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A stochastic model of a multi-level atom interacting with its environment randomly
in its excited states is considered. Assuming a two state-jump model for the random in-
termediate-state interaction, analytical expressions of emission spectra of three- and
four-level atoms in the second order optical process are obtained. In each case, the ex-
pression is shown to be separated into three types of terms. Two types of terms corres-
pond to the pure Raman spectrum and the luminescence, respectively, while the other
type of term bears a mixed character contributing to broadening of the Raman line
when the random modulation is slow and merging into the luminescence when the
modulation is fast. This characteristic behavior is discussed with the use of the

analytical expressions.

§1. Introduction

Raman scattering and luminescence are
both second order optical processes and have
been a subject of active studies for a long
time. The interaction of the system with its en-
vironment present in the intermediate states is
called an intermediate state interaction (IMSI).
In Raman scattering, the quantum coherence
is conserved, whereas it is interrupted in
luminescence by IMSI. Thus, a simple three-
level atom gives only Raman scattering if the
natural radiative damping is the only
mechanism acting in the excited states.
Luminescence appears when IMSI destructs
the quantum phase coherence in the excited
state."'” One of the present authors (R.K.)
and his collaborators'''® have extensively
studied various stochastic models, where the
perturbation from the environment (reservoir)
is regarded as a stochastic Markovian process,
for the purpose of understanding the nature of
IMSI in the second order optical process.
Since the stochastic approach does not rely
upon perturbative calculations, it is particu-
larly useful to see how the coherent and non-
coherent parts are dependent on the relevant
parameters of the problem changing from one
extreme to another. However, the results are

* This paper is based in part on a master thesis

presented to Keio University by one of the authors (Y.T.).

usually still so much complicated that
analytical expressions are not very transparent
even if they are available and one has to ap-
peal to numerical treatments in order to get
physical understanding.

The present paper reports an analysis of
three-level and four-level atoms modulated by
the simplest two-state jump perturbation
which allows straightforward algebraic
treatments. This problem was treated by
Takagawara'” some years ago, but his expres-
sion of the emission spectra was complicated
and he showed only some numerical examples.
We found that the analytical expressions can
be separated into a few terms which corres-
pond to different processes with different
character of coherence. Although we have not
been able to discover the general principle of
separation, the achieved separation is by itself
very interesting and seems to throw a light into
the question of coherence of the second order
optical process.

This paper is organized in the following
way. The next section is a brief summary of
the stochastic theory of IMSI in the second
order optical process. In §3, we calculate the
spectrum for a three-level atom with a
diagonal modulation and discuss its features.
In §4, the spectrum for a four-level atom with
an off-diagonal modulation is calculated and
discussed for three different models. The last
section is devoted to the summary and conclu-
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sion.

§2. Formulation

A formulation of IMSI in second order op-
tical processes in the stochastic approach has
been given by one of the present authors
(R.K.) and his collaborators.''"'® In this sec-
tion, we present a derivation of the expression
for emission spectra following the formula-
tion recently described by one of the authors
(R.K.) in a conference report.'® A formula for
the total emission intensity is also given.

We consider an atomic system S interacting
with a radiation field @ and a reservoir R. The
system S has three groups of quantum states,
namely the initial state A, the intermediate
state By, B, - - and the final state C. Concern-
ing the photon field &, the frequency of inci-
dent light is denoted by v, and that of emitted
light by v,. In the second order process, the
atom in the state A absorbs a photon v,
transfers to one of the intermediate states
which are perturbed by the intermediate state
interaction (if there are more than one such
states), and then transfers from the same or
other state to the final state C emitting a
photon v,. We ignore the nonresonant process
in which the atom transfers to an intermediate
state emitting a photon v, before absorbing a
photon v,. Therefore, the energies of the in-
itial, intermediate and the final states of the
system S+ @ are represented by

a=A+v,b=B; and c=C+v,, (2.1)

where we put A=1. The interaction of S with
the incident light is denoted by V, and that
with the emitted one by V,. For simplicity we
assume that the system S+ @ interacts with its
reservoir R only in the intermediate states.
The IMSI is denoted by the Hamiltonian H;.
Thus, the Hamiltonian of the total system is
written as

Hw=Hs+o+Hr+Hi+Vi+ V>, (2.2)
when S is in B’s, and
Hyw=Hs o+ Hr+V + V>, (2-3)

when S is in A or C. Here, Hs+¢ and Hy
denote the Hamiltonians of S+¢@& and R
without interaction, respectively.

The density matrix for the total system

Second Order Optical Process of Random Modulated Multi-Level Atom 4551

evolves in time following the equation

p()=—i[Hw, pO)1=—iHop), (2.4
where we have introduced the notation
O*X=[0, X1, (2.5)

for a hyperoperator O ™.
We assume the initial condition for eq. (2.4)
as

p(0)=|a)<alpk,

where py is the equilibrium density matrix of
the reservoir R satisfying

Hy pr=0.

