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ABSTRACT: A system with many energy states coupled to a harmonic
oscillator bath is considered. To study quantum non-Markovian system-bath
dynamics numerically rigorously and nonperturbatively, we developed a
computer code for the reduced hierarchy equations of motion (HEOM) for a
graphics processor unit (GPU) that can treat the system as large as 4096
energy states. The code employs a Pade ́ spectrum decomposition (PSD) for a
construction of HEOM and the exponential integrators. Dynamics of a
quantum spin glass system are studied by calculating the free induction decay
signal for the cases of 3 × 2 to 3 × 4 triangular lattices with antiferromagnetic
interactions. We found that spins relax faster at lower temperature due to
transitions through a quantum coherent state, as represented by the off-
diagonal elements of the reduced density matrix, while it has been known that
the spins relax slower due to suppression of thermal activation in a classical
case. The decay of the spins are qualitatively similar regardless of the lattice
sizes. The pathway of spin relaxation is analyzed under a sudden temperature drop condition. The Compute Unified Device
Architecture (CUDA) based source code used in the present calculations is provided as Supporting Information.

1. INTRODUCTION

Quantum open systems have been a subject of fundamental
interest in physics, chemistry, and biology for many years.1

Problems in this category include quantum information,2

electron and exciton transfer,3 and time-resolved nonlinear
spectroscopy.4 A widely used model for an quantum open
system consists of a main system represented in terms of energy
states or configuration states, which is in turn coupled to heat-
bath consisting of an ensemble of harmonic oscillators.1,2 While
the model itself is fairly simple, it is difficult to study dynamics
analytically and even numerically, due to the infinite number of
bath degrees of freedom. A great deal of effort has been
dedicated to numerically calculating the time evolution of this
model system, and several numerically rigorous approaches
have been developed for the spin-Boson system and Brownian
oscillator system. These approaches involve the quasi-adiabatic
propagator path integral (QUAPI),5 the numerical renormal-
ization group (NRG),6 and the reduced hierarchy equations of
motion (HEOM) approach.7−25 Although the relaxation
process of a model system under external perturbations is
now well understood, that of complex system consisting of a
spatially distributed multilevel subsystems and a potential
system defined in a multidimensional configuration space have
not been well explored due to a lack of computational power.
To overcome the size limitation of the system, several
computational efforts have been made. In this regard, the
HEOM approach, which is defined by a simultaneous
differential equations for the density matrix elements, are fitted
in contemporary computer architecture that consists of many

CPUs and large shared and distributed memories. The codes
based on a Message passing interface (MPI),20 Graphics
processing unit (GPU),21−24 and the Open computer language
(OpenCL)25 have been developed to study photosynthetic
antenna systems. Several algorithms have also been introduced
to reduce the size limitation.14−19

In the present paper, we developed a HEOM program for
GPUs that is specifically designed to treat a quantum Ising
system defined in many energy states. It should be noted that
the scaling of the computational costs versus the system size is
different for the photosynthesis case and for the quantum Ising
case. In the photosynthesis case, we have to treat the fluctuation
described by a complex bath spectral distribution that can be
different in each site, while the system-bath coupling is not
strong and the bath temperature is high. In the quantum Ising
case, we describe the relaxation process by a single Drude heat
bath, while the system-bath integration is not weak and the bath
temperature can be very low. Nevertheless, the major limitation
of both cases arises from the system size, because we have to
treat the reduced density matrix instead of the wave function.
This paper is organized as follows. In Section 2, we present

the model Hamiltonian and HEOM. In Section 3, we explain
the optimized methodology for coding the HEOM to treat
large system. We then show how this code can be used to
calculate and analyze free induction decay signal of quantum
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spin glass in Section 4. Section 5 is devoted to concluding
remarks.

