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The energy landscape for solvent dynamics in electron transfer reactions:
A minimalist model
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Energy fluctuations of a solute molecule embedded in a polar solvent are investigated to depict the
energy landscape for solvation dynamics. The system is modeled by a charged molecule surrounded
by two layers of solvent dipolar molecules with simple rotational dynamics. Individual solvent
molecules are treated as simple dipoles that can point toward or away from the central charge~Ising
spins!. Single-spin-flip Monte Carlo kinetics simulations are carried out in a two-dimensional lattice
for different central charges, radii of outer shell, and temperatures. By analyzing the density of states
as a function of energy and temperatures, we have determined the existence of multiple freezing
transitions. Each of them can be associated with the freezing of a different layer of the solvent.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1488588#
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I. INTRODUCTION

Electron transfer~ET! processes play a central role
several problems in physics, chemistry, and biology.1 Most
of these reactions occur in condensed phases where the
rounding dielectric medium provides the energetic fluct
tions needed in these reactions thereby promoting or hin
ing thermally activated processes in these syste
Understanding molecular motions and how they determ
the reaction coordinate for these ET reactions is, theref
crucial for a comprehensive description of ET processes

The early theoretical treatments describing solvat
have been based on homogeneous dielectric continuum m
els that are completely specified by its experimental die
tric dispersione(v).2,3 In this case, the total solvent pola
ization around the donor and acceptor sites is used as th
reaction coordinate. This polarization is usually treated as
effective overdamped harmonic mode. This assumption
equivalent to the use of a harmonic heat bath, which lead
a Gaussian modulation of the energies of the ET donor
acceptor sites.4–7 This limit is valid as long as the interac
tions between an ET system and the solvation molec
have the cumulative effect of a large number of weak int
actions, and the central limit theorem comes into play. Tre
ing the solvent as a dielectric continuum provides a reas
able first approximation but it misses the molecular aspe
of the solute–solvent interaction. In 1977 Onsager8 com-
mented that solvation of a newly created charge~electron!
would proceed with the characteristic longitudinal relaxat
time tL at points far from the charge but, near to it, t

a!Author to whom correspondence should be addressed; electronic
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response would probably be much slower. This mechani
which is known as the ‘‘inverted snowball’’ picture, gives
qualitative description of how the solvation dynamics sho
depart from continuum predictions. Only at points far fro
the solute, where its field varies slowly compared to the s
of the solvent molecules, should the continuum limit oftL be
attained. This idea served to motivate many of the molecu
theories of solvation, which have included some molecu
aspects of the solvent. Linearized equilibrium theories of s
vation have been extended to correct these dynamic p
lems; they are known as the dynamical mean-spher
approximations9,10 They are molecular models in the sen
that the structure imposed by the solute is calculated from
approximated solution of a simple molecular reference s
tem. The real solute/solvent system is mapped onto an id
ized hard-sphere solute/dipolar hard sphere solvent. It
dicts that at regions close to the cavity~solute!, solvent
molecules feel the ‘‘nonscreened’’ charge cavity and the
sponse is slower thantL . In regions far from the cavity~or
in the limit the size of the molecules is zero!, the continuum
limit tL is recovered, in agreement with the inverted sno
ball picture. Simulations have shown that this picture fail11

when the linear limit breaks down and, therefore, the ove
behavior becomes strongly dependent on the coupling
tween dipoles and the charge at the cavity. This is the si
tion investigated in this paper.

Another approach for constructing molecular theories
solvation shifts attention away from the structure created
the solute to the structure and dynamics of the pure solv
alone. One assumes that the most important molecular as
of solvation is not that correlations between solvent m
ecules are substantially perturbed by the solute, but that
solute electrostatic field probes the solvent response
il:
2 © 2002 American Institute of Physics
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length scales where molecular aspects of solvent–sol
correlations are important. This response is investigated
studying the solvent density function, with a kinetic descr
tion for the density following a generalized Smoluchows
equation.12–14 All these models are extensions of the co
tinuum model, where the discreteness~molecular aspect! is
included indirectly. Molecular theories that include equili
rium and nonequilibrium solvation processes have b
presented.15 They are based on renormalized response
proaches that incorporate nonlinear aspects of solvation
namics. They are all based in linear response assumpt
thus they do not include the solvent saturation effects as
as the complexity of multidimensional potential surfac
with multiple minima.