(2.6)

2.7)

In a stochastic approach, the dynamical
evolution of the reservoir R is replaced by a
stochastic evolution. Let 7 denote a state of R
and P,(¢) the probability for finding R in the
state r at time ¢. The stochastic evolution of
P.(?) is assumed to follow the Markovian equa-
tion

P.(t)==>,I(r, r')P(2). (2.8)
Thus, the stochastic operator I” plays the role
of iHy in the foregoing treatment. The IMSI
is represented by the interaction Hamiltonian
H(r) acting on S in the intermediate states
when R is in the state r. The diagonal part of
H;i(r) is the adiabatic random modulation for
each of the intermediate states. In addition to
this, there may be off-diagonal (nonadiabatic)
modulations between the intermediate states.
It has been shown many years ago by one of
the authors (R.K.)" that the evolution eq.
(2.4) is replaced by

p)=—iH N+ Vi+VI)p@)—TIp(t), 2.9)
where H(r) is given by

H(r)=Hs+o+ Hi(r), (2.10)

when S is in the intermediate states, and
H(r)=Hs+ 9, (2.11)

when S is in 4 or C. In eq. (2.9), the density
matrix p (¢) is considered as a vector in the
space of reservoir states. The component p,(f)
is the density matrix of the system S+ &,
averaged over all possible paths of evolution
of the reservoir R specified to reach the state r
at time ¢. The stochastic operator I operates
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on this vector, while the hyper-operators
operate on each component of the vector.
Hereafter, we denote a quantum state of S+ &
by a bra or a ket such as |a@), |5;) and |c) or
{al, <b;| and <c|. Similarly state vectors of
the reservoir are represented by round bras
and kets such as (r|, |r), (P| or | P). In this
notation

L(r,rY=(@|r\r), (2.12)

in (2.8) and P.(t)=(r|P(¢)). The equilibrium
state of R is written as |0) or (0| and satisfies

rl0)=0 and O|Ir=0 (2.13)
with the normalization
0]0)=1. (2.14)

Then the initial condition (2.6) is written as
p(0)=|a)<al - |0). (2.15)

By solving eq. (2.9) with this initial condi-
tion, we obtain a transition probability P(c, ¢)
that the system has reached the final state ¢ by
the time ¢ starting from the initial state a. This
is given by

P(c, )=(0[<clp(®)|c>. (2.16)

t t
pa(t)= S dr’ S dt” e it—)Hse+ V‘x)(—inx) e—i(t’—t")(H§R+VF)(_iVZX) e i Hswt V‘X)p(O),
0

0

where
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Per unit time, the rate of emission (photon
counting rate) W(c, t) is given by

Wi(c, t)=dP(c, t)/dt. (2.17)

Introducing the Laplace transforms of P(c, ¢)
and W (c, t) by

oo

dte™ P(c, 1),

0

Plc, s]= S (2.18)
and

o

Wile, s]= S dte ™ W(c, t)=sP]c, s]. (2.19)
0

We write the continuous wave (CW) response
as

W(c, o)=Ilim W(c, t)=lin(} sWic, s]. (2.20)
[~ 5

The total intensity of emission integrated over
all values of c is calculated as
I=S dc W(c, ). (2.21)

Based on egs. (2.15)-(2.17), we can
calculate the CW response in the second order

optical process. We expand the formal solu-
tion of eq. (2.9) to the second order of V5:

From eq. (2.16), the transition probability is given by

t 15
P(c, t):S dt S d£,(0]<c | [e ™= DHSHV DV, @milem 0HS+V T (=i HSH V) p()) 7,

0 0

The photon counting rate can be written as

Then the CW response, eq. (2.20), is formally given by

W(c, ©)=lim (URRZ

where

(2.22)
iHR=iH({r)*+1T. (2.23)
+e—i(t—tz)(stR+V1x) {e~i(tz—ln)(H§R+ VF)V2 e—itl(HsXR+ v p(O)} 14 |C> |O) (2.24)
t . ’
Wi, t)= S dt'(0]{c| V, e = IH=cmil+ V) o =il HSe+V{ p(0) V3] ley |0)+c.c. (2.25)
0
V. 0)+c.c. 2.2
stiH—g sy, lel0tee, (2.26)
p(0), (2.27)

pf=Ilim

S
TS0 sHIHRF VY
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represents the equilibrium-density operator in the presence of V.
We further expand eq. (2.26) to the second order in V). First we expand p°. The zeroth order
term does not contribute to eq. (2.26). The first and second order terms are given by

1
=li 0)ivi+- -, 2.28
p(0) Slj{}SHHng( )iV (2.28)

1
pi=lim ———(—iVr)

s—0 S+1H SR s+iHR

. 1 ) ) s
ps=lim —— (—iV7{) (—iV{) ———5p0)

s—0 S+1H R s+iHgx s+iH&R
—fim — H ! % (0)} Vi+V, {——1 (O)VH (2.29)
o stiH | \s+ig+r P T s+ P ) '

with the use of H & p(0)=0, where the irrelevant terms are omitted. The first order term eq. (2.28)
has the matrix elements <a|p$|b,>, while p§ has elements only between the intermediate states.
Next, we expand the first propagator in eq. (2.26) of right hand side in V1. The zeroth order term
combines with p$ and the first order term with p$. The final expression is given by'®

