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Quantum coherence and its dephasing by coupling to a dissipative environment play an important
role in time-resolved nonlinear optical response as well as nonadiabatic transitions in the condensed
phase. We have discussed nonlinear optical processes on a multi-state one-dimensional system with
Morse potential surfaces in a dissipative environment. This was based on a numerical study using
the multi-state quantum Fokker—Planck equation for a colored Gaussian—Markovian noise bath,
which was expressed as a hierarchy of kinetic equations. This equation can treat strong system-bath
interactions at a low temperature heat bath, where quantum effects play a major role. The approach
applies to linear absorption measurements as well as four-wave mixing including pump-probe
spectroscopy. Laser induced photodissociation and predissociation have been studied for the
potential surfaces of Gs We have calculated nuclear wave packets in Wigner representation and
their monitoring by femtosecond pump-probe spectroscopy for various displacements of potentials
and heat-bath parameters. Numerical calculations of probe absorption spectra for strong pump pulse
are also presented and discussed. The results show dynamical Stark splitting, but, in contrast to the
Bloch equations which contain an infinite-temperature dephasing, we find that at finite temperature
their peaks have different heights even when the pump pulse is on resonand®97cAmerican
Institute of Physicg.S0021-960807)52230-9

I. INTRODUCTION Fokker—Planck equation. Effects of the bath are then taken
. . into account by introducing a damping operator, which can
Femtosecond spectroscopy, such as impulsive Ramal y 9 ping op

. . . he obtained by assuming Gaussian-white noise fluctuations
optical Kerr, and pump-probe spectroscopy, provides a direc o : .
: e nd a bilinear system-bath interaction expressedHag
means for studying nuclear dynamics in the condense

il - + (ht - * +
phaset~® The understanding of such highly resolved mea- REcpxn=3cq(@” +a ) (b, +by,), wherea™ andb, are

surements demands theoretical descriptions which go far bébetcreatlog k?nt?] anmg'_lat'fn operato;s Clorrsipo?]dm% to :he
yond simple models. Tremendous insight has been gained stem and bath coordinates, respectively. e should notice

comparing qualitative argumenftsquantitative analytical t at the_ reduced denS|_ty matrices equa_’uon with the bilinear
calculation&1! and numerical studid& ®with experiment. interaction can be applied only for the high temperature sys-

The response function approa@hwhich is based on a per- €M i.e.,hw./kgT<1, wherew, i_s the character?stic fre-
turbative expansion of the optical polarization in powers ofdUency of the system. If one applies these equations beyond
the laser fields, has been successfully applied to stud{f!S limitation, then one obtains unphysical results such as
four-wavé22and six-wave mixing experiment&.! Calcu- he negative probability of density matrix elements. For the
lation of the response functions involves integration over théNaster equation, tzns phenomenon is known as breaking of
nuclear degrees of freedom. Thus, one could obtain the rélynamic p03|t|v!ty? which is the limitation of the reduced
sponse function only for a system with harmonic potential?quat'on of motion approach. If one modifies the |r?tera'ct|on
surfaces. It is possible to include a non-Condon dipole interin the resonant form{or the rotating wave approximation

action or a weak anharmonicity into tiMth-order response form), i.e., Heg=2cqy(a"b, +a by) then this temperature
function by using a nonequi”brium generating functionahllmltatlon can be relaxed. We should notice, however, that

which is obtained by the path-integral approdf***Ap-  this modification of the Hamiltonian alters the dynamics de-

plicability of this approach is, however, still limited. scribed by the original Hamiltonian, though the obtained
Alternatively, optical processes can be calculated using &quation of motion can be applied to the low temperature

direct integration of the equations of motion in the presenceystem.

of the fields. By calculating the relevant wave funcfioor We can relax this temperature limitation without modi-

density matrix element&=33it becomes possible to explore fying Hsg by employing the colored Gaussian—Markovian

optical processes for a system with arbitrary potential surnoise bath instead of the Gaussian-white noise bath. The

faces. A difficulty with this approach is the proper treatmenttime correlation function of noise fluctuatiof)(t), in the

of dephasing processes induced by a heat bath. These can®aussian-white noise is expressed @3(t)Q(t'))=4(t

incorporated using equations of motion for a reduced density-t’), whereas (Q(t)Q(t'))=exgd—¢t—t’)] in the

matrix, such as the quantum master equation or the quantu@aussian—Markovian case. If the characteristic time scale of
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the system, k., is much longer than the correlation time of  (a) (b)
noise,7=1/y, then one may regard the noise as thiunc-

tion in t. In the present case of femtosecond experiments,
however, the noise must be treated as a finitely correlated
function of time. Thus, the generalization to the Gaussian—
Markovian is also a requirement of describing a system in

the realistic condition. le>
We could obtain a hierarchy of kinetic equations for re-

