#) and
— 6(0 — 2m) give the same contribution in this symmetric

potential.
The initial value of the above rate has a very simple

k(t) =

» (29)

_ (Ivel8(6—m) =<|v0|><5(0—1r))
(G) (G)

’

(30)

where v, represents the velocity along 6. This can be com-
puted without regard to the dynamics of the reactive event
and gives the well-known transition state theory (TST) val-
ue.

The transformation of the correlation function (27) to
the form (29) is particularly convenient in the classical limit
because it immediately separates the problem into a part cal-
culable by equilibrium theory [k(0)] and a correction cal-
culable by importance sampling (trajectories start at the
transition state). In the quantum regime, an analogous
transformation has been made by Voth ez al.'® and is quite
useful in path integral formulations. In the quantum kinetic
equation formalism, these transformations do not seem as
helpful and we have calculated rates by numerically carrying
out the linear response experiment.

Ill. NUMERICAL RESULTS

A major goal of this study is to see the interplay of tun-
neling, resonance, and dissipation on a single potential; how-
ever, the change of population between the well via tunnei-
ing is extremely small in most “realistic”” chemical reaction
problems and it is time consuming to perform the numerical
integration using present computers and calculation tech-
nique. So here we employ an ideal model where the tunneling
processes play a dominant role to do a comprehensive study
on reaction processes. The Hamiltonian of the reaction sys-
tem itself is given by (hereafter #i= 1)

A

2 ~
Ho=-—§7+Uocos2(0) (0<6<2m), (31)
where
=002, U,=40. (32)

We also suppressed the periodic boundary condition
W(P,0) = W(P,2m). The corresponding potential and its
several eigenstates are illustrated in Fig. 2. This barrier is
rather low for the description of the crossing as a strictly

~ “activated event” at the higher temperature and low damp-

ing. However, it does allow the numerical illustration of the
main phenomena through the range of possible motional pa-
rameters. As shown in this figure, the ground and the first
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FIG. 2. The cos? potential and its eigenstates and eigenvalues with the per-
iodical boundary condition.

excited states are in the potential. The fourth and the fifth,
and sixth and seventh excited states are degenerate.

In this study, we mainly discuss the Gaussian-white
cases based on the quantum Fokker-Planck equation (18)
or the classical Fokker-Planck equation (19). The Gaus-
sian—-Markovian cases based on Egs. (11)-(13) with the
quantal Liouvillian [Eq. (15)], or the classical Liouvillian
[Eq. (17)] are discussed at the end of this section. The nu-
merical integrations of these kinetic equations were per-
formed by using the second-order Runge-Kutta method for
finite difference expressions of the momentum and the coor-
dinate space (here we use 200 X 60 mesh). We use this mesh
to simulate both the classical and the quantum reaction
rates. We employed the center difference scheme for the dif-
ferential operators in Eqs. (18) and (19). The discrete Four-
ier expression is used for the potential kernel (15) with Eq.
(16).%8 The mesh we used is not very fine and the true reac-
tion rates are somewhat lower than the reaction rates calcu-
lated here; however, the qualitative features of the activation
processes are expected to be unchanged. In order to compare
with the results from the simulation, we used the same mesh
to compute the TST value [Eq. (30)]. The simulation was
performed by following the procedure of the linear response
experiment. In order to perform the numerical calculation,
here we set € = 0.005 in Eq. (23).

A. Gaussian-white noise bath

Figures 3 and 4 show the equilibrium phase distribution
at the different temperature calculated from the classical
Fokker-Planck equation (19) and the quantum Fokker—
Planck equation (18), respectively. At the high tempera-
ture, Figs. 3(a) and 4(a), the shapes of the population at the
barrier top of the quantum result is larger than that of the
classical one because of the tunneling contribution. In Fig.
4(b), the distribution function has negative parts, since the

(a) p=0.01

(b) B=0.06

i

I
W

t“\\w

FIG. 3. The classical equilibrium distribution function for the phase space
for the cos® potential at (a) the high temperature 8= 0.01 and (b) at the
low temperature S = 0.06.

distribution function for the quantum system (the Wigner
function) is not positive definite. The shapes of the distribu-
tion functions for the quantum system depend on the cou-
pling strength of the system—bath interaction and here these
are shown for the weak interaction case { = 10. The quan-
tum distribution function for the strong coupling case will be
discussed later.

