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The optical Stark effect of a two-level system coupled to a Brownian oscillator (i.e.
a harmonic mode which in turn is coupled to a heat bath) is studied using equations
of motion for a reduced density matrix. These equations, derived using path integral
techniques, can be used to study the combined effects of strong fields and dephasing
processes at finite temperature, and interpolate continuously from the coherent to the
overdamped limits where they reduce to the stochastic Gaussian-Markovian equa-
tion. Numerical calculations of probe absorption spectra for various pump intensities
are presented, and show dynamical Stark splitting. In contrast to the Bloch equations
which contain an infinite-temperature dephasing, we find that at finite temperature,
the Stark peaks may have different heights even when the pump pulse is on resonance.

§1. Introduction

Femtosecond spectroscopy, such as impul-
sive Raman, optical Kerr, and pump-probe
spectroscopy, provides a direct means for
studying nuclear dynamics in the condensed
phase.'® Recent development of experimental
techniques makes it possible to study high-or-
der optical processes, induced by a sequence
of pulses or a strong laser field.”® It was pre-
dicted for example that a strong laser field can
be used to localize an electron in one of the
wells of a semiconductor double-well struc-
ture.'? Intense field spectroscopy may provide
useful information regarding dephasing
processes; however, its theoretical analysis is
- much more complex compared with lower or-
der processes.!'' The response function ap-
proach,'® which is based on a perturbative ex-
pansion of the optical polarization in powers
of the laser fields, has been successfully ap-
plied to study four-wave mixing experi-
ments.>!” Calculation of the signal using the
response function involves an N fold time in-
tegration for an N’th order optical process,
and the number of the necessary terms (2%
Liouville space paths) rapidly grows with the
order of the optical process. Thus, it is not
easy to apply the response function to high-
order optical processes.

Alternatively, optical processes can be calcu-

lated using a direct integration of the equa-
tions of motion in the presence of the fields.
By calculating the relevant wave function'® or
density matrix elements,'®?? it becomes possi-
ble to explore optical processes of arbitrary
order. A difficulty with this approach is the
proper treatment of dephasing processes in-
duced by a heat bath. These are usually incor-
porated using equations of motion for a
reduced density matrix, such as the optical
Bloch equations. Effects of the bath are then
taken into account by introducing a dephasing
rate 1/ 75, which can be obtained by assuming
Gaussian-white noise fluctuations of the two-
level frequency. The Bloch equations have the
form

d

Eﬁ(t)I—iQ?eff(t)ﬁ(t), (1)
where p (¢) is the reduced density matrix of the
two-level system, and Z.g is the effective Liou-
ville operator which includes relaxation terms
(see eq. (30)). In many cases, the two level sys-
tem is strongly coupled to nuclear degrees of
freedom such as intramolecular vibrations,
phonon modes, and solvent. The dynamics
needs then to be described in the joint elec-
tronic and nuclear space, and it is not practical
to treat all nuclear motions simply as a ther-
mal bath. Once nuclear states are included ex-
plicitly in the density matrix, the number of
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matrix elements grows rapidly. For p nuclear
levels, the density matrix has p?* elements and
Pexis a p* X p? matrix. This makes the optical
Bloch equations prohibitively hard to imple-
ment since it requires specifying and di-
agonalizing a large Z.; matrix. The problem
becomes particularly severe in strong laser
fields, where the number of relevant accessible
nuclear states may become very large.

In this paper we consider a two-level system
coupled to a harmonic mode which in turn is
coupled to a heat bath.*'” This Brownian oscil-
lator system may be described by the spin-
Boson Hamiltonian with a proper choice of
the spectral density.?**® Instead of dealing
with phonon levels explicitly, we use path in-
tegral techniques to derive equations of mo-
tion for the reduced density matrix, which
have a hierarchial form, and can be used to cal-
culate the optical response of the system. This
allows us to study the interplay of finite tem-
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perature dephasing and strong field effects
over a broad range of parameters, whereby the
oscillator changes from underdamped to over-
damped. Using these equations of motion we
predict the time and frequency dependent
probe absorption following an excitation by
an intense pump field.