duced density matrices which can describe the system inter e>

acting with the colored Gaussian—Markovian noise Bath. 2> o lg>

Physically, one can think of this hierarchy of equations as |%ge %

dealing with a set of density matrices modeling the various
numbers of phonon excited states in very special way. This ]
equation was originally obtained for a discrete two-level sys- d
tem, and can be regarded as a generalization of the quantuRc. 1. Potential surfaces of the displaced Morse oscillators sysgris
master equation or the generalized quantum master equatiof! the three-level system denoted ), [e), and|f), respectively. We
We then showed that a similar hierarchy of kinetic equationg!SPi2y thele) state for three different displacements: 1 (dashed ling
. . . d=3 (solid line) andd=7 (dotted ling. The resonant frequency between
could be obtained for a system in the coordinate representas, ande), and|e) and|f) are, respectively, expressed by, andw,;. (b)
tion, which can be regarded as a generalization of the quans for the system with the anti-bonding stafe'(). In this case, we only
tum Fokker—Planck equatiofi2’ In principle, we can probe between thfg) and|e) states.
choose any representation to describe quantum dynamics of
a system. Practically, however, the coordinate representation . . .
has some advantages for studying a system with anharmonf@@® Procedure for calculating the linear absorption and the
potential surfaces. First, the coordinate description allows uBUMP-probe spectrum in Sec. Il. The multi-state Fokker—
to make direct interpretations of the dynamics. Thus, we may’lanck equation is presented in Sec. lll. In Secs. IV and V,
easily discuss the classical and the quantum systems on tff2€ linear absorption and pump-probe spectra are calculated
same basis. Second, we can suppress the open boundary C{g{_varloug displacements and heat-bath parameters. In Sec.
ditions, where the wave packet can go out from the edge of !, numerical results of pump-probe spectra for a strong
potential. In the discrete state representation, the eigenstatEussian pump pulse, which show optical Stark splitting, are
become coetaneous for an open boundary system, whidtesented and discussed. Section V is devoted to concluding
makes it impossible to integrate the equation of motion/emarks.
Thus, if one has to deal with the problem on an open bound-
ary such as the problem of photo dissociation, one needs 19, | INEAR ABSORPTION AND PUMP-PROBE
adapt the coordinate space representation. Third, calculatiolSPECTROSCOPY
are easier. One has to calculate a number of eigenstates and . . .
eigenenergies to describe a system in the discrete states rep- We con_S|der a molgculqr system with eIeptromc states
resentation. Various interactions, such as laser interactiorfgenmed bylj). The Hamiltonian of the system is
and the system-bath interactions are then expressed as matri- 0 p2 .
ces in this basis. Such calculations are computationally in- Hs()= m’Lz ; [DUj(a;t)(k]. (2.9
tensive except for a system with harmonic potential surfaces. :
In the coordinate representations, we can avoid such calcddere,d is a nuclear coordinate strongly coupled to the elec-
lations for any shape of potentials and interactions. tronic state ang is its conjugate momentum. The diagonal
The quantum Fokker—Planck equation was originallyelementU;;(q) is the potential surface of thih electronic
aiming to study a single potential surface system. By &surface, and the off-diagonal elemes (q) with j#k rep-
simple and straightforward generalization, then, we can detesents the diabatic coupling between ffte and thekth
rive the multi-state quantum Fokker—Planck equation to apstates. In this paper, we study a pump-probe experiment in a
p|y to a system with mu|ti_potentia| Surfac&ln this paper, three-level or four-level system with Morse potential sur-
we present a comprehensive study of the various regimes daces denoted bjg), |e), |€’) and|f). (Fig. 1). The transi-
optical transition for a Morse potentials system using thetion frequency betweege andef are denoted by»y. and
multi-state  Fokker—Planck equation for a Gaussian—wet, respectively. We assume that the system is initially in
Markovian noise bath. The present model permits the dethe ground equilibrium stat§g=|g)pg<g|, wherepyg is the
tailed study of nuclear wave packets in Wigner representaequilibrium distribution function of the ground potential sur-
tion and their monitoring by femtosecond pump-probeface. In addition, the primary nuclear coordinate is coupled
spectroscopy for various displacements of potentials antb a bath. The total Hamiltonian is then expressed as
heat-bath parameters. Special attention is paid to a large dis- 0 ,
placement case, where laser induced photodissociation and H()=Hs()+H", 22
predissociation play an important role. where the Hamiltoniai’ describes coupling of the molecu-
The organization of this paper is as follows: We presenfar system to a bath of nuclear degrees of freedom. At this

v
v
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point, we need not specifid’ any further. In a pump-probe We assume a weak probe and expand the polarization to first
experiment, the system is subjected to two light pulses: arder in E,. The polarization in thek, direction is then
pump and a weak probe whose frequencies and wave vectogéven by

are denoted by, k; and(},, k,, respectively. We assume it

that_the pump laser carrier frequen@y is close to the elec- pkz(t): -3 dt’Ez(t’)e"“zt/<[,u2_(t),,ug(t’)]>

tronic transition frequency betweenande. The probe fre- -

quency(}, is chosen tdi) ,~ wg4e for a measurement be-

- +c.c., 2.9
tweeng ande, and(ii) ),~ we; for a measurement between 2.9
e andf. The total Hamiltonian is then given by where
HA(D =Hs(t)+Eq(t) (et pf pe-hartifaty oy ([up (1,45 (1))
+Ep(t) (e 102y re e iy, (2.3) =tr{[ 115 (1), 215 (') 1pg}

where E{(t) and E,(t) are the temporal envelopes of the ex it 0
pump and probe pulses, apd =|e)(g| andx; =|g)(e| are M2 T %jtrdTHA
the dipole operators of the pump. The dipole of the probe is _ .
~ ~ . ~ 4 t
chosen to bei] =[e)(g| and jz; =|g)(e| for (i) and ju; g Egp( [ dTHg);gegp(;; | dTHg)]
=|f)(e|] and u, =|e)(f| for (ii). i ®

=tr

The observable in optical measurements is the polariza- it i (o
tion defined by =t uy eip( —%J_mdng)pgeip(%f_wdng)
P(r.)=tr{uzp(r,)}, (2.4 -
A Al A - ) . ) ~rexp _ 0
where u,=pu, +u, andp(r,t) is the total density matrix. X o _P(h ft,dTHA) ] (210
Ther dependence comes through the laser interactions. We
next expand the polarization i space where the exponents with the arrows indicate time ordered
exponential andw”(t) are the operators in the interaction
P(r,H)=2>, ek Py(t). (2.5  picture
k

R i [t - it

Optical measurements are most commonly carried out using M+(I)Ee_x>p(%f dTHX),u”?ip( —%J dTHg) :
one of the following two detection schemes. First, in homo- o o
dyne detection one simply measures the outgoing field in a (213
specified directiork;; (1) S(t)=|Pkf(t)|2. Second, in the Here,
heterodynedetection mode, the outgoing field is mixed with 0y — ik r—iQqt ™ + o ik +iQqt " —
a reference field denoted the local oscillair,, and the HAD=Hs(O) +Ea(t)(e™ THy e T ' ’(é )1'2)
signal is given by2) S(t) =Im[E o(k¢,t) Py (t)]. Examples ) ) ) '
of (1) are four-wave mixing and coherent Raman which areExpreSS|on(2.9) together W'f[h Eqs(2.6-2.8 is commonly
observed in the;= 2k, —k, direction, whereas the pump- used for ?grﬂ?asurement driven by a strong continuous wave
probe experiment withk; =k, —k;+k, corresponds to het- (cw) lase
erodyne detection. In this paper, we calculate the pump-
probe spectrum.

