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A multistate displaced oscillator system strongly coupled to a heat bath is considered a model of an
electron transfer (ET) reaction system. By performing canonical transformation, the model can be
reduced to the multistate system coupled to the Brownian heat bath defined by a non-ohmic spectral
distribution. For this system, we have derived the hierarchy equations of motion for a reduced density
operator that can deal with any strength of the system bath coupling at any temperature. The present
formalism is an extension of the hierarchy formalism for a two-state ET system introduced by Tanimura
and Mukamel into a low temperature and multistate system. Its ability to handle a multistate system
allows us to study a variety of problems in ET and nonlinear optical spectroscopy. To demonstrate the
formalism, the time-dependent ET reaction rates for a three-state system are calculated for different
energy gaps.
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Electron transfer (ET) processes play an important role in
many fields in physics, chemistry, and biology.1) Most ET
processes occur in condensed phases where the surrounding
molecules provide the energetic fluctuations and dissipations
needed in the reactions. In the case of ET in a polar solvent,
the interaction energy that consists of the solvent–solute
interaction energy and solvent dipole–dipole energy is used
as the ET reaction coordinate.2–4) The ET reaction is then
characterized by parabolic free-energy surfaces for the
reactant and product states as a function of the reaction
coordinate. Although ET rates are commonly studied using
free-energy surfaces, the ultrafast dynamics of ET processes
is investigated using the potential energy surfaces as a
function of molecular coordinates.5,6) This potential energy
description is similar to that used in nonlinear ultrafast
spectroscopy.7,8) By adopting this description, one may study
ET processes by nonlinear optical measurements.9,10) A
variety of approaches that have been developed to study not
only ET processes but also nonlinear optical responses are
used to investigate ET dynamics.5–14)

Unlike most of the above-mentioned approaches based on
the perturbative treatment of nonadiabatic transitions, the
reduced equation of motion approach that describes the
dynamics of density matrix of an ET system coupled to the
environment can handle any strength of nonadiabatic
coupling. This approach is successful in a classical case
characterized by free-energy surfaces,5,6,15) but it has to
employ crucial assumptions such as rotating wave approx-
imation and perturbative system–bath interaction in a
quantum case. This strongly limits its applicability. Mean-
while, it was found that the hierarchy equation approach
is a powerful means of describing a system strongly coupled
to a bath without using rotating wave approximation and
white-noise (Born or Van Hove) approximation.16–21) This
approach was introduced to investigate the connection
between the phenomenological stochastic Liouville equation
theory and dynamical Hamiltonian theory.22–25) Most

studies that use this approach are limited to the case in
which the spectral distribution function is given by the
ohmic form with the Lorentzian cutoff. One can extend the
hierarchy equation approach to a non-ohmic case by
employing a multiplex hierarchy for a nonexponential decay
noise.17)

In this letter, we describe a Brownian spectral distribution
case that is suitable for modeling the ET system. Although
the former hierarchy equations for a two-state ET system
developed by Tanimura and Mukamel26) cannot be applied
to a low-temperature system, where the quantum transition
plays a major role, the present ones have no temperature
restriction. This is due to the low-temperature correction
method developed in the ohmic case.16–18,23) Moreover, we
formulated the equations of motion for a multistate system,
where a variety of problems in ET and nonlinear optical
spectroscopy can be modeled.

We consider a molecular system with electronic states
denoted by jji. The Hamiltonian of the system is

ĤHA ¼
X
j

h��jjjih jj þ
X
j 6¼k

h��jkjjihkj: ð1Þ

The system is strongly coupled to a single harmonic mode
described by the coordinate, momentum, mass, and fre-
quency denoted by Q, P, M, and !0. This mode is in turn
coupled to a bath of harmonic oscillators described by xj, pj,
mj, and !j for the jth mode. The coupling strength to the jth
mode is given by cj. The Hamiltonian for a single harmonic
mode and the oscillator bath with the system–bath inter-
action is then expressed as11,26)

ĤHint ¼
P̂P2
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þ
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2
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5; ð2Þ

where D is the characteristic scale of the system and dj is the
dimensionless coupling constant between the state jji and
the oscillator mode. By using the canonical transformation,
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the above Hamiltonians can be transformed into the multi-
state spin-Boson Hamiltonian as

ĤHA þ ĤHint ¼
X
j

h��jjjih jj þ
X
j 6¼k

h��jkjjihkj

þ
X
j

p̂0p02j

2m0j
þ

1

2
m0j!

