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We have obtained\th-order response functions for a two-level system described by displaced
anharmonic potential surfaces coupled to a heat bath. The anharmonicity of the potentials has been
taken into account as a perturbation of harmonic potentials. The heat-bath was assumed to be an
ensemble of harmonic oscillators. Coupling between the two-level system and the bath was assumed
to be bilinear. The calculations were done analytically using the Liouville-space generating
functional, which had been obtained by way of the path-integral approach. The response functions
have been defined in terms of line-shape functions with these line-shape functions being expressed
in terms of the bath spectral density and the temperature. We have carried out model calculations of
the first-, third-, and fifth-order optical processes for various parameters of anharmonicity to show
that anharmonicity plays a minor role in linear absorption, impulsive pump—probe, and photon echo
experiments, but plays a major role, in some cases, in fifth-order two-dimensional resonant
spectroscopy which is proposed in this paper. 1@97 American Institute of Physics.
[S0021-960627)50405-3

I. INTRODUCTION tion of slowly varying parameters, for example of local lig-
uid configurations, from the total spectral distribution of the
In _addi'_[ion to_ information_ about essentially static Struc'dynamical time scale. This 2DOS experiment uses two pairs
ture, vibrational line shapes in the condensed phase contay} excitation pulses and is related to fifth-order nonlinearity.
information from a variety of dynamic processes, includinggeyera| experimental and theoretical studies have been car-
such important processes as microscopic dynamics, intermez. 4 ot 1o explore the possibility of detecting such inhomo-

lecular couplings, and time scales of solvent evolution thaj eneity!’-2°2DOS can also be applied to study phonon dy-
modulate the energy of a transition. Each of these process Simics in solid* and anharmonicity of vibrational modé&.

involves coupling between the internal vibrations of a mo"?aman echo and 2DOS experiments were based on off-

ecule and the external degrees of freedom of its environment, o . )
. rhal degree resonance laser excitation techniques, which neglect dynam-
However, since vibrational lines from these processes are

L ", .. IS on excitation states. Cho and Fleming suggested a new
often broadened and also appear in similar positions, itis n Ifth-order spectroscopy using three electronically-resonant
easy to distinguish them from linear spectroscopy. P Py 9 y

This difficulty can be overcome by higher-ordeonlin- pu|5£§3 gnd_ this experiment has subseqyently begn carried
ean optical processes involving many laser interactions. Th ut. ;’Sgglfth—ord?:r,ot_p;ee pulses scra]\ttehr IROTS differs .
simplest and most common such techniques are four-wa com » Since separates the qmogeneous_contn—
mixing related to third-order nonlinearity. There are numer-bunon of a_wbratlo_n_al spectrum from the inhomogeneity of
ous spectroscopic techniques related to this order including" €l€ctronic transition energy, whereas 2DOS separates the

pump—probe spectroscopyphoton echd;* hole burning?® mhom_ogene_ity of the v_ibrational modes themselves. _
and coherent anti-Stokes RanfatiThese techniques make it It is obvious that higher-order spectroscopy can contain
possible to utilize more than one time-evolution period andMany time intervals and these can be used to separate the
allow us to distinguish dynamical processes in which theif@rgeting dynamical processes from the others such as the
time responses are differeht. inhomogeneity of the vibration modes; however, analysis of
Recent advances in femtosecond laser technology hagich signals becomes much more complex compared with
allowed us to perform even higher-order spectroscopy. Rathat of lower-order ones. Since one needs to deal with vari-
man echo experiments proposed by Loring and Mukamel aréus time configurations of lasers pulses in higher order opti-
related to seventh-order nonlinearity and can selectivelgal processes as a function of various physical parameters,
probe the homogeneous linewidth.Several experiments compact theoretical expressions are essential to interpret the
and theoretical studies, including related IR echo experiexperimental studies. In this paper, we presétit-order re-
ments, have been subsequently carried out in order to me&ponse functions for a displaced anharmonic oscillators sys-
sure the homogeneous vibrational linewidth® These ex- tem coupled to a heat bath and explore the possibilities of
periments were conducted on isolated intramolecular higlising higher-order optical processes to study the anharmo-
frequency vibrations and they employed laser pulses longeticity of potentials.
than the vibrational periods. Two-dimensional off-resonant  The theoretical calculation of higher-order optical pro-
spectroscopy2DOS proposed by Tanimura and Mukartfel cesses of anharmonic potential systems poses some difficult
has been designed to separate the inhomogeneous distritproblems. Optical processes can be calculated using a direct
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integration of the equations of motion in the presence of a
laser field. By calculating the relevant density matrix ele-
ments, it is possible to study optical processes of arbitrary
order. Dephasing processes induced by a heat bath can be
incorporated using equations of motion for a reduced density
matrix, such as the quantum master equafiam the quan-
tum Fokker—Planck equation for multipotential surfates.
These equations of motion have capability of dealing with
anharmonic potential surfaces, however, solving such equa-
tions of motion for various physical conditions is computa-
tionally very intensive. In addition, théth order time-
correlation functions have to be calculated to obtain the
(N—1)th order optical processes, and this is very difficult to
calculate using the equations of motion approach. Thus,
higher-order optical processes, using equation of motion ap-
proach, have not been successfully studied.

Alternatively, optical processes can be calculated using
the response function approach, which is based on a pertur-

. . . o . FIG. 1. Potential surfaces of the anharmonic displaced oscillators system.
bative expansion of the optical polarization in powers of he lower state is denoted Bg), the upper bye). The equilibrium coor-

laser field?” This approach has been successfully applied tQjnate displacement and the energy difference between the two potentials
the study of lower order optical processes such as four-wavere expressed by andiwg, respectively. The dotted lines represent the

mixing experimentg_” one limits oneself to the study of a unper?urbed harr311onic potential surfaces. Here, we gonsiderad a cubic per-
two-level system represented by displaced harmonic poteﬁeg;gf‘etg)gt;fe_ g7) to the ground state and a quadratic one ) to the
tials, exact closed expressions for &thh order response '

function can be obtained using path-integral technidtié3.
In addition, it is possible to include any coordinate depen
dence of transition dipole moments on coordinateen-

ﬁa)eg

"excitations’?>*3 nonlinear optical responsé;2¢ nonadiabatic

a8 transitions®"2°%83%nd tunnelind®*! The primary quantum
Condon effectsto anNth order response function.These  gystem is taken to be a two level system with a ground state
studies have so far been limited to the harmonic oscillator: and an excited stafe), and its Hamiltonian is given by

system. But, recently, we have developed a nonequilibriur’r@see Fig. 1

generating functional theory, which includes the anharmo-

nicity of the potential in the Brownian oscillator mod&We Hs=Ho+E(t)H,, 2.1
then studied the effects of anharmonicity on the third-, fifth-,,here

and higher-order off-resonant spectroscdpy. the present

paper, we generalize previous results of generating functions Ho=[9)Hg(a|+|e)He(e], 2.2
for a single potential surface, to multipotential ones, and calyyith

culate the first-, third-, and fifth-order response functions in ) )

order to study the effects of anharmonicity on resonant spec- 4 :p_+U (q), H =p—+U Q) 2.3
troscopy. g 2m T e 2m & '

