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The energy landscape for solvent dynamics in electron transfer reactions:
A minimalist model
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Energy fluctuations of a solute molecule embedded in a polar solvent are investigated to depict the
energy landscape for solvation dynamics. The system is modeled by a charged molecule surrounded
by two layers of solvent dipolar molecules with simple rotational dynamics. Individual solvent
molecules are treated as simple dipoles that can point toward or away from the centralshagge

sping. Single-spin-flip Monte Carlo kinetics simulations are carried out in a two-dimensional lattice
for different central charges, radii of outer shell, and temperatures. By analyzing the density of states
as a function of energy and temperatures, we have determined the existence of multiple freezing
transitions. Each of them can be associated with the freezing of a different layer of the solvent.
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I. INTRODUCTION response would probably be much slower. This mechanism,
which is known as the “inverted snowball” picture, gives a
Electron transfeET) processes play a central role in qualitative description of how the solvation dynamics should
several problems in physics, chemistry, and biolbg§ost depart from continuum predictions. Only at points far from
of these reactions occur in condensed phases where the stfie solute, where its field varies slowly compared to the size
rounding dielectric medium provides the energetic fluctua-of the solvent molecules, should the continuum limit-pfoe
tions needed in these reactions thereby promoting or hindeattained. This idea served to motivate many of the molecular
ing thermally activated processes in these systemsheories of solvation, which have included some molecular
Understanding molecular motions and how they determin@spects of the solvent. Linearized equilibrium theories of sol-
the reaction coordinate for these ET reactions is, thereforesation have been extended to correct these dynamic prob-
crucial for a comprehensive description of ET processes. lems; they are known as the dynamical mean-spherical
The early theoretical treatments describing solvatiorapproximation$® They are molecular models in the sense
have been based on homogeneous dielectric continuum mothat the structure imposed by the solute is calculated from an
els that are completely specified by its experimental dielecapproximated solution of a simple molecular reference sys-
tric dispersione(w).>* In this case, the total solvent polar- tem. The real solute/solvent system is mapped onto an ideal-
ization around the donor and acceptor sites is used as the Eded hard-sphere solute/dipolar hard sphere solvent. It pre-
reaction coordinate. This polarization is usually treated as adicts that at regions close to the cavitgolute, solvent
effective overdamped harmonic mode. This assumption isnolecules feel the “nonscreened” charge cavity and the re-
equivalent to the use of a harmonic heat bath, which leads teponse is slower than . In regions far from the cavityor
a Gaussian modulation of the energies of the ET donor angh the limit the size of the molecules is z&rthe continuum
acceptor site8-’ This limit is valid as long as the interac- |imit 7, is recovered, in agreement with the inverted snow-
tions between an ET system and the solvation moleculesall picture. Simulations have shown that this picture tails
have the cumulative effect of a large number of weak interwhen the linear limit breaks down and, therefore, the overall
actions, and the central limit theorem comes into play. Treathehavior becomes strongly dependent on the coupling be-
ing the solvent as a dielectric continuum provides a reasonween dipoles and the charge at the cavity. This is the situa-
able first approximation but it misses the molecular aspectgion investigated in this paper.
of the solute—solvent interaction. In 1977 Ons&geom- Another approach for constructing molecular theories of