<C|V2|bj><bj| b

s+r+y.,+i(H—c)| :

O) i| (2.30.1)

1
V51 b, " 3
<C| 2|b ¥<b ls+r+yb+1(H—c)|b[>

W (c, 00)=lsi£13 {Z 2] |: <O

7kl

1
X {b;|V, e Vo b))*
(bl 1|a>s+F+i(a—c)<c| 2| 1

1

X * V *
<b[|s+F+yb+i(H—a)|bk> (bl Vila)

+x 53 (0

< bl g 100 al Vi1

Xyl yb1+i(H—-a)|bi><bil Vilay 0) (bn|V2lc) (2.30.11)
#2323 (o[ el Valb g 190

< bl g ebd el Vil
><<b"|s+r+yb1+i(H—a)Ib"mb"lVllw*

X (b, | Vale) 0>}+C.C. (2.30.111)

Here, we have introduced the notation
<bibj|A|bkb1>:<bi| {A|bk><bl|} |bj> (2-31)

for a hyperoperator 4 operating on |b><b;|. In eq. (2.30), it is assumed that the natural radia-

tion damping of the intermediate states is given by a phenomenological damping constant y; for

the states B’s. As we shall see in later sections, eq. (2.30.1) comes from p§ and gives rise to the

Raman and broadened Raman parts, whereas eqgs. (2.30.1I) and (2.30.1II) are due to p5 and gives

the luminescence part and at the same time compensates the negative contributions from pj.
The total intensity of emission, eq. (2.21), can also be calculated as
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=\ dc(ol<clV Valey|o) +c.c.
S_m C( Vi msorram Pl ) €

=2 041 V2| 5y) < b | ——=———1bbi) | <b; : biy<bil Vilay |0
”Z,%( ARy |F+2yb+1Hx|,k>{<,|r+yb+l(H_a)| bl vilay o)
X bV * ml| V- + ,'* i i * m |V .
B VAly Bl Va1oy+ bl 153 < Vil 0 ol Valay*om il |

(2.32)

tion of the random modulation is described by

§3. Three-Level Atom with Diagonal
Modulation

In this section, we consider a three-level
atom with a random adiabatic modulation £
which shifts the level of the intermediate state

the operator

1 -1
r=ﬁ< )
2\ -1 1

The eigenvectors of I' corresponding to the

3.3)

B. Then, the IMSI Hamiltonian (egs. (2.10)

. . equilibrium state are given by
and (2.11)) is written as

1 /1
a 0 0 IO):E ( : ) and (0]=@,1), 3.4
HQQ)=| 0 b+2 0 3.1
0 0 c and other eigenvectors are

The modulation £ is further assumed to take
only two values Q=+ A4 randomly with the
average jumping rate yn=1/t. (see Fig. 1).
This is called a two-state jump model. The
modulation £ is expressed in a matrix form as

4 0
o=y _a)
0 —4

in the space of the two states. The time evolu-

1 1
II)—E ( _1> and (1]=(1, —1). (3.5

These eigenvectors satisfy the following rela-
tions:

0l2lo)=01]2[l1)=0,

OleIn=alel0=A4,

0|ri0)=o0 AIr)=yn.  (3.6)
By eq. (2.30), the spectrum W is expressed as'”

(3.2)

and

W= |(Cle|b>lzl<b|Vl|a>|2

1
X {lim <O
s—0

1
Yo+ I —i(wr— ) l()) s+i(w) — wy) <

1
0
)’b+F+i(w1—Q)’ )

1 1 1
+ (O i 1) i ( i lo)
Yo+ I —i(w— Q) Ym +i(w) — w2) Yo+ +i(w1—2)
+<0 I O) -1——[ <O 1 ‘O) +c c}
1 1 1
+ ({0 1 1 0} +c. +c.c,
< Yo+ I'—i(c,— 2) >2yb+ym [( yb+r+i(w,—9)( ) CC]} €
3.7
where
wi=a—b and w,=c—>b (3.8)