2. REDUCED HIERACHAL EQUATIONS OF MOTION
We consider a quantum system coupled to a harmonic
oscillator bath. The Hamiltonian is written as1−3,10−12
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where mj, pĵ, x ̂ĵ, and ωj are the mass, momentum, position, and
frequency variables of the jth oscillator mode, and V̂ is the
system part of the interaction, and αj is the coupling constant
between the system and the jth oscillator. The heat bath can be
characterized by the spectral distribution function, J(ω) =
∑jαj

2δ(ω−ωj)/(2mjωj), and the inverse temperature, β = 1/kT,
where k is the Boltzmann constant. We assume the Drude
distribution, given by7,8
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where the constant γ represents the width of the spectral
distribution of the collective phonon modes and is the
reciprocal of the correlation time of the noise induced by the
bath at the high temperature. The parameter η is related to the
system-bath coupling strength. Because we are typically not
interested in the bath degrees of freedom, we can consider a
reduced density operator ρ̂A= trB{ρ̂tot}, which is the partial trace
of the total density operator over the bath degrees of freedom.
We then employ the reduced hierarchy equations of motion
(HEOM) approach, which can be used to treat non-Markovian
and nonperturbative system-bath interactions at finite temper-
ature in a numerically rigorous way.7−13 In the HEOM
formalism, the reduced density operator is expressed in terms
of the auxiliary hierarchy density matrix elements, ρ̂j1,...,jK

(n) , where
the indices n and jk arise from the hierarchal expansion of the
decay functions e−γt and e−νkt with the kth Matsubara frequency,
νk = 2πk/βℏ. Then the zeroth element is identical to ρ̂0,0,···,0

(0) (t)
= ρ̂A(t).
Dynamics of the reduced density operator for the system

described by eqs 1 and 2 are expressed in hierarchical form
as8−11
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Here, i ̂ is the quantum Liouvillian of the system, and other
operators are defined by Φ̂ ≡ iV̂×/ℏ, Ψ̂̂k ≡ iηckV̂

×/βℏ
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where ck = 2γ2/(νk
2−γ2) and V̂×f ̂ ≡ V̂f ̂ − fV̂̂ and V̂°f ̂ ≡ V̂f ̂ + fV̂̂

for any operator f.̂ When the combinations of n and jk
are sufficiently large that the condition N ≡ n + ∑k=1

K jk ≫
ω0/min(γ,ν1) holds, the infinite hierarchy in eq 3 can be
truncated at those values of n and jk with negligible error by
setting9
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In principle, the HEOM provides an asymptotic approach that
allows us to calculate various physical quantities with any
desired accuracy by adjusting the number of hierarchal
elements determined by N; the error introduced by the
truncation is negligibly small when N is sufficiently large.

3. NUMERICAL INTEGRATION METHODS
3.1. Padé Spectrum Decomposition. In order to

construct the HEOM, we expanded coth((βℏω)/2) in terms
of Matsubara frequencies as
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While the HEOM from above expression leads to the classical
limit naturally for ℏ →0,12 this expansion is not convenient for
numerical calculations, because the number of hierarchy
elements constructed from this expression becomes very large
specifically at low temperature. Thus, in order to reduce the
hierarchy size, the Pade ́ spectrum decomposition (PSD) was
developed.14−17 Here, we adapt [N-1/N] PSD for the Bose
distribution, which can be easily implemented in the HEOM
code in the conventional expression. We thus expand
coth((βℏω)/2) into
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where ζj are given by
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where the parameters ζj ≡ 1/λj̃ and ξj ≡ 1/λj are determined
from the sorted eigenvalues of the matrix λj and λj̃, whose
elements are expressed as

δ
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for m, n = 1, 2, ..., 2K and

δ
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for m, n = 1, 2, ..., 2K−1, respectively. Then, by simply replacing
the Matsubara frequencies as νj = ξj/βℏ and the coefficients ck
in Ψ̂k as ck = 2ζkγ

2/(νk
2−γ2), we can obtain the HEOM under

PSD from eqs 3−6. The accuracy of PSD for different HEOM
depth has been tested extensively for a spin-Boson system.14−17

We found that the convergence of the HEOM in the present
case follows the spin-Boson case.
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3.2. Exponential Integrator Method. The HEOM have
been solved by numerically integrating in time using the
Runge−Kutta method (RK4), which requires four times more
memory than the memory stored in the HEOM elements. To
reduce the memory size limitation of HEOM, Wilkins and
Dattani19 introduced the exponential integrator method
developed by Al-Mohy and Higham.26 Here, we outline this
approach.
We consider the case that the hierarchal elements are

expressed as the M × M density matrix with the elements
ρ̂j1,...,jK
(n) (t)jk, where 1 ≤ j, k ≤ M. The HEOM are the

simultaneous differential equations in time that expressed in
terms of ADOs in the matrix forma as

