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Multiple displaced oscillators coupled to an Ohmic heat bath are used to describe electron transfer
�ET� in a dissipative environment. By performing a canonical transformation, the model is reduced
to a multilevel system coupled to a heat bath with the Brownian spectral distribution. A reduced
hierarchy equations of motion approach is introduced for numerically rigorous simulation of the
dynamics of the three-level system with various oscillator configurations, for different nonadiabatic
coupling strengths and damping rates, and at different temperatures. The time evolution of the
reduced density matrix elements illustrates the interplay of coherences between the electronic and
vibrational states. The ET reaction rates, defined as a flux-flux correlation function, are calculated
using the linear response of the system to an external perturbation as a function of activation energy.
The results exhibit an asymmetric inverted parabolic profile in a small activation regime due to the
presence of the intermediate state between the reactant and product states and a slowly decaying
profile in a large activation energy regime, which arises from the quantum coherent transitions.
© 2010 American Institute of Physics. �doi:10.1063/1.3428674�

I. INTRODUCTION

The analysis of electron transfer �ET� processes is of
great interest to a variety of researches in chemistry, biology,
and physics.1–5 Most ET processes occur in condensed
phases where the surrounding molecules provide the fluctua-
tions and dissipation needed in the reactions.6–10 In a widely
used model for ET problems, the electronic states are
coupled to an intermediate harmonic nuclear or intramolecu-
lar vibrational mode, which is in turn coupled to a heat
bath.11,12 This model describes fundamental chemical rate
processes, interactions of a molecule with a dissipative and
fluctuating environment,7 and Marcus theory for nonadia-
batic ET.4 Further extensions of the model are used in laser
spectroscopy to describe the coupling of electronic states to
vibrational modes13 and the coupling of electronic states in
solids to phonons.14 By adopting this description, one may
study ET processes by nonlinear optical measurements with,
for example, correlation function formalism based on the
Liouville-space semiclassical propagation scheme,15–17 the
diffusion-reaction equation method,18 the multistate quantum
Fokker–Planck approach,19–21 or the multilevel Redfield
theory.22–24 Tremendous insight was gained from this model
from quantitative analytical calculations11,12,25–35 and nu-
merical studies19–26,36–53 stimulated by experiments.18,54–61

Many aspects have been discussed individually under
some limited regime. In any approach, the full quantum
treatment poses some difficult problems. While quantum
nonadiabatic transitions in the absence of the bath can be
studied by a wide variety of numerical methods based on the

wave function,62 a reduced density operator has to be used in
the presence of the bath in order to study the irreversibility of
system dynamics toward the thermal equilibrium state.63

In the ET case, the harmonic mode of a nuclear or an
intramolecular vibration can be included in the bath by car-
rying out a canonical transformation, which leads to a mul-
tilevel system coupled to the heat-bath with the canonically
transformed spectral distribution function.11 Then the reduc-
tion of the bath degrees of freedom can be performed using
projection operator or path integral techniques.

While the projection operator approach and path integral
approach are formally exact,64,65 one has to employ some
approximation to derive reduced equation of motion such as
the multilevel Redfield equation,22–24,36 the mixed quantum-
classical equations of motion25,26 and stochastic Liouville
equations,37,38,41–44 which can be solved numerically. The
master equation approach requires several crucial assump-
tions, such as the rotating wave approximation, the white
noise �or Van Hove� approximation, and the factorized initial
condition. These approximations strongly limit the equa-
tion’s applicability especially at a low temperature, where
quantum effects play a major role.

The path integral approach, where the reduced density
matrix elements are expressed in terms of the nonadiabatic
interactions in functional form, is powerful for a strong
system-bath coupling.11,12,27,28 However, since this approach
handles nonadiabatic coupling perturbatively, it is not easy to
study strong nonadiabatic �diabatic� coupling. Path integral
Monte Carlo simulations can remove this limitation, but
their applicability is limited because of the sampling
processes.39,40 Note that the linear and nonlinear optical re-
sponse functions obtained from cumulant expansion ap-
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proaches have a similar form as the perturbative results from
path integrals since laser interactions play a similar role as
the nonadiabatic coupling.15–17

To eliminate all of the above mentioned limitations, one
can derive the hierarchy equations of motion for the reduced
density matrix by differentiating the reduced density matrix
elements defined by path integrals.63 This approach was first
introduced to investigate the connection between the phe-
nomenological stochastic Liouville equation theory and the
dynamical Hamiltonian theory and was limited to the case in
which the spectral distribution function is given by the Drude
form �Ohmic form with a Lorentzian cutoff� and the bath
temperature is relatively high.66 By including low tempera-
ture corrections terms, the temperature limitation can be
eliminated.63,67–71 This formalism is valuable since it can
handle not only the strong system-bath coupling but also
quantum coherence between the system and bath which
plays an important role for the electronic energy transfer in
photosynthetic antenna system.72,73