§2. Probe Absorption Following a Strong
Pump

Consider a pump-probe experiment,
whereby the system is subjected to two light
pulses: a strong pump and a weak probe,
whose frequencies and wavevectors are denot-
ed by Q,, k, and Q,, k,, respectively. We as-
sume that the laser frequencies £, and Q, are
close to the electronic transition frequency weg
of a two-level system. Then the Hamiltonian
in the rotating wave approximation is:

H=Hx(t)+ Hin, (2)

where

h h o _—
Hy(0)=— 0ot —uE()E g +e g

2

2

h o _—
+_,UE2(t)(elk2r_lQZIO'+ +eflk2r+1!22to.4), (3)

E\(t) and E,(t) are the temporal envelopes of the pump and the probe fields, u is the transition
dipole matrix element, and o, represent the Pauli matrices defined by a,.=1g> <el+ lg> {el,
o,=i(lg> el —le>{gl), a.,=le> el —1g> {gl), and go=1. We shall also use the combinations
o.=(o,*10,)/2. The Hamiltonian H;, describes coupling of the two-level system to nuclear
degrees of freedom. At this point, we need not specify H;, any further. Suffice is to say that the
radiation field couples only to the electronic degrees of freedom (o;) and does not couple directly
to the nuclear motions.

The probe absorption spectrum is commonly detected by spectrally dispersing the transmitted
probe, and the signal is measured as a function of the dispersed frequency w,.'” The dispersed
spectrum is given by

S(w2)=—21m E; [w:] Py, [w:], )
where
E [wz]:%rm drexp (iw2t) Ex (1), (5)
and
Py, [wz]z%ngl dtexp (iwat) P, (1). (6)

The polarization P(r, t) is defined by
P(r,)str{uop(t) =2 e " P (1), (M
k
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where p(7) is the total density matrix of the material system, and the trace is over all material
degrees of freedom. We assume a weak probe and expand the polarization to first order in E.
The polarization in the k, direction is then given by

t
P, ()= —iS dt’ uE:(t")e " € {[o (1), o+ (1P (8)
Here, o. (¢) are the operators in the interaction picture
i t 1 t
o-(t)=exp {—S dTH-ﬁl(f)} O exp {——S dTH%(T)}, 9
- LhJy < hJo
where
o h h N ‘
HA(t)E? wegaz+7uE1(t)(e g, te'ian). (10)

The present expression for the absorption spectrum (eq. (4) together with eq. (8)) is commonly
used for strong continuous wave (cw) excitation.'®'?

It will be convenient in the following calculations to express the spectrum in the form of expec-
tation values rather than a correlation function. This can be done as follows. Let us consider the
evolution of the system subject only to the pump field. To that end we introduce the zero order
Hamiltonian

Hy(1)=H\ () + Hin, (11)

and the corresponding solution of Liouville equation is denoted p°(¢):
d H (1)= : [Ho (1), p°(1)] (12)
dt p - h 0 ’ p .

We next introduce a modified Hamiltonian which includes only the negative frequency compo-
nent of E,
H' ()=H)\(t)+huEy(t) e ' 0+ Hi. (13)

The solution of the Liouville equation with this Hamiltonian will be denoted p’ (#):
d i )
‘Ep’(t)z—g[H’(t),p’(t)]- (14)
If we expand p’ (¢) to first order in the probe, we obtain
¢

Pen=26lo- (5" 05 (OP= ~i§ dt’ uEs (1) e wlo- (1), o+ (1)1

+ e (15)
The probe absorption spectrum (eq. (8)) can then be recast in the form
8 ® .
S(wz):—glm {Ez[(,()z]S dre'®'tr [a_</5’(t)—ﬁ°(t)>]}. (16)

We can thus calculate the absorption spectrum of a weak probe by subtracting two solutions of
the Liouville equation! Equation (16) is the formal basis for the present calculations.
§3. Equations of Motion for the Reduced Density Matrix

We shall now consider a single Brownian oscillator coupled to our electronic two-level system.
The interaction nuclear hamiltonian is assumed to be?
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Hin (0x, O, x,)= P2+1M2Q+D >+Z 1 S o 17
in G b ’ -x - 60 m (,L) .
e ATk oM 2 0 2m, / i Cmjw? (17)
This model includes a single harmonic mode with Q, P, M, and w, being its coordinate, momen-
tum, mass, and frequency. The parameter D is the equilibrium displacement of the energy sur-
faces between the ground and the excited states (see Fig. 1). This mode is in turn coupled to a
bath of harmonic oscillators with x;, p;, m;, and w; denote their coordinates, momenta, masses,
and frequencies. The constant ¢; is the coupling strength to mode j. We use standard notation for
the heat bath parameters. This mode coupled to a heat bath represents a Brownian oscillator.
Using a canonical transformation, the model Hamiltonian eq. (17) can be transformed into the

spin-Boson Hamiltonian®*-*¥
p/* 1
Hy = o‘ch, f+;(2—mj,+5m,’w,’2x/2), (18)
with the spectral density
72 &) y(@)wiw

