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We have obtainedNth-order response functions for a two-level system described by displaced
anharmonic potential surfaces coupled to a heat bath. The anharmonicity of the potentials has been
taken into account as a perturbation of harmonic potentials. The heat-bath was assumed to be an
ensemble of harmonic oscillators. Coupling between the two-level system and the bath was assumed
to be bilinear. The calculations were done analytically using the Liouville-space generating
functional, which had been obtained by way of the path-integral approach. The response functions
have been defined in terms of line-shape functions with these line-shape functions being expressed
in terms of the bath spectral density and the temperature. We have carried out model calculations of
the first-, third-, and fifth-order optical processes for various parameters of anharmonicity to show
that anharmonicity plays a minor role in linear absorption, impulsive pump–probe, and photon echo
experiments, but plays a major role, in some cases, in fifth-order two-dimensional resonant
spectroscopy which is proposed in this paper. ©1997 American Institute of Physics.
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I. INTRODUCTION

In addition to information about essentially static stru
ture, vibrational line shapes in the condensed phase con
information from a variety of dynamic processes, includi
such important processes as microscopic dynamics, inter
lecular couplings, and time scales of solvent evolution t
modulate the energy of a transition. Each of these proce
involves coupling between the internal vibrations of a m
ecule and the external degrees of freedom of its environm
However, since vibrational lines from these processes
often broadened and also appear in similar positions, it is
easy to distinguish them from linear spectroscopy.

This difficulty can be overcome by higher-order~nonlin-
ear! optical processes involving many laser interactions. T
simplest and most common such techniques are four-w
mixing related to third-order nonlinearity. There are num
ous spectroscopic techniques related to this order includ
pump–probe spectroscopy,1,2 photon echo,3,4 hole burning,5,6

and coherent anti-Stokes Raman.7,8 These techniques make
possible to utilize more than one time-evolution period a
allow us to distinguish dynamical processes in which th
time responses are different.9

Recent advances in femtosecond laser technology
allowed us to perform even higher-order spectroscopy.
man echo experiments proposed by Loring and Mukamel
related to seventh-order nonlinearity and can selectiv
probe the homogeneous linewidth.10 Several experiments
and theoretical studies, including related IR echo exp
ments, have been subsequently carried out in order to m
sure the homogeneous vibrational linewidth.11–15 These ex-
periments were conducted on isolated intramolecular h
frequency vibrations and they employed laser pulses lon
than the vibrational periods. Two-dimensional off-reson
spectroscopy~2DOS! proposed by Tanimura and Mukamel16

has been designed to separate the inhomogeneous dis
2078 J. Chem. Phys. 106 (6), 8 February 1997 0021-9606/9
-
in

o-
t
es
-
nt.
re
ot

e
ve
-
g

d
ir

as
a-
re
ly

i-
a-

h
er
t

bu-

tion of slowly varying parameters, for example of local liq
uid configurations, from the total spectral distribution of t
dynamical time scale. This 2DOS experiment uses two p
of excitation pulses and is related to fifth-order nonlineari
Several experimental and theoretical studies have been
ried out to explore the possibility of detecting such inhom
geneity.17–202DOS can also be applied to study phonon d
namics in solid21 and anharmonicity of vibrational modes.22

Raman echo and 2DOS experiments were based on
resonance laser excitation techniques, which neglect dyn
ics on excitation states. Cho and Fleming suggested a
fifth-order spectroscopy using three electronically-reson
pulses23 and this experiment has subsequently been car
out.24 This fifth-order, three pulses scattering~FOTS! differs
from 2DOS, since FOTS separates the homogeneous co
bution of a vibrational spectrum from the inhomogeneity
an electronic transition energy, whereas 2DOS separates
inhomogeneity of the vibrational modes themselves.

It is obvious that higher-order spectroscopy can cont
many time intervals and these can be used to separate
targeting dynamical processes from the others such as
inhomogeneity of the vibration modes; however, analysis
such signals becomes much more complex compared
that of lower-order ones. Since one needs to deal with v
ous time configurations of lasers pulses in higher order o
cal processes as a function of various physical parame
compact theoretical expressions are essential to interpre
experimental studies. In this paper, we presentNth-order re-
sponse functions for a displaced anharmonic oscillators
tem coupled to a heat bath and explore the possibilities
using higher-order optical processes to study the anhar
nicity of potentials.

The theoretical calculation of higher-order optical pr
cesses of anharmonic potential systems poses some dif
problems. Optical processes can be calculated using a d
7/106(6)/2078/18/$10.00 © 1997 American Institute of Physics
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2079Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
integration of the equations of motion in the presence o
laser field. By calculating the relevant density matrix e
ments, it is possible to study optical processes of arbitr
order. Dephasing processes induced by a heat bath ca
incorporated using equations of motion for a reduced den
matrix, such as the quantum master equation25 or the quan-
tum Fokker–Planck equation for multipotential surfaces26

These equations of motion have capability of dealing w
anharmonic potential surfaces, however, solving such eq
tions of motion for various physical conditions is compu
tionally very intensive. In addition, theNth order time-
correlation functions have to be calculated to obtain
(N21)th order optical processes, and this is very difficult
calculate using the equations of motion approach. Th
higher-order optical processes, using equation of motion
proach, have not been successfully studied.

Alternatively, optical processes can be calculated us
the response function approach, which is based on a pe
bative expansion of the optical polarization in powers o
laser field.27 This approach has been successfully applied
the study of lower order optical processes such as four-w
mixing experiments.9 If one limits oneself to the study of a
two-level system represented by displaced harmonic po
tials, exact closed expressions for anNth order response
function can be obtained using path-integral techniques.28,29

In addition, it is possible to include any coordinate depe
dence of transition dipole moments on coordinates~non-
Condon effects! to anNth order response function.30 These
studies have so far been limited to the harmonic oscilla
system. But, recently, we have developed a nonequilibr
generating functional theory, which includes the anharm
nicity of the potential in the Brownian oscillator model.31We
then studied the effects of anharmonicity on the third-, fift
and higher-order off-resonant spectroscopy.3 In the present
paper, we generalize previous results of generating funct
for a single potential surface, to multipotential ones, and c
culate the first-, third-, and fifth-order response functions
order to study the effects of anharmonicity on resonant sp
troscopy.

The organization of the paper is as follows: In Sec. II w
present the Liouville-space generating functions by exte
ing the generating functional obtained in Ref. 31. In Sec.
we define the anharmonic potential system and presen
Nth order response functions. In Sec. IV we write down
first-, third-, and fifth-order polarizations and response fu
tions for an anharmonic displaced oscillators system. In S
V, the linear absorption, pump–probe and photon-echo s
troscopies are studied numerically for various anharmo
parameters. In Sec. VI, we propose two-dimensional re
nance spectroscopy and show its ability to distinguish
effects of anharmonicity from the others. Section VII is d
voted to concluding remarks.

II. NONEQUILIBRIUM GENERATING FUNCTIONALS
FOR LIOUVILLE-SPACE PATHS

Consider a model Hamiltonian commonly used in t
description of such phenomena as element
J. Chem. Phys., Vol. 106,
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excitations,32,33nonlinear optical response,34–36nonadiabatic
transitions,37,29,38,39and tunneling.40,41The primary quantum
system is taken to be a two level system with a ground s
ug& and an excited stateue&, and its Hamiltonian is given by
~see Fig. 1!

HS5H01E~ t !HI , ~2.1!

where

H05ug&Hg^gu1ue&He^eu, ~2.2!

with

Hg5
p2

2M
1Ug~q!, He5

p2

2M
1Ue~q!, ~2.3!

andp, q, andM represent the momentum, the coordina
and the mass, respectively. The interaction consists of
time dependent function,E(t), and the operator,HI , which
is given by

HI5m~ ug&^eu1ue&^gu!. ~2.4!

In optical problems,E(t) andm represent the radiation field
and the dipole interaction between the two states, resp
tively. In nonadiabatic curve crossing problems,E(t)51 and
m represent the nonadiabatic interaction between the
statesue& and ug&.

