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A test system is assumed to interact with a heat bath consisting of harmonic
oscillators or an equivalent bath with a proper frequency spectrum producing a Gauss-
ian-Markoffian random perturbation. The effect of reaction of the test system to the
bath is considered in the high temperature approximation. Elimination of the bath us-
ing the influence functional method of Feynman and Vernon yields a continuous frac-
tion expression for the reduced density matrix of the test system. The result affords a
basis to clarify the relationship between the stochastic and the dynamical approaches
to treat the problem of partial destruction of quantum coherence of a system interact-

ing with its environment.

Introduction

§1.

Brownian motion of quantum systems or
more generally quantum processes in
dissipative systems have been a subject of
great interest for many years. The interest has
been renewed in recent years in connection
with the work by Leggett ef a/l. on the problem
of quantum tunneling in macroscopic
systems."? Recent progress in experimental tech-
niques has made experiments feasible to test
possible effects of dissipation on quantum
phenomena.® It should be noticed, however,
that the problem is not really new. One of the
oldest examples is the radiation damping of an
excited atom interacting the bath of radiation
field.¥ There exist a great number of
literatures on the various aspects and methods
on this subject.’™”

Dissipation is due to the interaction between
the system, which we call the test system A,
and the bath B. When the bath variables are
eliminated from the basic equation of motion
of the whole system, the test system is re-
garded to follow a dissipative dynamics. At
the crudest stage, the dynamics is deter-
ministic with proper parameters characteriz-
ing dissipation. In a more detailed description
one considers fluctuations so that the
dynamics has to bear a stochastic character.
The classical example is the Langevin equation

ani

describing the Brownian motion. The equa-
tion contains a friction term and a random
force, which is assumed to be a Gaussian
white noise with the intensity related to the
friction by the fluctuation-dissipation
theorem. A given sample of the random force
determines a path of the particle. When the
paths are integrated over all possible realiza-
tions, we are lead to the transition probability
function of the Brownian particle from an in-
itial to final states. Because of the Gaussian-
white assumption, this follows a Fokker-
Planck equation.

In many realistic cases, the system-bath in-
teraction may be assumed in a good approx-
imation to have a Gaussian nature. This is ob-
viously true if the bath is regarded to consist
of harmonic oscillators and should also be
true if the interaction is a cumulative effect of
a great number of weak interactions, when
some sort of central limit theorem comes into
play. A simple example is a spin precessing in
a local random field which is a resultant of
dipolar interactions of many other spins in the
environment. Generalizing this simple exam-
ple, we model the system of our interest by an
effective Hamiltonian which is regarded as
stochastic variable. Namely we introduce a
stochastic variable or such variables represent-
ing the states of the bath and assume a certain
law of stochastic evolution. We then consider
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the interaction Hamiltonian as a function of
such variables. We call this kind of models a
stochastic approach®'V in contrast to the
dynamical approach in which one explicitly
assumes a dynamical model for the bath and
carries out usually some sort of perturbative
calculations.

A stochastic approach is by its nature a
phenomenological one. The underlying
stochastic process is merely a model ap-
propriate for the problem rather than some-
thing to be derived from microscopic con-
siderations. This is regarded as an advantage
since it can cover a wide category of physical
cases from a unified point of view. Further-
more the calculations may be carried out by
non-perturbative methods.

The most important and sufficiently realistic
model among such stochastic models of bath-
system interaction is the Gaussian noise which
is further assumed to be Markoffian. Such a
model has been used repeatedly to treat
dynamical systems under the influence of its
environment, for instance, nuclear spins,
atoms or molecules in varying local en-
vironments.? The key question was the effect
of non-white character, namely the effect of
finiteness of the correlation time of the noise
in comparison with the magnitudes of the
noise. When the correlation time is very short,
namely when the noise is regarded as white,
we may have the motionally-narrowed limit,
where simple perturbational calculation works
well yielding exponential decays and the quan-
tum coherence of the system is completely
destroyed. This corresponds to the classical
ideal Brownian motion. On the other hand, if
the noise varies very slowly, the system main-
tains its quantum coherence. The reality may
be found to lie between the two extremes,
namely in intermediate situations. A very
general method has been developed for a
Gaussian-Markoffian noise to cover the whole
range of its correlation time. The formal solu-
tions can be written down in terms of a con-
tinued fraction expression.