Jo-on =" Gl )

J(w)= hZ(

J J

where A is a Stokes shift parameter 2
2h We shall be interested in calculating the
and y(w) is a friction parameter reduced density matrix (traced over all nuclear
coordinates). It has been shown that for any
spectral density J(w), one can derive equa-
tions of motion for the reduced density matrix
\ / of the two-level system in a hierarchial form.*®
Y / In appendix A, we use path integral tech-
niques to derive the reduced equations of mo-
\ tion for the present model using the spectral
le> density (eq. (19)) with a frequency independ-

ent friction y (w)=7y. The spectral density then
has two poles y/2+i¢, where {= Ywi—y?/4.
The equations simplify considerably if the tem-
perature of the heat bath is sufficiently high.
We can then approximate coth (8#(/2) fac-
tors in the influence functional by 2/8A{,
where f=1/KsT.*® We have tested the range
of validity of this approximation numerically
for a weak pump excitation case, where an ana-
lytical expression of spectrum is known from
the response function approach.” We found
that the approximation holds provided
_])'/2 D/2 Bh¢<4. Under this condition the equations of

motion can be expressed by a two dimensional

Fig. 1. Potential surfaces of the linearly displaced hierarchy D We first introduce the reduced

B i i . 1 i . .

rownian oscillator system. The lower electronic 1, jaye] density matrix traced over all nuclear

state is denoted |g), and the upper state is |e>. The

equilibrium coordinate displacement and electronic degrees of freedom

energy gap between the two potential are denoted by N _ «

D and hw,,, respectively P (1) =tro, i { p (t)} ' (22)
egy .
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The density matrix poo(¢) is then coupled to  defined in Appendix A. The equations of mo-
higher members of the hierarchy p,.(f), tion for p,,(t) are

a . . (ntm)y . . Ch e R
Epnm(t):_[lgA(t)+T+l(m_n)Cl pnm(t)_llaz [pn+lm(t)+pnm+l(t)]
—ni@ Py ()—mi@. pum—1(t), (n, m=0) (23)
where
L2 ()= = LHAD) (= () HA(D} = === H3 (D (1), (24)
R _12§iiyx_ai§10A
@+p(t)=Z< 2fht o i2<j o; )p(t). (25)
Here,
A"B=AB—BA, A°B=AB+BA, (26)

for any ordinary operators 4 and B. The present equations take into account multiphonon
absorption-emission processes. This infinite hierarchy can be truncated if carried out to a
sufficiently high order N=n+m which satisfies N>»>AQ/y, where A% is the Rabi frequency
AQ=(Q1—we)*+(uE: (¢)) In Appendix B, we show that eq. (23) then becomes to>”

J . Ny R
T Pn-mm (1)= — I:lgA(t)+T+l(2m_N)C] PN—mm (1)

ot
. [ 2(N—m+1)
—Ao: - o
(N+D)y+2iC2m—N—1)¢
2(m+1) A
+(N+ Dy+2i2m—N+ 1)¢@+} PN—mm (1)
2mAi ) A
_(N+1)Y+2i(2m—N_ I)Caz O+ pn-mr1im—1(F)
2(N—m) o
_(N+1)y+2i(2m—N+1)§"z O- PN-m-1m+1(2)
—I(N-—m)O_ pn-mi1m(t)—IiMO L py—pm-1(t). (N=m=0) 27

This N’th member of the hierarchy (g, (¢) with n+m=N) is coupled only to lower members
(Pwm (t) with n’ +m’ <N). The hierarchy can thus be terminated by choosing a sufficiently large
N and using eq. (27), rather than eq. (23) for the N’th member. Equations (23) and (27) are most
suitable for numerical computations. They require the solution of a coupled set of equation for
Pnm (t) With n+m=<N.