Although the form of hierarchy becomes complicated, it
is possible to derive the hierarchy equations of motion for
non-Ohmic spectral distributions.67 If one applies the hierar-
chy formalism to the Brownian spectral distribution that
arises from the canonical transformation of ET system, one
can handle the ET problem in a nonperturbative manner for
both the system-bath and nonadiabatic couplings.19 While
the previously derived hierarchy equations for a two-state ET
system cannot be applied to a low-temperature system,
where the quantum transition plays a major role, we can
remove this limitation by introducing the low temperature
correction terms for the Brownian spectral distribution
hierarchy.74 Moreover, we can formulate the equations of
motion for a multistate system, where the interplay between
the sequential and superexchange ET transitions becomes
important.29–35,39

A typical example of three-state problem is bacterial
photosynthesis where the ET takes place between the excited
special pair to the bacteriopheophytin mediated by the acces-
sory chlorophyl II monomer stationed in between them.75

Many experimental and theoretical studies have been carried
out to explore the mechanism of the primary ET step in
photosynthetic bacteria.31–33,40,55–58

In this paper, we present a complete study of the various
nonperturbative regimes of ET processes, using the hierarchy
of quantum kinetic equations. The present numerical study
allows us to demonstrate a number of features arising from
the interplay between quantum nonadiabatic transitions and
dissipation. The organization of this paper is as follows. The
model Hamiltonian and the hierarchy equations of motion
for the canonically transformed Hamiltonian with the
Brownian spectral distribution, including the low tempera-
ture correction terms, are presented in Sec. II. The time evo-
lution of a three-state system is studied by numerically solv-
ing the hierarchy equations over wide parameter ranges in
Sec. III. The ET rates as a function of temperature and acti-
vation energy are presented and discussed in Sec. IV. The
last section is devoted to concluding remarks.

II. HIERARCHY EQUATIONS OF MOTION FOR THE
REDUCED DENSITY MATRIX ELEMENTS

We consider the case that the electronic energy states are
coupled to an intermediate harmonic nuclear or intramolecu-
lar vibrational mode with P, Q, M, and �0 being its momen-
tum, coordinate, mass and frequency �see Fig. 1�. To distin-
guish it from the bath modes, hereafter we refer to this mode
as the �P ,Q� oscillator mode. In this paper, we limit our
analysis to the three-state case since the extensions to four or
more states are straightforward. The oscillator states further
couple to the bath represented by an ensemble of harmonic
oscillators. This leads to a commonly used model for ET
problems, which is expressed as11,12

Ĥ = ĤA − �
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3
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where the system Hamiltonian is defined by

ĤA = �
j=1

3

�� j�j��j� + �
j=1,k�j

3

�� jk�j��k� . �2�

Here, �� j is the energy of the electronic state �j�, �� j,k is the
transfer coupling between the jth and kth states, and djD
represents the displacement of the �P ,Q� mode for �j�, where
D is the characteristic length of the system. The coordinate,
momentum, mass, and frequency of the bath mode � is de-
noted by x�, p�, m�, and ��. The constant c� is the coupling
strength to the mode �. The character of the bath is
determined by the spectral distribution function J���
=��

�c�
2���−��� / �2m����. Here we consider the Ohmic case

that is defined by J���=M��.
If the potential surface of the �P ,Q� mode are anhar-

monic, one has to explicitly deal with the �P ,Q� degrees of
freedom by employing the multistate descriptions of the
quantum kinetic equation20,21 or semiclassical kinetic
equation.25,26,38 However, if the �P ,Q� potential is harmonic,
we can reduce the �P ,Q� degrees of freedom into the bath,
which allows us to simplify the ET problem and to save the
central processing unit power dramatically. This simplifica-
tion is necessary to handle the multidimensional hierarchy
arising from the low-temperature correction terms.63,67,68,70,71
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FIG. 1. Schematic view of a three-state system coupled to a harmonic mode.
The parabolic potential for the state �j� has the vertex �dj ,� j��, where � j�
=� j −	dj

2. The red, green, and blue lines are for the �1�, �2�, and �3� states,
respectively. Here, parameters are the same as at the beginning of III.
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By performing the canonical transformation,11 the
Hamiltonian of this model is converted to that of the three-
state system directly coupled to a bath of infinitely many
harmonic oscillators with a significantly different bath spec-
tral density

Ĥ = ĤA − V̂�
�

�

c��x�� + �
�

� 
 p��
2

2m��
+

1

2
m�����

2x��
2� , �3�

where the system-bath coupling V̂ is written as

V̂ = �
j=1

3

dj�j��j� , �4�

and x�� , p�� , m�� , ��� , and c�� are the transformed �th coordi-
nate, momentum, mass, frequency, and coupling strength, re-
spectively. The spectral distribution function J����
=��

�c��
2���−���� / �2m������ is also transformed as11

J���� =
2�	



·

��0
2�

��0
2 − �2�2 + �2�2 , �5�

where 	=MD2�0
2 /2�. We refer to the above spectral distri-

bution as the Brownian form since it arises from the corre-
lation function of the Brownian oscillator system.27,28 The
distribution is characterized by the characteristic frequency
�0, the displacement 	, and the coupling strength between
the �P ,Q� oscillator and the bath �. The peak position and
the peak width of J���� change with �.