We calculate the optical signal to the lowest order of theA. Linear absorption spectroscopy
probe field,E,(r,t), but to arbitrary order of the pump field,

: . _ The linear absorption spectrum is a probe absorption
Eq(r,1). The probe absorption spectrum is commonly de without the presence of the pump-pulse. We can obtain the

tected by spectrally dispersing the transmitted probe, and the : N . i
gnal only in casdi), since|f)(e|py=0. Then, by setting

signal is measured as a function of the dispersed frequencé) N ;
w,.%* The dispersed spectrum is given by 1()=0 in Eq.(2.9 with Eq. (2.12, we have

t

S(w2)=—2|m{E2[w2]Pk2[(u2]}, (26) Pk (t):_lE dt,Ez(t,)e,iQZt!
2 —
where
N i [t
1 ) Xtr /.Lg eX[{ - dTHS
Efor]= | dtexplionEL), @7 =\ TR
V27) -
a o | .
and ><,u2+pge_x) %J’ drHg| | +c.c. (2.13
t!
1 (= . . . :
P. [w,]= —— dt exa(iw-t)P. (1). 28 The correlation function part can be calculated by integrating
ol we] V2m) —= Pl wat) P (1 8 the Liouville equation
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d. [ R d. i R
SP(0=— F[HL,5(0)], @14 5 O=— 1 [HLD.H O], 217

until time t with the initial conditionp(0)= 3 py and by  If we expandp’(t) to first order in the probe, we obtdh
taking the element £, p(t)}. Al A, -
g tz p(0) P, (D=2t 7 (p' (1)~ pO(0)}

B. Pump-probe spectroscopy for an arbitrary shape t _
and strength of pump pulses = _if dt’Ez(t’)e"QZt'

Vibrational wave packets have proven to be an effective
probe of interatomic potentiafé.In the pump-probe spec- xtr{[,[;,g t), ,&2 (t’ )]Z)g}+ . (2.18
troscopy, the pump transfers a small fraction of the groundl_
state distribution to the excited state, thereby creating a “par-
ticle” in the excited state and a “hole” in the ground state.

The particle and the hole then evolve during the delay period 8 o .
S((,l)z): - _Im Ez[(,l)z]f dtelwzI

he probe absorption spectrdifaqg. (2.6)] can then be recast
in the form

7, which are detected by the probe absorption signal. It will

be convenient in the following calculations to express the

spectrum using expectation values rather than a correlation a_ o, ~0

function. This can be done as follows. Let us consider the Xtlpz (P (D =p (t))]]' (2.19
evolution of the system subject only to the pump field. The

Hamiltonian is given by Eq(2.12 and the corresponding We can thus calculate the absorption spectrum of a weak

solution of the Liouville equation is denoted(t): probe by subtracting two solutions of the Liouville equation.
' This scheme can be applied to a system driven by pump

d. [ ~ ulses of arbitrary number, shape, and strength.
FTAOREE CHON UL @15 P y P k

We next introduce a modified Hamiltonian which includesC. Impulsive pump-probe spectroscopy

only the negative frequency componenttof If the pump and probe pulses are weak and impulsive,
H,&(t)EHX(tHEz(t)e‘mﬂ,&; _ (2.1 Wecan further simplify the procedures. We expand the cor-

relation function in Eq.2.18 by the pump interaction. In
The solution of the Liouville equation with this Hamiltonian case(i), by taking up to the second order in pump interac-

will be denotedp’ (t): tions, we have
t ’ 4
tr{{ s (1), 5 (t')]pg}= J dr’ f d7"Eq(7")Eq(7)e M7 =" Ri(r, 7t 1), (2.20
0 0 =1
where

Ry(t,t’, 7/, 7)) =tr

—eX[{__f d7'HS),uIr %’{—%JT dTHS)E)g
Xexr{ J dTHS) F{ J’t dTHS),LLz eX'{ f dTHS)]
eXI{——J’ dTHS),LLl (_V{——f dTHS)pg

o ~exg L[ ~exg L[
X N % ,wdTHS M . g 7ﬂdTHS Mo _ % T’dTHS y
?i’{——f dTHS (_‘{—% ' dTHS)pg

ex N - ex N ~+ ex N
X - %f,wdTHS M . gffndTHS M1 N %f,rdTHS y
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Ra(t,t', 7’ 7'")—tr

?i[{__f dTHS
Xexp(_

i o
Mz (_%_g ,dTHS

-

_ | 7 ~
Ml (zp( _gfr,, drHg|uq

Equation(2.21) is a commonly used description of the response functions for a two-level s§stem.

In case(ii), we have

4
~ ~ t 7" ; ' r
WLz (0.5 () ]pg) = [ dr' [T 0B, E(0e 1S R ),
0 0 =

i~ [Laome] g 9 - [ Vs
Xex%——f dTHS>pg % f drHg|
‘exp(—i—ftdrH )A+exp(—i—jt,dTH )‘*

— i) S| M2 7. S| M1
Xex[{——f d7'HS)p,;l ’{ f drHs|u

where

Ry(tt', 7', 7") =tr

Ry(t,t', 7/, 7)) =tr

In the impulsive limit, the pump and the probe pulses are
short compared with the dynamical time scales of the solvenRs(t,7)=R4(t,7)=tr{
and solute nuclear degrees of freedom. We can therefore

make the following assumption,

Ei(t)=0:6(1), Ex(t)=6,6(t—17), (2.24

where 6, and 8, are their areas and we takg=6,=1.