02
j x̂x0j �

c0j

m0j!
02
j

V̂V

 !2
8<
:

9=
;; ð3Þ

where

V̂V ¼
X
j

djjjih jj: ð4Þ

The spectral distribution function Jð!Þ �
P

jðc02j =
2m0j!

0
jÞ�ð!� !0jÞ, which contains all information on the bath,

is given by the Brownian spectral distribution:11)

Jð!Þ ¼
2h��

�

�!2
0!

ð!2
0 � !2Þ2 � �2!2

: ð5Þ

Here, we chose � ¼ MD2!2
0=2h� with the fixed D and assume

the friction function �ð!Þ �
P

jðc02j =2m0j!02j Þ�ð!� !0jÞ, in
the frequency-independent form as �ð!Þ ¼ �. The bath
degrees of freedom defined by eq. (3) can be reduced by
performing the path integrals for the coordinate x0j, which
leads to the influence functional in the form12)

F ¼ exp

�
�

1

h�

Z t

t0

ds

Z s

t0

duV�ðsÞ

� ð�iL1ðs� uÞV�ðuÞ þ L2ðs� uÞV�ðuÞÞ
�
; ð6Þ

where V�ðsÞ � Vðf ðsÞgÞ � Vðf 0ðsÞgÞ and V�ðsÞ �
Vðf ðsÞgÞ þ Vðf 0ðsÞgÞ are the commutator and anticommu-
tator of V̂V expressed in the coherent state representation of
sets of Grassmann numbers f ðsÞg and f 0ðsÞg that describe
the states of the system, jji and hkj. The time-dependent
kernels corresponding to the fluctuation L1ðtÞ � h½QðtÞ;Q�i=h�
and dissipation L2ðtÞ � hQðtÞQþ QQðtÞi=2h� induced by
the bath are expressed by the spectral distribution as L1ðtÞ ¼R1
0

d! Jð!Þ sinð!tÞ and L2ðtÞ ¼
R1
0

d! Jð!Þ cothð�h�!=
2Þ cosð!tÞ, respectively.12,16,22) For eq. (5), we have
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where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 � �2=4
p

and �k ¼ ð2�=�h� Þk with 2�=�h�
being the Matsubara frequency. The reduced
density operator 	̂	A(t) is expressed asR
D½f ðtÞg�

R
D½f 0ðtÞg�eiSA=h�Fe�iS0

A
=h� , where

R
D½� � �� repre-

sents the functional integral of the Grassmann variables and
SA is the action for ĤHA. The equation of motion for the
reduced density operator can be derived by evaluating the
time derivative of the left- and right-hand-side wave

functions and the influence functional.16–19,22–25) If the time
derivative of eq. (6) is in a convenient form, we can arrange
the equations of motion for the reduced density operator in a
closed form. We rearrange part of the influence functional
ð�1=h� Þð�iL1ðs� uÞV�ðuÞ þ L2ðs� uÞV�ðuÞÞ asX

	
e�ð�=2	i�Þðs�uÞ�	ðuÞ þ

X1
k¼1

e��kðs�uÞ�kðuÞ; ð9Þ

where �	ðuÞ and �kðuÞ are readily derived from eqs. (6)–(8)
in the functions of V�ðuÞ and V�ðuÞ and their explicit
expressions will be given in the operator form as eqs. (12)
and (13).

Aside from the factor ðV�ðtÞÞN , the Nth-order derivative
of the influence functional is expressed in terms of the
functional

Fðn;mÞj1; j2;...
¼

Z t
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�

2
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du�kðuÞe��kðt�uÞ
� � jk

F; ð10Þ

for a set of nonnegative integers fn;m; j1; j2; . . .g with N �
nþ mþ

P
k jk. The production over k continues to infinity,

but, in practice, we can truncate it for a large k ¼ K

that satisfies �K 
 maxf�i ��jg, where �i ��j is the
transition frequency between the system states jii and jji,
since we have �ke

��kt ’ �ðtÞ for all k values > K. We
now introduce a set of reduced density operators 	̂	ðn;mÞj1;...; jK

ðtÞ
for

R
D½f ðtÞg�

R
D½f 0ðtÞg�eiSA=h�Fðn;mÞj1;...; jK

e�iS0
A
=h� by regarding

eq. (10) as the generalized influence functional. As eq. (10)
implies, the set of integers fn;m; j1; . . . ; jKg relates to a
characteristic relaxation rate nð�=2� i�Þ þ mð�=2þ i�Þ þP

k jk�k, and the 0th member corresponds to 	̂	AðtÞ ¼
	̂	ð0;0Þ0;...;0ðtÞ.