are the off-resonance frequencies of the incident and the emitted radiation.
The spectrum W can be rearranged into a sum of three terms as (see also Appendix)
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W= WR+ WBR+ WL, (39)
with
1
We=|{c| V5| |2|1{b|V:|a) |27 (w1 — , 3.10
R 2 >| 1| >| (o1 w>) ()/b+)’(601))2+(w1_5(601))2 ( )
Ym 1 1
Wgr= VL2 b)Y |12 1(b|V, ) . .
BR |<C| 2| >| |< ‘ 1|a>| yﬁ,+(w1—w2)2 ()/b+}’m)2+60% ()’b+)’m)2+w%
AH[— w1+ o+ Pm)? + A+ o+ ) (01 + w2)*) 3.11)
[(yo+ (1)) + (w1 — 3w 1)) (o + P(@2))* + (w2 — S(w2))*] '
and
+ Ym
Wy =2Wa o gy, (3.12)
Yo ' Ym
where
y(w)) Vm
W= Wi_y- . , 3.13
’ ® Yot y(@1) Yot ¥m 3.13)
and
y(w2) Ym
Woe= Wi . . 3.14
’ " Yot p(@2) Yot Pm (3.14)
Here,
1 yo+ (1)
W= 1<b|Vila) |* Re <0 ! ’0>= b1V, lay |- ,
° : Yo+ I +i(w,—2) [<bIVila] ()’b+7(601))2+(601_5(601))2
(3.15)
and
+
Wio.=<c|Valby|* Yot (@) (3.16)

(o 7(@2))* + (2= (@)

are the rates of absorption and emission of photon respectively. In the above expressions

_ Yo+ ym) A* wA?
()’b + )’m)2 + wz

Y(w) and J(w)= (3.17)

(yb + ym)2 + wz ’

are the damping and the level shift induced by
the random modulation. It is noticed that the
factor W., and W, in eq. (3.12) are closely
related to the absorption and the emission
rates, egs. (3.15) and (3.16).

The total intensity of emission is calculated
from eq. (2.32) to be

L= [c| Vo b) > X2 Wiss/ Pb. (3.18)

The first term of eq. (3.9), namely Wk given
by eq. (3.10), comes from the real part of the
Fig. 1. A three-level atom with a diagonal modula- expression (s+i(w; —w;))~" in the first line of

tion. the expression eq. (3.7) and represents a pure
Raman process. It is a sharp spectral line of a
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delta function type located at w;=w, with the
intensity in a resonance form in which the dam-
ping and the resonance frequency are modified
by the random diagonal perturbation. Its ratio
to the total intensity of emission is

I/ L= S Wrdws/To=7e/ s+ ¥(@1)) . (3.19)

The second term, namely Wpr given by eq.
(3.11), is the contribution by the second line of
eq. (3.7) and is called here the broadened
Raman term because of the presence of the fac-
tor ym/[yh+(w,—w,)*]. This may be inter-
preted as the broadening of the initial and the
final states of the composite system S+R.
Although we assume the reservoir R to be
decoupled from the systm S in these states, the
coupling existent in the intermediate states
allows exchange of energy for the reservoir
through the optical process. When the modula-
tion is slow, namely when p, is small, this
gives a broadened Raman-like line at the
Raman position of the emission spectrum.
When the modulation becomes faster,
however, the spectrum bears the nature of

Wer= |<C| V2|b> |2|<b| Vi |a> |227I’5(601
which is combined with Wy to result in

W=Wr+ Wgr= |(C| V2|b> |2|<b| V1|a> |227T

This is the averaged spectrum of two pure
Raman processes through the intermediate
states B+A4 and B—A. When the modulation
rate is finite, the Raman line is a superposition
of a delta-type peak of Wk eq. (3.10) and a
Lorentzian peak contributed by the term Wpgg.
The wing of the latter extends to the frequen-
cies w,==xA4, which correspond to the
luminescence emission, where the intensity is
enhanced by the resonance factor in the
denominator to form peaks when yp,, is suffi-
ciently large. These peaks are in-
distinguishable from the luminescence coming
from the term Wi, but are rather minor parts
of the whole spectrum as long as y,, is not too
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luminescence as we discuss later in more
details. In this sense the terminology is not
quite proper, but we use it hereafter since we
find no better word.

The third term is purely luminescence. It
consists of two distinct factors corresponding
to absorption of an incident photon and emis-
sion of a luminescence photon. This sort of
structure will be more apparent in the case of a
four level system as we shall see later. A
delicate point is that these factors ., and
Wy are not identical with the absorption and
the emission rates W3i-, and W§-.. The reason
for this is that Wi is not the whole of
luminescence, which is partly contributed also
by Wpgr as will be seen later.

We now discuss how the change of the
modulation rate y,, affects the nature and the
relative importance of these terms.

3.1 Very slow modulation case

If the modulation rate y,, is equal to zero, or
it is smaller than any of other parameters,
only the pure Raman process should appear.
This is contributed by Wi and Wjgg, because
the latter becomes

AZ
- . s 3.20
O ot DAt @—a 020
S —an L < Lo, )
(@ =) 2 \ i+ (w+A4? pit(w—4)? )

(3.21)

large, namely y.<A4%/y, (see eqs. (3.25) and
(3.26)). The resultant luminescence spectrum
has two peaks at w,= +A4, when y,, is not too
large, but they are narrowed to a single peak at
w,=0 when y,, exceeds 4.