The reduced density matrix element is expressed in the
path integral form as �see Appendix A�

���̄,��;t� = D�����D��̄���D������D���̄���

� eiSA��̄,��/�F��̄,�,��̄,��;t�e−iSA���¯ ,���/�, �6�

where �D����� represents the functional integral of a set of
Grassmann variables �= ��1 ,�2� which describe the three
system states. The action for the system’s Hamiltonian is

denoted by SA��̄ ,��. The bath effects are described by the

Feynman–Vernon influence functional F��̄ ,� ,��̄ ,�� ; t�.64

For the distribution Eq. �5�, the influence functional is calcu-
lated as74
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with �=��0
2−�2 /4 for ��2�0 and �k= �2
 /���k with

2
 /�� being the Matsubara frequency. We denote V��t�
�V��̄�t� ,��t��−V���̄�t� ,���t�� and V° �t��V��̄�t� ,��t��
+V���̄�t� ,���t��.

If we choose K so as to satisfy

�K =
2


��
K � max��l − �m�l,m, �10�

the function e−�k�s−u� for k�K in Eq. �7� can be replaced by
the Dirac’s delta function �ke

�k�s−u����s−u�. This leads the
influence functional Eq. �7� to

F��̄,�,��̄,��;t�

� exp�− 
t0

t

ds
t0

s

duV��s���−�u�e−��/2−i���s−u�

+ �+�u�e−��/2+i���s−u���
�exp�

t0

t

ds
t0

s

duV��s��
k=1

K

�k�u��ke
−�k�s−u��

�exp�
t0

t

ds��s�� , �11�

where

��s� = V��s� �
k=K+1

�

�k�s� . �12�

The equation of motion for the reduced density operator
can be derived by evaluating the time derivative of the left-
and right-hand-side wave functions and the influence
functional.63,66,70,71 If we consider the auxiliary matrix de-
fined by

� j1,j2,. . .,jK
�n,m� ��̄,��;t�

= D��̄���D�����D���̄���D������

�eiSA��̄,��/�Fj1,¯,jK
�n,m� ��̄,�,��̄,��;t�e−iSA���¯ ,���/�, �13�

where
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the equation of motion is derived in the hierarchy form as74

d
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ĤA
� +

�n + m��
2

− i�n − m�� + �
k=1

K

jk�k − �̂ �16�

and �̂�, �̂k, and �̂ are the operator forms of Eqs. �8�, �9�,
and �12� which are obtained by replacing V�� with V̂�̂− �̂V̂

and V°� with V̂�̂+ �̂V̂.
As can be seen from the form of equations, the

�n ,m , j1 , ¯ , jK�th member of the hierarchy is coupled to the
lower- and higher-order members as �̂ j1,¯,jK

�n�1,m�, �̂ j1,¯,jK

�n,m�1�,

�̂ j1�1,¯,jK

�n,m� , etc. In this approach, the zeroth member of the
hierarchy is the exact solution of the total Hamiltonian Eq.
�3� defined by �̂0,¯,0

�0,0� �t�=trx
��
��̂tot�t�� and it includes all orders

of the system-bath interactions. Then the orders of system-
bath interactions in �̂ j1,¯,jK

�n,m� are lower than that in �̂0,¯,0
�0,0� by

N�N�n+m+�kjk�, since we defined the time derivative of F
in Eq. �14� by excluding the factor �V��N. Thus, the present
approach conceptually differs from the conventional pertur-
bative expansion approaches; in such approaches, the zeroth
member includes no system-bath interactions and thus higher
members take into account higher-order system-bath
interactions.63 Because of this hierarchical structure, we can
handle strong system-bath interactions and non-white-noise
baths.

For the condition

n + m + �
k=1

K

jk = Nmax �
max��l − �m�l,m

min
�
2

,�1� , �17�

this infinite hierarchy can be truncated by the terminator as

d

dt
�̂ j1,¯,jK

�n,m� �t� = − � i

�
ĤA
� − i�n − m�� − �̂��̂ j1,¯,jK

�n,m� �t� . �18�

The derivation of Eqs. �15� and �18� are given in
Appendix A.

III. TIME-EVOLUTION OF DENSITY MATRIX
ELEMENTS

We fix the frequency of the oscillators in the �P ,Q�
space as �0=500 cm−1�1 /�0=66.7 fs� and use it as the unit
of the system. The vibrational motion along the reaction co-
ordinate is in the quantum regime at room temperature, since
we have ���0=2.40 for T=300 K.