Recent developments of ultrafast nonlinear spectrosc
have made it possible to observe the dynamical aspects o
processes more directly.16–18 Walker et al.19 and Tominaga
et al.,20 for example, have investigated the reverse ET, a
photoexcitation of the charge transfer band, by monitor
the recovery of the ground state absorption. Kobayashi
co-workers studied the intermolecular ET between exc
dye molecules and the electron-donating solvent.21 A variety
of experiments has been carried out and some results cle
indicate deviations from continuum and linear theories.
molecular dynamics studies, multiphasic relaxation regim
with nonexponential relaxation times have also be
observed.22 The temperature dependence effects are part
larly interesting. At high temperatures, where the therm
fluctuation energy is larger than the interaction energies
tween solvation molecules, the system follows normal dif
sion dynamics described by the linear response picture
Born–Marcus theory.1 As discussed by Maroncelliet al.,
however, some ET systems exhibit deviations from t
regime.23,24At low temperatures, experimental results for a
cohols deviate dramatically from continuum predictions22

suggesting a ‘‘glassy’’~solvent freezing! behavior. One inter-
esting question is to understand the conditions under wh
the solvent dynamics can be represented by a single co
tive reaction coordinate or when these freezing mechani
cannot be neglected. When this one-dimensional represe
tion is valid, one recovers the successful Born–Marc
theory. Several other computational studies have confirm
the power of this approximation.25

The use of all-atom solvent model to discuss these iss
is computationally too expensive and it complicates the
derstanding of the problem. One alternative is to use m
malist models for the solvent, i.e., simpler models that
clude the necessary complexity to address this ques
Onuchic and Wolynes~OW! introduces a minimalist model26

for a polar solvent interacting with a charged cavity rep
senting the donor or acceptor site for ET. Although th
model is far from representing details of real solvents
includes the basic features of a rough-energy landscape:
tidimensional degrees of freedom, with each solvent m
ecule being treated independently; a disordered energy l
scape with multiple minima; and a polarizable mediu
around a charged cavity. This model is much simpler tha
Brownian dipole lattice model, where the solvent is rep
sented by a rigid cubic lattice of permanent dipole,11,27but it
Downloaded 17 Jul 2002 to 133.48.169.41. Redistribution subject to AI
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can account for the local structure or frustration of the s
vent molecules. Above the ‘‘thermodynamic glass’’~freez-
ing! transition, it recovers the continuum dielectric limit. R
cently the dynamics of the OW model was studied by Le
and Onuchic28 which have shown that, at high temperature
the system exhibits an effective diffusive one-dimensio
dynamics, where the Born–Marcus limit is recovered. At lo
temperatures, a polarization-dependent glassy phase ap
and a slow non-self-averaging dynamics is observed.
OW model uses the random energy model approximatio29

to evaluate the solvent energies, which assumes the so
energies as random variables. Such an assumption doe
include energy correlation between states. Leite rece
adapted the OW model to include these correlations.30 A
single shell of solvent molecules around a cavity is descri
by a two-dimensional system with periodic boundary con
tions with nearest-neighbor interaction. There are two m
limitations in these approaches. Even when a mode
adapted to include energy correlations, the interactions
introduced in a rather nonrealistic way, i.e., the dipol
dipole and charge–dipole interactions are just random v
ables, and are far from representing the actual interacti
These models also deal with a single shell of solvent dipo
around a cavity. The generalization of this model to corr
for these two factors is the subject of this paper. Furt
investigations into determining when a single collective
action coordinate description is appropriate are also p
formed.

II. A MINIMALIST MODEL FOR THE SOLVENT

A generalization of the model proposed by Onuchic a
Wolynes and kinetically explored by Leite and Onuchic
developed.26,28,30The new features are the inclusion of mu
tiple layers of solvent and a more realistic representation
the dipole–dipole and charge–dipole interactions. The O
model considers a single shell of solvent molecules w
simple rotational dynamics, represented by dipoles point
only in two directions, inward and outward, i.e., as Isin
spins. In the present work a second layer of dipoles is in
duced, and also the positions of the dipoles in both lay
include some structural disorder. Figure 1 shows a schem
representation of this model, which is carefully described
Sec. III.