3.2 Fast modulation case

In random frequency modulation problems,
the modulation effect is said motionally nar-
rowd when the condition

Al yaX1

is satisfied between the rate of modulation and
the magnitude of modulation. Then it pro-
duces an additional exponential decay rate

(3.22)
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Y =A% (3.23)

for the phase memory, which causes a
transverse decay of the excited state super-
posed onto the natural damping. In the pre-
sent problem, the situation is a little more com-
plicated because the effect is dependent on
other parameters of the problem, namely the

W= 1<c|Valby 121<bI Vi la) |2(2n~a(w.—w2)

pwty Y
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natural damping constant y, and the off-
resonance ;. If the modulation rate yn is
larger than these parameters, the additional
transverse relaxation produces a partial
destruction of dynamical coherence and
results in luminescence. In this situation the
whole spectrum is represented by

1
(Yot )+ wi

(3.24)

Pty )P+ 0} p(et+y) (pty)+wi

The first term is the pure Raman effect coming
from the term Wy while the second term is the
luminescence. The latter is the resultant of the
terms Wy and Wy in eq. (3.9). We find that

’ ' 1 ’
Wer=2W ,-p" Y S Yo - Whpae, (3.25)
Yoty Vo Yoty
W, =2W_ l__i W (3.26)
L a—b (yb+y')2 ))b b—cy .
and
W+ Wo=2W iy ———— Wi (3.27)
(o ty)
Here,
, Yoty
Waap= Viby|*———=——, (3.28
b |<al II >| (yb+y)2+w% ( )
and
+ r
Yoy (3.29)

W= (b Vo) P ——0——
b-c=[<b|V2lc) | vty )t

are the absorption and emission rates in this
narrowing condition. In this case the resultant

Yoty )

luminescence has the form of product of two
distinct processes of absorption and emission.
The term Wyg becomes a part of incoherent
luminescence process and contributes the frac-
tion y,/(y»+7y’) of the luminescence intensity.
In this way the discrepancies between the fac-
tors W,, and Wy, with Wi_, and Wi-. in the
expression (3.12) of W are remedied by the
contribution from the term Wpgg in the mo-
tional narrowing limit. Figure 2 illustrates
how the intensities are divided into respective
terms in the narrowing limit.

As the modulation rate becomes so large
that it holds

y,<<yby

then the luminescence loses its intensity and
the emission becomes purely coherent Raman
scattering.

(3.30)

3.3 Strong off-resonance

Obviously, the second order scattering must
be almost coherent Raman-like when the off
resonance w; is sufficiently large. This is easily

Tv
(Tor T T Tde-an— g
. T’ T .
Wa-b Tor 7T | Toet  Wo-e Wer

T' l
= Weo = WL

Fig. 2. Branching features of the spectral of three-level atom in the motional narrowing limit. The factors W ..,

and W .. are defined by eqs. (3.28) and (3.29).
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Wy= ,15
A= .5

Ty= .01

15

Wer / 1

10

Tm=0.01

INTENSITY

=) =5 i) .S J
EMISSION FREQ. (]

Fig. 3. Emission spectra of the broadened Raman
term of a three level atom with a diagonal modula-
tion.

seen from eq. (3.19). The ratio of coherent
Raman intensity to the total intensity is close
to one if the condition

IR/ La=ps/ (7o +p(w01)) =1, (3.31)

is satisfied. Therefore the luminescence should -

vanish when the off-resonance is so large that
y(w;) is much smallr than .

Figures 3 and 4 illustrate the spectral
distiribution of Wjr and Wi normalized by
the total intensity (3.18) for different values of
ym fixing the other parameters as w;=0.15,
A4=0.5 and y,=0.01. In Fig. 3, Wy is seen to
have sharp peaks at the Raman position
w>,=w; and at the luminescence positions
w,= A already for the smallest value of y,
namely y,=0.01. The Raman peak declines
rather quickly as y, increases. For y,=0.1
it becomes almost unnoticeable. The
luminescence peaks at w,= £0.5 are distinct
for small values of y,, but they merge into a
single peak at the average position w,=0 for
large values of yn, say 10. In Fig. 4, the
luminescence intensity of W are seen to be
considerably larger than that of Wpgr. Peaks at
w,= *0.5 are distinct for y,=0.01 and 0.1.
The motional narrowing to a single peak at
w,=0 is seen for y,=1 and 10.
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Wy= ,15
A - .5
Tv= .01

— ol

~

=

INTENSITY

-1 -.5 c .5 ]
EMISSION FREAQ. W2

Fig. 4. Emission spectra of the luminescence term of
three level atom with a diagonal modulation.