The organ_izati_on of the paper is_as foIIow_s: In Sec. Il Weandp, g, andM represent the momentum, the coordinate,
present the Liouville-space generating functions by extendang the mass, respectively. The interaction consists of the

ing the generating functional obtained in Ref. 31. In Sec. lll,;je dependent functiorE(t), and the operatoH, , which
we define the anharmonic potential system and present the given by

Nth order response functions. In Sec. IV we write down the
first-, third-, and fifth-order polarizations and response func-  Hi=x(|g){e[+[e)(g]). (2.4
V, the linear absorption, pump—probe and photon-echo spegnd the dipole interaction between the two states, respec-

parameters. In Sec. VI, we propose two-dimensional resoy, represent the nonadiabatic interaction between the two
nance spectroscopy and show its ability to distinguish thatatege) and|g).

effects of anharmonicity from the others. Section Vil is de- | et ys assume that the system is coupled to an environ-
voted to concluding remarks. ment consisting of a set of harmonic oscillators with coordi-
natesx, and momenta,. The interaction between the sys-

IIl. NONEQUILIBRIUM GENERATING FUNCTIONALS tem and thenth oscillator is assumed to be linear with a
FOR LIOUVILLE-SPACE PATHS coupling strengtle,,. The total Hamiltonian is then given by

Consider a model Hamiltonian commonly used in the H=Hs+H", 29
description of such phenomena as elementarywhere
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wherea labels the paths. The functimiN)(t) represents the
(2.6 contributions of thenth Liouville-space path to the density

matrix evaluated tdNth order inH,, and will be devoted to
We have followed the common notation of Grabert,the Liouville-space generating functiorfsGF). Note that
Schramm, and Ingol® The character of the heat-bath is the LGF, p™)(t), depends on all time variables, and not

2 2 2
., Pn mnwn/ _ C9
H _zn: 2m, 2 | mnwﬁ) '

specified by the spectral distribution just ont. The 7, dependence is incorporated in thesub-
5 script since each path represents a specific choice of time
Cn arguments. FoN=2, for example, there are two possible
- Slw—w.). 2. AR : ' S :
Jw) Tr; 2m, oy, (0= o) @7 Liouville-space paths plus their Hermitian conjugates. These

are defined agcorresponding double-sided Feynman dia-

The total system is assumed to be initially at equilibrium ingrams are given in Ref. 30

the ground electronic state

i [t
: , P(t)=Trg{exg — 7| dt(Hg+H’
pg=0)(glexd — B(Hg+H") ) Tr{exd — B(Hg+H")1}, Pl Br 7 ), dHa HO Ju
(2.9 -
| T
whereB=1/kgT is the inverse temperature. Since we are not Xexg — %f 2dt(He+H’) M
interested in the dynamics of the environment, we trace over 1
its coordinates. We thus introduce the reduced density matrix [0
X exp ——f dt(H +H") [p
p(t)=Trg{piod 1)} (2.9 | Ao ’ ’
Here, Tg{ } represents the trace over the environmghe [0 [t )
bath degrees of freedom ang(t) is the total (system Xexp f Odt(Hg+H ) (2.14
+bath) density matrix. By expanding the density matrix of ”
the systenp(t), in terms of the interactioi,, we have and
i [t
o (2) _ ’
t ™ 7 P> (t)—TrB[ex;{—— dt(He+H') [u
p()= 2, f dmf CLVEE f d7iE(7n)E(7y-1) hlr 0
N=0 JO 0 0 )
i (71
X E(r)p™N(t T, Ty - 0T, (2.10 xexl{_fjjo dt("'g*""')}
where i
72
p(N)(t,TN,’TN,l, . ,Tl) ngexr{%fo dt(Hg+H ) 154
i\N i ol it
=| — 7] Trajexg — 5 (t—m)(Hot+H")™ K, Xex;{% dt(He+H') ] (2.15
72

Each of the Liouville-space paths can be expressed as

p&N>(t)=TrB( exp{ — ;,L—jtdt[HL(t)-i- H']

0

i
Xex[{— 7 (tn= -1 (HotH)™

1
XH "HlxeXF{_5(72_7'1)(H0+H')X}H|ng).

i [t
2.11) ngexp{ gfodt[HR(t)ﬂLH ] ) (2.19
In the above we used the superoperator notakodefined \\here
by 2 2
= —+ . =_ 4 .
A*B=AB—BA, AXBXC=A(BC—CB)—(BC—CB)A, HLUO= oy TUL@D, He)=55 +UslaD),
(2.12 (2.17

exgfA*]B=exg A]Bexd —A], , ,
andU_ andUg are the potentials of the left-hand sifle=t)

and so forth, wheré\,B, and C are operators. Since each and the right-hand sidébra), respectively, of the density
H/ can act either from the left or from the right, and since matrix, and we sett=1. The various Liouville-space paths,
p" containsnH;* factors, Eq(2.11) naturally separates into denoted by, simply differ by the specific choices bf, and

M =2N terms denotediouville-space path8 In practice we  Ug. As an example, the potentials for the paths correspond-
need to evaluate only half of these terms, since they alwayisig to Egs.(2.14 and(2.15 are given in Table I. By intro-
come in Hermitian conjugate pairs, apél”) are Hermitian.  ducing these potentials, we can derive a single formal ex-

We thus have pression, which will hold for all paths.
M/2 In the path integral formalism, the time propagators and
p N 7 TN s e oTL) = Z p(aN)(t)+h.c., 2.13 the initial de.nsny matrix can be expressed in the functional
a=1 of the coordinatesj(t) andx(t) as
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TABLE |. Potentials of the leftke9 and right(bra) hand side of the density where the action§, ,Sg, and SB are defined by
matrix corresponding to the Liouville-space paths for Egsl4 and(2.15.

a U(q,s) 0~7y T~ Ty mo~t 1t q 2
1 Ui(a.s) Ug(a) Ue(a) Ug(a) SL[q,x;t,O]zzf dsi M d—q —2U,(q;t)
Ur(Q',s) Ug(a") Ug(a") Ug(a") 0 T
2 U.(a,s) Ug(a) Ue(a) Ue(a) . ) )
Ur(a',s) Ug(a') Ug(a') Ue(a') D dx 2 ciq
A Miler) Tmen T me) |
(2.2)
i [t
(axlexpl — 1 [ attH 0-+H'T}ax) )
%o . q
SR[q’,x’;t,O]z—f dsy M| ——| —2URg(q’;t)
q(t)=gq X(t)=x i 2Jo d
=f D[Q(t)]f DIx(t)]exp =S [a.x:1,0] ¢, B , ,
q(0)=gq; X(0)=Xx; dXJ-, o qu/

it
<Qi/!xi’|exﬁ’ %fodt[HR(t)‘*'H']] lg’,x")

and

- o D[q'(t)]f:,'((;;_fo[x'(tn

a’(0)=gq;r X 2
S i dq -
i Sﬁ[q,x;ﬂh,0]=—f dsy M| ——| +2U4(q;7)
xexp — = SHla’ x';t,0], (2.19 2Jo dr
nd . dx;|* o[— ©a)°
a +E m] - +mjw] Xj_ 5 .
! ! j=1 dT me]
(ai vxi|Pg|qi X{)
(2.23
_ [aem=a] [ — [ XB=X | —
- T0)=q, D[Q(T)]L—(O)Xi DIx(7)] Thus, by inserting the/ ,complleter)es,s ,relations,
L i xi)fdaifdx(a;.xi| and [qf ,x{)Sdq fdx(qi x|, the
T v reduced density matrix Eq2.16) is rewritten in the path
XeXpr ﬁsﬁ[q’X'T’o]]' (2.20 integral form as