Then Eq.(2.9) with Egs.(2.22) or (2.23 reduces to

4
P (H)=Im{ &> Ri(t,7)
2 =1

with
~—ex N ° +
pe TN T TdTHs pe(T) 13
Xex f dTHs>}
—ex e +-
2 I\ T g TdTHs M2 Pg

(2.29

R.(t,7)=Ry(t,7)=tr

(2.26

Rs(t,7)=Ry(t,7)=tr{

cor{um], e
or
4
sz(t)z Im{ eiﬂszS Ri’(t,r)] (2.28
with

(2.22

o [

(2.23

i [t
e_x)[{%f‘r”dTHs)]-

exp( - _f dTHS) Mo Pe(T)
i [t
X el();{%deTHs>},

respectively, where

R i (7
pe(T)E%F(_ﬁfodTHs)Mlpgﬂl _)% deHS>

(2.30

(2.29

In case(i) 11, =|e)(g| andu, =|g)(e|, both Eqs(2.26) and
(2.27 contribute to the spectrum. The contribution from Eq.
(2.27 does not depend on the pulse duratioand coincides
with the expectation value in the linear absorption spectrum
Eq.(2.13. Thus, we can evaluate it using the same procedure
as explained for the linear absorption. The contribution from
Eqg. (2.26) can be calculated by the following stef§&) Cal-
culate the initial equilibrium distributiomy. (2) Calculate
pe(7) by integrating the Liouville equatiori2.14 from t

=0 to t=r with the initial conditionpe(0)=|e)pg(e|. (3)
Calculate[)eg(a-) by integrating the Liouville equatiof2.14)
from t=7 to t=t with the initial condition Z)eg(r)
=pe(T) i3 . The element op(t) agrees with the contribu-
tion EQ.(2.26), i.e., Ry(t,7) =Ry(t,7) = pey(t).

The contribution Eq(2.29 of (ii) can be calculated from
the same procedure as Hg.26) of (i). Once we calculate
P(t), the probe absorption spectrum is then obtained from
Eqg. (2.8).
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I1l. QUANTUM FOKKER—-PLANCK EQUATION FOR A M{ wy?
MULTI-STATE SYSTEM INTERACTING WITH A Nw)=5———
GAUSSIAN-MARKOVIAN NOISE BATH

(3.8

The multi-state density matrix for the Hamiltonian Eq.

(2.1) may be expanded in the electronic basis set as With the assumption of the high temperature bafhy<1,

this spectral density represents a Gaussian—Markovian
S= ] K 1 noise where the symmetric correlation function of the noise
p(t)= o [pi(a,a" (K. 3D induced by the heat bath, is given by

Here,p;«(q,q’;t) is expressed in the coordinate representa-
tion. Alternatively, we can switch to the Wigndphase 1 My ot
spacg representation S (XOX+XX(1)) = ——e 7. 3.9

1
Wi (P,R;t)= f dre'P"p (R=r/2,R+r/2;1), o ,
2mh Thus, ¢ and y correspond to the friction and the relaxation

(3.2 time of the noise, respectively. In this case, one can trace

and the density matrix may then be written as over the heat-bath degrees of freedom and obtain the equa-
tion of motion in the hierarchy form®>’ The important
=E |1 YW (P,R;t)(K| 3.3 point is that the restriction does not involve the system fre-
i . .

quenciegwhich can be small or large compareddo?), but
only a high temperature requirement with respect to the bath,
which is much easier to meet. For théh member of hier-

rchy, W(“), wherej andk represent nonadiabatic states, the
quatlon of motion is expressed®as

The Wigner representation has the following advantage
first it allows us to compare the quantum density matrix di-
rectly with its classical counterpart. Second, using phase
space distribution functions, we can further easily impose the
necessary boundary conditiofesg., periodic or open bound-
ary condition$, where particles can move in and out of the 4
system. This is much more difficult in the coordinate repre-— WR(P,R;t)
sentation.

We now specify the heat-bath Hamiltonian. We consider
an environment consisting of a set of harmonic oscillators
with coordinatesx,, and momentg,,. The interaction be- =-
tween the system and th&h oscillator is assumed to be
linear with a coupling strength,,. The total Hamiltonian is
then given by

dp’

1
Op Rt - = | —
WR(P,R;t) hf >

d
dR

P
M
% [Xim(P—P" ROWQUP' R;t)

Ha() =HA(H) +H’, (3.4) 5
* 0)/p’ P (1)
where +Xh(P= P RIOWR(P' R ]+ S Wi (P R:t),
2 2 2
, Ph | Mhop/ CnQ (3.10
H _2 2mn+ 2 \ n mnwﬁ) (35)

The character of the heat bath is specified by the spectra?
distribution: All information about the bath which is required ot
for a reduced description of the system dynamics, is con-

tained in its initial temperature and its spectral density

J(wEE(

J(w) is related to the symmetric correlation function of a X
collective bath coordinateX(=2.c,x,),

W (PR;Y)

dpP’
2mh

d 1
= — R — l) - —_ =
&RVV}k (P,R:;t) ﬁf

amw n)(&w w,)+w+w,)). (3.6

[Xijm(P—P",ROW(P’ R;t)

sM Z|o

1 Bhw +XE (PP ROWH(P' Rit) - YWD (P,R;t)
E(X(t)X+XX(t)>=ﬁJ de(w)cotF(T) coq wt), P
(3.7 + 5 WK (PR +{y| P+

M g 0) _
Eﬁ ij (P,R,t),
where 8=1/kgT is the inverse temperature of the bath, and (3.11)
the time evolution ofX is determined by the pure bath