One drawback of the stochastic approach is
that it ignores the reaction of the test system to
the bath.*'Y The effect of the bath is con-
sidered merely as an external force disregard-
ing its dynamic degrees of freedom. This cor-
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responds to assuming an infinite temperature
for the bath. This makes no harm in many ex-
amples such as those of nuclear resonance
problems. Nevertheless it is interesting to con-
sider how we could remedy the drawback and
to see how the stochastic model is related to a
dynamic model.

In order to clarify a few points about the
above mentioned problem, we use here the
Feynman-Vernon formalism'? assuming a
bath composed of harmonic oscillators. The
evolution of the density matrix of the test
system can be generally expressed in terms of
coherent state representation. When the in-
teraction of the bath is introduced through the
influence functional into the path integral ex-
pression, we find two types of terms represent-
ing the effect of the bath. One of the terms cor-
responds to the stochastic interaction with a
Gaussian noise and the other corresponds to
the dynamical effect which was missing in the
stochastic model. Both of them are Gaussian
noises but with different correlation functions.
By assuming an appropriate spectrum for the
oscillator frequencies, we are able to secure
the Markoffian character in a high tempera-
ture approximation. We then show that the
Laplace transform of the reduced density
matrix for the test system is expressed in terms
of a continued fraction. This enables us to
recover the evolution equation of the
stochastic model in a generalized form.

This paper is organized in the following
way. In §2, we give a brief review of the for-
malism of the stochastic approach with a
Gaussian Markoffian noise. Section 3 is
devoted to an account of the path integral ex-
pression to include the influence functional in
the coherent state representation. This shows
that our treatment can, in principle, be ap-
plied to general classes of test systems. In §4,
we derive a set of equations to determine the
evolution of the density matrix of the test
system averaged over all possible paths of the
bath oscillators. The continued fractional ex-
pression of its Laplace transform is obtained
from the equations. This explicitly shows the
relation of the present approach to the
stochastic one.

In the last section, we add a few remarks in-
cluding the cases where Markoffian properties
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are not realized. In the lowest approximation
which corresponds to the conventional Born
approximation we recover the familiar master
equation.

§2. Brief Summary of Stochastic Approach®

We consider a test system A interacting with
a bath B. The states of B is denoted by
Q=(Q,, 2.,---). We assume that the evolu-

tion of B is stochastic and is described by a
Markoffian equation,

a

= - (QINQHPQ', 1), (2.1)
<

where P(£, t) is the probability to find B in
the state Q at time 7 and (21771 Q") is the transi-
tion rate from Q' to . The equilibrium state
of B is denoted by 10) and its conjugate by
(0l. They satisfy the relations,

ro)y=o0, (©Ir=o0,

010)=1. (2.2)

The quantal evolution of A is assumed to be
governed by the Hamiltonian

H(t)=H s+ H;(£2(1)), (2.3)

where H , is the Hamiltonian of A itself and H,
is the interaction with B. Because of the
stochastic motion of B, the effective Hamilto-
nian H (t) is stochastic. The quantal Liouville
equation for the test system A

d Al 2 4

5;/)(1):(1?1) H™(t)p(1) (2.4)
is regarded here as a stochastic equation con-
taining the stochastic parameter (). The
notation H ¥ means a commutator operation,
namely

H*p=Hp—pH. 2.5)

The formal solution of eq. (2.4) for a given
sample of Q(¢) is written as

!

p(t)=exp.- l(ih)”‘g H"(f’)dt’} p(t), (2.6)

where the exponential operator is ordered in
time, p(f;) being the initial density matrix of
the test system.
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We define the matrix (21p(¢)1£2") as the
average of (2.6) over all possible paths of 2(7)
with a prescribed initial state £’ and a final
state Q of B. Then the matrix element of p(7)
is easily shown to be the solution of the
modified evolution equation

a
5, P N=0m)""(Hi+H(2))p(2,1)

_FIQ:&(Q’ I)v (27)

with the initial condition p(£2, t))x<d(2—2’).