§4. Four-Level Atom with Off-Diagonal
Modulation

Next we consider a four-level atom with the
intermediate states B; and B,. The IMSI from
the reservoir is assumed to give rise to an off-
diagonal interaction between B, and B,. In this
case, IMSI Hamiltonian is written as

a 0 0 O

H(Q)= 0 b 2 4.1)
0 Q b 0
0 0 0 ¢

Fig. 5. A four-level atom with an off-diagonal modula-
tion. The interaction ¥V, connects A and B,. Three
models are considered for V, as follows: V, connects
C with B, (I), B, (II) and both B, and B, (I)+(1I).
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Here, the modulation € is assumed to be the ~ Model I: ¥, connects C with B,.
two state jump process defined by egs. (3.2) Model II: ¥, connects C with Bi.

and (3.3). Model III: V, connects C with both B, and B,
The interaction V; connects A with B;. Con- (See Fig. 5).

cerning the interaction ¥, between B’s and C, )

we consider the following three models. 4.1 Model I

17)

From eq. (2.30), W is given by

1 1
— 2 2)7;
w=1KalVilb Plcel valeo P | (0] uli—irs 100 g

1 2 < ’ 1
b))|0)] + 0(<d b;
F+yb+i(H—a)| l>‘ ) ij; ¢ 2|F-i-yb—Fi(H—c)l ’
_

1 1
+(biby | | b1 Y b +e.c. 4.2
<bb2|r+2yb+iH>‘lb”’l)(b’|r+yb+i(H—a)|b1>M}} = @2

Here, the Hamiltonian H of the intermediate states is assumed to be

H—|:b1 Q} (4.3)
Lo b '

>f<b2|

|blbj><bj|

1
X F : 0
|:<bb2| F+yb+1(a—H)|bl>‘ )

with its quantum states
<bi|=[1,0] and <b:[=I0, 1]. 4.4)

In eq. (4.2), the notations for stochastic operators and vectors are the same as in eqgs. (3.2)-(3.5).
Calculation of eq. (4.2) is elementary but tedious. We introduce the notations,

wl=a—5, wz_—'C"l_?, a)o:b.—bz,

wis=wixwe/2 and b=(b,+by)/2. (4.5)
Then the final result is written as,
W= WBR+ WL], (46)
where
Wae=[<al Vil Pl Valbpy |2t — L
Yia+ (w1 — 1) Yot ym)+ 0l (ot ym) +wi-
9 AH{[—wis Wae + Pt Pu) + AP+ G+ yu)* (@1 + @)% @.7)
[(Yo+ P(@14)) + (@1- — 0(@1+))[(Po + P(@2-)) + (w21 — (w2-))] '
and
Wi =2Way —— 22— ) (4.8)
L1 abl yb(yb+2y,2) b2cy .
where
y(wH') Ym
Waor = Wa-br- : 4.9
. " et (@i+) Yot Pa (59)
and
w: - m
Woae= Wha-e V(w2 2 4.10)

Yot P(@2-) Yot Pm
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Here,
yb+Y(wl+)
W= el Vilbo |2 4.11
w=alvilbn | (Yo + P(@1+))* + (wi- — 5w +)) D
and
yb+y(w2—)
W= (bl Valey |2 . 4.12
b2 |<b2| V2lc) | (yb_'_y(a,z_))z+(co2+—5(602—))2 ( )
Here, 6(w) and p(w) are defined by eq. (3.17) and y,, is given by
Qyo+ymd’
_ . 4.13
e 2y +Ym)* + wh ( !

The middle factor of eq. (4.8) coincides with the rate of transition from B, to B, caused by the per-
turbation 2, which is given by
1 Y12

Woione=<{bby | ———F—<|b:ib,) +c.c.=

s Sy E—— 4.14)
I'+2y,+iH Yo(¥o+¥12)

For this model, the pure Raman process does not appear in general, because levels B, and B>
are connected by the modulation © which perturbes the coherence of the quantum evolution
from the initial to the final states. This brings about a broadened Raman process which main-
tains a partial quantum coherence. Only in the static limit y,—0, this becomes a pure Raman
effect, namely

WBR:|<a|Vl|bl>|2|<b2|V2[C>|2
AZ
X271 0w, — —.
o ) ot VAT @l IR+ (@ — VAT F @A)

The right hand side of this equation has the resonance form corresponding to the eigenstates of
the Hamiltonian (4.3) with a constant Q.

In the motional narrowing limit y,>A with A2/ y,=y’, the quantum coherence in Wgg is com-
pletely disturbed by the modulation and Wpr takes.the form

(4.15)

’

AR
Yoty Vo Yoty

Here, W,., and Why,-.. are the rates of absorption and emission expressed as

Wer=2 W;—>b1 :

Wiae. (4.16)

, Yoty
Waop1 = 2. - 4.17
bl |<a|V1|bl>| (Yb+y)2+w%— ( )
and
4 + ’
Wiroo= (b | Valey [P — Lol (4.18)

oty +wis
In this situation Wy, becomes similar to the expression (3.26) and W= Wyr+ W1, is shown to be
_r
Po(Po+2y")

This is a three-step transition 4 = B,— B,— C. The first and the last factors correspond to the ab-
sorption process from A to B; and emission from B, to C, respectively. The middle factor
represents the transition from B, to B,, because y, in eq. (4.14) becomes y in this limits. Thus,
eq. (4.16) obviously corresponds to the luminescence process in this limit.