(@l M]a")=pa(a.q',t)

N gq [ ga [0 U N AR g S
- J dg, f dg fq(o)_qio[qun fq,(o)_qi,D[q 1] oratn] f dx f dx’ S(x—x')

)=4;

X(t)=X ! — ! —!
X f dx f dx/ f DIX(1)] f U7 (n] M T px(n)]
X(0) =X x’(O):xi X(0)=x;

=Xj

Xexp[ ;i_sL[q,x;t,o]] exp{ —%Sﬁ[q,_x;T,O]] exp{ - ;L—SR[qr X' ;t,O]} : (2.29

where the trace operator gft} is expressed affdxdx §(x—x').
We now specify the ground- and excited-state potentials. The potentials if2 Bgare represented by

Ug(@)=Ug(@) +Vg(a), U(a)=Ug(a)+Ve(a), (2.29
where the harmonic parts are expressed as

0 ng ) 0 0 ng )
Ug(a)=——0% Ue(@)=hoest ——(q-D)% (2.2
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The anharmonic parts are expressed as the polynomial functigranodl their explicit forms will be given in the next section.
We treat the anharmonic part of the potential as the perturbation. Then, by expanding the anharmonic part up to the first order,
the density matrix element can be expressed as

pul®,0' 1) = f dg f dq| f;:;::iD[qm] qu(:j: DL’ (1)] Efo‘jﬁ;%mm f dx f dx' 6(x—X') f dx f dx|

X(Bf)=x{

=XI

X(t)=x =
Xf D[X(t)]f D[ (t)] 'Dx(7) [1——f dt"[V (o;t") = Vr(Q’ t”)]——f dTVg(q)]

X(0)=x;

xex;{%—Sﬁ(q,x;t,O) (2.27

exp[ —-Sa x|,

whereV, andVg are the perturbation part &f, andUg, respectively and{ andSO are the actions for the harmonic part
of the potentials. The initial equilibrium state of the system with anharmonlc potentlal is described in terms of the perturbation,
S8 Vg (a)/h.

We can evaluate the above path integral for each Liouville-path, denoted by using the Liouville-space generating
functional®>3! Here, we consider three-source generating functional,

pa(0,0' )= qu.qu.f oo t]J““qD[q<t>]ﬁﬁ”‘D[q< 71 ax | ax st

fdxlfdxf D[x(t)]f e  DDX (0] O ()]

X(0)=x

i
ex —%Sﬁ(q,x;ﬂh,O)

iSO _ it 15— 1 (ph —
xXexp + g(q,x,t,0)+%fodt[Jo(t)JrJl(t)q(t)] ex —%sg(q,x,ﬂﬁ,O)Jrgfo dr{Js(7)a(7)]

i SO 1oyl i ' '
Xexp[—g g(d.X ,t,O)—%fodt[Jo(t)-i—Jz(t)q (t)]], (2.28

where Sg is the action for the system potentid(q) and  functions of coordinates, we can carry out the functional in-
J={J,,J,,J3}. Note thatJ;(t) are the independent functions tegral in Eq.(2.28 by obtaining minimal action patfr® or

of the coordinates. We have also added the phase functioty using the Feynman rulé.We introduce the center and
Jo(t) andJj(t) to take into account the Liouville path. Using difference coordinates

the simple identityf(a9/9J)e’9=f(q)e’?, the density func-

tional elements in Eq2.28 can be calculated from the gen- g+q’

erating functional by replacing r=——, x=q-4d’, (2.3

respectively. The initial coordinates and r; are defined

-+ -t Go—h—
qt)—»~—=, q — ==, qQt)—h-—=—,
I 934(1) I 935(1) 9J3(1) accordingly. Similarly we introduce

(2.29

as Ji+J
gl I=3,-7,. (2.32

pa(q’q,!t):pa(q!q,!t!‘])|J=O

N ho 49 The generating functional for the three sources is then ex-
- %Ld VUT 53 (t) pressed as

| e Ll L
- T - T e 1) = J — [ r— .
R 0d,(t") hlo 9" 935(7) Pa(X,1,t;J) 27(9%), exp[ 2(q2>g[r r(t;J)]
Xpa(a.9",t;3)5-0- (2.30 1 i
e —W<P2>gxz+ gp(t;J)XJrE(t:J) ,
Note that the Liouville pathy was taken into account by a
choice ofJy(t) andJO(t) as we will show below. (2.33

The potentlaIU (q) is harmonic and three external
forces J,(t)q,(t), Jz(t)qz(t) andJ;(t)q(t) are the linear where
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i [t i [t 1 [k
r(t;J)ng dt’D““(t—t’)J”)(t’)Jr%f dt'D<">(t—t')J<*>(t')+%f drD I (t+i7)d5(7), (2.39
0 0 0

iM [t iM [t M (Bt . ,
p(t;J)=7f dt’D“”(t—t’)J(*)(t’)%—TI dt’D“*)(t—t’)J(*)(t’)wLzf drD 3 (t+i7)ds(7), (2.39
0 0 0

= N " " 1gn 1t " t (=) (4m (=+) ARG
()= 5 | VI3t =3(t)]= 7z d’ | "dt 3D - )t )

1 t t i [t Bh
- ﬁzfodt"Joolt'J<—>(t”)D<——>(t"—t')J<—>(t')+ ?J’Odt”Jo drd DI +i7)d5(7)

1 (e ph ' (33 ' '
+ﬁ2j0 drfo dr'J3(7)D"(7—1")da(7'),

with
D H(t)=(q(t)g—aq(t))
__infrde o)
MJa 7 (02- 027+ 057 2(w)
Xsin(wt), (2.37)

1
D )(t)= 5(A(ba+qa(t))g

_ﬁ © dw oy(w)

M) .27 (w(z)—wz)z-f- 0%y ()

Bho
xcot}( T) cog wt), (2.38

DI (t+in)=(qq(t+i7))g
B i (* dw oy(w)

M) .27 (wg—wz)z-l- a)27/ 2((1))

cot!—('BﬁTw) coj w(t+ir)]

X
+isifw(t+in)]¢, (2.39
and
DBI(r)=0(7)(qa(—i7))g+ 0(— 7){qq(i 7))q
_ho( d_w wy(w)
M) .27 (wg—wz)z-i- a)27/ 2(a))
Bho )
X cotl-(T coshwr)+sinw7)|, (2.40
with
Y@)=(w)lw, (2.41)
(g2=D(0)=D¥(0), (p?)=-M2D""")(0).
(2.42

As was shown in Ref. 30, the generating functional for the
Liouville paths can be calculated by introducing the Liou-
ville phase® ,(t), the real forceF (t), and the Liouville

(2.36

phase forcd (), which are defined by the harmonic parts
of the time dependent potentidJ, (t) andUg(t), as