Let us assume that the system is coupled to an envi
ment consisting of a set of harmonic oscillators with coor
natesxn and momentapn . The interaction between the sys
tem and thenth oscillator is assumed to be linear with
coupling strengthcn . The total Hamiltonian is then given b

H5HS1H8, ~2.5!

where

FIG. 1. Potential surfaces of the anharmonic displaced oscillators sys
The lower state is denoted byug&, the upper byue&. The equilibrium coor-
dinate displacement and the energy difference between the two poten
are expressed byd and\veg , respectively. The dotted lines represent t
unperturbed harmonic potential surfaces. Here, we considered a cubic
turbation (}2 q3) to the ground state and a quadratic one (} q4) to the
excited state.
No. 6, 8 February 1997
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2080 Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
H85(
n

F pn
2

2mn
1
mnvn

2

2 S xn2 cnq

mnvn
2D 2G . ~2.6!

We have followed the common notation of Grabe
Schramm, and Ingold.42 The character of the heat-bath
specified by the spectral distribution

J~v!5p(
n

cn
2

2mnvn
d~v2vn!. ~2.7!

The total system is assumed to be initially at equilibrium
the ground electronic state

rg5ug&^guexp@2b~Hg1H8!#/Tr$exp@2b~Hg1H8!#%,
~2.8!

whereb[1/kBT is the inverse temperature. Since we are
interested in the dynamics of the environment, we trace o
its coordinates. We thus introduce the reduced density ma

r~ t ![TrB$r tot~ t !%. ~2.9!

Here, TrB$ % represents the trace over the environment~the
bath! degrees of freedom andr tot(t) is the total (system
1bath) density matrix. By expanding the density matrix
the systemr(t), in terms of the interactionHI , we have

r~ t !5 (
N50

` E
0

t

dtNE
0

tN
dtN21•••E

0

t2
dt1E~tN!E~tN21!

3•••E~t1!r
~N!~ t,tN ,tN21 , . . . ,t1!, ~2.10!

where

r~N!~ t,tN ,tN21 , . . . ,t1!

5S 2
i

\ D NTrBH expF2
i

\
~ t2tN!~H01H8!3GHI

3

3expF2
i

\
~tN2tN21!~H01H8!3G

3HI
3
•••HI

3expF2
1

\
~t22t1!~H01H8!3GHI

3rgJ .
~2.11!

In the above we used the superoperator notation3 defined
by

A3B[AB2BA, A3B3C[A~BC2CB!2~BC2CB!A,
~2.12!

exp@A3#B[exp@A#Bexp@2A#,

and so forth, whereA,B, andC are operators. Since eac
HI

3 can act either from the left or from the right, and sin
r (n) containsnHI

3 factors, Eq.~2.11! naturally separates into
M52N terms denotedLiouville-space paths.9 In practice we
need to evaluate only half of these terms, since they alw
come in Hermitian conjugate pairs, andr (n) are Hermitian.
We thus have

r~N!~ t,tN ,tN21 , . . . ,t1!5 (
a51

M /2

ra
~N!~ t !1h.c., ~2.13!
J. Chem. Phys., Vol. 106,
,

t
er
ix

f

ys

wherea labels the paths. The functionra
(N)(t) represents the

contributions of theath Liouville-space path to the densit
matrix evaluated toNth order inHI , and will be devoted to
the Liouville-space generating functions~LGF!. Note that
the LGF,r (N)(t), depends on all time variablestN and not
just on t. The tn dependence is incorporated in thea sub-
script since each patha represents a specific choice of tim
arguments. ForN52, for example, there are two possib
Liouville-space paths plus their Hermitian conjugates. Th
are defined as~corresponding double-sided Feynman d
grams are given in Ref. 30!

r1
~2!~ t ![TrBH expF2

i

\Et2

t

dt~Hg1H8!Gm
3expF2

i

\Et1

t2
dt~He1H8!Gm

3expF2
i

\E0
t1
dt~Hg1H8!Grg

3expF i\E0tdt~Hg1H8!G J ~2.14!

and

r2
~2!~ t !5TrBH expF2

i

\Et1

t

dt~He1H8!Gm
3expF2

i

\E0
t1
dt~Hg1H8!G

3rgexpF i\E0t2dt~Hg1H8!Gm
3expF i\Et2

t

dt~He1H8!G J . ~2.15!

Each of the Liouville-space paths can be expressed as

ra
~N!~ t !5TrBS expH 2

i

\E0
t

dt@HL~ t !1H8#J
3rgexpH i

\E0
t

dt@HR~ t !1H8#J D , ~2.16!

where

HL~ t !5
p2

2M
1UL~q;t !, HR~ t !5

p2

2M
1UR~q;t !,

~2.17!

andUL andUR are the potentials of the left-hand side~ket!
and the right-hand side~bra!, respectively, of the density
matrix, and we setm51. The various Liouville-space paths
denoted bya, simply differ by the specific choices ofUL and
UR . As an example, the potentials for the paths correspo
ing to Eqs.~2.14! and ~2.15! are given in Table I. By intro-
ducing these potentials, we can derive a single formal
pression, which will hold for all paths.

In the path integral formalism, the time propagators a
the initial density matrix can be expressed in the functio
of the coordinatesq(t) andx(t) as
No. 6, 8 February 1997
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^q,xuexpH 2
i

\E0
t

dt@HL~ t !1H8#J uqi ,xi&

5E
q~0!5qi

q~ t !5q
D@q~ t !#E

x~0!5xi

x~ t !5x
D@x~ t !# expH i

\
SL@q,x;t,0#J ,

~2.18!

^qi8,xi8uexpH i

\E0
t

dt@HR~ t !1H8#J uq8,x8&

5E
q8~0!5qi8

q8~ t !5q8
D@q8~ t !#E

x8~0!5xi8

x8~ t !5x8
D@x8~ t !#

3expH 2
i

\
SR@q8,x8;t,0#J , ~2.19!

and

^qi ,xi urguqi8,xi8&

[E
q̄~0!5qi

q̄~b\!5qi8D@ q̄~t!#E
x̄ ~0!5xi

x̄ ~b\!5xi8D@ x̄~t!#

3expH 2
1

\
Sb@ q̄,x̄;t,0#J , ~2.20!

TABLE I. Potentials of the left~ket! and right~bra! hand side of the density
matrix corresponding to the Liouville-space paths for Eqs.~2.14! and~2.15!.

a U(q,s) 0;t1 t1;t2 t2;t

1 UL(q,s) Ug(q) Ue(q) Ug(q)
UR(q8,s) Ug(q8) Ug(q8) Ug(q8)

2 UL(q,s) Ug(q) Ue(q) Ue(q)
UR(q8,s) Ug(q8) Ug(q8) Ue(q8)
J. Chem. Phys., Vol. 106,
where the actionsSL ,SR , andSb are defined by

SL@q,x;t,0#5
1

2E0
t

dsHM S dqdt D 222UL~q;t !

1(
j51

` Fmj S dxjdt D 22mjv j
2S xj2 cjq

mjv j
2D 2G J ,

~2.21!

SR@q8,x8;t,0#5
1

2E0
t

dsHM S dq8dt D 222UR~q8;t !

1(
j51

` Fmj S dxj8dt D 22mjv j
2S xj82

cjq8

mjv j
2D 2G J ,
~2.22!

and

Sb@ q̄,x̄;b\,0#5
1

2E0
b\

dsHM S dq̄dt D 212Ug~ q̄;t!

1(
j51

` Fmj S dx̄jdt D 21mjv j
2S x̄ j2 cj q̄

mjv j
2D 2G J .

~2.23!

Thus, by inserting the completeness relatio
uqi ,xi&*dqi*dxi^qi ,xi u and uqi8 ,xi8&*dqi8*dxi8^qi8 ,xi8u, the
reduced density matrix Eq.~2.16! is rewritten in the path
integral form as
^qura
~N!~ t !uq8&[ra~q,q8,t !

5E dqiE dqi8E
q~0!5qi

q~ t !5q
D@q~ t !#E

q8~0!5qi8

q8~ t !5q8
D@q8~ t !#E

q̄~0!5qi

q̄~b\!5qi8D@ q̄~t!#E dxE dx8d~x2x8!