Figures S and 6 show the time evolution of the quantum
and the classical reaction rate functions, calculated from the
classical Fokker—Planck and the quantum Fokker-Planck
equations for various . In these figures, the strength of the
system-bath interaction is chosen to give § = 10. First, we
should note that since the mesh is finite, the results shown
here are numerically inaccurate in the time period ¢ < 0.005.
If we exclude this error, the classical reaction rates (Fig. 6)
start from TST values calculated from Eq. (30), whereas the
quantum ones (Fig. 6) start from zero. In the classical case,
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(a) B=0.01

(b) B=0.06
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FIG. 4. The quantal equilibrium distribution for the phase space (the
Wigner functions) at (a) 8= 0.01 and (b) 8 = 0.06 for the weak interac-
tion § = 10.

25k — 002 ||

k(t)

03 0.4 0.5
t

FIG. 5. Chemical reaction rates calculated from the classical Fokker—
Planck equation for different inverse temperature /3 for the weak interaction
&=10.
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FIG. 6. Chemical reaction rates calculated from the quantum Fokker—
Planck equation for different inverse temperature 3 for the weak interaction
&=10.

the initial rates are determined by the free motion of the
equilibrium molecules near the barrier top. In the quantum
case, since quantum smearing of the transition state plays a
role, the time-dependent reaction rates start from zero and
then quickly rise up.>* In both the classical and the quantum
cases, since the potential is shallow, N (#) decreases rapidly
at the initial stage and k(¢) increases until around z = 0.05.
The reaction rates have oscillating features at high tempera-
ture until about ¢ = 0.02 both in the classical and the quan-
tum cases. In the classical case, this phenomenon is ex-
plained by recrossing caused by molecules that fail to get
trapped, but in the quantum case, it is an interference phe-
nomenon explained by the transition between the discrete
eigenstates. Indeed, at the high temperature 8 = 0.01, the
frequency of this oscillation is close to the transition energy
between the ground state and the fourth or the fifth excited
state, Aw = 100 (see Fig. 2). If temperature goes down, the
oscillation frequency also decreases since the transition be-
tween the ground state and the lower excited states play
more of a role. The rise time of the quantum reaction rates
has a temperature dependence. Because of the interference
of oscillating contributions from different levels, the rise is
not simply 7 in the quantum regime. After the rise time is
over, the reaction rates quickly reach the plateau value (the
relaxation value) at ¢ = 0.2. When temperature goes down,
this plateau value also falls in the classical case; however,
because of the contribution from tunneling, the plateau val-
ues become constant at the low temperature in the quantum
case.

Figure 7 shows TST values calculated from Eq. (30),
together with the quantum and the classical relaxation rates
for £ = 10 at the different temperature. As seen from the
figure, the TST value and the classical relaxation value are
exponential functions of 3 at low temperature, whereas the
quantum relaxation value is temperature independent be-
cause of the tunneling contribution. At high temperatures
= 0.01-0.02, both the classical and TST values deviate
slightly from the straight line. The source of deviation from

J. Chem. Phys., Vol. 96, No. 11, 1 June 1992
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FIG. 7. Arrhenius plot of the TST, the classical relaxation, and the quantal
relaxation values.

Arrhenius behavior here is the low barrier leading to large
anharmonicity.

Figures 8 and 9 show the time evolution of the classical
and the quantum distribution functions of 6 at the low tem-
perature 8 = 0.06 for the weak coupling { = 10. Since the
deviation of the distribution caused by the perturbation is so
small, we plot

1)

AP(

\\\\ \
KRR
AR

FIG. 8. Time evolution of the classical distribution function P(6;¢) at the
low temperature 8 = 0.06 for the weak interaction § =

6:t)

AP(

FIG. 9. Time evolution of the quantum distribution function. The param-
eters are the same as in Fig. 8.

AP(6;t)=P(6;t) — P(6;T)

= f dp W(P,6;t) =J.dp W(P,6.T), (33)

where we set 7 = 0.5, instead of P(6;¢) itself. In the classical
case, a slight change of the density operator at the top of the
barrier @ = 7 can be observed; however, since the main con-
tribution to the transition is from the tunneling process, the
distribution function is smooth around the barrier top in the
quantum case.