D, (1)=—[Ud(r+x/2,t) —U%(r—x/2,))1lx=r-0,

x=r=0

+ d o 0
F,(t)=— &[UL(rer/Z,t)—UR(r—x/Z,t)]

d

f;(t)=—[ a[UE(r+x/2,t)—Ug(r—x/2,t)]]
=r=0

243

Their explicit forms for a simple casgEgs. (2.14 and

(2.195] are presented in Table Il. The Liouville-space gener-

ating functional can be obtained from E¢2.33—(2.36) by

simple replacements,

IPO—-FLO+IP1), IT0—f 0+ (1),

Jo(H) =34 — D (). (249
The final results are given by
p (X1, 1;d) =0, (X,1,1;)R,(;J), (2.45

where

e 1 ~ 1
TN 2, 2,

_ 1
X[r = (M= (612~ 572(p2) X

+ ,'i—[<p_t>a—p<t;J)]x] (2.46
with

TABLE II. Functions F(s),f.(s), and ®,(s) for the paths given in
Table I.

a functions O~7; T~ T T~
dy(s) 0 —fi(w3g+\) 0

1 fi(s) 0 —h¢ 0
Fi(s) 0 —hélR 0
D,(s) 0 fh(wgng N) 0
f,(s) 0 —h¢ 0
F,(s) 0 —h¢l2 —hé
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N
<rt>a=gfodt'D““(t—t')Fi(t')

+;L—f;dt'D<>(t—t')fa(t'), (2.47)
and
<p_1>a=i%J0tdt’D<“(t—t’)FZ(t')
+% dt/DC(t—t)f, (t'). (2.48

The functionR,(t;J) is expressed as

Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy

R, (5;J)=exd Qu(t) +X,(t;J)], (2.49

where
it
Qa(t):_j dt”|:(ba(t”)
filo
i "
+—f;(t',)ft dtrD(*+)(trr_tr)FZ(tr)
h 0

1 t t
_ " PET($MNF T (+! (== _ ¢
Zﬁzfodt fodt (") (1D (" —t),
(2.50

it i [t 1(ph
Xt~ 5 [ at (e a @)+ [ av(rana )+ 3 [ )i

l t ”
_ Pfodt,,f; dt/J(*)(tH)D(f+)(trr_t/)J(+)(t/)

~ 572 fdt"f dt’ IODCT ("=t It )+—f dt”f dr DI +i1)d5(7)

1
" onz
with

i [t
<Xa(t’)>:gft,dt"f;(t”)D(’“(t”—t’),

i r
(== 8D R

i [t
3K ALCL I )

(qu(t, 7)) = hJ dt"f (1Dt " +i7). (2.52

Using the generating functional Eq2.45—(2.52), the den-
sity matrix elements are now expressed as

pa(xlr!t):pa(x!r!t;J)lJZO
i [t
- 5fodt Vv,
J=0

—lfﬁhdv h
+ﬁ o Vg
(2.53

where V,(x,r;t)=V (r +x/2;t) = Vg(r —x/2;t). The nor-
malized density matrix elements are defined as

A9 k9 "
i adF )T 9Ty

]pa(x,r,t;J)

Jd
(9\]3( T)

Bh
f dr dT’J3(7')D(33)(T—T')Jg(T'),
0

(2.5)

Pa(X,1,1)
tr{p,(x,r,00}’
where p,(x,r,t=0) corresponds to the equilibrium density

matrix element including up to the first-order anharmonic
perturbation.

X, t)= (2.54

[ll. Nth ORDER RESPONSE FUNCTIONS FOR AN
ANHARMONIC DISPLACED OSCILLATORS SYSTEM

We now specify the potentials. Hereafter we use dimen-
sionless coordinates and momentum defined by

M(x)o 1
p 97 NMhe, P

respectively. Then the harmonic parts of the poterjtaj.
(2.26)] are expressed as

(3.9

h
U ()= "2, U%(q)= e (q-d)?+ huly, (32

whered=\Mwy/fiD. We assume the following perturba-
tion potentials:

1 3 1 4
Vg(d)=rfiwg 3793071 77940

— 3 4
=azg*+a,q°,
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N2
+1_21 €[ O(t—725) — 0(t_7'2j+1)]] ,

N/2
f;(t):—hfglem[e(t—72,-71>—e<t—72,->], 3.5

1, , 1 .. 1 . states. In the same way, we chogg=+(—) as the
Ve(Q)=fiwg| 592(4—d)"+ 5705(4—d)"+ 7794(q—d) eg(gg) state for the even time period where a density matrix
' ' is in real states. Using the sign parameters, any process
=ap+ajq+a,q’+asqi+a,qgt, (3.3 in the Nth order can be expressed by the set
where {ej}=1{€1.€5, ... ,en—1}. The functions in Eq.(2.43 are
then expressed dsee Ref. 3D
fiwoQs fiwgQa N/2
a3= 3 AT 0
: : Cba(t):_ﬁ(weg+)\)j§=:1 €5 1[ O(t— 795 1) — O(t—73) ],
- (@Jéd2 gsd® gad“)
S Fi(0=— 2 oty
, . 03d° gid?
alzﬁwo(_92d+7_ 31 )

- (gé géd) 0% 3.4
=how THE = . . . .
3 o\3r 3l 4 where 4(t) is the step function ane now refers to the set
Note that, by introducing the perturbation term proportional{ei} and
to g,, we can take into account the difference in the excited- d2w, M wg 2\ 7
state frequency} wo(1+g3), compared to the ground-state A= 5 &=d P FVW' (3.6
0

one,wqy. To write a result in compact form, it is convenient

to introduce sign parameters;=* for a time period Using the sign parameteks, the time dependent potential
T<t< Tj+1.28 We chosee,;_1=+(—) as theeg(ge) state for the Liouville proper pathw can be expressed in center
for the odd time period, where a density matrix is in coherentand difference coordinates as

V, (X, r;t) =V (r+x/2;t) = Vg(r —x/2;t)
=)+ FLOr () + FFLOXD) + H2OXA) +FAOxXOr (O +F2(0)r20) + dF3(0x3(0) + 230X (1)
+EFAOXOA) + O30+ & FAOXH0) + FFLOCMDI (D) + HAOXHDr3(t)

+2F4(O)x(D)r3(t) + FA(0ri(t). (3.7

The functionsfX(t) and F¥(t)[k=1- 4] for the Liouville P(r,H)=Tr u(|eXg|+|g)e] p(t)], (3.9
states corresponding to Eq®.14 and (2.15 are given in

Table Il and expressed as where the normalized density matrix(t), involves the in-

teraction between the driving electric fie[ds(t)=E(r,t)],

N/2
and the system. If an interaction between the system and the

k = ! —_— . —_— . —_— —_— . _
Falt)=(a ak)jgl €2-1[ 01— 735-1) = O(t=75)], electric field is weak, we may expandt) [see Eq.(2.10]
and consequentlf?(r,t) in powers of the electric field. The
N/2 Nth order optical process is calculated from N response
F';(t) =(a,+ ak)z [O(t— 7p5_1) — O(t— 75)] functi.on, which is Fhe K+ 1)th time-correlation function of
=1 the dipole interaction. We can express any order of response
N/2 function by using the Liouville path. The response function
+ 2 [(1+ey)ap+(1— ep)ay] for the patha is expressed in the first order perturbation of
j=1 Eq. (3.7 as
X[O(t—73)) = 0(t— 7251 1) ], (3.8
R, (t)=tr{p,(t =fdr_a 0r;t), 3.1
where we segy=a;=a,=0. (O=tripa(V)} Pal ) (310