3E dxiE dxi8E
x~0!5xi

x~ t !5x
D@x~ t !#E

x8~0!5xi8

x8~ t !5x8
D@x8~ t !#E

x̄~0!5xi

x̄~b\!5xi8D@ x̄~t!#

3expH i

\
SL@q,x;t,0#J expH 2

1

\
Sb@ q̄,x̄;t,0#J expH 2

i

\
SR@q8,x8;t,0#J , ~2.24!

where the trace operator TrB$% is expressed as**dxdx8d(x2x8).
We now specify the ground- and excited-state potentials. The potentials in Eq.~2.3! are represented by

Ug~q!5Ug
0~q!1Vg~q!, Ue~q!5Ue

0~q!1Ve~q!, ~2.25!

where the harmonic parts are expressed as

Ug
0~q![

Mv0
2

2
q2, Ue

0~q![\veg
0 1

Mv0
2

2
~q2D !2. ~2.26!
No. 6, 8 February 1997



n.
rst order,

rt
rbation,

g

2082 Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
The anharmonic parts are expressed as the polynomial function ofq and their explicit forms will be given in the next sectio
We treat the anharmonic part of the potential as the perturbation. Then, by expanding the anharmonic part up to the fi
the density matrix element can be expressed as

ra~q,q8,t !5E dqiE dqi8E
q~0!5qi

q~ t !5q
D@q~ t !#E

q8~0!5qi8

q8~ t !5q8
D@q8~ t !#E

q̄~0!5qi

q̄~b\!5qi8D@ q̄~t!#E dxE dx8d~x2x8!E dxiE dxi8

3E
x~0!5xi

x~ t !5x
D@x~ t !#E

x8~0!5xi8

x8~ t !5x8
D@x8~ t !#E

x̄~0!5xi

x̄~b\!5xi8D@ x̄~t!#H 12
i

\E0
t

dt9@VL~q;t9!2VR~q8;t9!#2
i

\E0
b\

dtVg~ q̄!J
3expF i\ SL0~q,x;t,0!GexpF2

1

\
Sb
0~ q̄,x̄;b\,0!GexpF2

i

\
SR
0~q8,x8;t,0!G , ~2.27!

whereVL andVR are the perturbation part ofUL andUR , respectively andSL
0 ,SR

0 andSb
0 are the actions for the harmonic pa

of the potentials. The initial equilibrium state of the system with anharmonic potential is described in terms of the pertu
*0

b\dtVg(q̄)/\.
We can evaluate the above path integral for each Liouville-path, denoted bya, by using the Liouville-space generatin

functional.30,31Here, we consider three-source generating functional,

ra~q,q8,t;J!5E dqiE dqi8E
q~0!5qi

q~ t !5q
D@q~ t !#E

q8~0!5qi8

q8~ t !5q8
D@q8~ t !#E

q̄~0!5qi

q̄~b\!5qi8D@ q̄~t!#E dxE dx8d~x2x8!

3E dxiE dxi8E
x~0!5xi

x~ t !5x
D@x~ t !#E

x8~0!5xi8

x8~ t !5x8
D@x8~ t !#E

x̄~0!5xi

x̄~b\!5xi8D@ x̄~t!#

3expH i

\
Sg
0~q,x;t,0!1

i

\E0
t

dt@J0~ t !1J1~ t !q~ t !#J expH 2
1

\
Sg
0~ q̄,x̄;b\,0!1

1

\E0
b\

dt@J3~t!q̄~t!#J
3expH 2

i

\
Sg
0~q8,x8;t,0!2

i

\E0
t

dt@J08~ t !1J2~ t !q8~ t !#J , ~2.28!
s
tio
g

-

a

l

in-

d

ex-
whereSg
0 is the action for the system potentialUs

0(q) and
J[$J1 ,J2 ,J3%. Note thatJi(t) are the independent function
of the coordinates. We have also added the phase func
J0(t) andJ08(t) to take into account the Liouville path. Usin
the simple identity,f (]/]J)eJq5 f (q)eJq, the density func-
tional elements in Eq.~2.28! can be calculated from the gen
erating functional by replacing

q~ t !→
\

i

]

]J1~ t !
, q8~ t !→

\

i

]

]J2~ t !
, q̄~ t !→\

]

]J3~ t !
,

~2.29!

as

ra~q,q8,t !5ra~q,q8,t,J!uJ50

2S i\E0tdt8HVLF\

i

]

]J1~ t8!
;tG

2VRF\

i

]

]J2~ t8!
;tG J 1

1

\E0
b\

dtVgF\
]

]J3~t!G D
3ra~q,q8,t;J!uJ50 . ~2.30!

Note that the Liouville patha was taken into account by
choice ofJ0(t) andJ08(t) as we will show below.

The potentialUg
0(q) is harmonic and three externa

forcesJ1(t)q1(t), J2(t)q2(t), andJ3(t)q̄(t) are the linear
J. Chem. Phys., Vol. 106,
ns

functions of coordinates, we can carry out the functional
tegral in Eq.~2.28! by obtaining minimal action path42,30 or
by using the Feynman rules.31 We introduce the center an
difference coordinates

r[
q1q8

2
, x[q2q8, ~2.31!

respectively. The initial coordinatesxi and r i are defined
accordingly. Similarly we introduce

J~1 !5
~J11J2!

2
, J~2 !5J12J2 . ~2.32!

The generating functional for the three sources is then
pressed as

ra~x,r ,t;J!5A 1

2p^q2&g
expF2

1

2^q2&g
@r2r ~ t;J!#2

2
1

2\2 ^p2&gx
21

i

\
p~ t;J!x1J~ t;J!G ,

~2.33!

where
No. 6, 8 February 1997
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r ~ t;J!5
i

\E0
t

dt8D ~21 !~ t2t8!J~1 !~ t8!1
i

\E0
t

dt8D ~22 !~ t2t8!J~2 !~ t8!1
1

\E0
b\

dtD ~23!~ t1 i t!J3~t!, ~2.34!

p~ t;J!5
iM

\ E
0

t

dt8Ḋ ~21 !~ t2t8!J~1 !~ t8!1
iM

\ E
0

t

dt8Ḋ ~22 !~ t2t8!J~2 !~ t8!1
M

\ E
0

b\

dtḊ ~23!~ t1 i t!J3~t!, ~2.35!

J~ t;J!5
i

\E0
t

dt9@J0~ t9!2J08~ t9!#2
1

\2E
0

t

dt9E
0

t9
dt8J~2 !~ t9!D ~21 !~ t92t8!J~1 !~ t8!

2
1

2\2E
0

t

dt9E
0

t

dt8J~2 !~ t9!D ~22 !~ t92t8!J~2 !~ t8!1
i

\2E
0

t

dt9E
0

b\

dtJ~2 !~ t9!D ~23!~ t91 i t!J3~t!

1
1

2\2E
0

b\

dtE
0

b\

dt8J3~t!D ~33!~t2t8!J3~t8!, ~2.36!
th
u-

ts

er-
with
D ~21 !~ t ![^q~ t !q2qq~ t !&g

52
i\

M E
2`

` dv

p

vg̃~v!

~v0
22v2!21v2g̃ 2~v!

3sin~vt !, ~2.37!

D ~22 !~ t ![
1

2
^q~ t !q1qq~ t !&g

5
\

ME
2`

` dv

2p

vg̃~v!

~v0
22v2!21v2g̃ 2~v!

3cothS b\v

2 D cos~vt !, ~2.38!

D ~23!~ t1 i t![^qq~ t1 i t!&g

5
\

ME
2`

` dv

2p

vg̃~v!

~v0
22v2!21v2g̃ 2~v!

3H cothS b\v

2 D cos@v~ t1 i t!#

1 isin@v~ t1 i t!#J , ~2.39!

and
D ~33!~t ![u~t!^qq~2 i t!&g1u~2t!^qq~ i t!&g

5
\

ME
2`

` dv

2p

vg̃~v!

~v0
22v2!21v2g̃ 2~v!

3FcothS b\v

2 D cosh~vt!1sinh~vt!G , ~2.40!

with
g̃~ ṽ ![J~v!/v, ~2.41!

^q2&5D ~22 !~0!5D ~33!~0!, ^p2&52M2D̈ ~22 !~0!.
~2.42!

As was shown in Ref. 30, the generating functional for
Liouville paths can be calculated by introducing the Lio
ville phaseFa(t), the real forceFa

1(t), and the Liouville
J. Chem. Phys., Vol. 106,
e

phase forcef a
2(t), which are defined by the harmonic par

of the time dependent potential,UL(t) andUR(t), as

Fa~ t !52@UL
0~r1x/2,t !2UR

0~r2x/2,t !#ux5r50 ,

Fa
1~ t !52H d

dx
@UL

0~r1x/2,t !2UR
0~r2x/2,t !#J U

x5r50

,

f a
2~ t !52H d

dr
@UL

0~r1x/2,t !2UR
0~r2x/2,t !#J U

x5r50

.