Throughout this paper, we also fix the energies of �3� as
�3=0, the nonadiabatic coupling between �1� and �3� as
�13=�31=0 and the individual coupling constants between
the electronic state and the oscillator mode as d1=−0.5, d2

=0, and d3=0.5. The displacement of the �P ,Q� oscillators
	, the coupling strength between the oscillators and the bath
�, the temperature T, the energy of the initial and the inter-
mediate state �1 and �2 are then changed independently to
study the parameter dependence on �̂�t� and the ET reaction
rate. In Secs. III and IV we set �2=−�0, �12=�21=0.1�0,
and �23=�32=0.1�0 unless otherwise noted.

To calculate the time evolution of the density matrix
elements, we set the initial populations as �1�0�=1 and
�2�0�=�3�0�=0, where � j�t� represents the population of the
�j� state at time t. Experimentally such an initial condition
can be prepared by applying a short laser pulse to instanta-
neously excite the �1� state.

The hierarchy equations of motion for the reduced den-
sity matrix Eqs. �15� and �18� are then solved via the fourth-
order Runge–Kutta method, in which the time step is
0.01 /�0. We chose the depth of the hierarchy and the trun-
cation number of the hierarchy K=5 and N=15 for a low
temperature case �T=10 K�, K=3 and N=15 for intermedi-
ate temperature cases �120 K�T�600 K�, K=2 and N
=15 for T=900 K, and K=1 and N=15 for high temperature
cases �T�1500 K�, respectively. For all calculations, the ac-
curacies were checked by changing the values of K and N.

A. Effects of the displacement �

Figures 2�a�–2�e� show the time evolution of the density
matrix elements for various displacements of the �P ,Q�
oscillators represented by 	. Here, we chose �=0.1�0 and
T=300 K. Figure 2�a� illustrates the case that the displace-
ments between the oscillators are zero �	=0�. In this case,
the profiles of wavepackets in each �P ,Q� potentials in the
�1�, �2�, and �3� states do not change via the nonadiabatic
transitions due to their optical Condon transitionlike
character.27,28 Since the heat bath can affect the system only
through the �P ,Q� space wavepacket dynamics and the
wavepackets are already in the equilibrium profiles with the
temperature T, the heat bath does not play any role if the
displacement D is zero. Thus, the time evolution of � j�t�,
which reflects not the profile but the population of the jth
wavepackets, exhibits only coherent motions between the
three states. The frequencies of coherent motion can be ana-
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lyzed by diagonalizing the three-state Hamiltonian described
by � j and � jk. Then the time evolution �1�t� is, for example,
characterized by three frequencies �R=1.04�0, �− /�
=1.02�0, and �+ /�=0.0196�0, corresponding to the three
transition frequencies between eigenstates �see Appendix B�.
This feature is peculiar to the multistate system in contrast to
the two-state case, where the motion is characterized by the
Rabi frequency in NMR.

As 	 increases, the energy exchange between the �j�
states and the bath becomes efficient and the low frequency
part of the coherent motion is suppressed as illustrated Figs.
2�b� and 2�c�. The population of �1� undergoes the transition
to �3� and eventually decays exponentially as illustrated in
Fig. 2�d�. If the 	 becomes even larger, � j�t� quickly reaches
to its equilibrium value as can be seen in Fig. 2�e�. If we
regard the canonically transformed �P ,Q� oscillator plus
bath system as the bath for the three-state system, the condi-

tions in Figs. 2�d� and 2�e� are in the strong system-bath
coupling regime which could not be handled by other re-
duced equation of motion approaches. If we adopt this pic-
ture, the coupling to the transformed bath causes frequency
modulations of �j� and thereby shifts the eigenenergies of �1�
and �3� states to �1�=�1−	 /4 and �3�=�3−	 /4, respec-
tively. Thus, while the equilibrium populations �2

eq decrease,
those of �1

eq and �3
eq increase for large 	 as illustrated in Figs.

2�c�–2�e�.

B. Effects of the oscillator-bath coupling strength �

The parameter � represents the coupling strength be-
tween the �P ,Q� mode and the bath. It reflects the time evo-
lution of � j�t� through J���� defined by Eq. �5�. In Fig. 3, we
display � j�t� for different � for fixed 	=4�0 /
. The other
parameters are the same as in Fig. 2. Figure 3�a� �=0.01�0

is an underdamped case, whereas Fig. 3�c� �=�0 is an over-
damped case for the �P ,Q� space wavepacket motion.

In this model, the relaxation of the �P ,Q� oscillator
mode to thermal equilibrium state must be faster than the ET
process, otherwise the bath does not play a role. This means
that for small � the ET reaction rate must be much smaller
than �.65 We have checked that the choice of � in the present
study satisfies this criteria.