The optical response can be expressed in terms of the
optical polarization at the positiondefined by where
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i rt % J i J After some calculations, we thus obtain
Ru0= 15 [orv. ¢ ) T ) " 1 (8
— — ! ry _ g
1 ¢ R, (1)=]1 hJodt V,(t") ﬁfo d7Vi(t,7)
- %f dTVg ﬁﬁ\]—() R,(t;J) (3.11)
0 7 1=0 xex Qq(1)], (3.13
since we found fro,(x,r,t)]=1 and tfp,(X,r,t=0)]=1, where

where
N/2

(Ta(x,r,t)E(Ta(X,r,t;J)|J:O Va(t)zzl Vij*l(t)[g(t_ Tijl)_ e(t_ sz)]
i=

thd A L S

7LV Ty T e ! N/2—1
1fﬂfid v

+% 0 T g

+ 2 VIOLo ) = 0= )],

d
f dJ3(7) (3.19

]oa(x,r,t;J)
J=0

(3.12  with

VA1) = e 1(agtai(r o))+ 8zl 5(Xa(1)?+(r ()2 +(a?)]
+(a3—ag)[ (Xa(1)2(r o) +(ro()3+3(a)(r 4(1))]
+(@g—ag{ f6(Xa())*+(ro(1)*+6(aq%)(r o(1))*+3(q%)?
+ 3 Xa(D)X(r (D)2 ()N (Xa(D) TN+ Fa1(Xa(1)) T a5(Xa(D))(r a(D))
+(@ztag{ 5(Xa(1))>+ F[{(X D)1 ()2 +(a*){(Xo(D) ]}
+ (@4 ag){ HXa(D)(r (1) + 2L (X (D)1 (1) 3+ 3(A) (XD X(T (1) ]}, (3.15
VA1) =311+ epa+(1-epa](Xa(t) +[(1+ &)@+ (1 - &) @) (Xa(D))(T u(t))
+[(1+ ez)a3+ (1= e agh{ #(Xa(1) 3+ H(Xa(D))(ra(t))*+(a*)(Xa() ]}
+[(1+ ez ag+ (1= €)@l 3(Xal)3(ra()) + 2[(Xo(D))(r (1)) +3(A?)(Xa(1)){r u(D) ]}, (3.16

and A. First-order polarization

Hereafter, we use the time variablg= ., — 7, and

O3 — tiw= 71— 7. The first order polarization is then expressed
V(17 = 57 1(Aa(t, )%+ 3(@?)(Q(t, )] as

+%[<E(t’7_)>4+6<q2><m(t,7_)>2+ 3<q2>2] P(l)(r,t): — fIi_J'OOOdtlE(r,t_tl) Z+ Rel(tl)l (41)

€=%
(3.17  where the first-order response function is

Here, (X, (1)), (rq(t)), and{q,(t,7)) are defined by Eq.

N AV
(2.52. R, (t1)= 1—ng dt'vi(t)

exgQ. ()], (4.2

1 (Bt
— %J dTVgl(tl,T)
IV. FIRST-, THIRD-, AND FIFTH-ORDER 0
POLARIZATIONS AND RESPONSE FUNCTIONS ; :
in which
Using the previous results, we present here the first-, .
third-, and fifth polarizations in terms of response functions. QEl(t)_ ~! Elwegtl_g*fl(tl)’ 4.3
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with

Weg= a) gt N (4.9

The perturbation functions\/i and V9 are given by Eq.

(3.15 with

(Xa(t))=2€16 19" (1~ 1), (4.9

(ra(t))y=—i¢ ergee, () + €10’ (11—1")], (4.6
and by Eq.(3.17) with

(Qalty, 7)) =1¢ TerQa(ty,i7), 4.7)
respectively. In the above we defined

9. (=& f;dt' f;'dt"[m——w):gD<—+>(t~)]

=g'(t)+ig"(t), (4.9

and

gg(t,ir)zng;dt'f:dt"D<*3>(t"+i7). 4.9

B. Third-order polarization

and 5th-order resonant spectroscopy 2087

Qeyepey(t1ita ta) = —iweg( €1ty + €3t3) =g (t1)
- 96263(t3) - 6163[gelez(t2)
- gelez(t23) - g*el(tlZ) +0- 51(t13)]1

(4.12

andV/ (t" andVE epes (7) are defined by Eq$3.15 and

€1€p€3

(3.19 W|th _
<X5162€3(t’)>: 2671{610(t1_t’)g’,(t1—t’)

— 3 0112 ') 9" (tz~ 1) — " (taa= )]},
(N eyeyes(t))=—1E Her6(t;—t)g' (t1—t')

— €3 0t~ t)g' (ti—t) — g (tas—t) ]}

—ig Helg (1) =0t —t1)ge o, (t' —t1)]

+ €360(t' —t1)Ge,e,(t —t1)}, (4.13

and Eq.(3.17) with
<q6162€3(t1 1t2 1t3 ’ T)> =i 57 1{6193(':1 ri T)

+ €3[Ga(t13,i 7) — Q3(te,i )]}
(4.19

Next we present third-order polarization, which has nu- _ o
merous applications to ultrafast laser techniques, such ds. Fifth-order polarization

pump—probe and photon echo. The result is expressed as

i o] o0 (e ]
PO(rt)= ?fo dt?,f0 oltzfO dtE(r,t—tg)

XE(r,t—ty,—t3)E(r,t—t;—t,—t3)
X 2 Reeetataty), (4.10
€1,€p,63= %
where
R615263(t11t2’t3)
1——“ AUV o 1) [ OOV )
1%2%3 1%2%3
[ ar Vi et )}—— f drvflfzfs(r)]
tip
Xexn:QEleZ%(tl:thtS)]' (41:D

Here,

Qqe(ta,ta t3,t4,t5) = —

Here, we present fifth-order polarization. As we will
show in the next section, anharmonicity plays a central role

in this order. The polarization is expressed as

ST N W
X

Riesy(tetataty,ts),
{€;5}=+

(4.19

where

R{e;S}(tl!tZ!t3!t4!t5) |:1_ g f dt V 65}(t )
=1 t1j—1

1 (s g
_%fo dTV{e;S}(T)

Xexfd Qqesy(ty,tz,t3,t4,t5)],
(4.1
in which t;,;=0 and {e;N} refers to the set{eq,
€, ...,en} and

i weg( 61t1+ €3t3+ E5t5) - g*el(tl) - 96263(t3) - ge455(t5)

—€163[0c,,(t2) —0c o, (taTt3) =0 (t1) + 9 (t1a) ]~ €165[ 9, (t20) = G e (t2s) =9 (t1a)

T09-¢,(t15) ]~ €3€5[ Ge e, (1a) =T, (Ta5) = Oe e (t30) T Qe e (Ta5) |-

4.17

The functionsVL;S} andV?E;5} are defined by Eqg3.15 and(3.16 with
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(Xiesy (1)) =28 Her0(t;—1')g" (t1—t') — €3] O(t1o— )" (1~ t') — O(t13—1')g" (t13—t")]
— &5 O(t1a—t')Q" (ta—t') — 0" (t15—t") 1}, (4.18
(Mes(t))=—T& Hea[g_ o (1) = 0(t' —t)ge o (1 —t)]+ e[ 6t —t1)ge (1 —t1) = Ot —t1g)Gc e (t' —t13)]

+es0(t' —t10)0e,e (' — 1)} — i€ Her6(t1—t)g (1, t")

— €3 0(t1o—t')g" (tip—t) = B(t1z—t')g' (tis—t') ]~ es[ B(t1a—t') g’ (tia—t) =g’ (tis—t)]}, (4.19
[
and Eq.(3.17 with placement and the temperature are taken to be,
wo=600(cm 1), y=40(cm1), d=1.0, and T=300(K),

<q{5;5}(tl1t21t31t41t517-)> reSpeCtive|y.