~2.43!

Their explicit forms for a simple case@Eqs. ~2.14! and
~2.15!# are presented in Table II. The Liouville-space gen
ating functional can be obtained from Eqs.~2.33!–~2.36! by
simple replacements,

J~1 !~ t !→Fa
1~ t !1Ja

~1 !~ t !, J~2 !~ t !→ f a
2~ t !1Ja

~2 !~ t !,
~2.44!

J0~ t !2J08~ t !→Fa~ t !.

The final results are given by

ra~x,r ,t;J!5sa~x,r ,t;J!Ra~ t;J!, ~2.45!

where

sa~x,r ,t;J!5A 1

2p^q2&g
expH 2

1

2^q2&g

3@r2^ r̄ t&a2r ~ t;J!#22
1

2\2 ^p2&gx
2

1
i

\
@^ p̄t&a2p~ t;J!#xJ ~2.46!

with

TABLE II. Functions Fa(s), f a(s), and Fa(s) for the paths given in
Table I.

a functions 0;t1 t1;t2 t2;t

F1(s) 0 2\(veg
0 1l) 0

1 f 1(s) 0 2\j 0
F1(s) 0 2\j/2 0
F2(s) 0 2\(veg

0 1l) 0
2 f 2(s) 0 2\j 0

F2(s) 0 2\j/2 2\j
No. 6, 8 February 1997



2084 Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
^ r̄ t&a5
i

\E0
t

dt8D ~21 !~ t2t8!Fa
1~ t8!

1
i

\E0
t

dt8D ~22 !~ t2t8! f a
2~ t8!, ~2.47!

and

^ p̄t&a5
iM

\ E
0

t

dt8Ḋ ~21 !~ t2t8!Fa
1~ t8!

1
iM

\ E
0

t

dt8Ḋ ~22 !~ t2t8! f a
2~ t8!. ~2.48!

The functionRa(t;J) is expressed as
J. Chem. Phys., Vol. 106,
Ra~ t;J!5exp@Qa~ t !1Xa~ t;J!#, ~2.49!

where

Qa~ t !5
i

\E0
t

dt9FFa~ t9!

1
i

\
f a

2~ t9!E
0

t9
dt8D ~21 !~ t92t8!Fa

1~ t8!G
2

1

2\2E
0

t

dt9E
0

t

dt8 f a
2~ t9! f a

2~ t8!D ~22 !~ t92t8!,

~2.50!
Xa~ t;J!5
i

\E0
t

dt8^xa~ t8!&J~1 !~ t8!1
i

\E0
t

dt8^r a~ t8!&J~2 !~ t8!1
1

\E0
b\

dt^q̄a~ t,t!&J3~t!

2
1

\2E
0

t

dt9E
0

t9
dt8J~2 !~ t9!D ~21 !~ t92t8!J~1 !~ t8!

2
1

2\2E
0

t

dt9E
0

t

dt8J~2 !~ t9!D ~22 !~ t92t8!J~2 !~ t8!1
i

\2E
0

t

dt9E
0

b\

dtJ~2 !~ t9!D ~23!~ t91 i t!J3~t!

1
1

2\2E
0

b\

dtE
0

b\

dt8J3~t!D ~33!~t2t8!J3~t8!, ~2.51!
ty
ic

en-

-

with

^xa~ t8!&5
i

\Et8
t

dt9 f a
2~ t9!D ~21 !~ t92t8!,

^r a~ t8!&52
i

\E0t8dt9D ~21 !~ t92t8!Fa
1~ t9!

1
i

\E0
t

dt9 f a
2~ t9!D ~22 !~ t82t9!,

^q̄a~ t,t!&5
i

\E0
t

dt9 f a
2~ t9!D ~23!~ t91 i t!. ~2.52!

Using the generating functional Eqs.~2.45!–~2.52!, the den-
sity matrix elements are now expressed as

ra~x,r ,t !5ra~x,r ,t;J!uJ50

2H i

\E0
t

dt8VaF\

i

]

]J~1 !~ t8!
,
\

i

]

]J~2 !~ t8!
;t8G

1
1

\E0
b\

dtVgF\
]

]J3~t!G J ra~x,r ,t;J!U
J50

,

~2.53!

where Va(x,r ;t)[VL(r1x/2;t)2VR(r2x/2;t). The nor-
malized density matrix elements are defined as
r̄a~x,r ,t !5
ra~x,r ,t !

tr$ra~x,r ,0!%
, ~2.54!

wherera(x,r ,t50) corresponds to the equilibrium densi
matrix element including up to the first-order anharmon
perturbation.

III. Nth ORDER RESPONSE FUNCTIONS FOR AN
ANHARMONIC DISPLACED OSCILLATORS SYSTEM

We now specify the potentials. Hereafter we use dim
sionless coordinates and momentum defined by

AMv0

\
q→q, A 1

M\v0
p→p, ~3.1!

respectively. Then the harmonic parts of the potential@Eq.
~2.26!# are expressed as

Ug
0~q![

\v0

2
q2, Ue

0~q!5
\v0

2
~q2d!21\veg

0 , ~3.2!

whered5AMv0 /\D. We assume the following perturba
tion potentials:

Vg~q![\v0S 13! g3q31 1

4!
g4q

4D
[a3q

31a4q
4,
No. 6, 8 February 1997
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2085Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
Ve~q![\v0F12 g28~q2d!21
1

3!
g38~q2d!31

1

4!
g48~q2d!4G

[a081a18q1a28q
21a38q

31a48q
4, ~3.3!

where

a35
\v0g3
3!

, a45
\v0g4
4!

,

a085\v0S g28d22
2
g38d

3

3!
1
g48d

4

4! D ,
a185\v0S 2g28d1

g38d
3

2
2
g48d

3

3! D ,
a285\v0S g282 2

g38d

2
1
g48d

2

4 D ,
a385\v0S g383! 2

g48d

3! D , a485
\v0g48

4!
. ~3.4!

Note that, by introducing the perturbation term proportion
to g28 , we can take into account the difference in the excit
state frequency,\v0(11g28), compared to the ground-sta
one,v0. To write a result in compact form, it is convenie
to introduce sign parameterse i56 for a time period
t j,t,t j11.

28 We chosee2 j2151(2) as theeg(ge) state
for the odd time period, where a density matrix is in coher
t

J. Chem. Phys., Vol. 106,
l
-

t

states. In the same way, we chosee2 j51(2) as the
ee(gg) state for the even time period where a density ma
is in real states. Using the sign parameters, any proc
in the Nth order can be expressed by the s
$e j%5$e1 ,e2 , . . . ,eN21%. The functions in Eq.~2.43! are
then expressed as~see Ref. 30!

Fa~ t !52\~veg
0 1l!(

j51

N/2

e2 j21@u~ t2t2 j21!2u~ t2t2 j !#,

Fa
1~ t !52

\j

2 H u~ t2t1!

1(
j51

N/2

e2 j@u~ t2t2 j !2u~ t2t2 j11!#J ,
f a

2~ t !52\j(
j51

N/2

e2 j21@u~ t2t2 j21!2u~ t2t2 j !#, ~3.5!

whereu(t) is the step function anda now refers to the se
$e j% and

l[
d2v0

2
, j5dAMv0

3

\
5
2l

d
A \

Mv0
. ~3.6!

Using the sign parameterse j , the time dependent potentia
for the Liouville proper patha can be expressed in cente
and difference coordinates as
Va~x,r ;t !5VL~r1x/2;t !2VR~r2x/2;t !

5 f a
0~ t !1 f a

1~ t !r ~ t !1 1
2Fa

1~ t !x~ t !1 1
4f a

2~ t !x2~ t !1Fa
2~ t !x~ t !r ~ t !1 f a

2~ t !r 2~ t !1 1
8Fa

3~ t !x3~ t !1 3
4 f a

3~ t !x2~ t !r ~ t !

1 3
2Fa

3~ t !x~ t !r 2~ t !1 f a
3~ t !r 3~ t !1 1

16 f a
4~ t !x4~ t !1 1

2Fa
4~ t !x3~ t !r ~ t !1 3

2f a
4~ t !x2~ t !r 2~ t !