Then, starting from 	̂	ð0;0Þ0;...;0ðtÞ, we can construct the
hierarchy equations of motion by evaluating the time
derivative of 	̂	ðn;mÞj1;...; jK

ðtÞ as

@

@t
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�
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ðtÞ
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j1;...; jK

ðtÞ þ m�̂�þ	̂	
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ðtÞ

þ
XK
k¼1
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þ
XK
k¼1

jk�k�̂�k	̂	
ðn;mÞ
j1;...; jk�1;...; jK

ðtÞ; ð11Þ

where

�̂�	 ¼
�!2

0

2�
�V̂V� 	 coth

�h�

2
�� þ i

�
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� �� �
V̂V�

� �
; ð12Þ

�̂�k ¼
4�

�h�

�!2
0

ð!2
0 þ �2

kÞ
2 � �2�2k

V̂V�; ð13Þ

and �̂� ¼ V̂V�
P1

k¼Kþ1 �̂�k. Here, we denote ÔO� f̂f � ÔO f̂f � f̂f ÔO
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and ÔO� f̂f � ÔO f̂f þ f̂f ÔO for any operators ÔO and f̂f . As can be
seen from the form of equations, the ðn;m; j1; . . . ; jKÞth
member of the hierarchy is coupled to the lower- and higher-
order members as 	̂	ðn	1;mÞ

j1;...; jK
, 	̂	ðn;m	1Þ

j1;...; jK
, 	̂	ðn;mÞj1	1;...; jK

, etc. In this
approach, the 0th member of the hierarchy is the exact
solution of the total Hamiltonian [eqs. (1) and (2)] defined by
	̂	ð0;0Þ0;...;0ðtÞ ¼ trQ;xjf	̂	totðtÞg and it includes all orders of the
system–bath interactions. Then the order of system–bath
interactions in 	̂	ðn;mÞj1;...; jK

ðtÞ is lower than that in 	̂	ð0;0Þ0;...;0ðtÞ by N

(N � nþ mþ
P

k jk), since we defined the time derivative of
F in eq. (10) by excluding the factor ðV�ÞN . Thus, the present
approach conceptually differs from conventional perturbative
expansion approaches; in such approaches, the 0th member
includes no system–bath interactions and thus higher mem-
bers take into account higher-order system–bath interac-
tions.16) Because of this hierarchical structure, we can handle
strong system–bath interactions and non-white-noise baths.

For the condition nþ mþ
PK

k¼1 jk 
 maxf�i ��jg=
minð�=2; �1Þ, this infinite hierarchy can be truncated by the
terminator as

@

@t
	̂	ðn;mÞj1;...; jK

ðtÞ ’ �
i

h�
ĤH�A � iðn� mÞ� � �̂�

� �
	̂	ðn;mÞj1;...; jK

ðtÞ: ð14Þ

The set of eqs. (11)–(14), a main result of this study, is
the extension of the former result of a two-state system
for a high-temperature bath26) to a multistate system coupled
to the Brownian bath at any temperature. These equations
can be numerically evaluated using the matrix expressions
of the system and interaction, ĤHA and V̂V , since they
become simultaneous differential equations for matrix
elements.

To demonstrate our method, we employ a three-state
model illustrated in Fig. 1 and calculate ET reaction rates
from the initial state j1i to the final state j3i mediated by a
midway state j2i discussed in refs. 27 and 28. All of the
former approaches could not handle the present model under
the physical conditions below. The Hamiltonian for the
three-state displaced oscillators system is denoted by

ĤHA ¼ h�

�1 �12 0

�12 �2 �23

0 �23 �3

2
64

3
75; ð15Þ

where �jk represents the nonadiabatic coupling between the
j and k states.