Let us consider now a few limiting cases. If y » wy (strongly overdamped oscillator) the equa-
tions reduce to the tridiagnal Gaussian-Markovian hierarchy,?

0 o ) .
;t‘/?no(t)z —[ZLa(t)+ny] puo(t)—iAa, pri10()—niO_ p,_1o(t), (n=0) (28)
and

0 A
7 Pro(D=— [ie?A(t)+N)’]ﬁNo(f)“)j 0; 0 Ppno(t)=NiO- pn-10(2).

(N»>A42/y) (29)
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Note that in this limit p.. (¢) (> 0) are decoupled from the hierarchy. The above equation is the
quantum master equation for a Gaussian-Markovian bath, and is equivalent to the stochastic
Liouville equation.?

In the Gaussian-white noise limit, y » A Q, we may further set N=0 and the equations reduce

to

at

0 1 o
”_ﬁoo(f):'iipA(l‘)f?OO(f)’?U; a; po(?). (30)
2

This is the quantum master equation, which is equivalent to the optical Bloch equation (1). The
parameter 1/ To=AkpT/hy is the pure dephasing rate.

Using eq. (16), and egs. (23) and (27), we can calculate the pump-probe spectrum. In the
present notation, the first members of hierarchy poo(¢) and péo(¢) are equal to p°(t)and p’ (1) in
eq. (16), respectively. The final expression of the absorption spectrum is then

8 ® )
S(wz):_\/;lm {Ez[wzlg dfe'w”tre{(f(ﬁéo(f)_ﬁoo(f))}}, (31

where the trace is only over the electronic two-
level system space, since the other degrees of
freedom have already been traced over.

§4. Numerical Results

We have calculated the probe absorption

A

B <)
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Fig. 2. Two-dimensional hierarchy of the density
matrix equations. The matrices are connected by the
equations of motion eq. (23), which are expressed by
the lines in figure. Hierarchy level (n+m) can be ter-
minated by eq. (27) for N=(n+m)»AQ/y, where
AR is the Rabi frequency of the system and p is the
relaxation constant of the heat bath. We then have a
set of N(N+1)/2 equation of motion which involve
the N(N+1)/2 2 x2 density matrices.

and its variation with time delay between the
pump and the probe, for various pump intensi-
ties. We assume that both pulses are Gaussian
El(t):El exXp [—(t/Tl)Z] and Ez(t):Ez
exp {—[(t—T)/7,]*} with resonance central
frequencies, i.e. 2,=Q,=we,. The pulse dura-
tions were taken to be 7;=700 [fs] and 7,=30
[fs] and the time delay was varied between
T=—2[ps] to T=1.0[ps]. The dynamical
Stark effect shows up when the pump and the
probe overlap in time. We used a weak probe
with Rabi frequency d,=uE,=10 [GHz] and
two values of pump intensities: medium inten-
sity 0,=uE;=30[THz] and strong intensity
0,=>50 [THz]. Initially at time = — 15 [ps] the
two-level system is taken to be in the ground
state. The Brownian oscillator parameters are
wo=>500 [cm '], D=1, and the temperature
T=200 [K]. We have used two values of the
friction y=1500 [cm '] (overdamped motion),
and y=50 [cm '] (coherent, underdamped mo-
tion). In all calculations we set the hierarchy
level at N=30, which yields N(N+1)/2=465
equations of motion for 2 X 2 density matrices
Pnm(t) We then numerically integrated these
differential equations using the Runge-Kutta
4’th method with a time step 4 ¢=0.2 (fs).

In Fig. 3(a), we show the results for the
overdamped oscillator and the medium pump
intensity 0,=30 [THz]. We set dw,=w>—
Wee. The T= —2 [ps] curve corresponds to the
linear absorption spectrum, since the pump is
negligible at this early time. The overdamped
oscillator does not show vibronic progressions
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Fig. 3(a). Pump-probe spectrum for medium excita-
tion strength (u E,=30 [THz]) in the case of the over-
damped oscillator for different pulse delays T (ps).
For other parameters, see text.

Fig. 4(a). Pump-probe spectrum for a strong excita-
tion (4 E,=50 [THz]) in the case of the overdamped
oscillator for different pulse delays 7 (ps). For other
parameters, see text.