ρ ρ∂
∂

=
t

tX ( )
(12)

where ρ(t) is the vector determined by

ρ ρ ρ ρ ρ= ̂ ̂ ̂ ̂··· ··· ··· ···t t t t t( ) { ( ) , ( ) , ..., ( ) , ( ) , ...}MM0 0
(0)

11 0 0
(0)

12 0 0
(0)

0 0
(1)

11

(13)

which contains all elements of each ADOs and X is the matrix
that is constructed from the operators appear in eq 3. The
formal solution of eq 12 is expressed in terms of Taylor series
as
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The vector elements, ρ̇j, are determined from the recursive
relations ρ̇0 ≡ ρ̇(t) and

ρ ρ̇ ≡ Δ ̇−
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j
X
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for j > 0. We can calculate ρ̇j from ρ ̇j−1 by multiplying ΔtX/j.
Because ρ̇j−1 can be disregarded after evaluating ρ̇j, we compute
the integral with using only twice the memory size of the
HEOM elements.

3.3. Graphics Processor Unit (GPU) Calculation. It was
shown that a GPU, which utilizes fast access memory and super
parallel architecture on board, is a powerful device to integrate
the HEOM for a system with many degrees of freedom.21−25

To take advantage of the super parallel architecture of GPU, we
must avoid unnecessary memory transfer between the host
computer and GPU device, because the memory access speed
of the host is much slower than GPU memory. By adapting the
Pade ́ decomposition and exponential integrators, we can assign
the required memory for numerical integrations on the GPU
board for a system up to 4096 energy sites. We developed the
GPU code for HEOM based on Compute Unified Device
Architecture (CUDA), which is an extension of the C and C++
programming language for GPU developed by NVIDIA. In
CUDA, a program which runs on the GPU device is called a
kernel. Here, we present the kernels for Liouvillian defined by
eqs 3−5 involved in the subroutine, Liouville.cu, to illustrate
the operation. The computationally expensive part of solving
the HEOM is the matrices multiplications of Ĥ, V̂, and ρ
involved in the Liouvillian. To accelerate these calculations we
employ a basic linear algebra library, cuBLAS, which is design
for GPU kernel with dynamic parallelization reducing overhead
costs of GPU calculations.
In our routine, the ADO density matrices ρ and ρ̇ are stored

as the vector Rho and dRho, whose elements are specified by

Chart 1. Calculations of the Liouvillian for ĤA
×ρ̂j1,...,jK

(n) and V̂×ρ̂j1,...,jK
(n) with the Use of cublasGemm in cuBLAS Library
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”index” of the n × n matrix, where n = N × M. In order to
evaluate the Liouvillian, we employ the cublasCdgmm function
in cuBLAS to ĤA

×ρ̂j1,...,jK
(n) and V̂×ρ̂j1,...,jK

(n) , while the left of the
calculations adding results. To synchronize the results from
cuBLAS to calculate dRho, we separate the routine for
Liouvillian into two parts, as illustrated in Charts 1 and 2.
Here, ”__device__ ” and ”__global__ ” are the function type
qualifiers provided by CUDA to specify execution on the GPU
and the host computer, respectively. The calculations are
carried out within single precision, but we can change the
precision by overwriting the definition of complex numbers, as
instructed in Charts 1 and 2. The source code is provided as
Supporting Information.

4. DYNAMICS OF QUANTUM SPIN GLASS SYSTEM

A spin glass is a complex system characterized by frustrated
interactions that exhibits an irreversible dynamics of spins to
metastable states without long-range spatial order below the
glass transition temperature.27 Contrastingly, quantum spin
glass systems that have been identified in a number of
materials28 exhibit faster relaxation than a classical case due to
the quantum transitions from metastable states to the ground
state. This cooling mechanism, often referred to as quantum
annealing, is employed to realize a quantum computation.31−33

While the quantum annealing has been studied by applying a
time-dependent transversal field, here we consider the case of a
spin system that interacts with a harmonic heat-bath, which
relaxes the system to the thermal equilibrium state of the total
system at finite temperature. We consider a two-dimensional
triangular spin−lattice system in a longitudinal magnetic field,
expressed as29,30