Figures 10 and 11 show the quantum and the classical
reaction rates for different coupling strengths at (a)
B=0.01 and (b) B =0.06, respectively. In the classical
case (Fig. 10), the initial rates are determined by the free
motion of the equilibrium molecules near the barrier top.
For classical systems, the dissipation effect from the bath on
these molecules does not change the probability of being at
the transition state, thus graphs for different coupling
strength start from the same initial value, which agrees with
the TST values. Soon the molecules are scattered by the bath
system through the interaction, or bounce off the side of the
potential well. These effects lead to recrossing and a reduc-
tion in k() as discussed in many papers. For weak interac-
tions £ = 10 and 30, the bath ultimately provides a source of
activation for the molecules and the rate constants increase
with the coupling strength.*® This is the energy controlled
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FIG. 10. Time evolution of the reaction rates calculated from the classical
Fokker-Planck equation for various coupling strength & at (a) the high
temperature 8 = 0.01 and (b) at the low temperature 3 = 0.06.

regime. However, for the strong interaction, molecules
which have crossed the barrier may suffer collisions before
reflecting from the potential well and reaction rates decrease
with coupling strength. This is the diffusion limited regime
and is observed at £ = 70 in Fig. 10(b). In Fig. 11(a), in the
quantum case at the high temperature, the reaction rates
show similar time evolution, except the initial point which is
expected to be zero if mesh size is large enough. At low tem-
perature [Fig. 11(b) ], because of the tunneling, the reaction
rates are much larger than the classical rates and oscillate
slightly as shown in Fig. 6. If the interaction becomes strong-
er, this oscillation disappears and the plateau values become
smaller. The reason for this is that the system-bath interac-
tion suppresses the quantum effects and the phenomenon
approaches the classical one. To illustrate this, we plot the
plateau value vs coupling strength.

Figures 12 and 13 show the plateau value for different
coupling strengths and temperatures. In Fig. 12, the turn-
over feature from the energy controlled regime to the diffu-
sion regime can be observed. These turning points shift to the
right when the temperature goes down. The quantal results
(Fig. 13) have a similar { dependence at high temperature.
When temperature goes down, the contribution from the
tunneling is revealed and shows a sharp peak around § = 5.
Some features of Fig. 13 may surprise the reader. Notice that

60

L@p=001 [ "
i e 30|

50
— 7

k(t)

0 0.1 0.2 03 0.4 0.5

FIG. 11. Time evolution of the reaction rates calculated from the quantum
Fokker-Planck equation. The other parameters are the same as in Fig. 10.

the rate is proportional to &; at small § even in the deep
quantum regime. This is because k is defined by the asymp-
totic decay rate. At small &, populations oscillate for this
symmetric situation and in that sense the phenomenology of
rate law breaks down. The region of oscillating population is
indicated by gray shading. The shape of the sharp peak in
Fig. 13 does not appear to change even though the tempera-

40

k rxn

0 20 40 60 80

g

FIG. 12. The classical relaxation values are plotted as a function of the cou-
pling strength at different inverse temperatures.
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40 T T T —

FIG. 13. The quantum relaxation values are plotted as a function of the
coupling strength at different inverse temperatures.

ture goes down; however, shapes of graphs in the strong cou-
pling region £ > 20 do change with the temperature and seem
to approaching to the classical results in Fig. 12 as { is in-
creased. To study these points, we plotted the quantum
phase distribution for the strong interaction case at the low
temperature in Fig. 14. Compared with Fig. 4(b), it is clear
that the population around the barrier becomes smaller and
the distribution functions approaches the classical one [ Fig.
3(b)]. We may explain this phenomena from the equations
of motion (18) and (19). As is well known, the equilibrium
state for the classical Fokker—Planck equation is the Boltz-
mann distribution W ¢ = exp{ — B[P?/2m + U(6)]} and
satisfies

FIG. 14. The quantal equilibrium distribution for the phase space at
B = 0.06 for the strong interaction & = 50. The result for the weak interac-
tion was shown in Fig. 4(b).

L. we= e— i( 1 i) e

Lo, We=0, TWe=¢{ P P+ﬂ ) We=0. (34)
Since this eigenvalue of T is zero while the others are nega-
tive, I tries to force the distribution function to a Boltzmann
one, but the potential term in Eq. (15) does not allow this
form in the quantum case. However, if the interaction be-
comes very strong, the contribution of I" becomes dominant
and thus equilibrium distribution approaches to the classical
one. Thus, we may conclude that the strong system-bath
interaction suppresses the quantum effects on the system
and the reaction rates approach the classical values if the
interaction is very strong.