The total intensity of emission is calculated as

W=2W, 1" Wiz (4.19)
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+ Pm
=21 [<ba| Vale) 12 W (y*’ Im___ N ) (4.20)
Yo Pm  Yo(PotVi2)

4.2 Model 1T
For this model, calculation is done in the same way as in the subsection 4.1. The final result is

given by

W= WR+ WLZ, (421)
where
1
We=<a|Vi|b,) |12|{b:| Valc) |21 6(w,— w2)- 4.22
R < | 1 1 | |< 2| 2| >| ( 1 2) (yb+y(a)1+))2+(a)|_—5(a)1+))2 ( )
and
+ Ym
Wi2=2Wapi <yb Y - Y12 ) Woic. (4-23)
Yo'Pm  Po(Poty12)
Here, Wa is given by eq.(4.9) and W, by
y((,()2+) Ym
Woie= Whioc . , 4.24
! 7 et P(@24) Yot Pm (4.24)
+y(w
Wi-e= (b Valc) |2 Yok Year) (4.25)

7o+ P(24))* + (02— — S (w2+))*

The factors (o + Ym)/(¥s* Pm) and y12/ po(ys+2y12) appearing in the middle part of eq. (4.23) coin-
cide with middle part of eqgs. (3.12) and (4.8), respectively. The presence of the second term is
easy to understand because the transition from B; to B, by the perturbation £ is a loss for the
luminescence.

In the static limit, Wy, vanishes and W is a Raman process

W= <alVi|b:) I*[Kb:| V2l |?

1+ wi+wi/4
X2 0w —w . (4.26)
O 1+ VAT A1+ (@1 — VAT )]
This equation is similar to eq. (4.15).
In the motional narrowing limit, W becomes
1
W= V 2 Dn- —w>)"
[<alVilbiy 12 [<b:| Vale) |27 0wy — w2) (o7 )+ @l
: Y 1 Y ] Y :
+ Wi B — . - Weioe 4.27)
" ety [yb pe+2y) 1 ety (
where W,_y, is given by eq. (4.17) and
: Yoty
Whime=|{b:| V- 2. ; . 4.28
bl [<bi| V2ley | (yb+y)2+w%_ ( )
For the general value of y,, the total intensity of emission is written as
I=2n|<bi| Valey |* <Wab1'—y12'—+Wa—>b|‘—l—‘—). (4.29)
Yo(Pot ¥12) Yo+ P(@i+)

4.3 Model 111
The result for this model is obtained by adding the result of models I and II. Then, W is writ-
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ten by using eqgs. (4.7), (4.8), (4.22) and (4.23) as
W= WR+ WBR+ WLl + WL2. (430)

This intensity is composed of the factor corresponding to the transition from A to B and the dam-
ping factor in B levels as eq. (3.16).
In the static limit, W1, and Wy, vanish and W= Wyr+ Wk is given by

|<b2| V2|C> |2()’%+w%+0)6/4)+ |<b1|V2|C> |2412

W= |<(alVi|b)|*>*%X2n -w,—w . (4.31
o O ) ot VAT I+ - VAt D
In the motional narrowing limit, W becomes
1
W= 2[¢by| Valed 127 6(wi —
[<alVilby) 12 [{b:| Valey |27 - (e wZ)(yb+)”)2+CU%—
, y 1 Y y : Yy :
F2Wanor ——— <|:—'— - ] — Wpioect————— W, Hc>. 4.32
ety \Lye meet20) 1wty T met2y) *.32)

Each term of this equation is composed of the factors corresponding to transitions A —B;,
B,—B,, B,—C, and branching factors as shown in Fig. 6.

For a finite value of y,,, it seems that each term of eq. (4.30) can be interpreted in the same way
as in the motional narrowing limit. However, as there is the quantum coherence in Wy, the sim-
ple branching scheme is not applicable.

If we put <b,|V2|c)=<b:|V2|c)=<b|V>|c), eq. (4.31) becomes

1 1
W=Wx+ Wgr=|{c| Vo) 12| {(bi| Vi|a) |21 6(cwr— —<
R sr=|<c|V2|bY *|<{b:| Vi]a) | (w CU2)2 y%+(w1+\/25'—*‘70(2)/—4)2

(4.33)

vl >
+ )
Vi + (w1 — VA + Wi/ 4)?

This equation contains two terms factors corre-
sponding to two eigenstates. In this case, the
total intensity of emission which is given by ad-
ding eqs. (4.20) and (4.29) becomes

1
I:2ﬂ|<C| V2|b>|2Wa—»b1 - .

Vo

(4.34)

If we put wo=0, the solution eq. (4.30)
agree with eq. (3.9). This is easily understood

as follows: The eigenstates of H (eq. (4.3)) are
given by |b+>=(|b)>+|by))/2 with eigen-
values b+ 4. Though V, connects a with both
|b.> and |b_D, V> connects |c) with only
|b4>. Thus, the present model reduces to the
model discussed in §3 and eq. (4.30) reduce to
eq. (3.9).