Although individual solvent molecules are treated
simple effective spins, this model is already able to incorp
rate several of the main features of how polar solvents cou
to electron transfer reactions. This kind of minimalist mod
has been successful in the physics of magnetic systems
more recently, on problems of protein dynamics and foldin
however, very little has been done in terms of exploiti
them for realistic solvent effects. Most of the studies to d
have been done for continuum models or for very small s
tems at a full all-atom representation level. Similarly to o
recent success in protein folding,31 such models are expecte
to play a central role in establishing the molecular mec
nism for polar solvent mediation in electron transfer rea
tions. These models will also act as bridges between
continuum and the all-atom solvent representations. N
that in this paper we limit our analysis to ET problem, b
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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our study is closely related to nonlinear spectroscopy o
molecular system in the condensed phases. For examp
similar model has been used to account for energy fluc
tions of impurity molecules in a glassy environment32,33 as
the content of single molecule detection, in which the sp
tral properties of individual impurity molecules in an env
ronment are measured with the ensemble average remov34

Since the initial OW model was based on the rand
energy model to evaluate the solvent energy, it allowed fo
single glass-like transition temperature. In the generaliza
of this model presented here, we can identify multiple gl
~freezing! transitions and are able to associate each of th
with the freezing of a different layer of the solvent. It
important to observe how the effect of a central charge co
pletely changes the solvation effect. In order to be able
detect the temperatures for which these layers ‘‘freeze’’
utilize an approach develop by Socci and collaborators
the context of protein folding, they defined a useful para
eterY, which measures the number of accessible states.35 Y
reveals the replica symmetry breaking of the structure, an
is a continuous function of order parameters in the fold
process, which are the reaction coordinates. In our casY
~defined in Sec. III! is simplified in just two components
each of them associated to one of the two solvent layers.
use of theY order parameter allows for a detail exploratio
of these multiple transitions, which can be associated w
the ‘‘inverted snowball’’ picture. To fully explore the physic
of the problem, we also study the behavior of several ot
thermodynamic quantities. The total energy and total po
ization are the natural ones, but it is also important to a
lyze their contributions from each of the individual layers
fully explore the details of the solvent mechanism.

III. SIMULATION MODEL AND METHODS

We consider a charged molecule system surrounded
the two layers of solvent molecules with simple rotation

FIG. 1. Schematic view of the two-layer solvent model system. A so
molecule is represented by a point charge in the central cavity. Sol
molecules are represented by two layers of dipoles around the solu
lattice with some spatial disorder. Individual dipoles point only in two
rections, inward and outward, and are treated as simple Ising spins.
Downloaded 17 Jul 2002 to 133.48.169.41. Redistribution subject to AI
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dynamics. Individual solvent molecules are represented
dipoles that point in only two directions, inward and ou
ward, and are treated as simple Ising spins. Their positio
unit direction, and strength are represented byr j , Sj , and
s j , respectively. The charge strength is denoted byq. All
dipole–charge and dipole–dipole interactions are include
the energy determinations and not simply nearest neigh
interactions. Thus, even under this simple dipole descript
the long-range electrostatic contributions are properly inc
porated. The interaction energy of solvent is expressed a

Esolv52(
i 51

N

j i~q!s i1(
j 52

N

(
k51

j 21

Jjks jsk . ~1!

The charge–dipole interaction and dipole–dipole interact
coefficients are, respectively, expressed as

j i~q!52
mq

r i
2 , ~2!

Jjk5m2
Sj•Skr jk

2 23Sj•~r jk!Sk•~r jk!

r jk
5 , ~3!

wherer jk5r j2r k , andm is the dipole moment. Simulation
were carried out using typical units with charge measured
terms of 0.1 of the electron charge, dipole factors measu
in units of Debyes, and distances measured in units of 2.1
Therefore energies are in units of 1.08310220 J, which is
about 2.5 (kBT) at room temperature. The values used in t
simulations are typical ones for electron transfer in po
solvents. For example, in a case of water solvent,m is about
2 andr jk is about 2–3 Å. Our choices of parameters, ho
ever, have the goal of demonstrating the behavior of
model and how it affects the electron transfer reaction
they do not refer to any specific solvent.