mented that solvation of a newly created chafgkectronn  solvation shifts attention away from the structure created by
would proceed with the characteristic longitudinal relaxationthe solute to the structure and dynamics of the pure solvent
time 7 at points far from the charge but, near to it, the alone. One assumes that the most important molecular aspect
of solvation is not that correlations between solvent mol-
dAuthor to whom correspondence should be addressed; electronic maiﬁclees are substantially perturbed by the solute, but that the
tanimura@ims.ac.jp solute electrostatic field probes the solvent response on
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length scales where molecular aspects of solvent—solvemian account for the local structure or frustration of the sol-
correlations are important. This response is investigated byent molecules. Above the “thermodynamic glagdfeez-
studying the solvent density function, with a kinetic descrip-ing) transition, it recovers the continuum dielectric limit. Re-
tion for the density following a generalized Smoluchowskicently the dynamics of the OW model was studied by Leite
equationt>~** All these models are extensions of the con-and Onuchi® which have shown that, at high temperatures,
tinuum model, where the discretendssolecular aspegtis  the system exhibits an effective diffusive one-dimensional
included indirectly. Molecular theories that include equilib- dynamics, where the Born—Marcus limit is recovered. At low
rium and nonequilibrium solvation processes have beetemperatures, a polarization-dependent glassy phase appears
presented® They are based on renormalized response apand a slow non-self-averaging dynamics is observed. The
proaches that incorporate nonlinear aspects of solvation dy@W model uses the random energy model approxim&tion
namics. They are all based in linear response assumptiont) evaluate the solvent energies, which assumes the solvent
thus they do not include the solvent saturation effects as wegnergies as random variables. Such an assumption does not
as the complexity of multidimensional potential surfacesinclude energy correlation between states. Leite recently
with multiple minima. adapted the OW model to include these correlati3na.
Recent developments of ultrafast nonlinear spectroscopgingle shell of solvent molecules around a cavity is described
have made it possible to observe the dynamical aspects of EIy a two-dimensional system with periodic boundary condi-
processes more direct{*® Walker et al'® and Tominaga tions with nearest-neighbor interaction. There are two main
et al,?° for example, have investigated the reverse ET, aftelimitations in these approaches. Even when a model is
photoexcitation of the charge transfer band, by monitoringgdapted to include energy correlations, the interactions are
the recovery of the ground state absorption. Kobayashi antitroduced in a rather nonrealistic way, i.e., the dipole—
co-workers studied the intermolecular ET between excitedlipole and charge—dipole interactions are just random vari-
dye molecules and the electron-donating solvéstvariety ~ ables, and are far from representing the actual interactions.
of experiments has been carried out and some results clearhhese models also deal with a single shell of solvent dipoles
indicate deviations from continuum and linear theories. In@round a cavity. The generalization of this model to correct
molecular dynamics studies, multiphasic relaxation regime$or these two factors is the subject of this paper. Further
with nonexponential relaxation times have also beerjnvestigations into determining when a single collective re-
observed? The temperature dependence effects are partict@ction coordinate description is appropriate are also per-
larly interesting. At high temperatures, where the thermaformed.
fluctuation energy is larger than the interaction energies be-
tween solvation molecules, the system follows normal diffu-Il: A MINIMALIST MODEL FOR THE SOLVENT