Fig. 3(b). Two-dimensional overview of Fig. 3(a).
The trace above the 7 axis shows the pump envelope.

and the spectrum is Gaussian centered near
Aw,=0. The small 200 [cm '] shift to the blue
reflects finite temperature effects.’® This shift
cannot be reproduced using the optical two-
level Bloch equation'” or the stochastic
Liouville equation,' which neglect finite tem-
perature effects on dephasing. As the delay is
decreased, the Gaussian peak shows a dynami-
cal Stark shift following the change of the
pulse strength AQ,=+VAwi+(uEi(1))?
where the detuning 4 wo= 2, — w;=0 for this
resonant pump excitation. Figure 3(b) displays
the same results in a two-dimensional plot
which provides a global overview of the time
dependent Stark shift. The blue Stark peak
gives a positive contribution, whereas the red
one becomes negative after 7= —0.5 [ps]. In
contrast, the Bloch equations or the stochastic

Two-dimensional overview of Fig. 4(a).
The trace above the T axis shows the pump envelope.

Fig. 4(b).

Liouville equations predict both peaks to be
identical. This again reflects the finite tempera-
ture of heat bath. Due to the Stark effect, the
system has two Stark shifted excited states
(dressed states). If the pump field is on
resonance, and the temperature of the heat
bath is infinite, then the populations of these
two states are the same, as predicted by the
Bloch or the stochastic Liouville equations.
The population of the lower Stark level
becomes higher than the upper Stark level.
However, if the temperature of the bath is
finite because of relaxation, then the upper lev-
el can absorb the probe field, whereas the low-
er level emits light, which gives a negative con-
tribution to the probe absorption spectrum.
In Figs. 4(a) and 4(b), we show the probe ab-
sorption for the strong pump excitation
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Fig. 5(a). Pump-probe spectrum for a medium pump

strength (u# E,=30 [THz]) for an underdamped oscil-
lator for different pulse, delays 7 (ps). For other
parameters, see text.
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Fig. 6(a). Pump-probe spectrum for a strong excita-
tion (u E,=50 [THz]) for the underdamped oscillator
for different pulse delays 7 (ps). For other
parameters, see text.

Fig. 5(b). Two-dimensional overview of Fig. 5(a).
The trace above the T axis shows the pump envelope.

(01=50[THz]). Other parameters are the
same as Figs. 3(a) and 3(b). For this strong ex-
citation, the oscillator is pretty much decou-
pled from the system. We will discuss this
point by comparing with the results for, the
underdamped case (Figs. 6(a) and 6(b)).
Next we turn to the underdamped mode.
Figures 5(a) and 5(b) show the pump-probe
spectrum for medium pump strength. The
T=—2 [ps] curve in Fig. 5(a) corresponds to
the linear absorption spectrum. We have
verified this by repeating these calculations us-
ing the response function approach. In this un-
derdamped case, we observe the phonon side
bands in the linear absorption spectrum at po-
sitions 4 w>= *+nw, corresponding to various
phonon absorption-emission processes. Due
to the finite temperature, the various phonon

Two-dimensional overview of Fig. 6(a).
The trace above the T axis shows the pump envelope.

Fig. 6(b).

transitions yield an asymmetric lineshape.
When the pump pulse is turned on, each pho-
non transition shows a Stark splitting whose
magnitude is given by the proper Rabi fre-
quency A4Q,= VAw +(uE (t))% AQ, is the
Rabi frequency for the n’th vibrational line
with Aw,= tnw,. In the early time periods
the splitting of the peaks near the center are
larger than for the side peaks (see curves for
T=—1.5[ps] and —1.0 [ps] in Fig 5(a)). This
is because the corresponding Rabi frequency
AQ, changes significantly for small uE;(¢) if
Aw, is small. The Stark peaks of the origin
(4 woy=0) then shift to the blue and to the red.
The positions of these peaks are the same as
for the overdamped case, Fig. 3. The Stark
shifted peaks of the phonon side bands can be
observed outside of the Stark peaks of the
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zero phonon line. Red Stark peaks show nega-
tive contributions, because of the finite temper-
ature, as shown for the overdamped case.