∑ ∑ ∑σ σ σ̂ = + Γ
= = + =

H JA
i

L

j i

L

ij i
z

j
z

i

L

i
z

1 1 1 (17)

where σi are the Pauli matrices for the ith spin, Γ is the
longitudinal magnetic field, and Jij represents the strength of
antiferromagnetic interaction between the nearest neighbor
spins for the total number of the spin, L. In a quantum system-
bath model, the thermal equilibrium state of the system is not a
pure state of the system, exp(−βĤA), but the reduced state of
the total system, trB {exp[−β(ĤA + ĤI + ĤB)]}. Dynamical
aspects of the bath are characterized by the fluctuation and
dissipation upon the system dynamics, which are related
through the quantum version of the fluctuation−dissipation
theorem. Quantum noise is by nature non-Markovian, and the
Matsubara frequencies, νk = 2πk/βℏ, play an essential role, in
addition to quantum coherence between the system and
environment.10−13 To treat the entire system quantum
mechanically in a consistent and rigorous fashion, we have to
expand the scope of the Hamiltonian, eq 17, by including the
coupling to the surrounding environment represented by eq 1
with eq 2. Here, we chose the system part of system-bath
interaction
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which indicates that all spins interact with the single bath
system. Then, for spectral distribution, eq 2, non-Markovian
and nonperturbative dynamics of the reduced system can be
studied by integrating the HEOM, eqs 3−6.
Because the number of states involved in the L spins system

is 2L, it is not easy to study a large system. Using the
methodology explained in the previous section, we treat the
spin system with up to 12 spins, which involves 4096 energy
states. Note that we do not use periodic boundary conditions,
because our system is so small that this condition is unrealistic
and, because it may be possible to find a small system similar to
a present model experimentally, in a microscopic material. We
set Γ = 1/2 and Jij = 0.15 and the system-bath parameters as η =
0.01 and γ = 1. We carried out numerical calculation using

Chart 2. Calculations of Liouvillian for ρ ̇ Using the Elements Obtained in Chart 1
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NVIDIA Tesla K20 and K80 with CUDA toolkit 6.5. We chose
the depth of the hierarchy and the number of ADOs in PSD
representation as N = 3 and K = 2, as a result the total numbers
of the hierarchy elements used in calculations are Ntot = 10. The
computing time of both cuSPARSE and cuBLAS programs on
Tesla K20 are 160 ms per step for time evolution of 9 spins
system. We found that the program with cuSPARSE is faster
than that with cuBLAS when the number of spins is more than
7. For 12 spins system run on NVIDIA Tesla K80, the
computing time of program is 4.5 s/step with cuSPARSE on
Tesla K80.
4.1. Free Induction Decay.We calculate the free induction

decay signal defined by the spin expectation value ⟨Sz(t)⟩ with
the initial configuration where all spins are upward, i.e. ⟨Sz(0)⟩
= 1, where ⟨Sz(t)⟩ =∑j

L⟨σ̂j
zρ̂A(t)⟩/L. If the external field is zero,

the situation corresponds to zero field NMR or μSR
measurements.9 The simulation begins from this situation, in
which all spins are upward for the bath temperature βℏ = 0.5
and 3. Figure 1 illustrates the relaxation of Sz(t) ≡ (⟨Sz(t)⟩ −

⟨Sz(∞)⟩)/(⟨Sz(0)⟩ − ⟨Sz(∞)⟩). In a classical case, spins relax
faster for higher temperature.27 In a quantum case, however, we
found that spins relax faster for lower temperature due to the
transitions through the quantum coherent state, represented by
the off-diagonal elements of the reduced density matrix. The
decays of spins are similar regardless of the lattice sizes. Like a
spin-Boson system,9 which corresponds to the 1 × 1 case in the
present model, the FID signal decays as neither exponential nor
a stretch exponential form. This is because the relaxation in the
present case is characterized by the transitions between the
energy eigenstates through the nonperturbative system-bath
interactions at finite temperature. Due to the non-Markovian
nature of the dissipation and fluctuation, the system relaxes to
the thermal equilibrium state nonexponentially,10,13 while the
local energy minimum states play a minor role in the quantum
case due to the coherent transitions. Although we could
increase the lattice size only up to 3 × 4, the spins decays in a
similar manner regardless of the size. This is because, while the
bath coupled to all of the spins strongly, the spin−spin
interactions are weak and localized. We should note that the
profile of Sz(t) is similar to the profile of the system energy

tr{ĤAρtot(t)}, because the contribution of energy from the
spin−spin interactions is smaller than that from the system-
bath coupling.