=i& M ex0a(ty i 7)+ €[ Ga(tss,i )~ Ga(tsz,i 7)]
A. Linear absorption spectroscopy

+ €5[93(tss,i 7) — g3(tag,i 7)1} (4.20
As a simple application of these results we first calcu-
V. LINEAR ABSORPTION, PUMP—PROBE, AND lated the linear absorption spectrum given by
PHOTON ECHO SPECTROSCOPIES IN THE o
ANHARMONIC DISPLACED OSCILLATORS SYSTEM I(w)=J dtR, (t)exp(iwt)+c.c. (5.5
0

Numerous applications to frequency-domain and time- o ) o
domain ultrafast techniques have been found for the firstand 10 check the validity of the perturbative approximation
third order response functionR(t;) and Ry..s(t1,ts,ts), [Eg. (4.2)], we have compared the linear absorption spectra,

for harmonic potential systems. The present results provide §2/culated from the present formula, with ones from the mul-
generalization to anharmonic potential surfaces. tistate Fokker—Planck equatiofiThis Fokker—Planck ap-

In the following, we assume the Ohmic spectral distri- proach can be gsed for a system with any shape of potentials
bution, J(») = yw,?® where analytical expressions of sym- &t a relatlvely_hlgh temperatuf®. We found that our expres-
metrized and antisymmetrized correlation functions aresions are valid folgs,94,9;,9,<0.1 at room temperature,

known“2 The auxiliary function is then given by for wo=600(cm 1). These anharmonic parameters can be
) made larger for lower temperatures, since, in such a case, the
g:-()=g" (1) =ig"(1), (5.9 initial distribution of the wave packet is concentrated at the
where bottom of the potential, where the anharmonicity plays a
) _ minor role. Note that, as we have mentioned in Sec. |, cal-
e { N r('ﬂm\z) culating higher-order response functions using the equations
g'(t)=\ s(e” 2+ \t—1)cot ) .
2¢wy 2 of motion approach is not an easy task and we have checked
5 - the validity of our approximation only for the linear absorp-
2 .\t ' 1 tion spectrum.
B zgwg(e ! +)‘1t_1)00tr( 2 ” Figure 2 shows the linear absorption spectra calculated

using Eq.(5.5 for different anharmonicities(1l) the har-

dywie 1 e "ni4pt—1 monic (g;=0 andg{ =0); (2) the ground-state cubic pertur-
CBh & vy (0B D)2 (52 pbation ©@=0 and g{=0, exceptgz=—0.08); (3) the
ground-state quadratic perturbation cagg=0 and gj’ =0,

and exceptg,=0.08); (4) the excited-state cubic perturbation
) ) Y20l y (9j=0 andg; =0, exceptgz=—0.08); and(5) the excited-
|g”(t)=|)\[e WZ[T SIF‘(é’t)ﬂLFCOE((t)} state quadratic perturbationgi=0 and g/=0, except

0 0 g,=0.08). As a reference, we have presented the spectrum

¥ for (1), the harmonic case, both in Figgagand Zb). Here,

+t— w_(%] (5.3  we set detunindlow=w— weq. As can be seen from Fig. 2,

o the heights of the phonon lines increase @y, the ground-
In the above, we have used the definitiomg=27n/%8,  state cubic perturbation case, whereas they decreasd)for

and the excited-state cubic perturbation case. The physical es-
sence of the phenomenon is as follows: cubic anharmonicity

Y. Y . > :
)\1=§+ iZ, )\2=§ =i, {=+wig—y/4. (5.9 shifts the center of the wave packet, located at the bottom of

the potential, towards the positive direction of the nuclear
To carry out a numerical calculation, the frequency of thecoordinate(see the ground-state potential in Fig. This
unperturbed potential, the damping, the dimensionless disshift effectively decreases the displacemedt, for (2),
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E(r,t)=E.(t+ 7)explikr —iQt)
(a) : —— (1) harmonic case . .
il 8= 008 +Es(t)explik,r —iQst)+c.c., (5.9
'''''''' (3) 8,= 008
where E4(t), k;, and Q, are the temporal envelopes, the
’é\ wave vector, and the center frequency of the pump field, and
< E,(t), k,, and(), are those of the probe field, respectively.
‘6’ The difference absorption spectruni is
Sipp(Q21,Qz;0p,7)= =2 IMEx(wx) P (w2),  (5.7)
where
(b) —— (1) harmonic case
=== (4) 83 =-0.08 1 o ]
------- 5)€,= 008 Ex(wy)= E wdteXF{' (0= Q)]EL(1), (5.9
2 and
©
. PP (w,)= = dtexdi(w,— Q)tIPE (). (5.9
% 2 V27 —= 2
-4000 2000 0 2600 4000 In the impulsive limit, the pump and probe pulses are short
A -1 compared to the dynamical time scales of the potential and
® (cm™) we can assume that*

FIG. 2. Absorption spectra for different anharmoniciti€l; the harmonic

case §;=0 andg,=0); (2) the ground-state cubic casgs& —0.08); (3) El(t) = 015(0, Ez(t) = 025(t), (5.10
the ground-state quadratic casg, € 0.08); (4) the excited-state cubic case

}=—0.08); and(5) th ited-stat drati 0.08). .
(9 )i and(®) the excited-state quadratic cas 0.08) where 6, and #, are the pump and pulse areas, respectively.

whereas it increases fof4). For a small displacement, FOr the impulsive pump cas®, , . (t,7,0)=R_, .(t,7,0)
equivalent to casé?), electronically near resonant transi- 21dR-—+(t,7,0)=R; _..(t,7,0), so we have

tions, such as +:0, 0—0, 0—1, are the main contribution

to the spectrum. For a large displacement, equivalent to case
(4), the electronically off-resonant transitions, such as
3—0, 2-0, 0—2, 0—3 can also take part so the spectrum