12Fa
4~ t !x~ t !r 3~ t !1 f a

4~ t !r 4~ t !. ~3.7!
the

nse
on
of
The functionsf a
k (t) and Fa

k (t)@k51– 4# for the Liouville
states corresponding to Eqs.~2.14! and ~2.15! are given in
Table II and expressed as

f a
k ~ t !5~ak82ak!(

j51

N/2

e2 j21@u~ t2t2 j21!2u~ t2t2 j !#,

Fa
k ~ t !5~ak81ak!(

j51

N/2

@u~ t2t2 j21!2u~ t2t2 j !#

1(
j51

N/2

@~11e2 j !ak81~12e2 j !ak#

3@u~ t2t2 j !2u~ t2t2 j11!#, ~3.8!

where we seta05a15a250.
The optical response can be expressed in terms of

optical polarization at the positionr defined by

he

P~r ,t ![Tr@m~ ue&^gu1ug&^eu!r̄~ t !#, ~3.9!

where the normalized density matrix,r̄(t), involves the in-
teraction between the driving electric field,@E(t)[E(r ,t)#,
and the system. If an interaction between the system and
electric field is weak, we may expandr̄(t) @see Eq.~2.10!#
and consequentlyP(r ,t) in powers of the electric field. The
Nth order optical process is calculated from theNth response
function, which is the (N11)th time-correlation function of
the dipole interaction. We can express any order of respo
function by using the Liouville path. The response functi
for the patha is expressed in the first order perturbation
Eq. ~3.7! as

Ra~ t !5tr$r̄a~ t !%5E dr r̄a~0,r ;t !, ~3.10!

where
No. 6, 8 February 1997
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Ra~ t ![H 12
i

\E0
t

dt8VaF\

i

]

]J~1 !~ t8!
,
\

i

]

]J~2 !~ t8!
;t8G

2
1

\E0
b\

dtVgF\
]

]J3~t!G JRa~ t;J!U
J50

, ~3.11!

since we found tr@sa(x,r ,t)#51 and tr@ra(x,r ,t50)#51,
where

sa~x,r ,t ![sa~x,r ,t;J!uJ50

2H i

\E0
t

dt8VaF\

i

]

]J~1 !~ t8!
,
\

i

]

]J~2 !~ t8!
;t8G

1
1

\E0
b\

dtVgFU\ ]

]J3~t!G J sa~x,r ,t;J!U
J50

.

~3.12!
st
ns

J. Chem. Phys., Vol. 106,
After some calculations, we thus obtain

Ra~ t !5F12
i

\E0
t

dt8Va~ t8!2
1

\E0
b\

dtVa
g~ t,t!G

3exp@Qa~ t !#, ~3.13!

where

Va~ t !5(
j51

N/2

Va
2 j21~ t !@u~ t2t2 j21!2u~ t2t2 j !#

1 (
j51

N/221

Va
2 j~ t !@u~ t2t2 j !2u~ t2t2 j21!#,

~3.14!

with
Va
2 j21~ t !5e2 j21„a081a18^r a~ t !&1a2@

1
4 ^xa~ t !&21^r a~ t !&21^q2&#

1~a382a3!@
3
4^xa~ t !&2^r a~ t !&1^r a~ t !&313^q2&^r a~ t !&#

1~a482a4!ˆ
1
16^xa~ t !&41^r a~ t !&416^q2&^r a~ t !&213^q2&2

1 3
2 @^xa~ t !&2^r a~ t !&21^q2&^xa~ t !&2#‰…1 1

2a18^xa~ t !&1a28^xa~ t !&^r a~ t !&

1~a381a3!$
1
8^xa~ t !&31 3

2 @^xa~ t !&^r a~ t !&21^q2&^xa~ t !&#%

1~a481a4!$
1
2^xa~ t !&3^r a~ t !&12@^xa~ t !&^r a~ t !&313^q2&^xa~ t !&^r a~ t !&#%, ~3.15!

Va
2 j~ t !5 1

2 @~11e2 j !a181~12e2 j !a1#^xa~ t !&1@~11e2 j !a281~12e2 j !a2#^xa~ t !&^r a~ t !&

1@~11e2 j !a381~12e2 j !a3#$
1
8 ^xa~ t !&31 3

2@^xa~ t !&^r a~ t !&21^q2&^xa~ t !&#%

1@~11e2 j !a481~12e2 j !a4#$
1
2 ^xa~ t !&3^r a~ t !&12@^xa~ t !&^r a~ t !&313^q2&^xa~ t !&^r a~ t !&#%, ~3.16!
ed
and

Va
g~ t,t!5

g3
3!

@^q̄a~ t,t!&313^q2&^q̄a~ t,t!&#

1
g4
4!

@^q̄a~ t,t!&416^q2&^q̄a~ t,t!&213^q2&2#.

~3.17!

Here, ^xa(t)&, ^r a(t)&, and ^qa(t,t)& are defined by Eq.
~2.52!.

IV. FIRST-, THIRD-, AND FIFTH-ORDER
POLARIZATIONS AND RESPONSE FUNCTIONS

Using the previous results, we present here the fir
third-, and fifth polarizations in terms of response functio
-,
.

A. First-order polarization

Hereafter, we use the time variabletk5tk112tk and
t jk5t j112tk . The first order polarization is then express
as

P~1!~r ,t !52
i

\E0
`

dt1E~r ,t2t1! (
e156

Re1
~ t1!, ~4.1!

where the first-order response function is

Re1
~ t1!5F12

i

\E0
t1
dt8Ve1

1 ~ t8!

2
1

\E0
b\

dtVe1
g ~ t1 ,t!Gexp@Qe1

~ t1!#, ~4.2!

in which

Qe1
~ t !52 i e1vegt12g2e1

~ t1!, ~4.3!
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with

veg[veg
0 1l. ~4.4!

The perturbation functions,Va
1 and Va

g are given by Eq.
~3.15! with

^xa~ t9!&52e1j
21ġ9~ t12t9!, ~4.5!

^r a~ t9!&52 i j21@e1ġe0e1
~ t9!1e1ġ8~ t12t9!#, ~4.6!

and by Eq.~3.17! with

^q̄a~ t1 ,t̄ !&5 i j21e1ġ3~ t1 ,i t̄ !, ~4.7!

respectively. In the above we defined

g6~ t !5j2E
0

t

dt8E
0

t8
dt9@D ~22 !~ t9!7 1

2D
~21 !~ t9!#

[g8~ t !7 ig9~ t !, ~4.8!

and

g3~ t,i t!5j2E
0

t

dt8E
0

t8
dt9D ~23!~ t91 i t!. ~4.9!

B. Third-order polarization

Next we present third-order polarization, which has n
merous applications to ultrafast laser techniques, such
pump–probe and photon echo. The result is expressed a

P~3!~r ,t !5
i

\3E
0

`

dt3E
0

`

dt2E
0

`

dt1E~r ,t2t3!

3E~r ,t2t22t3!E~r ,t2t12t22t3!

3 (
e1 ,e2 ,e356

Re1e2e3
~ t3 ,t2 ,t1!, ~4.10!

where

Re1e2e3
~ t1 ,t2 ,t3!

5H 12
i

\ F E
0

t1
dt8Ve1e2e3

1 ~ t8!1E
t1

t12
dt8Ve1e2e3

2 ~ t8!

1E
t12

t13
dt8Ve1e2e3

3 ~ t8!G2
1

\E0
b\

dtVe1e2e3
g ~t!J

3exp@Qe1e2e3
~ t1 ,t2 ,t3!#. ~4.11!

Here,
J. Chem. Phys., Vol. 106,
-
as

Qe1e2e3
~ t1 ,t2 ,t3!52 iveg~e1t11e3t3!2g2e1

~ t1!

2ge2e3
~ t3!2e1e3@ge1e2

~ t2!

2ge1e2
~ t23!2g2e1

~ t12!1g2e1
~ t13!#,

~4.12!

andVe1e2e3
j (t8) andVe1e2e3

g (t) are defined by Eqs.~3.15! and

~3.16! with

^xe1e2e3
~ t8!&52j21$e1u~ t12t8!ġ9~ t12t8!

2e3@u~ t122t8!ġ9~ t122t8!2ġ9~ t132t8!#%,

^r e1e2e3
~ t8!&52 i j21$e1u~ t12t8!ġ8~ t12t8!