In this study we limit our analysis to a two-dimension
solvent, although computationally there is no essential d
cult in generalizing to the three-dimensional case. Two lay
of solvent are included. The inner layer consists ofN1 di-
poles and the outerN2 ones. Their coordinates are given b

r j5r cos~2p j /N1!x1r sin~2p j /N1!y1dr j

~1< j <N1!, ~4!

and

r j52r cos~2p j /N2!x12r sin~2p j /N2!y1dr j

~N1, j <N2!, ~5!

wheredr j is the Gaussian random distribution of sites d
fined by

^dr j&50, ~6!

^udr j u&5dr . ~7!

Because of this spatial disorder, the solvent system exh
frustration that leads to glass behavior at sufficiently lo
temperatures. In principle, disorder may come from ot
sources, such as the local environment for each dipole,
the spatial one is sufficient to illustrate the overall solve
mechanism. In our solvent minimalist model, we have
cluded the same number of dipoles in each of the two lay
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This simplification presents some quantitative limitatio
when comparisons to real systems are made since the d
density differs for the two layers. This situation is mo
likely to correspond to dipolar molecules in confine
geometries36 such as water molecules in carbon nanotube37

This approximation decreases the coupling between dip
for the outmost layers, but it does not change the coup
with the central charge, which is the main issue in elect
transfer processes. The effect of the gradual freezing of
layers is indeed enhanced under this scheme. Although
results should be believed only qualitatively, this simplifi
model already provides all the physical mechanisms ass
ated with gradual freezing of the solvent under the influe
of a charge cavity. The unit directions of dipole moments
given by

Sj5
r j

ur j u
. ~8!

We consider the two cases fors j561, where the sign de
pends on whether the dipoles are pointing toward or aw
from the charge. The dynamics of the system is described
single-spin-flip kinetics as typically used in Ising mod
simulations. The probabilityP(J;t) for which the system
has a spin configurationJ5(s1 ,s2 ,...,sN) at time t obeys
the master equation

]P~J;t !

]t
5(

i
@2Wi~J!P~J;t !1Wi~FiJ!P~FiJ;t !#,

~9!

whereFiJ denotes a spin configuration obtained fromJ by
flipping the i th spin: FiJ5(s1 ,...,2s i ,...,sN) for J
5(s1 ,...,s i ,...,sN). The transition probability per uni
time, Wi(J), for the i th spin to flip in a configurationS, is
chosen to be of the Glauber type38–40

WiJ5
1

2t
@12s i tanh~Ei !# ~10!

with

Ei5
Esolv~FiJ!2Esolv~J!

kbT
, ~11!

whereEsolv(J) denotes the energy for the spin configurati
J andt represents the time scale for a noninteracting spin
flip. It should be noted that this transition probability satisfi
the detailed balance condition

Wi~J!Peq~J!5Wi~FiJ!Peq~FiJ!, ~12!

wherePeq(J)}exp@Esolv(J)# is the equilibrium distribution.
In this paper, a standard Monte Carlo method, wh

uses discrete time steps and updates spins in a random
quence, is applied to generate a sample of the time evolu
of the spin configurations, which are described by the ma
equation@Eq. ~9!#. We start by randomly choosing an initia
configuration$s i%. Dynamic moves are then accomplish
by single dipole (s i) flips utilizing the Monte Carlo rule.
Dipoles are chosen by going through their array random
The Monte Carlo rule is the following. The change in ener
Ei , produced by the trial move, is computed using Eq.~1!,
Downloaded 17 Jul 2002 to 133.48.169.41. Redistribution subject to AI
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and the transition probabilityWi(J) is determined by Eq.
~10!. A random numberz is selected in the interval 0,z
,1. Finally, if tWi.z the move is accepted, i.e.,s i is re-
placed by the news i8 . Otherwise the move is rejected an
the previous configuration is maintained. In either case,
ery trial is counted as a dynamic step. The time in the ma
equation ~9! corresponds to a Monte Carlo step~MCS!,
which is defined by repeating the procedure aboveN times. A
single MCS defines the unit of time of the master equati
Although there are other algorithms for generating sam
paths, this procedure realistically describes well the dyna
ics of Ising environments.