Hamiltonian [Eq(3.5 with g=0]. We assume an Ohmic

dissipation with the Lorentzian cutoff, and

J. Chem. Phys., Vol. 107, No. 6, 8 August 1997
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WP R %S DX(P— P RIOWI(P' R

P DP R jdp’ + Xk P=P ROWN (P, R;t) ] = NyWR (P, R;t)
T OMOR VKTV R ] 20

M
+TW(P,Rit) +Ngy P+E(9—P)\N}L\'_l)(P,R;t),
. D! . (n) ’ .
x% [Xim(P—P',ROWM(P’,R;t) (314
+XE (PP ROWIN(P' Rit) |- nyW.(P,R;t) where
] I= P+ M2 3.1
+ -5 Wik M (P.RD) =P\ Pt B ap) (319

Using this hierarchal structure we may deal with strong
P+ M i) W D(P.R:t). (3.12 system-bath interactions in addition to a colored noise. In the
B oP| I o white noise limity> o, we may terminate the hierarchy of
Egs.(3.10—(3.14 by settingN=0, obtaining the multi-state
quantum Fokker—Planck equation for a Gaussian-white noise

+nly

Here, is the friction constant and

. bath:
Xij(P,R;t)ziJ dr exp(iPr/f)U;;(R—r/2;t), o P g o
(313 STWI (PRt = — 2~ WIR(PLRiY)
X¥ (P R't)=—ifw dr exp(iPr/s)U; (R+r/2;t) 1( dP’
i Ny 1 LAl — — . — P’ .
o - 277;,% [Xjm(P—P",R;t)

are the Fourier transform representation of the potential XWO(P' R;t) + X%, (P— P, R:t)
terms which are convenient for studying the quantum effects. " "
The hierarchy element/?) are defined in the path integral XWI(P", Ri) ]+ TWIP(P,R;t).
form.3%3" The equation of motion is derived by performing (3.16

time derivative of these hierarchy elements. Physically, one

can think of this hierarchy of equations as dealing with a setf we consider a system with a single potential surface, then
of Wigner functions, modeling the states of the system witnthe above equation further reduces to the quantum Fokker—
various number of phonons excited in the bath. In this for-Planck equation that was obtained by Caldeira and Leé@ett.
mulation,W(” includes all order of the system-bath interac- Sinceé We have assumegh y<1, the temperature require-
tion and is the exact solution for the Hamiltonian Eg.4).  ment qf the Gauss_lan-whlte case is more stringent than the
ThenW( W2, ... W describe the distribution func- Gaussian—Markovian case.

tions with a smaller set of the system-bath interaction, cor-

responding to the complete set of the system-bath interagy NUMERICAL CALCULATIONS OF LINEAR

tions minus 1st, 2nd, ... nth order of the system-bath ABSORPTION SPECTRUM

interaction, respectively. Thus, one can think that this formu- ) ) )

lation takes the opposite direction to the conventional pertur- W& consider the displaced Morse potentials system de-
bative expansion approaches, where the Oth member does riéted by (see Fig. 1

include any system-bath interaction, then the first, second,

third, etc, members gradually take into account the higher- Ugg(R):Ee{l_efamel)}Z,

order interactions and approach to the exact solution. We

shall be interested only in the Oth member of the hierarchy a(R_Dy2

W which is identical tow;, defined in Eq(3.3). The other Ue(R)=E¢{1-e 2}t hwge,
elements1# 0 are not directory relate to the physical observ-

aple and introduced for co_mputational purposes. For deep Uff(R):Ee{l_e—a(R—Dl)}2+h(wge+ ®or),
hierarchyN y> w. where w. is the characteristic frequency

of the system such as the frequency of the harmonic potervhereEe, a, andD; are the dissociation energy, the curva-

tial, the above hierarchy can be terminated®y ture of the potential, and the displacement, respectively. At
the end of the next section, we will also include the anti-

4.0

d i _ bonding stateg’ and the diabatic coupling betweenand
ot Ik (P.Rit) e’ described by

_ P (N) P R:t f dpP’ Ue’e/(R):Eeeiza (R7D2)+ﬁwge'

="M RV PRO=Z | 55 Ueo (R)=Ag A(R-D3? 4.2
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Hereafter, we employed the dimensionless coordinate and a) d=1

momentum defined by=R{Mwy /% and p=PJ1/M# w,,

respectively, wherew,= \/Ugg(R)/M. The displacement ’é\

and curvature of the potentid),;, D, a, etc. are also mea- 4

sured in this unit. We sefE,=3649.5[cm 1], a=0.6361, ~

and D;=40.598 (4.64788[A]) as the ground state of the

Cs, molecule?®*® which has been studied by a variety of

spectroscopic techniqué&:*° The fundamental frequency is

then given bywy=38.7[cm™1]. We calculate linear absorp-

tion and pump-probe spectra for various displacement -200  -100 0 100 200 300

=D,—D;. For the anti-bonding state, the parameters were b) d=3

chosen to bea’ =0.6361,A=1.0, A=300[cm 1], andd’