2e3@u~ t122t8!ġ8~ t122t8!2ġ8~ t132t8!#%

2 i j21$e1@ ġ2e1
~ t8!2u~ t82t1!ġe1e2

~ t82t1!#

1e3u~ t82t12!ġe2e3
~ t82t12!%, ~4.13!

and Eq.~3.17! with

^q̄e1e2e3
~ t1 ,t2 ,t3 ,t!&5 i j21$e1ġ3~ t1 ,i t!

1e3@ ġ3~ t13,i t!2ġ3~ t12,i t!#%.

~4.14!

C. Fifth-order polarization

Here, we present fifth-order polarization. As we w
show in the next section, anharmonicity plays a central r
in this order. The polarization is expressed as

P~5!~r ,t !5S 2
i

\ D 5S )
k51

5 E
0

`

dtkD F )
k51

5

ES r ,t2 (
m51

k

tmD G
3 (

$e;5%56
R$e;5%~ t1 ,t2 ,t3 ,t4 ,t5!, ~4.15!

where

R$e;5%~ t1 ,t2 ,t3 ,t4 ,t5!5F12
i

\(
j51

5 E
t1,j2I

t1,j
dt8V$e;5%

j ~ t8!

2
1

\E0
b\

dtV$e;5%
g ~t!G

3exp@Q$e;5%~ t1 ,t2 ,t3 ,t4 ,t5!#,

~4.16!

in which t1050 and $e;N% refers to the set $e1 ,
e2 , . . . ,eN% and
Q$e%~ t1 ,t2 ,t3 ,t4 ,t5!52 iveg~e1t11e3t31e5t5!2g2e1
~ t1!2ge2e3

~ t3!2ge4e5
~ t5!

2e1e3@ge1e2
~ t2!2ge1e2

~ t21t3!2g2e1
~ t12!1g2e1

~ t13!#2e1e5@ge1e2
~ t24!2ge1e2

~ t25!2g2e1
~ t14!

1g2e1
~ t15!#2e3e5@ge3e4

~ t4!2ge3e4
~ t45!2ge2e3

~ t34!1ge2e3
~ t35!#. ~4.17!

The functionsV$e;5%
j andV$e;5%

g are defined by Eqs.~3.15! and ~3.16! with
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^x$e;5%~ t8!&52j21$e1u~ t12t8!ġ9~ t12t8!2e3@u~ t122t8!ġ9~ t122t8!2u~ t132t8!ġ9~ t132t8!#

2e5@u~ t142t8!ġ9~ t142t8!2ġ9~ t152t8!#%, ~4.18!

^r $e;5%~ t8!&52 i j21$e1@ ġ2e1
~ t8!2u~ t82t1!ġe1e2

~ t82t1!#1e3@u~ t82t12!ġe2e3
~ t82t12!2u~ t82t13!ġe3e4

~ t82t13!#

1e5u~ t82t14!ġe4e5
~ t82t14!%2 i j21$e1u~ t12t8!ġ8~ t12t8!

2e3@u~ t122t8!ġ8~ t122t8!2u~ t132t8!ġ8~ t132t8!#2e5@u~ t142t8!ġ8~ t142t8!2ġ8~ t152t8!#%, ~4.19!
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ar
and Eq.~3.17! with

^q̄$e;5%~ t1 ,t2 ,t3 ,t4 ,t5 ,t!&

5 i j21$e1ġ3~ t1 ,i t!1e3@ ġ3~ t13,i t!2ġ3~ t12,i t!#

1e5@ ġ3~ t15,i t!2ġ3~ t14,i t!#%. ~4.20!

V. LINEAR ABSORPTION, PUMP–PROBE, AND
PHOTON ECHO SPECTROSCOPIES IN THE
ANHARMONIC DISPLACED OSCILLATORS SYSTEM

Numerous applications to frequency-domain and tim
domain ultrafast techniques have been found for the first
third order response functions,Re(t1) andR$e;3%(t1 ,t2 ,t3),
for harmonic potential systems. The present results provid
generalization to anharmonic potential surfaces.

In the following, we assume the Ohmic spectral dist
bution, J(v)5gv,28 where analytical expressions of sym
metrized and antisymmetrized correlation functions
known.42 The auxiliary function is then given by

g6~ t !5g8~ t !6 ig9~ t !, ~5.1!

where

g8~ t !5lH F l1
2

2zv0
2~e

2l2t1l2t21!cothS ib\l2

2 D
2

l2
2

2zv0
2~e

2l1t1l1t21!cothS ib\l1

2 D G
2
4gv0

2

b\ (
n51

`
1

nn

e2nnt1nnt21

~v0
21nn

2!22g2nn
2 J , ~5.2!

and

ig9~ t !5 ilH e2gt/2Fg2/22v0
2

zv0
2 sin~zt !1

g

v0
2 cos~zt !G

1t2
g

v0
2 J . ~5.3!

In the above, we have used the definitions,nn52pn/\b,
and

l15
g

2
1 i z, l25

g

2
2 i z, z5Av0

22g2/4. ~5.4!

To carry out a numerical calculation, the frequency of t
unperturbed potential, the damping, the dimensionless
J. Chem. Phys., Vol. 106,
-
d

a

-

e

e
s-

placement and the temperature are taken to
v05600(cm21), g540(cm21), d51.0, andT5300(K),
respectively.

A. Linear absorption spectroscopy

As a simple application of these results we first calc
lated the linear absorption spectrum given by

I ~v!5E
0

`

dtR1~ t !exp~ ivt !1c.c. ~5.5!

To check the validity of the perturbative approximatio
@Eq. ~4.2!#, we have compared the linear absorption spec
calculated from the present formula, with ones from the m
tistate Fokker–Planck equation.~This Fokker–Planck ap-
proach can be used for a system with any shape of poten
at a relatively high temperature.26! We found that our expres
sions are valid forg3 ,g4 ,g38 ,g48,0.1 at room temperature
for v05600(cm21). These anharmonic parameters can
made larger for lower temperatures, since, in such a case
initial distribution of the wave packet is concentrated at t
bottom of the potential, where the anharmonicity plays
minor role. Note that, as we have mentioned in Sec. I, c
culating higher-order response functions using the equat
of motion approach is not an easy task and we have chec
the validity of our approximation only for the linear absor
tion spectrum.

Figure 2 shows the linear absorption spectra calcula
using Eq. ~5.5! for different anharmonicities;~1! the har-
monic (gj50 andgj850); ~2! the ground-state cubic pertur
bation (gj50 and gj850, except g3520.08); ~3! the
ground-state quadratic perturbation case (gj50 andgj850,
except g450.08); ~4! the excited-state cubic perturbatio
(gj50 andgj850, exceptg38520.08); and~5! the excited-
state quadratic perturbation (gj50 and gj850, except
g4850.08). As a reference, we have presented the spect
for ~1!, the harmonic case, both in Figs. 2~a! and 2~b!. Here,
we set detuningDv5v2veg . As can be seen from Fig. 2
the heights of the phonon lines increase for~2!, the ground-
state cubic perturbation case, whereas they decrease fo~4!,
the excited-state cubic perturbation case. The physical
sence of the phenomenon is as follows: cubic anharmoni
shifts the center of the wave packet, located at the bottom
the potential, towards the positive direction of the nucle
coordinate~see the ground-state potential in Fig. 1!. This
shift effectively decreases the displacement,d, for ~2!,
No. 6, 8 February 1997
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2089Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
whereas it increases for~4!. For a small displacemen
equivalent to case~2!, electronically near resonant trans
tions, such as 1→0, 0→0, 0→1, are the main contribution
to the spectrum. For a large displacement, equivalent to
~4!, the electronically off-resonant transitions, such
3→0, 2→0, 0→2, 0→3 can also take part so the spectru
is spread out over a broader frequency range. Thus,
heights of the phonon lines increase for~2!, whereas they
decrease for~4!.

In the quadratic anharmonicity case, the phonon lin
shift to the red, compared with the harmonic one, for~3!, the
ground-state quadratic perturbation, whereas they shift to
blue, for ~5!, the excited-state quadratic perturbation. This
because the quadratic perturbation increases the eigene
of the phonon bands. As a result, the perturbation of
ground-state potential decreases the transition frequen
betweenug& and ue&, while the perturbation on the excited
state increases them. Note that, at this temperature, m
population is in the vibrational ground state for~3!, however,
the anharmonicity can increase the zero point energy a
thus, we observed the shift of phonon lines even in suc
case.