During the simulation run, we save all spin configur
tions (J) for each time step. We then classify the sequen
of data under all possible spin configurations. By evaluat
the energy or polarization for each spin configuration,
obtain the density of states as the function of energy or
larization.

IV. NUMERICAL RESULTS

Monte Carlo simulations were carried out for a syste
composed ofN1512 inner dipoles andN1512 outer ones
positioned on a two-dimensional lattice. The central cha
and the outer-shell radius were varied. The radius of the
ner shell was kept fixed atr 151. The position of the dipoles
was disordered in each lattice point with a standard devia
of dr 50.1. Simulations were performed for a broad range
temperatures. In each run, we have discarded the in
20 000 MCSs for thermal equilibration and then record
1 250 000 MCSs of spin configurations and their respec
energies. Since one MCS consists of 24 simulation steps,
sample size is about 30 000 000. These simulations are
ficiently large for most of our statistical analysis as it b
comes apparent later in this section.

As discussed earlier, in order to determine the glass tr
sition the quantityY, which determines the number of acce
sible states at a given temperature, is calculated.35 This quan-
tity is computed for the configurations including all th
solvent as well as for partial configurations that only inclu
the inner or outer dipoles. Their definitions are as follows

Y15(
k

n1~k!2

Nsamp
2 , ~13!

Y25(
k

n2~k!2

Nsamp
2 , ~14!

Ytot5(
k

ntot~k!2

Nsamp
2 , ~15!

wheren1(k), n2(k), andntot(k) are the number of steps tha
the spin configuration visits the labeled statek for the inner-
shell, outer-shell, and total solvent system during a simu
tion run, respectively. The value ofY is inversely propor-
tional to the number of accessible states. In addition toY, the
densities of states as a function of polarizationP5(s j and
as a function of energy are also determined. Similarly toY,
these quantities are also computed for the inner and o
shell. During this single shell calculations, the interacti
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. The functionY1 ~dotted line!, Y2 ~dashed line!, and Ytot ~solid line! calculated from Eqs.~13!, ~14!, and ~15! are plotted for different inverse
temperatures~b! for the cases of:~a! no central charge (q50) andr 52; ~b! no central charge andr 254; ~c! strong central charge (q510) andr 252; and
finally ~d! strong central charge (q510) andr 254. In the cases of~a! and~c!, the totalY shows a single freezing temperature, since the interaction betw
the inner and outer shell is strong. In the case of~c!, since the interaction between the dipoles in the inner shell is stronger than the charge–dipole inte
Y1 for the inner shell shows a similar behavior to the one observed in~a!. On the other hand,Y2 ~outer-shell parameter! is substantially affected by the centra
charge. In the cases of~b! and ~d!, the interaction energy between dipoles in the outer shell becomes smaller and the plot for the totalY becomes stepwise
clearly reflecting the independent transitions for the inner and outer shells. In the case of~d!, the freezing temperature forY2 occurs at much higher
temperatures than the case of~b! due to the influence of the strong central charge.
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energy between the inner and outer dipoles is equally sh
between the two shells, i.e., half of it assigned to each sh

Figures 2~a!–2~d! show Y1 ~dotted line!, Y2 ~dashed
lines!, and Ytot ~solid line! in the cases of:~a! no central
charge (q50) andr 251; ~b! no central charge andr 254;
~c! strong central charge (q510) andr 251; and finally~d!
strong central charge (q510) andr 254 for a broad range o
inverse temperatures. In the high temperature limit, simu
tions estimateY;1.631027. This value is close to the theo
retically expected value ofY51/224;5.931028, but it still
is slightly large. The origin of this difference is the length
the current simulation, which cannot probe every sin
state, but the answer is already reasonable. The results fo
inner and outer shells are perfect. The number of poss
configurations for the inner and outer shells themselves
Nshell5212, and the simulations determineY15Y251/Nshell

52.431024 for b,0.01.
First, the situation for a neutral cavity is analyzed.