From the above discussion, the quantum reaction rate
should always be larger than the classical one, although it
becomes slightly smaller in the strong interaction case at
B = 0.06 as seen in Figs. 12 and 13. This is attributed to the
limitation of the quantum Fokker—Planck equation that the
temperature of the bath should be very high or the system—
bath interaction is weak. To improve upon this, we must take
into account the low temperature corrections of Eq. (18) as
shown in the Appendix of TW, or we must use the Fokker—
Planck equation for the Gaussian—-Markovian noise bath
[Egs. (11)-(13)], where the temperature limitation is
weaker than the Gaussian-white case.

The major results of our paper are shown in Figs. 15 and
16. Here the relaxation values are plotted three dimensional-

FIG. 15. The classical relaxation values are plotted as a function of the cou-
pling strength and the inverse temperature. The lower graph shows the con-
tour plot.
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FIG. 16. The quantum relaxation values are plotted as a function of the
coupling strength and the inverse temperature.

ly as a function of £ and S going from the classical to the
quantum regime as temperature is lowered. In Fig. 15, we see
that the “Kramers turnover” shifts in the quantum regime.
Figure 16 shows the onset of tunneling as temperature is
lowered and the interplay of this with dissipation.

B. Gaussian-Markovian bath

In Fig. 17, we show the Gaussian-Markovian results at
low temperature 8 = 0.06 calculated from Eqgs. (11)-(13)

—— quantal

------- classical ]

krxn
=

PRSP
_______
......

FIG. 17. The quantum and the classical relaxation rates calculated from the
Fokker—Planck equation for the Gaussian-Markovian noise bath. The solid
line represents the quantum result, whereas the dashed line represents the
classical one.

8495

with Eq. (15) in the quantum case and with Eq. (17) in the
classical case. To perform the calculation, we decrease the
mesh number from N, = 200 to 50 keeping the same grid
size. Since the distribution functions are localized at this low
temperature, this does not change the results. We set ¥ = 15
and took into account about 40-120 hierarchy elements. As
shown in Fig. 17, the { dependence of the reaction rate be-
comes weaker than the white noise. This is because the high-
frequency oscillators of the bath no longer contribute to the
damping in the Markovian case because of the frequency
cutoff y.

To see this point more clearly, we may introduce an
effective coupling strength. Suppose that a phonon which
has the same frequency as the characteristic frequency of the
system o, has the major contribution to the system—bath
interaction. Because of the distribution equation (3), the
coupling strength between this phonon and the system is

&= i
Y+ o

This is the effective coupling constant and we may set ¥ — o
for Gaussian-white noise, while ¥ = 15 for Gaussian—Mar-
kovian noise. What characteristic frequency should be used?
Here, we estimated as w,~50 from the oscillations of the
time-dependent reaction rate in Fig. 11(b) for the weak in-
teraction at B = 0.06. In Fig. 18, we replot the Gaussian-
white and Gaussian—Markovian results in the classical case
and quantum case using this effective coupling strength as an
abscissa. With this rescaling, the Gaussian-Markovian and
Gaussian-white results now show a reasonable agreement
for the weak interaction.

(35)

ern

FIG. 18. The quantum and classical relaxation rates plotted vs effective
coupling strength. The results calculated from the quantum Fokker—Planck
equation (QGW), the classical Fokker-Planck equation (CGW), the
quantum Fokker—Planck equation for the Gaussian-Markovian noise both
(QGM), and the classical Fokker—Planck equation for the Gaussian—-Mar-
kovian noise bath (CGM) are shown in the same graph. The solid lines
represent the quantum results, whereas the dashed ones represent the classi-
cal results.
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IV. PROSPECTS

Quantum kinetic equations can take advantage of mod-
ern grid-based numerical technology to study quantum bar-
rier crossing over a wide range. With insights and some her-
oism, grid-based wave function methods have been extended
to higher-dimensional problems.*® The same should be true
for problems with dissipation. The next stage of two-dimen-
sional problems will already give some new insights, espe-
cially as to the interplay between internal energy relaxation
and chaotic dynamics with various quantum effects. The ex-
tension of grid-based to much higher-dimensional systems
becomes more difficult. Asymptotically, one can hope that
clever Monte Carlo schemes, perhaps based on path inte-
grals, will continue to materialize and that their numerical
reliability can be explored. In the interim, numerical solu-
tions of quantum kinetic equations can provide results that
can be compared with qualitative ideas and approximate
theories.
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