We shall be mostly concerned with Gauss-
ian-Markoffian evolution of Q(¢) for which
we have

Io= ~—y—(2— (Q+i)

aQ 002
The equilibrium distribution of  is given by
Py(2)=(210)=2n) " exp (—Q?%/2), (2.9)

which satisfies the condition

(2.8)

o Py(22)=0, (2.10)
and the correlation function of the noise is
QeO)=e", @.11)
which defines the correlation time
.=1/y. (2.12)

We assume that the interaction is explicitly ex-

pressed by
Hi(Q)=hA-QV™, (2.13)

where hA is the magnitude of the interaction
and V is the operator of A conjugate to the in-
teraction force. Then eq. (2.7) takes the form

3
(2, 0= {(ih)"H; —id-QV*

) d
+ya—“g (.Q-Fg‘é)} p(L, t).

(2.14)

We take the average of the solution over the in-
itial equilibrium of the bath and sum over the
final state to obtain

(OIﬁ(t)IO)=SS dQ(Q1p()127)dQ"Py(£2),

(2.15)
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and introduce the Laplace transform

Ol p[s] lO)=S e U701 p(2)10)de, (2.16)
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with the initial condition p(¢;). Then we easily
obtain

Ol p[s]10)=

p(t), (2.17)

A2

s—@{h) 'Hi+ V"™

VX
24*

s+y—Gh) HI+ V™ %

where the fractional operators mean inverse
operators. This continued fractional expres-
sion has been used in treating various line
shape problems with Gaussian random pertur-
bation.'*'¥

§3. Influence Functional Formulation in
Coherent State Representation

In this section we consider a test system A in
contact with a heat bath B consisting of har-
monic oscillators. In order to formulate the
problem in a general way we introduce the
coherent state representation'® for the system
A composed of bosons or fermions which is de-
scribed by a set of annihilation and creation
operators {a,, aJ }. A coherent state | ¢) is de-
fined by

l¢>=exp ({ D] ¢ataa )0, (3.1
where ¢, denotes a complex number (c-
number) for bosons and a Grassmann number
(G-number) for fermions. The constant { is
equal to 1 for bosons and is equal to —1 for
fermions. The state 10> is vacuum. Then we
have

a4l $>=do ), (3.2)

and

(plas=<o| o2, (3.3)

where ¢ 2 denotes a ¢c- or G-number conjugate
to ¢,. Different coherent states have the inner
product

(plo’>=exp (O dad.)=exp (¢*¢). (3.4)

We use hereafter the abbreviation ¢*¢ for
> ¢ Xp,. The completeness relation is expressed
as

s+2y—(@Gn) ' Hi+- -

SSN”CW* dolo) e <pl=1, (3.5)
where we use the abbreviation

HN“ do* dquH“N;‘ dosdo., (3.6)

for the measure of integration, the normaliza-
tion constant N, being equal to 27i for bosons
and 1 for fermions.

Then any state | ¥) can be expressed as

I 'P>=SS N~'d¢*deled e **¥(*), (3.7)
or as
| 'P>=SSN‘1 do* dole>¥'(¢*), (3.8)

by defining

Y(*)=<o!¥>, (3.9)

or
P (p*)=e " P(pY),

which may be called the coherent state
representation of |¥). For convenience we
adopt here the second one as the definition of
the coherent state representation.

The Hamiltonian of A is denoted by a nor-
mal-ordered expression Hy(a*, a), where a*
and a denote the set of a, and aJ. The system
is initially in a coherent state |¢;) and evolves
over a time interval from ¢ to # by the
Hamiltonian to the final state

| P(t)>=exp [(1h) " Ha(t:— )]l o>
=SS N~ de¥ dorl ) e < gel Y1),
(3.11)

(3.10)
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where
(o L P(1)> =<l exp [GA) "Ha(ti— )] i
(3.12)

is the coherent state representation of the final
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state. By dividing the time interval into M
segments as &= (/;— )/ M and by inserting the
completeness relation (3.5) at each joint of
segments, we obtain a path integral expression
taking the limit M— o0,

ol = | D@ exp [67 60+ G/ MSA(@*, 65 1 )], (3.13)
where
546", 63 )= lim i ot (b= bi 1)/ &~ Ha(@], 64-1)
ES dr[ihg* (D)= Had*(D), (D) (3.14)
is the action of the Schrodinger Lagrangian and
| Das* o= lim ﬁ | -1 aot dos (3.15)

denotes integration over the measure of the paths of {¢p*(1), d(r)} over the time interval (£, )
for the fixed initial state ¢(#)=¢: and the final state d*(t)=¢F. Inserting eq. (3.13) into eq.