When � increases, the oscillatory motions in the �P ,Q�
potentials are suppressed as can be seen from Figs. 3�a�–3�c�.
Note that the effective coupling strength between the three-
level system and the canonically transformed bath is evalu-
ated as J���=�� /�,76 where � is a characteristic frequency
of the three-state system. Thus, � j�t� reaches their equilib-
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FIG. 2. Time-evolution of the density matrix elements for the different
displacement of �P ,Q� oscillators 	= �a� 0, �b� 0.04�0 /
, �c� 0.4�0 /
, �d�
4�0 /
, and �e� 12�0 /
. we chose �=0.1�0, �2=−�0, and T=300 K. In
each figures, the red, green, and blue lines show �1�t�, �2�t�, and �3�t�,
respectively. We set �d� 	=4�0 /
 as the reference in III B-D.
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rium values faster when � becomes larger because
J���=�� /� becomes larger. The strength of the effective
damping for fast components �R and �− /� is in the order of
�b�� �a�� �c�, whereas that for slow components �+ /� is
�c�� �b�� �a�, which results in the fact that the relaxation
profiles of � j�t� are different even for the same 	.

C. Effects of the temperature T

Figures 4�a�–4�d� show the time evolution of � j�t� for
various temperatures T. In these figures, the displacement is
chosen to give 	=4�0 /
. The other parameters are the same
as those in Fig. 2. When T goes down, the population of the
�2� state increases since the energy of this state is the lowest
in the present oscillators configuration. At any temperature
fast oscillations are the result of �P ,Q� motion. When T goes
down, the low-frequency oscillation originating from the
transition between the electronic states becomes prominent.
This is because the excited state motion of the �P ,Q� mode,
which can smear the electronic transition energies, is sup-
pressed at temperatures below T=150 K. While �1 decays
exponentially at high temperature, it does not at T=10 K,
since the dissipative �P ,Q� oscillator mode plays a minor
role.

D. Effects of the intermediate state energy Ω2

We now change the intermediate state energy �2, which
is important to understand a role of activation energy in the
ET process. Since we deal with a colored noise, the effective
coupling strength J���=�� /�,76 where � is a characteristic
frequency, changes if � j and � jk change. To see the pure
effects from the configuration, we compare the results with
�2=��0 and �2=�10�0, which are illustrated in Figs. 5
and 6. While time-evolution profiles for plus and minus re-
sults are similar for large ��2�, they are very different for
small ��2�. This is due to the energy shifts of the electronic
states arising from the interaction between the system and
the canonically transformed bath. The system-bath interac-

tion −V̂�c��x�� induces energy fluctuations, which shift the
energies of �1� and �3� states to �1�=�1−	 /4 and �3�=�3

−	 /4. Since the effective damping strength is determined by
��2−�1�� and ��2−�3��, the difference of damping for posi-
tive and negative ��2� becomes large for small �2. Thus,
while the results in Figs. 5�a� and 5�b� are very different,
those in Fig. 6�a� and 6�b� are similar.
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FIG. 4. Time-evolution of the density matrix elements for different tempera-
ture T= �a� 600 K, �b� 300 K, �c� 150 K, and �d� 10 K. We set 	=4�0, so
that the other parameters are the same as in Fig. 2. In each figure, the red,
green, and blue lines show �1�t�, �2�t�, and �3�t�, respectively.
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FIG. 5. Time-evolution of the density matrix elements for �a� �2=�0 and
�b� �2=−�0. We set 	=4�0 /
, �=0.1�0 and T=300 K so that the case �b�
�2=−�0 agrees with Fig. 2�d�. In each figure, the red, green, and blue lines
show �1�t�, �2�t�, and �3�t�, respectively.
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E. Effects of the nonadiabatic coupling �jk

Finally we discuss the effects of the nonadiabatic cou-
plings �12 and �23, which control the ET reaction in direct
manner. Figures 7�a�–7�c� display the time evolution of � j�t�
for different nonadiabatic coupling strengths �12 and �23.
For weak nonadiabatic coupling, as shown in Fig. 7�a�, the
populations decay slowly. This result is in the nonadiabatic
regime and the ET can be treated as the perturbation of the
nonadiabatic coupling. The lowest order transition from �1�
to �3� is second-order in both �12 and �23 and proportional to
�12

2 �23
2 �see Appendix B�. When the nonadiabatic coupling

becomes strong, higher-order contributions corresponding to
the recrossing processes play a role. This is the diabatic tran-
sition regime where the diabatic representation of the poten-
tials is applied to understand system dynamics �see, for ex-
ample, Fig. 2 in Ref. 20�. The populations exhibit oscillating
features in the large nonadiabatic coupling case until about
t=50. In the classical picture, this phenomenon is explained
by recrossing of the wavepacket between the potentials that
failed to get trapped by dissipation process, but in the quan-
tum picture, it is an interference phenomenon explained by
the transition between the energy eigenstates.20