4.2. Linear Response to Temperature Jump. We next
study the response of the system to a sudden temperature drop
of the heat-bath. For a small temperature jump, the observable
of this measurement corresponds to magnetic susceptibility.
Focusing on 3 × 3 triangular lattice, we first equilibrate the
system at βℏ = 1 by running the program for a sufficiently long
time (t = 10000). Then we drop the bath temperature to βℏ =
10 suddenly to observe the spin relaxation toward the new
equilibrium state in time. Figure 2 depicts the relaxation of the

spin expectation value after the temperature change. Because
the thermal equilibrium state of the total system is a mixed state
(or unfactorized state) of the system and the bath in the
quantum case, there exist the initial system-bath coherence in
the present case, whereas we ignored this effect in the FID case.
Thus, the signal from the temperature jump exhibits a slight
delay of response (t < 10), while the FID signal decays
monotonically. We found that the decay profile of the signal in
Figure 2 is similar to the 3 × 3 case of the signal in Figure 1 for
t > 100 indicating that, other than the initial correlation, the
decay process in the temperature drop is similar to the FID
case. If we wish to study system-bath coherence further, it is
more instructive to study nonlinear response functions, as
demonstrated in the spin-Boson and Brownian oscillator
cases.10−13

Here, we also analyze the relaxation pathways using the
density matrix elements as a function of times. Figure 3
illustrates the representative relaxation pathway from a local
minimum state to the ground state with their spin
configuration. Initially, the population of the local minimum
state (i) increases because the energy from other states
(involving (a) and (b)) flow into (i) after the temperature
change. The population of (i) transfers to (ii), while the
transition between (i) and (iii) are negligible. This can be
monitored from the change of the off-diagonal elements of the
density matrix between (i) and (ii) and between (i) and (iii).
The population in (ii) then finally relaxes to the ground state
(iii) with losing energy due to the bath. We should note that
the transition between (i) and (ii) does not occur through a
classical single-spin-flip transition.34 Possible pathways from (i)

Figure 1. Free induction decay signal of spin, Sz(t), in 3 × 2, 3 × 3,
and 3 × 4 triangular spin−lattice for (a) the high temperature case, β =
0.5, and (b) the low temperature case, β = 3.0.

Figure 2. Time evolution of Sz(t) after the sudden temperature drop is
plotted for 3 × 3 triangular lattice.
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to (ii) in classical mechanics are through (a) or (b), as indicated
in the blue arrows in Figure 3. Although (i) is a local minimum
state in classical mechanics, it is not in the quantum case, as
indicated by the smooth transition between (i) and (ii). This is
a key feature of quantum annealing that has been used to
develop quantum computer.31,32

5. CONCLUSION

Using a GPU-based computer program for HEOM, we studied
non-Markovian and nonperturbative quantum dissipative
dynamics for triangular antiferromagnetic spin-glass systems
of sizes up to 3 × 4, which involves 4096 energy states, in a

numerically rigorous fashion. A compressed exponential decay
of FID signals was observed. The size dependence of the decay
profiles were found to be minor, even when we considered the
open boundary condition. Relaxation pathways were studied
using the calculated density matrix elements under temperature
jump measurements. The microscopic picture of quantum
annealing professes were illustrated. This result also indicates
the capability of simulating quantum computing process in a
rigorous quantum mechanically fashion.
Although here we treated spin systems only, the present

methodology can handle any system described by energy
eigenstates. The extension to a Brownian35−37 and a more

Figure 3. A possible energy transfer paths from (i) a local minimum state to (iii) the grand minimum state through the transition state (ii) illustrated
with their spin configurations. The red arrows indicate the dominant quantum transition, while black arrows indicate classical paths via single-spin-
flip processes.
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general spectral distribution24,25 should also be possible. Thus,
the present code can be applied to exciton and electron transfer
problems and vibrational and electronic spectroscopies that are
described by the energy states.
In order to make the present approach more useful, further

computational efforts have to be made to treat larger systems
consisting of hundreds of spins. By using OpenCL code and
distributing the computations over hundreds of CPU and GPU
nodes, we may treat this kind of system.25 Once we treat a
reasonably large spin system, it is possible to compare the
relaxation process of spins for the system-bath model and that
for a large isolated system.38 This direction of study allows us to
explore the difference between the dynamics under the
canonical and microcanonical ensembles under quantum
mechanical situations.
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