sion dynamics described by the linear response picture of A genera]ization of the model proposed by Onuchic and
Born—Marcus theory.As discussed by Maroncelletal,  Wolynes and kinetically explored by Leite and Onuchic is
however, some ET systems exhibit deviations from thisdeveloped®?8*°The new features are the inclusion of mul-
regime?>**At low temperatures, experimental results for al- tiple layers of solvent and a more realistic representation of
cohols deviate dramatically from continuum predictiéfs, the dipole—dipole and charge—dipole interactions. The OW
suggesting a “glassytsolvent freezingbehavior. One inter-  model considers a single shell of solvent molecules with
esting question is to understand the conditions under WhiCbimpIe rotational dynamics, represented by dipoles pointing
the solvent dynamics can be represented by a single colleenly in two directions, inward and outward, i.e., as Ising
tive reaction coordinate or when these freezing mechanismspins. In the present work a second layer of dipoles is intro-
cannot be neglected. When this one-dimensional representduced, and also the positions of the dipoles in both layers
tion is valid, one recovers the successful Born—Marcusgnclude some structural disorder. Figure 1 shows a schematic
theory. Several other computational studies have confirmegkpresentation of this model, which is carefully described in
the power of this approximatioff. Sec. Il

The use of all-atom solvent model to discuss these issues Although individual solvent molecules are treated as
is computationally too expensive and it complicates the unsimple effective spins, this model is already able to incorpo-
derstanding of the problem. One alternative is to use minirate several of the main features of how polar solvents couple
malist models for the solvent, i.e., simpler models that in-to electron transfer reactions. This kind of minimalist model
clude the necessary complexity to address this questiomas been successful in the physics of magnetic systems and,
Onuchic and Wolyne€OW) introduces a minimalist mod@l  more recently, on problems of protein dynamics and folding;
for a polar solvent interacting with a charged cavity repre-however, very little has been done in terms of exploiting
senting the donor or acceptor site for ET. Although thisthem for realistic solvent effects. Most of the studies to date
model is far from representing details of real solvents, ithave been done for continuum models or for very small sys-
includes the basic features of a rough-energy landscape: mukems at a full all-atom representation level. Similarly to our
tidimensional degrees of freedom, with each solvent mol+ecent success in protein foldifgsuch models are expected
ecule being treated independently; a disordered energy lantls play a central role in establishing the molecular mecha-
scape with multiple minima; and a polarizable mediumnism for polar solvent mediation in electron transfer reac-
around a charged cavity. This model is much simpler than &ions. These models will also act as bridges between the
Brownian dipole lattice model, where the solvent is repre-continuum and the all-atom solvent representations. Note
sented by a rigid cubic lattice of permanent dipbté/but it that in this paper we limit our analysis to ET problem, but
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dynamics. Individual solvent molecules are represented by
dipoles that point in only two directions, inward and out-
ward, and are treated as simple Ising spins. Their positions,
unit direction, and strength are representedrpyS;, and

oj, respectively. The charge strength is denotedgbyll
dipole—charge and dipole—dipole interactions are included in
the energy determinations and not simply nearest neighbor
interactions. Thus, even under this simple dipole description,
the long-range electrostatic contributions are properly incor-
porated. The interaction energy of solvent is expressed as

N N o j-1
Esolv:_;l fi(Q)UiJr]z::Z k§=:1 Jjkojoy. D

The charge—dipole interaction and dipole—dipole interaction
coefficients are, respectively, expressed as

o ©q
FIG. 1. Schematic view of the two-layer solvent model system. A solute fi(CI) =T 72 (2

molecule is represented by a point charge in the central cavity. Solvent ri

molecules are represented by two layers of dipoles around the solute in 2

lattice with some spatial disorder. Individual dipoles point only in two di- 2 S] ’ Skrjk_ 3Sj : (rjk)SK‘ (rjk)
5 ’

rections, inward and outward, and are treated as simple Ising spins. ‘]Jk: K )
whererj, =rj—ry, andu is the dipole moment. Simulations
our study is closely related to nonlinear spectroscopy of avere carried out using typical units with charge measured in
molecular system in the condensed phases. For example,terms of 0.1 of the electron charge, dipole factors measured
similar model has been used to account for energy fluctuain units of Debyes, and distances measured in units of 2.1 A.
tions of impurity molecules in a glassy environm&nt as  Therefore energies are in units of 1080 2° J, which is
the content of single molecule detection, in which the specabout 2.5 kgT) at room temperature. The values used in the
tral properties of individual impurity molecules in an envi- simulations are typical ones for electron transfer in polar
ronment are measured with the ensemble average renibvedsolvents. For example, in a case of water solvenis about
Since the initial OW model was based on the random2 andr Kk is about 2—-3 A. Our choices of parameters, how-
energy model to evaluate the solvent energy, it allowed for @&ver, have the goal of demonstrating the behavior of the
single glass-like transition temperature. In the generalizatiomodel and how it affects the electron transfer reaction but
of this model presented here, we can identify multiple glasshey do not refer to any specific solvent.
(freezing transitions and are able to associate each of them In this study we limit our analysis to a two-dimensional
with the freezing of a different layer of the solvent. It is solvent, although computationally there is no essential diffi-
important to observe how the effect of a central charge comeult in generalizing to the three-dimensional case. Two layers
pletely changes the solvation effect. In order to be able t@f solvent are included. The inner layer consistsNgf di-
detect the temperatures for which these layers “freeze” wepoles and the outed, ones. Their coordinates are given by
utilize an approach develop by Socci and collaborators. In
the context of protein folding, they defined a useful param-
eterY, which measures the number of accessible stt¥s. (1<j<Ny), (4)
reveals the replica symmetry breaking of the structure, and it

ri=r cog2mj/Ny)X+r sin27j/Nq)y+ or;

is a continuous function of order parameters in the f0|dingand

process, which are the reaction coordinates. In our cése, rj=2r cog2mj/Ny)x+2r sin(2mj/N,)y+ 6r;