Figures 6(a) and 6(b) display the pump-
probe spectrum for the strong pump excita-
tion. For this case, the results for the over-
damped oscillator (Figs. 4(a) and 4(b)) and
the present results for the underdamped oscil-
lator are very similar. The oscillator seems to
be decoupled from the optical transition and
these spectra can be obtained using the two-
level system alone. This can be explained using
an argument first employed by Brewer;'*'4*)
under strong excitation, the relevant fre-
quency of the atomic system is not we; Or wo,
but rather Rabi frequency AQ,=uk(t),
which represents the ‘‘dressed’’ states.’® For
very strong excitation, this frequency is much
larger than y and wo. Thus the oscillator can-
not respond to the system and the absorption
spectrum approaches that of the isolated two-
level system (without the brownian oscillator).
This decoupling at strong fields can potentially
be used to eliminate intramolecular vibra-
tional relaxation and to enhance the selectivity
of laser induced processes.*"

§5. Concluding Remarks

We have analyzed the optical Stark effect of
a two-level system coupled to a Brownian oscil-
lator using equations of motion which allow
us to incorporate finite temperature dephasing
processes. The present approach can be ap-
plied to a system driven by pulses of arbitrary
number, shape, and strength. It can be easily
extended to multimode Brownian oscillator
systems by introducing a higher dimensional
hierarchy. For example, we can take into ac-
count two modes by introducing the equations
of motion for the hierarchy matrix p,m «:(?),
where nm is the hierarchy for the first mode,
and k/ is the hierarchy for the second mode.

We may also apply this method to study
charge transfer®3% or curve crossing®>”
problems. The formal analogy between the cal-
culation for optical processes in intense fields
and the dynamics of nonadiabatic transitions
such as curve crossing and charge transfer has

H()=HA()+X(a) 3] ¢;x] Z(

(Vol. 63,

been firmly established.’® The analysis of opti-
cal processes as well as nonadiabatic transi-
tions can be greatly enhanced by employing a
less reduced density matrix in which the bath
(x;) modes are eliminated but we still keep the
oscillator coordinates p(¢)=tr.{p(¢)}. The
density matrix p(Q, P,t) can then be
described as a wavepacket in phase space®'”
by using the Wigner representation.*® This
should allow the development of a powerful
semiclassical picture of nonadiabatic transi-
tions. Phase space representations are well
established for problems involving a single
potential surface which have direct classical
analog.***Y Their use in connection with elec-
tronic coherence was developed using the Lan-
gevin approach'™* and the extension to the
present microscopic model should provide an
additional insight.

Finally, the present approach can be used to
study the Feynman polaron model, which is
described by a particle interacting with a single
phonon mode (LO phonon) with the fre-
quency wio.*? If we introduce the Hamilto-
nian H,(¢) defined in the coordinate space
instead of the discrete two-level space, the
hierarchy equations (23) with (27) then
describe motions of a particle interacting with
an oscillator mode.””* If we set y—0, then the
oscillator mode becomes coherent and, thus,
our model coincides with the Feynman pola-
ron model (wro=wy). This approach may be
useful to study tunneling of Feynman pola-
rons, where analytical solutions are not availa-
ble.
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Appendix A: Derivation of the Hierarchy
Equations Using Path In-
tegrals

Consider the spin-Boson Hamiltonian

1 fwi*x/? >

(A-1)
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The spectral distribution is given in eq. (19) with a frequency independent friction y(w)=y.
X (o) is any function of g;(j=x, y, z). The reduced density matrix of this system can be ex-
pressed in the path-integral form by using the coherent state representation, which is defined by
the eigenfunctions of annihilation operator o_|¢>=¢|¢> and its conjugate {¢lo.={¢l¢*,
where ¢ is a Grassmann number.?® The initial and the final states of the bra and ket are expressed
by ¢i=¢(t;) and ¢/ *=¢'*(¢;) and ¢ =¢*(¢) and ¢f =¢’(¢), respectively. If we denote a set of
coherent state variable {¢(¢), ¢*(#)} by @ (¢), then the density matrix element at time ¢ is given
by28a)

D' (t)=Df

D(1)= Dy 1
po.oin=| Dplewm|  plewren H SA (@ 1, ti)}
D(1)=P;