Fig. 2~a!, since the interaction between the inner and ou
shell is strong due to the short separation between them
total Y shows a single ‘‘freezing’’ temperature atb'0.1.
Although the two different shells freeze at different tempe
tures, as can be observed for the plots forY1 andY2 , their
Downloaded 17 Jul 2002 to 133.48.169.41. Redistribution subject to AI
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respective transitions occur atb'0.06 andb;0.2, where
the difference between these temperatures is still too sm
that the two transitions appear to occur in sequence. Th
fore it is difficult to separate them from the plot for the tot
Y. For larger values ofr 2 , as shown in Fig. 2~b!, the inter-
action energy between dipoles in the outer shell becom
smaller and the shells start to behave more independe
Also the freezing transition temperature of the outer sh
reduces substantially compared to the result above. The
namics of dipoles for different shells are also independent
larger 2 . Therefore the plot for the totalY becomes stepwise
clearly reflecting the independent transitions for the inn
and outer shells. This difference is partially due to the f
that the density is different for the two layers, especially
~b!, but this additional separation helps with the discuss
that follows for the case of a central charge.

The situation becomes more interesting when the cen
cavity becomes charged. Figures 2~c! and 2~d! are for q
510. In the smallr 2 limit, since the interaction between th
dipoles in the inner shell is stronger than the charge–dip
interaction,Y1 for the inner shell in Fig. 2~c! shows a similar
behavior to the one observed in Fig. 2~a!. The outer shell,
however, is substantially much more affected by the cen
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. The density of states as th
function of energy@~a!–~d!# and polar-
ization @~a8!–~b8!# in the case of no
central charge (q50) and for r 252
are plotted for different inverse tem
peratures,b50.01, 0.1, 1.0, and 10.
The dotted, dashed, and solid line
represent the distributions of inne
shell, outer shell, and total system, re
spectively. This figure corresponds t
the Ys plotted in Fig. 2~a!. In the case
of ~a!–~d!, the difference of the energy
scale between the inner and outer sh
is observed from the difference of th
peak position and width. These distr
butions become very sharp as the d
poles are frozen. In the case o
~a8!–~d8!, since no central charge ex
ists in this case, both inner and oute
shell distributions are centered aroun
P50. The difference of the energy
scale is observed from the differenc
of the peak width.
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era-
charge. The freezing temperature and the sharpness o
transition change substantially. In the larger 2 limit, shown in
Fig. 2~d!, the energy fluctuations of the outer shell are mu
larger than for theq50 case@Fig. 2~b!# due to the influence
of the strong central charge. Therefore the freezing temp
ture for this shell occurs at much higher temperatures.Y2 in
Fig. 2~d! shows freezing for a much smallerb than in Fig.
2~b!. This transition is also broader, reflecting the wid
range of energy fluctuations.

The artificial broader separation between tiers 1 an
due to the different dipole density observed in the case
neutral cavity becomes much smaller. Most of the energ
fluctuations are now determined by the central charge.
fact that the transitions are broader than in~a! and ~b! indi-
cates that charge–dipole interactions are now dominant
the gradual freezing of the layers, although still qualitative
much more realistic.

The microscopic differences discussed above beco
clear by plotting the density of states as the function of
ergy and polarization for different temperatures. In Figs
and 4, these quantities are plotted for the situations with
central charge (q50) and with strong central charge (q
510), respectively. For briefness, only the limit of smallr 2

(r 252), which corresponds to Figs. 2~a! and 2~c!, is ana-
lyzed. In these figures,~a!–~d! are the density of states as
Downloaded 17 Jul 2002 to 133.48.169.41. Redistribution subject to AI
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function of energy, whereas~a8!–~d8! are the density of state
as a function of polarization. The inner, outer, and total d
tributions are plotted in the dotted, dashed, and solid lin
respectively. At high temperatures, both of these figu
show energy distributions for both shells that are Gauss
like. This is true for the temperature ranges whereY1 andY2

are much smaller than one. This is the regime where
Born–Marcus theory is valid. As the temperature becom
lower, these energy distributions start to deviate from
Gaussian behavior and solvent freezing starts to occur
Fig. 2, Y1 and/orY2 starts to move toward unity.