(defined in Sec. Il is simplified in just two components, )

each of them associated to one of the two solvent layers. The (N1<J=Ng), ®)

use of theY order parameter allows for a detail exploration where or; is the Gaussian random distribution of sites de-
of these multiple transitions, which can be associated withined by

the “inverted snowball” picture. To fully explore the physics _

of the problem, we also study the behavior of several other (orj)=0, (6)
fther_modynamic guantities. The to_ta_l energy and total polar- (|5Fj|>= Sr. )
ization are the natural ones, but it is also important to ana- ) o o
lyze their contributions from each of the individual layers to Because of this spatial disorder, the solvent system exhibits

fully explore the details of the solvent mechanism. frustration that leads to glass behavior at sufficiently low
temperatures. In principle, disorder may come from other

sources, such as the local environment for each dipole, but

the spatial one is sufficient to illustrate the overall solvent
We consider a charged molecule system surrounded bymechanism. In our solvent minimalist model, we have in-

the two layers of solvent molecules with simple rotationalcluded the same number of dipoles in each of the two layers.

IIl. SIMULATION MODEL AND METHODS
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This simplification presents some quantitative limitationsand the transition probabilityV;(Z) is determined by Eq.
when comparisons to real systems are made since the dipol&0). A random numberz is selected in the interval 0z
density differs for the two layers. This situation is more <1. Finally, if 7W;>z the move is accepted, i.az; is re-
likely to correspond to dipolar molecules in confined placed by the news| . Otherwise the move is rejected and
geometrie® such as water molecules in carbon nanoties. the previous configuration is maintained. In either case, ev-
This approximation decreases the coupling between dipolesry trial is counted as a dynamic step. The time in the master
for the outmost layers, but it does not change the couplingquation (9) corresponds to a Monte Carlo stéMCS),

with the central charge, which is the main issue in electrorwhich is defined by repeating the procedure ab¥\ianes. A
transfer processes. The effect of the gradual freezing of thsingle MCS defines the unit of time of the master equation.
layers is indeed enhanced under this scheme. Although th&lthough there are other algorithms for generating sample
results should be believed only qualitatively, this simplified paths, this procedure realistically describes well the dynam-
model already provides all the physical mechanisms associes of Ising environments.

ated with gradual freezing of the solvent under the influence  During the simulation run, we save all spin configura-
of a charge cavity. The unit directions of dipole moments ardions () for each time step. We then classify the sequence

given by of data under all possible spin configurations. By evaluating
the energy or polarization for each spin configuration, we
Sj=i. (8) obtain the density of states as the function of energy or po-

1l larization.

We consider the two cases fof;=*1, where the sign de-

pends on whether the dlpoles are pointing toward or away,, NUMERICAL RESULTS

from the charge. The dynamics of the system is described by

single-spin-flip kinetics as typically used in Ising model Monte Carlo simulations were carried out for a system
simulations. The probability?(=;t) for which the system composed ofN;=12 inner dipoles andN,=12 outer ones
has a spin configuratio = (o1,05,...,0y) at timet obeys  positioned on a two-dimensional lattice. The central charge

the master equation and the outer-shell radius were varied. The radius of the in-
aP ner shell was kept fixed at = 1. The position of the dipoles
(=0 _ z [—Wi(E)P(E:t)+Wi(F.E)P(F,E:1)], was disordered in each lattice point with a standard deviation

of 6r=0.1. Simulations were performed for a broad range of
9 temperatures. In each run, we have discarded the initial
whereF;E denotes a spin configuration obtained frapy ~ 20000 MCSs for thermal eq_uilibrgtion and thgn recordgd
flipping the ith spin: F,E=(o4,...,—0y,...,0) for & 1250000 MCSs of spin conf|g.urat|ons and thellr respective
=(0y,...,04,...,0n). The transition probability per unit energ|es..S|n_ce one MCS consists of 24 smulatpn steps, our
time, W,(E), for theith spin to flip in a configuratiors, is ~ Sample size is about 30 000 000. These simulations are suf-
chosen to be of the Glauber tyi§e* ficiently large for most of our statistical analysis as it be-
comes apparent later in this section.