S|pp((l)2_92):2 Ref dteX[{I(wz—Qz)t]
0

is spread out over a broader frequency range. Thus, the X[R-4+(t, 70 +R__.(t,7,0)].
heights of the phonon lines increase &), whereas they
decrease fot4). (511
In the quadratic anharmonicity case, the phonon linetHere, we seju;=u6,=1.
shift to the red, compared with the harmonic one,(®) the We have calculated the impulsive pump—probe spectrum

ground-state quadratic perturbation, whereas they shift to thior different pump—probe delay periods, with detuning,
blue, for(5), the excited-state quadratic perturbation. This iSAw=w,—Q,— w4, for the cases discussed in Sec. V A,
because the quadratic perturbation increases the eigenenefgigure 3 shows the impulsive pump—probe spectrun{Iar
of the phonon bands. As a result, the perturbation of thehe harmonic case. Because the pump pulse is short com-
ground-state potential decreases the transition frequenciggared with the period of the underdamped modes, it creates a
between|g) and|e), while the perturbation on the excited- vibrational coherence in the excited electronic state. As a
state increases them. Note that, at this temperature, mosdsult, the heights of the peaks show a quantum beat oscilla-
population is in the vibrational ground state {8}, however, tion as a function of delay time. Figures 4, 5, and 6 show the
the anharmonicity can increase the zero point energy angump—probe spectra for cas@s, (4), and(5), respectively.
thus, we observed the shift of phonon lines even in such &ince the profile of signals for ca$8) is very similar to
case. those of the harmonic ones, we do not display their results
again. Pump—probe spectra in the anharmonic cases show
behavior similar to those of the linear absorption cases, ex-
In a pump—probe experiment, the system is first subcept that the peaks show quantum beat oscillations corre-
jected to a short pump pulse, then after a defaya second sponding to the movement of the wave packet created in the
probe pulse interacts with the system. The external electriexcited state. In principle, the effects of anharmonicity must
field is given by be larger for higher-order optical processes, since the laser

B. Impulsive pump—probe spectroscopy
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FIG. 3. The impulsive pump—probe spectrum as a function of time delayFIG. 5. The impulsive pump—probe spectrum 4y the excited-state cubic
7, and wavelengthA w= w,— Q,— weq, for (1) the harmonic caseg{=0 perturbation casegg= —0.08).
andg; =0).

Sipe(m,)=|P5 i (D]
can interact with the potentials many times. However, we )
could not observe any clear effect of anharmonicity in the =|R_+ 4+ (1,00 +R__(7,01)[%, (5.12
pump—probe experiments compared with the linear absorpyhere the argument refers to the detection time of the
tion spectrum. signal. The second pulse causes a rephasing of the
inhomogeneous-broadening contribution, which is simulated
by the additional overdamped oscillator mode, to the line-
C. Impulsive photon echo width at 7=t, so we can observe the homogeneous contri-
In a photon echo experiment, the molecular system is Ibutlon as the echo sign&l Here, we derive the shape of the
biected to two short pulses each with a wave velciamd echo decay in the presence of the anharmonicity. Figures
Eu JseeC arated by a deFIJa [see Eq.(5.6]. The first pulse 7-10 display the photon echo signal calculated from Eq.
c?éatez a coher):ence beztrween st(;g#ar{d le). The ptotal (5.12 for differing anharmonicities. Photon echo techniques
have been used to separate the homogeneous contribution of
polarization immediately begins to dephase, due to a varle%e linewidth from the inhomogeneous ones. We have not
gL;if}togf r:—:-nsccl)ﬂglrr]]tgfrz:rueeggzzajgg’égﬂgwnoc?nﬁzﬁ;%? \(/jllstr'lncluded the inhomogeneous contributions here, since these
. ' . " experiments may be used to obtain information about anhar-
tional modes. The second pulse arrives at a variable delal¥1on|0|ty in the system without inhomogeneit§The inho-
time, 7, after the first pulse, and interacts twice with the mogeneous contribution can be included in our result by
sample. When the pulses are short compared with the dy

ultiplying Eq.(5.12 by the factor expA?(t—7)?]}. Figure 7
nar_r:;czl .tm:E sgalest_of t;e_hs at_ ba_th, thg fphoton echo signg F;for (1), the harmonic case and here we see an initial decay
emitied In the direction &, =k, IS given followed by oscillations. These are quantum beats, resulting

u v,
/1"111
‘O ' iy,

0'0 S

1l 7
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/1,, /II[,,
77
"lll,{',ll £
/

FIG. 4. The impulsive pump—probe spectrum (2 the ground-state cubic  FIG. 6. The impulsive pump—probe spectrum (6) the excited-state qua-
perturbation casegg= —0.08). dratic perturbation caseyf=—0.08).
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. . . . FIG. 8. The impulsive photon echo signal f(®) the ground-state cubic
FIG. 7. The impulsive photon echo signal plotted as a functidneofd  for perturbation casege=—0.08). The free induction decay peak is approxi-

(1) the harmonic caseg{=0 andg; =0). The free induction decay peak at ) . : - )

... mately 20 times higher than hown in the figure.
t=0 and7=0 has been cut off to show the subsequent peaks better; it is Y imes g 1S shown i ‘gu
approximately 20 times higher than is shown in the figure.

We consider an experiment in whid(t) consists of a
_ _ o _ train of three resonant laser pulses. The response of the sys-
from the modulation of the electronic polarization by a vi- tem is detected through an additional probe p@Esg). The

bronic oscillation with frequency,=600(cnT ). The pho-  configuration of laser pulses is shown in Fig. 11. The exter-
ton echo signal corresponds to the peak alongrthe line.  ng field is expressed as

The peaks aroundr(t)=(0.35, 0), (0.7,0), (0,0.35), and o L,
(0,0.7) (p9 would not be observed if inhomogeneity were E(r,t)=E (t)e'k1" 1t Ef(t)elkar 12t
present. Figure 8 is fo{2), the ground-state cubic perturba-

tion case. The height of the peaks increases, because the +Ep(t—Ty)e 2 102+ Ep(t—Ty) elker 102!
t_ransitions petweerhg) and |e) (such as 0-0, 2-0 transi- . +Eg(t—T,— T,)eiks it

tions) have increased due to the anharmonicity, as seen in o

Fig. 2a). In contrast, the height of the peaks decreases in +EH(t—T— Ty~ 6)e K Tittdycc (6.2

Fig. 9, for(3), the excited-state cubic perturbation case, since
the transitions decrease in this case as seen in K. 2
Figure 10 is for(5), the excited-state quadratic perturbation
case. In this case, the heights of the peaks have increased
because the transitions far from resonarsach as 0-0,
0-2, and 0-Bhave increased. In principle, anharmonicity
causes the oscillation frequency to deviate from that of a
harmonic oscillator, and this may make the width of the
peaks broader. However, since here we have only considered
a very small deformation of potential, we have not observed
such effects.

VI. TWO-DIMENSIONAL RESONANT SPECTROSCOPY
FOR AN ANHARMONIC DISPLACED OSCILLATOR
SYSTEM

The contribution of anharmonicity, in the experiments
we have studied so far, do not show major effects of anhar-
monicity. This is because we have only considered very
weak anharmonicity. We propose here two-dimensional
resonant SpeCtI’OSCO[@.DRS, which Cé}ﬂ prowdg clear Slg_, FIG. 9. The impulsive photon echo signal f¢t) the excited-state cubic
natures of anharmonicity, although this may still be weak iNpertyrhation casegy=—0.08). The free induction decay peak is approxi-
some cases. mately 20 times higher than is shown in the figure.
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FIG. 10. The impulsive photon echo signal f@) the excited-state qua-
dratic perturbation casegf=0.08). The free induction decay peak is ap-

proximately 20 times higher than is shown in the figure.