=D,;—D;,=11.09, respectively. We have used two values of ’é\

friction £=0.16[cm ] (weak and/=47.8[cm™!] (strong 4
N’
o}

and have chosen the inverse correlation tinye=4.8

[cm™1],and the initial temperatur®= 300 K, which satisfies “
the conditionBf y=# y/kgT=0.023<1.
We first calculate the initial equilibrium state by inte- U

grating the equation of motion from time=—t; to t=0

with the temporally initial condition, -500 0 500 1000
C) a=7 — weak
Wig(P.r; = ti)) =exil — B(p*+ Ugg(r))], 2 o~ T strong
g
) =
Wy (p.r; =) =0. 43 p
Note that Eq.(4.3) is the equilibrium state of the system
itself, but, it is not the equilibrium state of the total system,
since it neglects the system-bath interaction. In the present
formalism, such interaction can be taken into account by the 0 2000 4000 6000
nonzero hierarchy elements, .8/ (p,r;t)#0. By inte- Ao m-1
grating the equation of motion from timte= —t; to t=0, the ® (C )

denSIty matrix comes to the “true” eqUIIIbrlum state de- FIG. 2. Linear absorption spectra for different displacement. In each figure,
scribed by the full set of hierarchwg‘g)(p,r;t=0), if we set  we display spectra for the weak damping céselid line) and the strong
|ti| for a sufficiently longer time than the characteristic time damping casédashed ling
of the system. In the following, we use the calculated full set
of hierarchyW{?(p,r;t=0) as the true initial condition.
The numerical integrations of these kinetic equations
were performed by using second-order Runge—Kutta methoet 7. The linear absorption with and without the anti-bonding
for finite difference expressions of the momentum and thestate €' statg give the same result. In each figure, we have
coordinate space. The size of mesh was chosen to be 3@ilculated two cases of frictiofi=0.16[cm 1] (weak and
X 231-130< 1601 in the mesh range 10<p<10 and 34 (=47.8 [cm ] (strong, respectively. Since we assumed
<r<57-—34<p<34 and 34&r<106. On the mesh, the that the probe pulse connects only between ghand e
kinetic operatopdW/dr is approximated by a left-hand dif- states, the contribution of the linear absorption is only from
ference,p;(W(pj,r;) —W(p;,rj—1))/Ar for pj>0 and by a  Wey(p,r;t). Figure 2a is for small displacement. Each peaks
right-hand differencep; (W(p;,rj1) —W(p;.r;))/Ar for p; represent the transitions between the vibrational levels of the
<05 The discrete Fourier expression is used for the potenground and the excited states. Since the Morse potential at
tial kernel Eq.(3.13. We have taken into account about the vicinity of potential minimum is well approximated by
11-24 hierarchy elements fov("). The accuracy of the cal- the harmonic surface, in this small displacement case, the
culations was checked by changing the mesh size and thebsorption spectra resemble those from the displaced har-
number of terms in the hierarchy. monic oscillator system with the fundamental frequeangy
After obtaining the equilibrium state, we calculate the =38.7[cm™]. Ford=23, transitions to the higher vibrational
linear absorption by integrating the equation of motion Eqgslevels in thee state can take part in. Thus, we observe many
(3.10—(3.19 instead of the Liouville equation Ed2.14) peaks in the weak damping case. Due to the anharmonicity
following the procedure explained in Sec. Il. of the potential, the interval of vibronic lines decreases as
In Fig. 2 we present the linear absorption spectra befrequency increases. In the strong damping case, each vi-
tween theg and e state for different displacement&) the  bronic line is broadened and we simply observe the envelope
smalld=1; (b) the intermediatal=3; and(c) the larged of the spectrum. Because the resonant frequency between the
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a)d=1 a)d=1

Y.
7

’ 7
w, (7
//// /////////////’f 1
Y g
///////////4 ) / ' peY ////////fo/{///////;/f%/
py & 5 e y ")
Yy N\ s /////////}fﬁ//////////é//’///'! W iy s
////5/4?////44‘ /0 Wy - 4 {1 W &
LL\pgA\\ 205 L) 57 4
o\ T o % Sy . 5
00 LYW 7 s & 200 3
200 7 < 2 "1 /&
o 7
Op ©

A " o ////Z/é//////////// b LY
»Jh»ﬁﬁ’/""‘p / ///////7/?7777”% Vi, 7, 7
f '??"ﬂ v )#"///{//////////////////////// ///////////// ‘ Ky / G X
0 - K, S
N /A A
< o/ « .
@ (c C.‘/b .o 7

My / 7
N ‘«l///////////’/////////””///////// y / 7
Wi Vi 2 i et 115
Wi AW e %%%W%MMI/M &
4 ' % 2 Ui =
o ) e & Sy "u‘v:"/’ >
& 2 "”"/////////////W W7 S &
&~ 4@ “op & ////// ' ~
(O/,’~7 00 &, 4
?ooQ J %o [~

FIG. 3. Impulsive pump-probe spectra of the two-level system for differentF!G. 4. Impulsive pump-probe spectra of the three-level system for different

displacement in the weak damping case. Here, we probe betwedg)the displacement in the weak damping case. Here, we probe betwef) thed
and|e) states. |f) states.

ground and excited state is not linear function of coordinat r:zci:)nn?::u%iie' d?sls?)i?a:ti?)xnmtsig?;sbc\?r?:réhteh(\gvalzvzacgig:
(see Fig. 1asuch like a displaced harmonic oscillators sys—C nnot show coherent oscillations ' P
tem, the envelope of peaks is not symmetric Gaussian such R '
way that the blue side of the spectrum is amplified at the
expense of the red side. Fde=7, the transition mainly oc- V. NUMERICAL CALCULATIONS OF IMPULSIVE
: . .. PUMP-PROBE SPECTRUM
curs between the ground state and continuum dissociation

states and the spectrum is widely spread®4dthe shape of Next we present the impulsive pump-probe spectra for
spectra in the weak and strong damping cases are almogarious displacement betwegrande states as a function of
identical and overlapped. This is because, in this large disthe frequency and the time. We have carried out the calcu-

J. Chem. Phys., Vol. 107, No. 6, 8 August 1997



1788 Y. Tanimura and Y. Maruyama: Nonlinear spectroscopy of a Morse potentials system

d=3
t= 0.0 ps

FIG. 5. The time-evolution of the wave packet of ff& state for the displacement=3 in the weak damping case.