We computationally carry out a linear response experi-
ment to obtain the rate in the three-state ET reaction in the
same manner to obtain the Kubo transformed reactive flux
correlation function for a double-well potential system.23,24)

We introduce a perturbation into the third state as �3 ¼
�3 þ 
, where 
 represents the perturbation. By turning on
the perturbation for a sufficient time and by numerically
integrating the hierarchy equations, the state of the system
comes to a perturbed equilibrium state. After the perturba-
tion is turned off (this defines t ¼ 0), the populations return
to the unperturbed equilibrium state. This change can be
monitored by introducing the difference in population into
the third state defined by �N ðtÞ � 	33ðtÞ � 	33ð1Þ, where
	33ðtÞ is the density matrix element of the third state and
	33ð1Þ is the equilibrium distribution without the perturba-
tion. ET reaction rate (flux correlation function) is then
expressed as kðtÞ ¼ �� _NN ðtÞ=�N ðtÞ. Since �N ðtÞ and � _NN ðtÞ
are expected to be proportional to the perturbation 
, kðtÞ
does not depend on 
.

ET reaction rate is calculated for different intermediate
energies �2 ¼ �4!0, �2!0, 0, 2!0, and 4!0 for fixed �1 ¼
!0 and �3 ¼ 0. The displacements between the first and
second states and those between the second and third states
are respectively defined by d1 ¼ �0:5 and d3 ¼ 0:5, with
d2 ¼ 0. The nonadiabatic couplings are set by �12 ¼ �23 ¼
0:5!0. The bath parameters are chosen to be � ¼ 15!0,
� ¼ 0:5!0, and �h�!0 ¼ 0:6, which correspond to those in
the case of !0 ¼ 800 cm�1 (1=!0 ¼ 41:7 fs) at T ¼ 305 K.
Since �=2 < !0, the harmonic mode is underdamped with
the frequency � ¼ 0:97!0. Although the coupling between
the harmonic mode and the bath � is weak, we cannot
employ the perturbative approach, since the coupling
between the system and the harmonic mode � is strong.
Thus, we need to treat the reduced bath mode described by
p̂p0j and x̂x0j nonperturbatively. The depth of the maximum
hierarchy is N ¼ 15 with the number of Matsubara frequen-
cies K ¼ 3. The accuracies are checked by changing N

and K.
Figure 2 shows ET reaction rate as a function of time for

different �2 values. As in the case of the reaction rates of
double-well potential, ET reaction rate starts from zero and
quickly increases in a quantum case owing to the uncertainty
of population states around the crossing points.23) ET rate
shows an oscillation feature up to about t ¼ 15=!0 because
of the interference of transition between the discrete energy
states at different potentials.24) In a classical picture, the
oscillation feature is interpreted as the recrossing of the
population between the potentials caused by the electron that
is not trapped. After the temporal motions ended owing to
the dissipation arising from the bath, ET rate reached plateau
values. These plateau values correspond to the relaxation
rates denoted by krxn. ET rate increases with a decrease in
�2, since the intermediate state acting as a barrier for ET
reaction decreases for small �2 and since the potentials of
the second and third states do not reach the inverted region
in this parameter range.1) Here, we showed the results under
the limited condition for demonstration purposes. Detailed
analyses of ET problems in the context of nonlinear optics
for a variety of conditions are left for future work.

|2

ω

Q/Dd d01 3

0

1

2|1

|3

Ω

Ω

Ω3

Fig. 1. Schematic view of a three-state system coupled to a harmonic

mode. The displacements of the potentials are denoted by the dimension-

less parameter d1 and d3 with d2 ¼ 0. Here, �2 is chosen to illustrate a

case in the normal region.
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In this study, we derived the hierarchy of equations of
motion for an ET system modeled by displaced oscillators
coupled to a bath. Our approach can treat any strength of
nonadiabatic coupling and activation energy, and the
bath coupling at any temperature. In addition, the present
approach requires less CPU power than other hierarchy
approaches based on molecular coordinate descriptions;
numerical calculations using this approach converge more
than 102 times faster than those using other approaches. This
formulation can be extended to multimode Brownian
oscillator systems characterized by multiple baths by
modifying the dimension of hierarchy elements.

In conclusion, the present formalism provides a powerful
means for the study of various ET reaction processes as well
as nonlinear optical responses in which quantum effects play
a major role.
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