IV. ET REACTION RATE

As shown in Sec. III, � j�t� decays more or less exponen-
tially apart from the initial temporal oscillatory motions.
Since the chemical reaction rate can be defined by the flux-
flux correlation function, which is the correlation function
between the population of reactant and product states, the

present ET reaction process may also be characterized by
� j�t�. Because the difference from the equilibrium population
���t�=��t�−�eq is expected to approach zero with time as
���t�=���0� · e−kt, the ET rate can be defined in a time-
dependent form77

k�t� = −
�̇��t�
���t�

. �19�

In order to obtain the rate in the three-state ET reaction,
we computationally perform linear response
experiments.68,76 First, we set the energy of the �3� state to
�3+�, where � is small �0.01�0� and the populations of elec-
tronic states to their thermodynamic averages. After a suffi-
cient time, for which the system reaches equilibrium, we set
the present time as t=0 and remove the perturbation �. The
populations at t=0, equilibrated with the perturbation, are no
longer in equilibrium and re-equilibrate to the unperturbed
state. Then, we adapt the definition of the time-dependent
ET rate, Eq. �19�, for the three-state system as k�t�
=−�̇�3�t� /��3�t�. Since ��3�t� and �̇�3�t� are expected to be
proportional to the perturbation � if � is small, k�t� does not
depend on �.

To illustrate the feature of ET rates, we plot the ET re-
action rate as a function of time for different � in Fig. 8. The
other parameters are the same as the case in Fig. 3. For weak
�, ET rates show an oscillation feature, because of the inter-
ference of transition between the discrete energy states at
different potentials.76 In a classical picture, the oscillation
feature is interpreted as the recrossing of the population be-
tween the potentials caused by the electron that is not
trapped.20 After the temporal motions ends owing to the dis-
sipation arising from the bath, the ET rate reaches plateau
values. These plateau values, hereafter denoted by krxn, cor-
respond to the relaxation rates. In the following, we plotted
krxn as the function of T, �2, and �1 to characterize the ET
processes.

A. ET rate as a function of inverse temperature

Figure 9 displays krxn as the function of the inverse tem-
perature ���0. To analyze the temperature dependence of
krxn, it is helpful to adopt the diabatic picture of the ET
processes. The activation energies in this picture are esti-
mated from the difference between the potential minima and
the crossing points of the potentials. The activation energies
between �1� and �2� and �2� and �3� are then evaluated as
E12

� =0.104��0 and E23
� =0.785��0, respectively. Since we

0.1

0.3

0.5

0.7

0.9
(b) ∆12=∆23=0.1ω0

0.1

0.3

0.5

0.7

0.9
(a) ∆12=∆23=0.05ω0

0.1

0.3

0.5

0.7

0.9

0 50 100 150 200 250 300 350 400

Po
pu

la
tio

n

Time [1/ω0]

(c) ∆12=∆23=0.5ω0

FIG. 7. Time-evolution of the density matrix elements for different nona-
diabatic couplings �12=�23= �a� 0.05�0, �b� 0.1�0, and �c� 0.5�0. We set
	=4�0 /
, �=0.1�0 and T=300 K. The case �b� �12=�23=0.1�0 agree
with Fig. 2�d�. In each figure, the red, green, and blue lines show �1�t�, �2�t�,
and �3�t�, respectively.
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defined the ET rate by Eq. �19�, the reactant state involves
both the �1� and �2� states. When the temperature is high
����0�1�, both �1� and �2� states are populated and both
�1�→ �2�→ �3� and �2�→ �3� transitions contribute to the ET
rate. Since the �1� to �3� transition is harder than �2� to �3�
and population in the �1� state cannot be negligible for
���0�1, the gradient of the ET rate as a function of ���0

becomes gentle in ���0�1, The ET rates follows the
Arrhenius law of the �2�→ �3� transition with the activation
energy E23

� =0.785��0.
The ET process is an intrinsically quantum process and

the reaction rate reflects not only energy gaps but also the
overlap of wave functions. For low temperature ���0

�3.60, the wavepackets are localized at the ground state of
�2�. Since the profile of a wavepacket does not change much
below this temperature, the ET rate, which can also be cal-
culated from the overlap of integrals of �2� and �3� wave-
packets, become constants.

B. ET rate as a function of Ω2 and Ω1

Figures 10 and 11 illustrate the ET reaction rates as a
function of �2 and �1 evaluated from the linear response
simulation. The other parameters are the same as those in
Fig. 2. In contrast to the results from the two-state system
whose ET rate profile is characterized by so called ”inverted
parabola” �see also Appendix C�,1,4,50,60,78 the ET rates in the
three-state case exhibits an asymmetric bell shape as shown
in Fig. 10. The top of the parabola is not formed at �2=0 but
at �2=−	 /4, since the �P ,Q� oscillator plus bath system
shifts the energies of both the �1� and �3� states. For �2

��0, ln krxn does not decrease so much, since the quantal
superexchange transition mechanism plays a major role in
this parameter regime.31,32 This process arises from the co-
herent transition between �1� and �3�, which utilizes the co-
herences between �1� and �2� and �2� and �3�, and is similar to
the second-order Raman process in the optical problem.79,80