— 1 As discussed earlier, in order to determine the glass tran-
Wig =571~ o tanf(E)] 19 ition the quantityy, which determines the number of acces-
: sible states at a given temperature, is calculatddhis quan-
with tity is computed for the configurations including all the
EcodFiZ) —Esol B) solvent as well as for partial configurations that only include
i= kT ) (11) the inner or outer dipoles. Their definitions are as follows:
2
whereEgq(Z) denotes the energy for the spin configuration vy, = > nlgk) , (13
E and 7 represents the time scale for a noninteracting spin to K Nsamp
flip. It should be noted that this transition probability satisfies N, (k)2
the detailed balance condition Yz:Z N22 , (14)
K
Wi(2)Pe 2)=Wi(FiE)Ped FiE), (12 o
. L Nor(K)?
wherePeq(:)xeXQEsoh,(n)] is the equilibrium distribution. Yio= > NZ (15
In this paper, a standard Monte Carlo method, which samp

uses discrete time steps and updates spins in a random seheren,(k), n,(k), andn,y(k) are the number of steps that
qguence, is applied to generate a sample of the time evolutiotihe spin configuration visits the labeled statfor the inner-

of the spin configurations, which are described by the masteshell, outer-shell, and total solvent system during a simula-
equation[Eq. (9)]. We start by randomly choosing an initial tion run, respectively. The value of is inversely propor-
configuration{c;}. Dynamic moves are then accomplished tional to the number of accessible states. In additio¥, tine

by single dipole ¢;) flips utilizing the Monte Carlo rule. densities of states as a function of polarizat®s >} and
Dipoles are chosen by going through their array randomlyas a function of energy are also determined. Similarly'to
The Monte Carlo rule is the following. The change in energythese quantities are also computed for the inner and outer
E;, produced by the trial move, is computed using Eq, shell. During this single shell calculations, the interaction
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FIG. 2. The functionY; (dotted ling, Y, (dashed ling andY,, (solid line) calculated from Eqs(13), (14), and (15) are plotted for different inverse
temperature$p) for the cases of(a) no central chargeq=0) andr =2; (b) no central charge and,=4; (c) strong central chargeg& 10) andr,=2; and

finally (d) strong central chargeg& 10) andr,=4. In the cases dofa) and(c), the totalY shows a single freezing temperature, since the interaction between
the inner and outer shell is strong. In the caséchfsince the interaction between the dipoles in the inner shell is stronger than the charge—dipole interaction,
Y, for the inner shell shows a similar behavior to the one observéa.i©On the other hand, (outer-shell parametgis substantially affected by the central
charge. In the cases ¢b) and(d), the interaction energy between dipoles in the outer shell becomes smaller and the plot for thebtetames stepwise,
clearly reflecting the independent transitions for the inner and outer shells. In the céde thfe freezing temperature fof, occurs at much higher
temperatures than the case(bf due to the influence of the strong central charge.

energy between the inner and outer dipoles is equally shara@spective transitions occur #~0.06 andB~0.2, where
between the two shells, i.e., half of it assigned to each shelthe difference between these temperatures is still too small
Figures 2a)-2(d) show Y, (dotted ling, Y, (dashed that the two transitions appear to occur in sequence. There-
lines), and Y, (solid line) in the cases offa) no central fore it is difficult to separate them from the plot for the total
charge =0) andr,=1; (b) no central charge and,=4; Y. For larger values of,, as shown in Fig. @), the inter-
(c) strong central chargeg& 10) andr,=1; and finally(d) action energy between dipoles in the outer shell becomes
strong central chargeg& 10) andr,=4 for a broad range of smaller and the shells start to behave more independently.
inverse temperatures. In the high temperature limit, simulaAlso the freezing transition temperature of the outer shell
tions estimatéy ~1.6x 10" 7. This value is close to the theo- reduces substantially compared to the result above. The dy-
retically expected value of =1/224~5.9x10 8, but it still namics of dipoles for different shells are also independent for
is slightly large. The origin of this difference is the length of larger,. Therefore the plot for the totd becomes stepwise,
the current simulation, which cannot probe every singleclearly reflecting the independent transitions for the inner
state, but the answer is already reasonable. The results for te@d outer shells. This difference is partially due to the fact
inner and outer shells are perfect. The number of possibléhat the density is different for the two layers, especially in
configurations for the inner and outer shells themselves aréh), but this additional separation helps with the discussion
Nehei= 22, and the simulations determing =Y,=1/Ng that follows for the case of a central charge.
=2.4x10"* for B<0.01. The situation becomes more interesting when the central
First, the situation for a neutral cavity is analyzed. Incavity becomes charged. Figuregsc)2and Zd) are for g
Fig. 2(a), since the interaction between the inner and outer=10. In the small, limit, since the interaction between the
shell is strong due to the short separation between them, ttdipoles in the inner shell is stronger than the charge—dipole
total Y shows a single “freezing” temperature #~0.1. interaction,Y for the inner shell in Fig. @) shows a similar
Although the two different shells freeze at different tempera-behavior to the one observed in FigaR The outer shell,
tures, as can be observed for the plotsYqrandY,, their  however, is substantially much more affected by the central
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FIG. 3. The density of states as the
function of energy[(a)—(d)] and polar-
ization [(a')—(b")] in the case of no
central charge d=0) and forr,=2
are plotted for different inverse tem-
peratures,3=0.01, 0.1, 1.0, and 10.
The dotted, dashed, and solid lines
represent the distributions of inner
shell, outer shell, and total system, re-
spectively. This figure corresponds to
the Ys plotted in Fig. 29). In the case
of (a)—(d), the difference of the energy
scale between the inner and outer shell
is observed from the difference of the
peak position and width. These distri-
butions become very sharp as the di-
poles are frozen. In the case of
(&')—(d"), since no central charge ex-
ists in this case, both inner and outer
shell distributions are centered around
P=0. The difference of the energy
scale is observed from the difference
of the peak width.