lation for the weak and strong damping, however, since theéhe system is well approximated by the displaced harmonic
difference of them is mostly the existence of vibronic linesoscillator, if the displacement is small, and the pump-probe
as seen in Fig. 2, hereafter we present the results for thgpectrum is therefore similar to the displaced harmonic os-
weak damping {=0.16[cm™1]) only. We show the result cillators case. The height of each peak changes periodically
for (i) probe absorption betweenande in Fig. 3 and for(ii)  with T=1/wy=861[fs] corresponding to the coherent mo-
the probe absorption betweenand f in Fig. 4. tion of the particle created by the pump-pulse. Figure 3b
We calculated the signal following the procedure ex-shows the pump-probe spectrum for intermediate displace-
plained in Sec. Il by integrating the equation of motion Egs.mentd=3.0. The small peaks in the figure correspond to the
(3.10—(3.14 instead of the Liouville equation E¢R.14). In vibronic bands as observed in Fig. 2b. The envelope of those
case (i), both the particle[Eq. (2.26)] and the hole[Eq.  small peaks reflects the shape of excited wave packet and the
(2.27] contributes to the signal. Figure 3a shows the specpeak of the envelope shows oscillating motion with the pe-
trum for small displacemerdt= 1. As mentioned in Sec. IV, riod about 100[fs]. Since the resonant frequency between

d=7
t= 0.0 ps = 0.4 ps

FIG. 6. The time-evolution of the wave packet of ff& state for the displacement=7 in the weak damping case.
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d - 3 the ground and excited statég=U (1) —Ugq(r) — weg) is
not a linear function of, the shape of the envelope as the
function of dw is quite different from the original shape of
the wave packet. For instanciw is a rapidly decreasing
function of r in the ranger <«a, wherea is about 50 ford

4 7
\% / A r‘/ ‘9’&%’;,7,/ =3, but gradually increases foe> « after it has attained its
' 7 A By 9 ////////"””////,, minimum (Sw=—380[cm 1] for d=3) atr~a. Thus, if
“ ,"(I)?[;'ﬁ’i"v 'a‘!‘/{%/////////%////////}? s the wave packet is in the area 0£50, the envelope corre-
Wz 7)) & . .
/ / 6 f A ﬁ’/'//’///;//;’/////////////////// 5 sponding to the wave packet is broadened and moves

T

quickly, but if the wave packet is in>50, the envelope

”///////////// /////// becomes sharp and moves slowly, compared with its actual

. By f S & P y, comp

<00 ""';,,{{/////////5/// SIS shape and speed. Figure 3c is for the large displacenhent

g, & “ _ . o )
(e =7. In this case, the kinetic energy of the wave packet is
C‘/,)

?oo

larger than the dissociation energy and the wave packet can

escape from the potential. Compared with Fig. 3b, the high-
FIG. 7. Impulsive pump-probe spectrum of the system with anti-bonding ; —1 _ —17 i
state for the displacement=3 in the weak damping cadsee Fig. 1h e;t peak shifts from_380[cm ] to —880[.cm ]' since the
Here, we probe between thg) and|e) states. minimum of o now becomes—880 atr~a=54 for d

=7. Corresponding to the dissociation processes, we also

have a new peak about [@m 1], which agrees with the

FIG. 8. The time-evolution of the wave packet of {ieg state(the bonding staeand|e’) state(the anti-bonding stajdor the displacemerd= 3 in the weak
damping case. In each figure, the upper one igdbwhereas the lower one is foe’).
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energy differences between the excited and the ground statt
at larger.

Figure 4 showdii) the probe absorption spectrum be-
tweene and f. As explained in Sec. Il, the absorption be-
tweene and f is a particle part of(i). Since we fixed the
position of thef state just above of the state, the displace-
ment between the and f becomes—d. Thus, absorption
peaks appear in the opposite directiordab compared with
case(i). As seen from Figs. 4a, we observe the coherent
motion of the envelope more clearly than the caseipf
since the spectra df) involve the time-dependent particle "8\
and the time-independent hole contributions, whereas the&
spectra of(ii) involve only the time-dependent particle con- a’
tribution.

Figure 5 shows the time-evolution of the wave packet
Wed(p,r;t) for intermediate displacemert=3.0 and the
weak dampingZ=0.16 [cm™1]. At time 7=0, the wave

packet with the shape of the ground equilibrium state is cre- =03
ated by the pump pulse, then it moves in the positive coor- —— T N~ T
dinate direction. At timer=0.4ps|, the wave packet reached

to the right-hand side of a potential wall and then bounced to =1.0
the negative coordinate directiomr=0.qps]). Due to the W
strong anharmonicity of the potential, distribution functions , , ,
with different energy have different eigen frequencies. Thus, -500 0 500
anharmonic effects lead to a destruction of the initially local- 1

ized wave packet as seen in figures at time0.6,0.8 and A® (cm' )

1.0ps|.
Figure 6 showsW,d(p,r;t) for large displacement FIG. 9. Pump-probe spectrum for a strong excitatig{=4.77[THz]) for
different pulse delays (ps).