B. Impulsive pump–probe spectroscopy

In a pump–probe experiment, the system is first s
jected to a short pump pulse, then after a delay,t, a second
probe pulse interacts with the system. The external elec
field is given by

FIG. 2. Absorption spectra for different anharmonicities;~1! the harmonic
case (gj50 andgn850); ~2! the ground-state cubic case (g3520.08); ~3!
the ground-state quadratic case (g450.08); ~4! the excited-state cubic cas
(g38520.08); and~5! the excited-state quadratic case (g4850.08).
J. Chem. Phys., Vol. 106,
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E~r ,t !5E1~ t1t!exp~ ik1r2 iV1t !

1E2~ t !exp~ ik2r2 iV2t !1c.c., ~5.6!

whereE1(t), k1, andV1 are the temporal envelopes, th
wave vector, and the center frequency of the pump field,
E2(t), k2, andV2 are those of the probe field, respective
The difference absorption spectrum is9

SIPP~V1 ,V2 ;v2 ,t!522 ImE2~v2!Pk2
~3!~v2!, ~5.7!

where

E2~v2!5
1

A2p
E

2`

`

dt exp@ i ~v22V2!t#E2~ t !, ~5.8!

and

Pk2
~3!~v2!5

1

A2p
E

2`

`

dt exp@ i ~v22V2!t#Pk2
~3!~ t !. ~5.9!

In the impulsive limit, the pump and probe pulses are sh
compared to the dynamical time scales of the potential
we can assume that35,43

E1~ t !5u1d~ t !, E2~ t !5u2d~ t !, ~5.10!

whereu1 andu2 are the pump and pulse areas, respective
For the impulsive pump case,R111(t,t,0)5R211(t,t,0)
andR221(t,t,0)5R121(t,t,0), so we have

SIPP~v22V2!52 ReE
0

`

dt exp@ i ~v22V2!t#

3@R211~ t,t,0!1R221~ t,t,0!#.

~5.11!

Here, we setmu15mu251.
We have calculated the impulsive pump–probe spectr

for different pump–probe delay periods,t, with detuning,
Dv5v22V22veg , for the cases discussed in Sec. V
Figure 3 shows the impulsive pump–probe spectrum for~1!,
the harmonic case. Because the pump pulse is short c
pared with the period of the underdamped modes, it creat
vibrational coherence in the excited electronic state. A
result, the heights of the peaks show a quantum beat osc
tion as a function of delay time. Figures 4, 5, and 6 show
pump–probe spectra for cases~2!, ~4!, and~5!, respectively.
Since the profile of signals for case~3! is very similar to
those of the harmonic ones, we do not display their res
again. Pump–probe spectra in the anharmonic cases s
behavior similar to those of the linear absorption cases,
cept that the peaks show quantum beat oscillations co
sponding to the movement of the wave packet created in
excited state. In principle, the effects of anharmonicity m
be larger for higher-order optical processes, since the la
No. 6, 8 February 1997
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2090 Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
can interact with the potentials many times. However,
could not observe any clear effect of anharmonicity in
pump–probe experiments compared with the linear abs
tion spectrum.

C. Impulsive photon echo

In a photon echo experiment, the molecular system
subjected to two short pulses each with a wave vectork1 and
k2, separated by a delayt @see Eq.~5.6!#. The first pulse
creates a coherence between statesug& and ue&. The total
polarization immediately begins to dephase, due to a var
of factors including pure dephasing, inhomogeneous dis
bution of resonant frequencies, and anharmonicity of vib
tional modes. The second pulse arrives at a variable d
time, t, after the first pulse, and interacts twice with t
sample. When the pulses are short compared with the
namical time scales of the heat-bath, the photon echo sig
emitted in the direction 2k22k1 is given by9

FIG. 3. The impulsive pump–probe spectrum as a function of time de
t, and wavelength,Dv5v22V22veg , for ~1! the harmonic case (gj50
andgj850).

FIG. 4. The impulsive pump–probe spectrum for~2! the ground-state cubic
perturbation case (g3520.08).
J. Chem. Phys., Vol. 106,
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SIPE~t,t !5uP2k22k1
~3! ~ t !u2

5uR211~t,0,t !1R221~t,0,t !u2, ~5.12!

where the argumentt refers to the detection time of th
signal. The second pulse causes a rephasing of
inhomogeneous-broadening contribution, which is simula
by the additional overdamped oscillator mode, to the lin
width at t5t, so we can observe the homogeneous con
bution as the echo signal.43 Here, we derive the shape of th
echo decay in the presence of the anharmonicity. Figu
7–10 display the photon echo signal calculated from E
~5.12! for differing anharmonicities. Photon echo techniqu
have been used to separate the homogeneous contributi
the linewidth from the inhomogeneous ones. We have
included the inhomogeneous contributions here, since th
experiments may be used to obtain information about an
monicity in the system without inhomogeneity.$The inho-
mogeneous contribution can be included in our result
multiplying Eq.~5.12! by the factor exp@D2(t2t)2#%. Figure 7
is for ~1!, the harmonic case and here we see an initial de
followed by oscillations. These are quantum beats, resul

y,FIG. 5. The impulsive pump–probe spectrum for~4! the excited-state cubic
perturbation case (g38520.08).

FIG. 6. The impulsive pump–probe spectrum for~5! the excited-state qua-
dratic perturbation case (g48520.08).
No. 6, 8 February 1997
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2091Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
from the modulation of the electronic polarization by a v
bronic oscillation with frequencyv05600(cm21). The pho-
ton echo signal corresponds to the peak along thet5t line.
The peaks around (t,t)5(0.35, 0), (0.7,0), (0,0.35), an
(0,0.7) ~ps! would not be observed if inhomogeneity we
present. Figure 8 is for~2!, the ground-state cubic perturba
tion case. The height of the peaks increases, because
transitions betweenug& and ue& ~such as 0–0, 2–0 trans
tions! have increased due to the anharmonicity, as see
Fig. 2~a!. In contrast, the height of the peaks decreases
Fig. 9, for~3!, the excited-state cubic perturbation case, si
the transitions decrease in this case as seen in Fig.~b!.
Figure 10 is for~5!, the excited-state quadratic perturbati
case. In this case, the heights of the peaks have incre
because the transitions far from resonance~such as 0–0,
0–2, and 0–3! have increased. In principle, anharmonic
causes the oscillation frequency to deviate from that o
harmonic oscillator, and this may make the width of t
peaks broader. However, since here we have only consid
a very small deformation of potential, we have not observ
such effects.

VI. TWO-DIMENSIONAL RESONANT SPECTROSCOPY
FOR AN ANHARMONIC DISPLACED OSCILLATOR
SYSTEM

The contribution of anharmonicity, in the experimen
we have studied so far, do not show major effects of anh
monicity. This is because we have only considered v
weak anharmonicity. We propose here two-dimensio
resonant spectroscopy~2DRS!, which can provide clear sig
natures of anharmonicity, although this may still be weak
some cases.

FIG. 7. The impulsive photon echo signal plotted as a function oft andt for
~1! the harmonic case (gj50 andgj850). The free induction decay peak a
t50 andt50 has been cut off to show the subsequent peaks better;
approximately 20 times higher than is shown in the figure.
J. Chem. Phys., Vol. 106,
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We consider an experiment in whichE(t) consists of a
train of three resonant laser pulses. The response of the
tem is detected through an additional probe pulseEf(t). The
configuration of laser pulses is shown in Fig. 11. The ext
nal field is expressed as

E~r ,t !5E1~ t !e
ik1r2 iV1t1E18~ t !e

ik18r2 iV18t

1E2~ t2T1!e
ik2r2 iV2t1E2~ t2T1!8e

ik28r2 iV28t

1E3~ t2T12T2!e
ik3r2 iV3t

1Ef~ t2T12T22d!e2 ikfr1 iV f t1f1c.c. ~6.1!

is

FIG. 8. The impulsive photon echo signal for~2! the ground-state cubic
perturbation case (g3520.08). The free induction decay peak is approx
mately 20 times higher than is shown in the figure.