charge. The freezing temperature and the sharpness of tlienction of energy, whereds’)—(d’) are the density of states
transition change substantially. In the largdimit, shown in  as a function of polarization. The inner, outer, and total dis-
Fig. 2(d), the energy fluctuations of the outer shell are muchtributions are plotted in the dotted, dashed, and solid lines,
larger than for they=0 casgFig. 2(b)] due to the influence respectively. At high temperatures, both of these figures
of the strong central charge. Therefore the freezing temperahow energy distributions for both shells that are Gaussian
ture for this shell occurs at much higher temperatuvgsin  like. This is true for the temperature ranges whéfeandY,
Fig. 2(d) shows freezing for a much small@than in Fig. are much smaller than one. This is the regime where the
2(b). This transition is also broader, reflecting the widerBorn—Marcus theory is valid. As the temperature becomes
range of energy fluctuations. lower, these energy distributions start to deviate from the
The artificial broader separation between tiers 1 and Zaussian behavior and solvent freezing starts to occur; in
due to the different dipole density observed in the case of &ig. 2,Y; and/orY, starts to move toward unity.
neutral cavity becomes much smaller. Most of the energetic  Figure 3 shows the density of states in the case of no
fluctuations are now determined by the central charge. Theentral charged=0) and smallr, (r,=2). In Figs. 3a)—
fact that the transitions are broader than(@nhand (b) indi- 3(d), the difference of the energy scale between the inner and
cates that charge—dipole interactions are now dominant anouter shell is observed from the difference of the peak posi-
the gradual freezing of the layers, although still qualitative, istion and width. As the temperature is lowered3o- 0.01, the
much more realistic. inner shell dipoles start to freeze and their energy distribu-
The microscopic differences discussed above becomton shifts to the lower energies, while the distribution of the
clear by plotting the density of states as the function of enouter shell dipole remains similar. F@>0.1 in Fig. 3b),
ergy and polarization for different temperatures. In Figs. 3the outer shell dipoles also start to freeze and their energy
and 4, these quantities are plotted for the situations with nalistribution shifts to lower energies. The width of both peaks
central charge =0) and with strong central chargey ( is also sharper in Fig.(B), since the number of states occu-
=10), respectively. For briefness, only the limit of smgll  pied at lower energies is much smaller than for higher ones.
(r,=2), which corresponds to Figs(®2 and Zc), is ana- The situation becomes even more dramatic as the tempera-
lyzed. In these figurega)—(d) are the density of states as a ture is further reducefFigs. 3c) and 3d)] where freezing of
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lar behavior to the ones observed in
Figs. 3a)—3(d), since the interaction
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is stronger than the charge—dipole in-
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0 o — 0 L L shifted to negative values, especially
(d) [3:10 3t (d) B=10 for the outer shell, because of the in-
2t i teraction with the central charge.
B 2k
1 / [
: :e 1}
x107 [ | i: x107 |
s L (] L 0 L
-100 0 100 5 10
Energy Polarization