=7.0. In this case, the wave packet is quickly broken into
small wave packets because of anharmonicity as explained in

Fig. 5. The small wave packets appearing at largeave VI. NUMERICAL CALCULATIONS OF PROBE

larger energy and some of them can escape from the POteRBSORPTION FOR STRONG PUMP PULSE: OPTICAL
tial. This is seen from the figure at time=0.6—1.Qps]. STARK SPECTROSCOPY

We next show the result with the anti-bonding state
(e’ statg. Figure 7 is for the intermediate displacemeht _ : ) _
=3.0 and the weak damping=0.16 [cm1]. Compared applied to a system with any shape of potentials driven by
with Fig. 3b, the peak at-380 [cm 1] and r=1.4ps| is  Pulses of arbitrary number, shape and strength. Thus, the
noticeably small. This is because the population of wavdlresent approach can genera_lize the earlier st_udy of_optical
packet in thee state decreased after passing the crossin&tark spectroscopy for a displaced harmonic oscillators

point due to the predissociation process. This can be seetystent® Following the prescription discussed in Sec. II B,
from the time-evolution of the wave packet shown in Fig. 8.1€ré, we have calculated the pump-probe spectrum for the

In each figure, the upper one is ff®) (the bonding stafe displaced Morse potential system under the strong pump
whereas the lower one is fe') (the anti-bonding stajeAt pulse. We assume that pump and probe pulses are Gaussian,

7=0.0ps], the wave packet in the state moves in the posi- E,(t)= 6, exd — (t/71)?],
tive coordinate direction. The wave packet in thestate,

The present Fokker—Planck equation approach can be

then, reaches7=0.2ps|) and passes7=0.4ps]|) the curve
crossing point(aboutr=50). The transition mainly takes
place in the vicinity of the curve crossing point, and #ie
population suddenly increases when thstate wave packet
passes the crossing point=£0.4ps|). This is because we
considered the diabatic coupling betweerand e’ in the
localized form[see Eq.(4.2)]. After passing the crossing
point, the transferred wave packet starts to move inghe
state potential surfacer&0.6ps]). Since thee’ potential is
not stable, the wave packet in tké state quickly moves to

E,(t)= 6, exd — (t— 7)%/ 73], (6.1

with resonance central frequencies, i.€l;=0,=wgye.
Thus, we measure the transition between [ and |e)
states only. The pulse durations were taken torpe700
[fs] and 7,=30 [fs] and the time delay was varied between
7=—2.0[ps| to 7=1.0 [ps], i.e., the pump and the probe
pulses are overlapped. The pump intensity et =4.77
[THz] and the probe was weal§,=1.59 [GHz]. In this
study we have calculated spectra in the case of Figwith-
out the antibonding statevith intermediate displacement

the positive direction and then goes out from the edge of=3 for a weak coupling=0.16[cm !].The other param-

potential (=0.8 and 1.0ps]).

eters were same as the impulsive case.
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t=-1.5ps t=-1.0 ps t=-0.5ps

| e>

FIG. 10. The time-evolution of the wave packet of g¢ and|e) states for strong pump excitation. In each figure, the upper one fig)fevhereas the lower
one is for|g).

In Fig. 9, we show the pump-probe spectrum for theenergy differencd w,,. In the early time periods the split-
strong pulse excitation. The curveat —2.0[ps] is similar  ting of the peaks near the center are larger than for the side
to the linear absorption spectruifig. 2b), since the pump is peaks(see curves for=1.5 and—1.0ps] in Fig. 9). This is
weak and its effects are small at this early stage. The vibecause the corresponding Rabi frequeddy,,, changes
bronic side-band peaks are observed in the probe absorptiaignificantly for smallwE;(t) if Aw,, is small. The Stark
spectrum corresponding to various vibronic absorptionpeak of the origin A w=0), which corresponds to zero vi-
emission processes. Due to anharmonicity of potential anéironic line then splits to the blue and to the red. The Stark
thermal effects, the vibronic transitions yield an asymmetricshifted peaks of the vibronic side bands can be observed
line shape. The peak abott380[cm ] corresponds to the outside of the Stark peaks of the zero vibronic line. For be-
absorption abw="U(r) —Ugyq(r) = —380cm landisat- tween7=0.0 and 1.0[ps], the vibronic mode seems to be
tributed to the movement of the wave packet during nondecoupled from the optical transition and we observe the
impulsive probe detection. spectra similar to the one from the two-level system alone.

The curves atr=—1.5 and—1.0 [ps] show the dips This can be explained using an argument first employed by
about 0[cm™?] caused by the unbalance between the popuBrewer>*°>*!under strong excitation, the relevant frequency
lation and the coherent contribution of an absorption specef the atomic system is nab.4 Or wq, but rather Rabi fre-
trum (the coherent dips® When the pump pulse becomes quency AQ,,~ uxE;(t), which represents the “dressed”
stronger, the coherent dips are broadened. Each vibronistates’® For very strong excitation, this frequency is much
transition shows a Stark splitting whose magnitude is giveriarger thany and w,. Thus the oscillator cannot respond to
by the proper Rabi frequencyQ = \/Awﬁer(,uEl(t))z, the system and the absorption spectrum approaches that of
where AQ,, is the Rabi frequency between théh vibra-  the isolated two-level system. This decoupling at strong
tional state ofU, and mth vibrational state otJ, with the fields can potentially be used to eliminate intramolecular vi-
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brational relaxation and to enhance the selectivity of lasevarious chemical processes, including the coherent control of
induced processes. Far=1.0[ps|, the pump excitation be- molecules, where quantum effects play a major role. One can
comes weak enough and the structure of vibronic bands igeneralize the present approach to study a two-dimensional
recovered. system, where the interplay between internal energy relax-
In Fig. 9, the blue Stark peak gives an absorptive contri-ation and chaotic dynamics with various quantum effects
bution, whereas the red one gives gain contribution and beplays an important role. One can also use the present ap-
comes negative after=—0.5 [ps]. In contrast, the Bloch proach to study off-resonant and resonant fifth-order spec-
equation&®“° or the stochastic Liouville equatiotspredict  troscopy, which have been the subject of recent
both peaks to be identical in this resonant excitation casa@esearch’ 22311 The advent of fast computers equipped
This phenomenon had been discussed in a study of displacedth several hundred megabytes of memory make it possible
harmonic oscillator systeff:because of the Stark effect, the to study such problems with dissipation. We leave them for
system has two Stark shifted excited stathressed statedf future studies.
the pump field is on resonance, and the temperature of the
heat bath is infinite, then the populations of these two stateSCKNOWLEDGMENTS
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