Figures 7-9 illustrate the spectral distribu-
tions of Wgr, Wi and W1, normalized by the

TF-O (@i~ @) Wr

Tv
(Te+T" )T
-w: T' Tb
a-bl (747" )| To+T’

TI

Wﬁz.c WBR

, T W
TorT' l—1 Tor2T" Wi = W2

T’ )
T — Wez-c = Wi

Fig. 6. Branching features of the spectrum of four-level atom in the motional narrowing limit. The factors
Wi Woise and W, are defined by eqgs. (4.17), (4.18) and (4.28).



1986)
W= ,15
Wp= ,
A - .5
—
- Ty= .01
~
o
[+]
=

10

Tm=0.1

INTENSITY

Tm=0.01

=3 -.5 0 .5 1
EMISSION FREQ. w5

Fig. 7. Emission spectra of the broadened Raman
term of four-level atom with an off-diagonal modula-
tion.

total intensity, respectively. We set w;=0.15,
A=0.15, A4=0.5 and y,=0.01 as in Figs. 3
and 4. The excited states are separated by
wo=0.3. For small values of y,, Wi and Wi,
show two peaks at frequencies of two eigen
states of eq. (4.3), respectively. In Fig. 8, the
left peak of Wi,, which corresponds to the fre-
quency of eigen state near B, is higher than
the right, because B, and C are connected di-
rectly by V, in the model I. Similarly, the right
peak of Wi, is higher than the left in Fig. 9.
When y. becomes larger, two peaks of Wi,
merge into a single peak at the frequency of
w2= —wo/2 and those of Wi, at w>=wo/2, as
they are motionally narrowed.

§5. Conclusion

We have treated the second order optical
processes in three- and four-level atoms in
which the excited states are perturbed by two-
state random modulations. This simplification
of the models made it possible to obtain the
results in algebraic expressions. The spectrum
of emitted light is in each case shown to be
divided into three terms, namely the pure
Raman term Wk, the broadened Raman term

Second Order Optical Process of Random Modulated Multi-Level Atom
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A - .5
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Fig. 8. Emission spectra of the luminescence term
W, , of four-level atom with an off-diagonal modula-
tion.

W;= .15
Wo= .
A - .5
— |
< Tv= .01
S
=
a.
>
.—
— Tn=10
=
w
—
an-
2. —.5 ) .5 1
EMISSION FREQ. Wy

Fig. 9. Emission spectra of the luminescence term
W, , of four-level atom with off-diagonal modulation.

Wik and the pure luminescence term Wy. The
pure Raman term yields a sharp Raman spec-
trum of the delta-function type which cor-
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responds to a coherent process from the initial
to the final state through the intermediate ex-
cited states. The pure luminescence term gives
the spectrum of spontaneous emission by tran-
sitions from the excited states to the final state
which is incoherent with the absorption pro-
cess from the initial to the excited states. The
main factors appearing in this term are propor-
tional to the rates of quantum transitions of
absorption and emission but differ from them
by the factors shown in egs. (3.13) and (3.14).
This difference seems to be due to the presence
of the term which we called the broadened
Raman term. This term contributes to the
pure Raman scattering in the limit of static
modulation and to the pure luminescence in
the other limit of motional narrowing where
the modulation rate is faster than any of other
rate parameters. In the latter limit the resul-
tant of Wpyr and Wy gives the luminescence
expressed by a product of the rates of absorp-
tion, emission and transition among the ex-

<o

1
yb+r+i(w—9)‘0> B (

Yoshitaka TANIMURA, Hiroshi TAkaNO and Ryogo KuBo

1
O|———|0]+ {0

(Vol. 55,

cited states. This is naturally to be expected.
In the medium values of the modulation rate,
the term Wpr bears a mixed character of
Raman and luminescence, which cannot be
distinctly separated. Generally, the incoherent
part is more pronounced when the incident
light is closer to the resonance. When it is far
off-resonance, the coherent Raman part
dominates.

We conjecture that these features elucidated
here for the particular model of two-state
jump modulation are common for more
general cases of stochastic models although it
is difficult to achieve explicit separation of the
emission spectra. Also we limited ourselves
here to CW cases. Extension of the analysis to
the cases of pulsive excitation is important and
is interesting. We leave it for a future study.

Appendix

The terms in eq. (3.7) can be calculated by
using the following formula;

1
—10

1
X (011 —1] (1]i21]0 O———.‘0>
(0lie2|1) (1 Yo+ I +iw ) (11i210) < Yo+ +iw
1
=(0 | 0
+I'+iw—0]i2|1) {1|———|1 | (1112]0
ptr+io—olieln ( yb+r+iw\ | atielo
= L , (A1)
Yo+ y(w) +i(w —6(w))
and
1 1 1
<O , '1>=<O ———‘O) 01i|1) <1 ————’1)
Yo+ 1 +i(cw—2) Yo+ 1 +iw Yo+ I'+iw
_ 1. 14 _ (A-2)
P+ P(w) +i(w — 6(w)) Yo+ ymtiw
with
(Yo + Ym)A* wA?
= d = A-3
y(w) ot 7y + 0 and J(w) ORI (A-3)
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