The first, second, and third pulses peak at timer, and
T,+T,, respectively, and we have included the phégs

R{G;S}(O!TLO!TZ Il 5)

_ 1(T, 2 , i (T1+To 4 ,
= 1_% 0 dt V{E:5}(t )_g Tl dt V{E;S}(t )

I [TatTate o , N g
A Ty+Ty AtV )_%fo d7V{eis)(7)
X exf Qe;5(0,T1,0,T5,6)], (6.4
in which {€;N} refers to the sefe;,e,, ... ,en},VI(7) are

defined by Eqs(3.15-(3.17) with Egs.(4.18—-(4.20, and
Q(e5)(0.T1,0,T2,6)
=70¢,(0)—[9e,(T1+T2) =9 (T1+ T2+ )
=g (T1+T)+g (T +To+9)]
~[9e,(T2) = Ge (To+ &) =9 (To) + 9. (To+ )],
(6.9

It has been shown in the third-order experiments that the
imaginary and real part of the polarization can be separately
detected by choosing the phage®*“® In this paper, we
present the real part signéle., ¢=0), since this displayed
larger effects of anharmonicity than the imaginary part in
preliminary numerical calculations. For a fixed tinde the

the probe pulse. Hereafter, we consider resonant pulses, i.@d0ve signal constitutes two-dimensional resonant spectros-

Qj, Qf, etc. ~wey The probe signal with wave vector

ki=k,—k;+k,—k,+kj is then given by
Ss(kf)=—2 Imf thf(t—Tl—Tz_ﬁ)ehMith

X P(5)(kf: kl_ ki"‘ kz_ ké—"_ k31t)a

where P®)(k; ,t) is the polarization in the directiok; . In
the impulsive limit uE;(t)=(t), the signal can be calcu-
lated from Eq.(4.16) by settingt,=t3=0, t,=T4, t,=T>,

andt;=§ as

Ss(kg) = R‘{eid) 2 R+el+e4+(oaT1101T215):|1

€),64=%

where

E, E, Ey E) E;, E

T, T, o

FIG. 11. Pulse configuration of the two-dimensional resonant spectroscop
In this experiment, the time peria#imust be small and fixed, since this then

copy (2DRS with two independent time periods during
which the wave packet evolves

Sprd T1,T2;6)

= Re[ 2 Rigie+(0T10T5,9)). (6.6
62,54:i
The essence of this experiment is the selection of the time
8. Equation(6.4) consists of the perturbation parts, inside the
bigger set of the square braces, and the phase part, expressed
in the exponential form. As seen from E®.5), the contri-
butions of the phase part become small compared with the
perturbation part, if§ is small (6<1/wg). Thus, for a fixed
small 6, we can use this technique to detect the anharmonic-
ity of the potentials. Note here that if we s&t0, then the
signal will always be unity and we can not observe the dif-
ference of the potentials.

Figure 12 shows 2DRS fafl), the harmonic case, cal-
culated from Eq(6.6). To carry out numerical calculations,
we set5=0.01 (p9). The signal consists of processes de-
scribed by the different Liouville pathsji) gg—ee
—ee—eg, (i)gg—ee—gg—eg, (i) gg—gg—ee—eg,
and(iv) gg—gg—gg—eg, denoted by the combination of
sign parameters, epeses)=(+++),(+—+),(—++),
and (——+), respectively. Due to the assumption of the
impulsive pulses, the shape of the wave packet does not
change throughout the laser interaction. Thus, the contribu-
tion to the signal from proces@v) does not vary in time

YeriodsT, and T,, since the wave packet is always in the

causes the signal to constitute a two-dimensional spectroscopy with twground'equmbrium_ state. The ComribUt?On frofiii ) dOQS
independent time periodg, and T, during which the wave packet evolves. not depend o 4, since the wave packet is in tiggy state in
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FIG. 12. The two-dimensional signal calculated from E&6) for (1) the

i FIG. 13. The two-dimensional signal calculated from E&6) for (2) the
harmonic cased;=0 andgj’:o),

ground-state cubic perturbation cagg< —0.08).

this period, whereas the contribution frdii) depends both  and tunneling. Théth order response functions presented in
onT, andT,, since the wave packet created in h@state  thjs paper may allow a characterization of the anharmonic
through thee e state differs from the ground equilibrium state system in the condensed phase, and can be applied to study
except forT,;=0. Finally, the contribution fronti) is a func-  g,ch systems.
tion of T;+T,, since bothT, and T, periods describe the Although, in the present paper, we limit our study to a
time propagation of the wave packet in the excited statesingle mode system, generalization to a multimode system is
These four processes each show a different oscillating masyrajightforward. The corresponding response functions are
tion in the p(_)tentials, and thgs we have a complicated Strucgiven simply by the product of the single-mode response
ture of the signal as shown in Fig. 12. . function as shown in Ref. 30. One often takes into account
We now consider the anharmonic cases. Figures 13-1fe inhomogeneity of the electronic transition energy by in-
display 2DRS for(2), the ground-state cubi¢}) the excited-  corporating the overdamped oscillator mdddhus, by us-
state cubic, and5) the excited-state quadratic perturbationing the multimode system, the inhomogeneous broadening
cases. We can observe clear differences between the h&fsn pe included in the present discussions.
monic and anharmonic cases in Figs. 13 and 15, the main A combination of experimental methods, such as linear
Qifference being the enhancement of the signal along thﬁbsorption, pump—probe, and photon echo, may be necessary
lines T,+T,=0.4(ps) andT;+T,=0.8(ps). We have {5 elycidate the anharmonic contribution to the line. Fifth-
checked the origin of such enhancement for each of the Liouyrder resonant spectroscopy, combined with such experi-

ville paths and found that proce§), gg—~ee—gg—egis  ments, will allow the accurate decomposition of vibrational
the cause of such effects. While cag@s and (5) show a

clear difference from the harmonic one, cage is quite
similar to it. Note that the signal fo{3), the ground-state

guadratic perturbation case, which is not shown here, also ol //'/;"“‘\“\
shows a profile similar to that of the harmonic one. As seen 2 ,/ “\‘\\\
from Fig. 2, the phonon lines betweég) and |e) such as }///“ \‘\\L{
1—-0, 0—0, 0—1, are lower than the harmonic case in & 1 /,/)‘ \\\,,"‘-“
N Q —\
these two cases. Therefore, an excitation indbatate does ) ' ‘\\/’/“\‘
not show a clear quantum beat at the resonant frequency and E 1 /)“\ ////“\‘
thus we could not observe a signal along liffgs+ T,=0.4 "V// / \\

il

and T,+T,=0.8, which originate from procesqii),
gg—ee—gg—eg. In such cases, 4DRS does not help to =
detect anharmonicity.

(

VIl. CONCLUDING REMARKS

o2 o=
~ . o=

Although the present analysis has focused on the reso- =
nant spectroscopy of molecular systems, the model we have
employed here has been widely used to describe such pheis. 14. The two-dimensional signal calculated from E&6) for (4) the
nomena as elementary excitations, nonadiabatic transitionsxcited-state cubic perturbation cagg € —0.08).

oA
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