Since the �2� state acts as the virtual state, the �2 dependence
of the superexchange transition is weaker than that of the
thermally activated transition from �1�→ �2�→ �3�. This tran-
sition is called a sequential transition and is analogous to the
luminescence in optics. While the transition for −�0��2

�0.5�0 is explained by the sequential transition which ex-
hibits a normal inverted parabolic profile as a function of �2,
ln�krxn /�0� becomes larger than expected for �2�−�0. As
explained before, both �1� and �2� states act as the reactant
state by the definition k�t� in Eq. �19�. For small �2, the
majority of the population is in the �2� state and the major
contribution to the ET rate becomes the �2�→ �3� transition,
while the contribution from �1�→ �2�→ �3� transition be-
comes small due to the small �1� population. Since the tran-
sition rate of �2�→ �3� is larger than that of �1�→ �2�→ �3�,
the ET rate becomes larger than expected from the parabolic
profile as indicated in Fig. 10.

Figure 11 displays the ET reaction rate as the function of
�1 for fixed �2=−�0 and �3=0. For large �1, the majority
of the population is in the �2� state and since only the �2�
→ �3� transition contributes to the ET rate, the reaction rate
becomes constant. For small �1, most population is in the �1�
state. In this case the transition between �2� and �3� plays a
minor role and the ET rate is mostly determined from the
�1�→ �2� transition. Then the profile of the ET rate exhibits
an inverted parabolic shape for small �1 with the activation
energy determined from the �1� and �2� states.

V. CONCLUDING REMARKS

In this paper, we study the ET process by employing the
hierarchy equations of motion for the Brownian spectral dis-
tribution with the low-temperature correction terms.19,74 Tak-
ing an advantage of nonperturbative theory, we studied ET
dynamics and ET reaction rates for the first time over a wide
range of parameters including the system-bath coupling,
nonadiabatic coupling and temperatures for various oscilla-
tors configurations. The time evolution of the reduced den-
sity matrix elements illustrates the interplay of coherences
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between the electronic and vibrational states. The ET reac-
tion rates as a function of the intermediate state energy ex-
hibits an asymmetric inverted parabolic profile in a small
activation regime due to the presence of the intermediate
state between the reactant and product states and a slowly
decaying profile in a large activation energy regime, which
arises from the quantum coherent transitions.

If necessary, further extension to a nonadiabatic transi-
tion problem with anharmonic potential surfaces20,21 with
taking into account nonlinear oscillator-bath coupling81,82 is
possible from the hierarchy equations of motion approach by
explicitly dealing with the oscillator coordinate. Since we are
dealing with equations of motion with the system-bath co-
herence, we can easily include the external time-dependent
driving force to the system dynamics. Thus, nonlinear spec-
troscopy, such as multi-dimensional spectroscopy,83 is easily
studied from the hierarchy equations of motion approach.
Rigorous numerical solutions from this approach can provide
information that can be compared with experimental results
and approximate theory.
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APPENDIX A: DERIVATION OF HIERARCHY
EQUATIONS OF MOTION

The reduced density matrix of this system can be treated
by the path-integral formalism by utilizing the coherent state
representation. While the conventional coherent state repre-
sentation is for two-state system,66 here we extend it for
three-state as ���= �0�+ �1��1+ �2��1�2, where � is a Grass-
mann number. Since ��� is not orthogonal, the completeness
relation is then expressed as

1 = d�̄d�������e−�1�2�1�2−�2�2

� d�1d�2d�2d�1������e−�1�2�1�2−�2�2, �A1�

where ���= �0�+�2�1�+�2�1�2�. Hereafter � represents a set
of two Grassmann numbers ��1 ,�2�. The following proce-
dure to derive the equation of motion is parallel to that in the
high-temperature Drude distribution case.66 In order to have
the reduced density matrix elements in a compact form, we
employ a temporary initial condition of the total system in
the factorized form as �̂A�t0� � �̂B

eq, where �̂B
eq is the equilib-

rium density matrix of the bath. This assumption can be re-
moved once we derive the equations of motion by setting
c�−1 /�c and by integrating up to time the t=0, where c is
characteristic relaxation time of the system, to have the cor-
related initial condition at t=0.63

The reduced density matrix element at t is represented as
� j1,j2,¯,jK

�n,m� �� f ,� f� ; t� and then that at t+� is obtained in the
path integral form by inserting the completeness relation into
the reduced density matrix at t by

� j1,¯,jK
�n,m� �� f,� f�;t + �� = T
 d�̄d�d��̄d��e−�1�2�1�2−�2�2

� �� f�e−i/�ĤA�������e−i/�ĤA�t−t0���0�

� Fj1,j2,¯,jK
�n,m� �t + ����0��e

i/�ĤA�t−t0�����

�����ei/�ĤA��� f��e
−�1��2��1��2�−�2��2�� . �A2�

We expand both sides of Eq. �A2� with respect to � and
integrate the right side with respect to Grassmann numbers