both shells becomes apparent. Figuréa')3-3(d’) display reduced, freezing starts to occur and the Born—Marcus for-
the density of states as the function of polarization. Since nenula for the solvent polarization starts to break down. The
central charge exists in this case, both inner and outer shebarts of the polar solvent farther from the charge still behave
distributions are centered aroum=0. These distributions in the Born—Marcus regime but regions closer to it become
become very sharp as the dipoles are frozen. glassy-like. In the limit that the solvent layers are weakly
Figure 4 is similar to Fig. 3 but for the case of a centralcoupled, different freezing temperatures exist for each of the
chargeq=10. The other parameters and the order of figuresayers, and the inverted snowball regime is observed. For
remain the same. For this smajl case, since the interaction syrongly coupled layers, however, such a simple picture

between the dipoles in the inner shell is stronger than thgeaks down and a more complex behavior is observed

charge—dipole interaction, the probability distribution of the,,ich is in agreement with what has been observed in some
inner shell in Fig. 4a) shows a similar behavior to the one other studied!

observed in Fig. @). These distributions, however, are — qpis 1 itinle (gradual transitions could be clearly iden-

broe_lqler and smoother _thar_1 those in Fig. 3, since there_ IS tm?fied by using a similar approach to ones that we have uti-
additional energy contribution from the charge—dipole |nter—Iized in protein folding to determine the number of acces-

action. The interesting new feature is the polarization densit)éibIe microstatesY glass parametgrAlthough the different

?r];bsutgéiss sahrce)wsnhilfqeglgz(')(i)e_g‘;(t(ijv)e' -\Eglisees pgls?,rézc?gﬁ; f(;Irs_thedipole densities for the different layers have overemphasized
i he differences between the two layers, all the qualitative

outer shell, because of the interaction with the central charge. ) _ )
eatures of the physical mechanisms could be determined

with this simple model. Also, in the case of a charged cavity,
these quantitative differences are much smaller since most of

We have shown that multiple solvent layers can be dethe energetic fluctuations are determined by charge—dipole
scribed by Born—Marcus theory as long as temperatureiteractions. Future extensions of this work will be general-
above the freezing transition are considered. This is the limitzed for three-dimensional representations of the solvent with
where no solvent layer is yet frozen. As the temperature isippropriate molecular densities.

V. CONCLUSIONS
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By utilizing this “replica symmetry breaking” parameter °(a) I. Rips, J. Klafter, and J. Jortner, J. Chem. Pt8&.3246(1988; (b)
Y, we have been able to monitor these multiple freezing tran- 89, 4288(1988.

e . . . . 1L
sitions and to determine the spatial regions associated with

A. Papazyan and M. Maroncelli, J. Chem. Ph98, 6431(1993.
A. Chandra and B. Bagchi, J. Chem. Ph94, 2594 (1989.

egch of them.. Th_e next cha_llenge is to u_t|l|ze models of thissg gagchi, Annu. Rev. Phys. Chem0, 115 (1989.

kind to quantitatively explain the experimental results that“p. r. Calef and P. G. Wolynes, J. Phys. Chét@, 145 (1983.

deviate from the linear/continuum models as described irjllZF- O. Raineri and H. L. Friedman, Adv. Chem. Phy87, 81 (1999.
Sec. | of this paper. These studies should allow a direct un-K: Yoshihara, K. Tominaga, and Y. Nagasawa, Bull. Chem. Soc. Gfin.

696 (1995.

derstanding of the molecular mechanisms by which differentzp e g, para 1. 3. Meyer, and M. A. Ratner, J. Phys. Crigg, 13148
polar solvents are coupled to ET reactions. Finally, applica- (199

tions of these models should not be limited to electron transt®y. Tanimura and S. Mukamel, J. Chem. Phg81, 3049(1994.

fer; applications to similar problems such as nonlinear opti-°G- C. Walker, E. Akesson, A. E. Johnson, N. E. Levinger, and P. F. Bar-

cal response should provide us with further understanding of,
how electronic transitions are mediated by polar solvents.
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