D' ()=D]
i
XF(®D, ®';t, ti)exp[—zSA(di’;t, ti)}, (A-2)

where we have defined @,={¢, 0}, ®/ =10, ¢{*}, &:=1{0, #{}, and &{={¢{, 0}. The func-
tional Sa(@; ¢, t;) is the action of H, and D [® (¢)] represents the functional integral of @ (7).
Since J (w) has two poles y/2+i¢, where {= ¥ w §—7?*/4, the influence functional F (P, ®'; t, t;)
is expressed as

t

F(®, d'; 1, 1;)=exp [(i)zg dT’ST de{X(® (")~ X (' (1)}
% {ef(y/eri{)(r’fr)@Jr((p(r)’ ¢/(.[))_i_e*(}’/ZfiC)(r/—r)@_(¢(T)’ @’(T))} , (A3)

where

24’iiy{X P)—X ¢’}+C—O—(2){X D)+ X (D)} A-4
e X (@)X (@)= {X ()4 X (@), (A-4)

In the derivation of this expression we assumed that the initial temperature of the heat bath is
high, (coth (Bh{/2)=Bh(/2, where =1/KpT), and have employed the factorized initial condi-
tion

0. (P, )=

Proc (t)=p (L) P3, (A-5)

where p (1;) is the initial density operator of the two-level system and p 3 is the equilibrium density
operator of the bath at inverse temperature .

Consider the following elements:
Q' (H)=>f

D(1)=P¢ t n
Prm (D, D, f)ES D[¢(l‘)]S D[®’(1)] {”ie(m—imv”g d7O- (2 (1), ¢'(T))}
D(t;)=D; ti

D' (1)=d]

t m
X {—ie‘”“i“"”S dtO. (P (1), @’(r))}
ti
i 1
X exXp |:—h— SA(¢; t, tl)“ F(¢9 ¢’; Z, tl) exXp [_7 SA(¢,; t, tl):| (A6)
Then poo (Py, D{; t) agrees with p(Ds, @ {; t). The time differentiation of peo (Pr, P¢; t) becomes

0
EPOO(st, dj!{; t): _1$A(¢f9 ¢f,; t)pOO(¢ﬁ @{, t)

—iA{ X (Dr) = X (Do) p1o(Dr, DF; 1)+ poi (Ps, P 1], (A7)

where
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LA (B, B 1) = —% {Ha(®; 1)—Ha (DF; 1)} (A-8)

The elements pio(Ps, P¢; t) and po (P, P{; t) can be evaluated by considering their time deriva-
tives;

9 . y .
Eﬂlo(‘pf, b, t):—[zg,\(dif, b, f)+?—1C] pPro(Ps, Di; 1)
—1A{ X (Dr) — X (DPe)} [ p20( Py, DF5 t)+ 11 (P, D5 1)]

and
] . Yo ,
Ep()l(@f, ¢f,, f): - lo(fA((pf, (pf/, t)‘f’?“l"lc p01(¢f, ¢f; t)
—1A{ X (D) =X (D)} pir (Pr, Pf; 1)+ por(Pr, D 1]
=104 (O, D) poo (Ps, Pf; 1). (A-10)
The above equation involve new elements p,.. (QOr, Of; t), which can be evaluated by taking their
time derivatives. For any n and m (n, m=0), we have
(n+m)y

at +i(m—n)CJ Pum (D, Df; 1)

ad
7 Pum (P, Pf5 1)= — [iipA(gbf, Q5 1)+

— 1A X (D)= X (P} Prr1m(Pr, PE )+ pumi1(Dy, PF; 1)]
—ni®@_ (¢f, @f’)pn_lm(@f, D, t)_m1@+ (¢f, qu/)pnmfl(éf, Df; t)
(A-11)

Equation (23) is the operator form of the above equation. Note that in the present description,
we assumed the factorized initial condition eq. (A-5), which corresponds to po (@i, D; ti)
=p(D;, D5 1), and p,, (D;, D{; t;)=0. Correlated initial condition can be included by setting
nonzero elements of p,., (®;, @{; t;).
Appendix B: Termination of the Hierarchy Equation

By using the Laplace transformation of eq. (23) and by assuming N>» A4 Q/y, where A is the
Rabi frequency 4 Q2= v(w;—we)>+ (1 E(1))?, we have?

. 2i(n+1) R 2im A
PO = =y = 2itn—m 0 & P O TR Dy —2in—mr 1y O Pt
(B-1)
and
- 2in ) 2i(m+1) )
P O T Dy 2in-m g O P O Ny 2ite me g O
(B-2)
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