�̄, �, ��̄, and �� following the Berezin’s rule. Then by taking
the limit � to 0, we have

�

�t
� j1,¯,jK

�n,m� �� f,� f�� = d�̄d�d��̄d��	− L�n,m�� j1,¯,jK
�n,m� ��̄,��;t�

+ V��t�� j1,¯,jK
�n+1,m���̄,��;t�

+ n�−�t�� j1,¯,jK
�n−1,m���̄,��;t�

+ V��t�� j1,¯,jK
�n,m+1���̄,��;t�

+ m�+�t�� j1,¯,jK
�n,m−1���̄,��;t�

+ �
k=1

K

V��t�� j1,¯,jk+1,¯,jK
�n,m� ��̄,��;t�

+ �
k=1

K

jk�k�k�t�� j1,¯,jk−1,¯,jK
�n,m� ��̄,��;t�� ,

�A3�

where

L�n,m� =
i

�
�HA��̄ f,�� − HA���̄,� f���

+
�n + m��

2
− i�n − m�� + �

k=1

K

jk�k − ��t� . �A4�

The Eq. �A3� is converted to the hierarchy equations of mo-
tion in operator form Eq. �15�.

To truncate the infinite hierarchy, we formally solve
Eq. �15� as

� j1,¯,jK
�n,m� = 

t0

t

de−L̂�n,m��t−�ĝ�� , �A5�

where −L̂�n,m� is the operator form of Eq. �A4� defined by
Eq. �16� and
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ĝ�� = V̂��̂ j1,¯,jK
�n+1,m��� + n�̂−�̂ j1,¯,jK

�n−1,m��� + V̂��̂ j1,¯,jK
�n,m+1���

+ m�̂+�̂ j1,¯,jK
�n,m−1��� + �

k=1

K

V̂��̂ j1,¯,jk+1,¯,jK
�n,m� ��

+ �
k=1

K

jk�k�̂k�̂ j1,¯,jk−1,¯,jK
�n,m� �� . �A6�

If the condition Eq. �17� is satisfied, ��n,m���n+m�� /2
+�k=1

K jk�k is much larger than the characteristic time of the
main system ��l−�m�lm because ��n,m��Nmax min�� /2,�1�.
Then Eq. �16� is approximated as

��n,m�e�
�n,m��t−� � ��t − � , �A7�

which leads Eq. �15� to Eq. �18�.

APPENDIX B: THREE-STATE RABI OSCILLATION

To illustrate the characteristic motion for the three-state

system, we analytically solve equation of motion for ĤA de-
fined by Eq. �2�. We consider the probability that the system
is initially �at t=0� in the state �1� and found in the state �j� at
time t defined by

Pj1�t� � ��j�U�t,0��1��2, �B1�

where U�t ,0� is the time evolution operator. To simplify the
results, we assume �1=�3=0, �12=�21, and �23=�32. Then

the eigenvalues of ĤA is given by �=0 and ��
����2��R� /2, where

�R = ��2
2 + 4��12

2 + �23
2 � �B2�

and the corresponding eigenstates are

� 0� =
1

��12
2 + �23

2
��23�1� − �12�3�� , �B3�

and

� �� = c�
�12�1� +
��
�

�2� + �23�3�� , �B4�

where c�= ��12
2 +�23

2 +��
2 /��−1/2 �see Fig. 12�.

The time evolution operator is thus expressed as

U�t,0� = � 0�� 0� + � +�e−i/��+t� +� + � −�e−i/��−t� −� , �B5�

in the �1�, �2�, and �3� basis sets. The probability of the sys-
tem to be found in the state �2� and �3� at t are given, respec-
tively, by

P21�t� =
2�12

2

�R
2 sin2
�R

2
t� , �B6�

and

P31�t� =
4�12

2 �23
2

�12
2 + �23

2 	c+
2 sin2
 �+

2�
t� + c−

2 sin2
 �−

2�
t�

−
1

�R
2 sin2
�R

2
t�� . �B7�

Thus the oscillation of �2�t� in the Sec. III A depends on �R,
while those of �1�t� and �3�t� are determined by �R, �+ /�,
and �− /�.

APPENDIX C: ET RATE IN TWO-STATE CASE

We can adapt the hierarchy equations of motion Eqs.
�15� and �18� to the two-state case ��1� and �2�� by simply
truncating the sum of j up to 2 in Eqs. �2� and �4�. We set
�2=0, �12=�21=0.1�0, and 	=4�0 /
 and employ the same
bath parameters as in IV B. The ET rate krxn is defined in
terms of ��2�t� and the perturbation � is put on �2 to carry
out the linear response simulation. Figure 13 shows the ET
reaction rate as a function of activation energy at T=300 . In
this low friction regime, the ET reaction rate increases as
energy mismatching is small.84 The profile for the two-state
system is parabolic as predicted by Marcus.
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