Figure 3 shows the density of states in the case of
central charge (q50) and smallr 2 (r 252). In Figs. 3~a!–
3~d!, the difference of the energy scale between the inner
outer shell is observed from the difference of the peak po
tion and width. As the temperature is lowered tob.0.01, the
inner shell dipoles start to freeze and their energy distri
tion shifts to the lower energies, while the distribution of t
outer shell dipole remains similar. Forb.0.1 in Fig. 3~b!,
the outer shell dipoles also start to freeze and their ene
distribution shifts to lower energies. The width of both pea
is also sharper in Fig. 3~b!, since the number of states occ
pied at lower energies is much smaller than for higher on
The situation becomes even more dramatic as the temp
ture is further reduced@Figs. 3~c! and 3~d!# where freezing of
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



e

n

ll
-
-
n

i-

-
n

e
ly
-

2178 J. Chem. Phys., Vol. 117, No. 5, 1 August 2002 Tanimura, Leite, and Onuchic
FIG. 4. Similar to Fig. 3 but now for
the limit of strong central chargeq
510. This figure corresponds to th
Ys plotted in Fig. 2~c!. In the case of
~a!–~d!, the distributions show a simi-
lar behavior to the ones observed i
Figs. 3~a!–3~d!, since the interaction
between the dipoles in the inner she
is stronger than the charge–dipole in
teraction. These distributions, how
ever, are broader and smoother tha
those in Fig. 3, since there is the add
tional energy contribution from the
charge–dipole interaction. The inter
esting new feature is the polarizatio
density of states shown in~a8!–~d8!.
These polarization distributions ar
shifted to negative values, especial
for the outer shell, because of the in
teraction with the central charge.
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both shells becomes apparent. Figures 3~a8!–3~d8! display
the density of states as the function of polarization. Since
central charge exists in this case, both inner and outer s
distributions are centered aroundP50. These distributions
become very sharp as the dipoles are frozen.

Figure 4 is similar to Fig. 3 but for the case of a cent
chargeq510. The other parameters and the order of figu
remain the same. For this smallr 2 case, since the interactio
between the dipoles in the inner shell is stronger than
charge–dipole interaction, the probability distribution of t
inner shell in Fig. 4~a! shows a similar behavior to the on
observed in Fig. 3~a!. These distributions, however, ar
broader and smoother than those in Fig. 3, since there is
additional energy contribution from the charge–dipole int
action. The interesting new feature is the polarization den
of states shown in Fig. 4~a8!–4~d8!. These polarization dis
tributions are shifted to negative values, especially for
outer shell, because of the interaction with the central cha

V. CONCLUSIONS

We have shown that multiple solvent layers can be
scribed by Born–Marcus theory as long as temperatu
above the freezing transition are considered. This is the l
where no solvent layer is yet frozen. As the temperature
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reduced, freezing starts to occur and the Born–Marcus
mula for the solvent polarization starts to break down. T
parts of the polar solvent farther from the charge still beha
in the Born–Marcus regime but regions closer to it beco
glassy-like. In the limit that the solvent layers are weak
coupled, different freezing temperatures exist for each of
layers, and the inverted snowball regime is observed.
strongly coupled layers, however, such a simple pict
breaks down and a more complex behavior is observ
which is in agreement with what has been observed in so
other studies.11

This multiple~gradual! transitions could be clearly iden
tified by using a similar approach to ones that we have
lized in protein folding to determine the number of acce
sible microstates~Y glass parameter!. Although the different
dipole densities for the different layers have overemphasi
the differences between the two layers, all the qualitat
features of the physical mechanisms could be determi
with this simple model. Also, in the case of a charged cav
these quantitative differences are much smaller since mo
the energetic fluctuations are determined by charge–dip
interactions. Future extensions of this work will be gener
ized for three-dimensional representations of the solvent w
appropriate molecular densities.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



r
an
w
hi
a

u
en
ca
n
pt
g
.

r
a
n
T

.T
r

ar-

F.

a,

cci,

2179J. Chem. Phys., Vol. 117, No. 5, 1 August 2002 Solvent dynamics in electron transfer
By utilizing this ‘‘replica symmetry breaking’’ paramete
Y, we have been able to monitor these multiple freezing tr
sitions and to determine the spatial regions associated
each of them. The next challenge is to utilize models of t
kind to quantitatively explain the experimental results th
deviate from the linear/continuum models as described
Sec. I of this paper. These studies should allow a direct
derstanding of the molecular mechanisms by which differ
polar solvents are coupled to ET reactions. Finally, appli
tions of these models should not be limited to electron tra
fer; applications to similar problems such as nonlinear o
cal response should provide us with further understandin
how electronic transitions are mediated by polar solvents
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