FIG. 9. The impulsive photon echo signal for~4! the excited-state cubic
perturbation case (g38520.08). The free induction decay peak is approx
mately 20 times higher than is shown in the figure.
No. 6, 8 February 1997
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2092 Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
The first, second, and third pulses peak at time 0,T1 , and
T11T2, respectively, and we have included the phasef in
the probe pulse. Hereafter, we consider resonant pulses
V j , V j8 , etc. 'veg The probe signal with wave vecto
kf5k12k181k22k281k3 is then given by

S5~kf!522 ImE
2`

`

dtEf~ t2T12T22d!eif1 iV f t

3P~5!~kf5k12k181k22k281k3,t !, ~6.2!

whereP(5)(k f ,t) is the polarization in the directionk f . In
the impulsive limitmEj (t)5d(t), the signal can be calcu
lated from Eq.~4.16! by settingt15t350, t25T1, t45T2 ,
and t55d as

S5~kf!5 ReFeif (
e2 ,e456

R1e11e41~0,T1,0,T2 ,d!G ,
~6.3!

where

FIG. 10. The impulsive photon echo signal for~5! the excited-state qua
dratic perturbation case (g4850.08). The free induction decay peak is a
proximately 20 times higher than is shown in the figure.

FIG. 11. Pulse configuration of the two-dimensional resonant spectrosc
In this experiment, the time periodd must be small and fixed, since this the
causes the signal to constitute a two-dimensional spectroscopy with
independent time periodsT1 andT2 during which the wave packet evolves
J. Chem. Phys., Vol. 106,
.e.,

R$e;5%~0,T1,0,T2 ,d!

5F12
1

\E0
T1
dt8V$e;5%

2 ~ t8!2
i

\ET1
T11T2

dt8V$e;5%
4 ~ t8!

2
i

\ET11T2

T11T21d
dt8V$e;5%

5 ~ t8!2
1

\E0
b\

dtV$e;5%
g ~t!G

3exp@Q$e;5%~0,T1,0,T2 ,d!#, ~6.4!

in which $e;N% refers to the set$e1 ,e2 , . . . ,eN%,Vj (t) are
defined by Eqs.~3.15!–~3.17! with Eqs.~4.18!–~4.20!, and

Q$e;5%~0,T1,0,T2 ,d!

52ge4
~d!2@ge2

~T11T2!2ge2
~T11T21d!

2g2~T11T2!1g2~T11T21d!#

2@ge4
~T2!2ge4

~T21d!2ge2
~T2!1ge2

~T21d!#.

~6.5!

It has been shown in the third-order experiments that
imaginary and real part of the polarization can be separa
detected by choosing the phasef.44,45 In this paper, we
present the real part signal~i.e.,f50), since this displayed
larger effects of anharmonicity than the imaginary part
preliminary numerical calculations. For a fixed timed, the
above signal constitutes two-dimensional resonant spec
copy ~2DRS! with two independent time periods durin
which the wave packet evolves

S2DRS~T1 ,T2 ;d!

5 ReF (
e2 ,e456

R1e21e41~0,T1,0,T2 ,d!G . ~6.6!

The essence of this experiment is the selection of the t
d. Equation~6.4! consists of the perturbation parts, inside t
bigger set of the square braces, and the phase part, expr
in the exponential form. As seen from Eq.~6.5!, the contri-
butions of the phase part become small compared with
perturbation part, ifd is small (d!1/v0). Thus, for a fixed
smalld, we can use this technique to detect the anharmo
ity of the potentials. Note here that if we setd50, then the
signal will always be unity and we can not observe the d
ference of the potentials.

Figure 12 shows 2DRS for~1!, the harmonic case, cal
culated from Eq.~6.6!. To carry out numerical calculations
we setd50.01 ~ps!. The signal consists of processes d
scribed by the different Liouville paths;~i! gg→ee
→ee→eg, ~ii !gg→ee→gg→eg, ~iii ! gg→gg→ee→eg,
and ~iv! gg→gg→gg→eg, denoted by the combination o
sign parameters, (e2e4e5)5(111),(121),(211),
and (221), respectively. Due to the assumption of th
impulsive pulses, the shape of the wave packet does
change throughout the laser interaction. Thus, the contr
tion to the signal from process~iv! does not vary in time
periodsT1 andT2, since the wave packet is always in th
ground-equilibrium state. The contribution from~iii ! does
not depend onT1, since the wave packet is in thegg state in

y.

o

No. 6, 8 February 1997



te

t
m
ru

–

on
h
a
th

io

als
e

in

a

to

s
a
ph
on

in
nic
tudy

a
is

are
se
unt
in-

ing

ar
sary
h-
eri-
al

2093Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
this period, whereas the contribution from~ii ! depends both
on T1 andT2, since the wave packet created in thegg state
through theeestate differs from the ground equilibrium sta
except forT150. Finally, the contribution from~i! is a func-
tion of T11T2, since bothT1 and T2 periods describe the
time propagation of the wave packet in the excited sta
These four processes each show a different oscillating
tion in the potentials, and thus we have a complicated st
ture of the signal as shown in Fig. 12.

We now consider the anharmonic cases. Figures 13
display 2DRS for~2!, the ground-state cubic,~4! the excited-
state cubic, and~5! the excited-state quadratic perturbati
cases. We can observe clear differences between the
monic and anharmonic cases in Figs. 13 and 15, the m
difference being the enhancement of the signal along
lines T11T250.4(ps) and T11T250.8(ps). We have
checked the origin of such enhancement for each of the L
ville paths and found that process~ii !, gg→ee→gg→eg is
the cause of such effects. While cases~2! and ~5! show a
clear difference from the harmonic one, case~4! is quite
similar to it. Note that the signal for~3!, the ground-state
quadratic perturbation case, which is not shown here,
shows a profile similar to that of the harmonic one. As se
from Fig. 2, the phonon lines betweenug& and ue& such as
1→0, 0→0, 0→1, are lower than the harmonic case
these two cases. Therefore, an excitation in theeestate does
not show a clear quantum beat at the resonant frequency
thus we could not observe a signal along linesT11T250.4
and T11T250.8, which originate from process~ii !,
gg→ee→gg→eg. In such cases, 4DRS does not help
detect anharmonicity.

VII. CONCLUDING REMARKS

Although the present analysis has focused on the re
nant spectroscopy of molecular systems, the model we h
employed here has been widely used to describe such
nomena as elementary excitations, nonadiabatic transiti

FIG. 12. The two-dimensional signal calculated from Eq.~6.6! for ~1! the
harmonic case (gj50 andgj850).
J. Chem. Phys., Vol. 106,
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and tunneling. TheNth order response functions presented
this paper may allow a characterization of the anharmo
system in the condensed phase, and can be applied to s
such systems.

Although, in the present paper, we limit our study to
single mode system, generalization to a multimode system
straightforward. The corresponding response functions
given simply by the product of the single-mode respon
function as shown in Ref. 30. One often takes into acco
the inhomogeneity of the electronic transition energy by
corporating the overdamped oscillator mode.42 Thus, by us-
ing the multimode system, the inhomogeneous broaden
can be included in the present discussions.

A combination of experimental methods, such as line
absorption, pump–probe, and photon echo, may be neces
to elucidate the anharmonic contribution to the line. Fift
order resonant spectroscopy, combined with such exp
ments, will allow the accurate decomposition of vibration

FIG. 13. The two-dimensional signal calculated from Eq.~6.6! for ~2! the
ground-state cubic perturbation case (g3520.08).

FIG. 14. The two-dimensional signal calculated from Eq.~6.6! for ~4! the
excited-state cubic perturbation case (g38520.08).
No. 6, 8 February 1997
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2094 Y. Tanimura and K. Okumura: 1st-, 3rd-, and 5th-order resonant spectroscopy
line shapes, that are convolutions of coherent and an
monic oscillations. Although not discussed here, the exp
sions given in Sec. IV for the fifth-order polarization can al
be used to study the fifth-order three pulses scatte
~FOTS! proposed by Cho and Fleming, which was propos
to separate the homogeneous contribution of a vibratio
spectrum from the inhomogeneity of the electronic transit
energy. We have examined this direction of study using
expression we have obtained here to see effects of anha
nicity without the presence of the inhomogeneity, but,
could not observe a major change in the spectrum.

It is obvious that higher-order spectroscopy can cont
many time intervals and these can be used to separate
targeting dynamical processes from the others; howe
analysis of such signals becomes much more complex c
pared with the lower order ones. This is because, in addi
to various physical parameters, one also needs to deal
various time configurations of lasers pulses in higher or
optical processes, so simple theoretical expressions are
sential to interpret the experimental studies. The respo
functions presented above provide a powerful means to
plore such a direction of study.
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