(3.11), we get

| q](tf)>:S D[¢o*()(1)]1 1) exp [G/R)Sa(d*, ¢; L, 1],

(3.16)

where D[¢*(7)¢(7)] means to include integration over the final states l .
Combining eq. (3.16) and its conjugate we have the density operator at ¢

pa(t)=1P)<P (2] =SSN_1 dof dos SgN—l det* doéf | deopi(df, &f; t)Xofl, (3.17)

where

piof, df; Iy ta)“-"-S Di[¢*(1)9(D)] S Dilo"* (1)’ (1]

x exp [(i/ k) Sa(d*, ¢; tr, t)] exp [— (/RS ("™, ¢'; 1, 1)]

is the coherent state representation of the den-
sity matrix in accord with the definition eq.
(3.10).

We now introduce the bath B with the
Hamiltonian

2
~ [ Pi
HB:ZJ ("—j_‘{"é— mjw,?'xf),

(3.19)
7 \2m;

with obvious notations and assume the initial
density matrix for the total system

Dot () =pa(t)p5, (3.20)

(3.18)

for which p§ is assumed to be the equilibrium
density matrix at a temperature 7=1/ksp.
The interaction of A with B is assumed to be

H=-V(@*, a)X, (3.21)
where

X=chxj. (322)
J

Then the effect of the bath is incorporated into
eq. (3.17) by
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pAael, of; ti, t)=T <§ D:i[Q(7)] SDr[Q’(T)] exp [(i/h)Sa(Q; tr, 1)]

XF(Q, Q'; tr, i) exp [(—i/h)SH(Q’; t, ta)]>,

(3.23)

with the well known influence functional of Feynman and Vernon'?

t

F(Q, Q'; ty, ti)=exp {(-—i/h)zgrdt’g dtV*(Q,Q"; ')

X[Lo(7" =)V (Q, Q5 D) —iL\(T' =)V (Q, Q'; T)]}-

Here we have introduced the following
notations for abbreviation. First. we simply
write Q(7) or Q'(r) for (¢*(7), #(r)) or
(' *(1), ¢'(7)). Secondly we define

VAQ, Qs )=V Q)+ V(Q'(t), (3.25)
VX(Q, Q0 n)=V(Q@)—V(Q'(2), (3.26)
and

i-L.(t)=iYo dwJ(w) sin (wt), (3.27)

Lz(t)=§ dwJ(w) coth (Bhw/2) cos (wt),

(3.28)

with the spectral density for the bath

oscillators

J(w)=haw 3 (c]/4m;w} )6 (0~ w))

+o(w+w))), (3.29)
which is odd in w, namely
J(—w)=—J(w). (3.30)

We could assume w to take only positive
values, but it is more natural to allow for
negative w’s and impose the condition (3.30)
on J(w). If the system A consists of fermions,
the symbol T takes care of time ordering with
respect to the G-numbers appearing in the ex-
pression. The functions iL(¢) and Ly(t) egs.
(3.27) and (3.28) are combined to

L(t)ELz(t)+iLl(t)=S dwJ(w)

e Phe 1
X eiw!+ e—iwt .
(e’"’“’— - et

(3.31)

(3.24)

The two terms in the bracket of the above ex-
pression correspond to exchange of energy
quanta Aw between the system A and the bath
B at temperature 7. The ratio exp (SAw) of

‘the terms makes A to attain Boltzmann

weights for its quantum states. When the un-
equal weights are not important, the unequal
weight of the relevant terms can be ignored so
that the imaginary part eq. (3.27) can be disre-
garded corresponding the infinite temperature
of the bath.

As was shown by Feynman and Vernon, the
functions L,(¢) and L,(#) can be interpreted as
response functions of the bath medium to an
external force K conjugate to the bath variable
X. Namely if the effect of K on B is
represented by

H..,= —KX, (3.32)

then K induces polarization of X. For a
periodic force the response is described by the
complex susceptibility which is given by the
general equation'®

x(@)=xo—iwp S:odt e “d(1).  (3.33)
Here
D(1)=<{X; X(t)y
=p"' Xf dA Tr{p§ exp (AHp)X
x exp (—AH) X (1)}, (3.34)

and
Xo=pB{X; X >=p®(0),

are the relaxation function and the static
susceptibility of the induced polarization ex-

(3.35)
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pressed in terms of the canonical correlation
function of X (¢). The imaginary part of x and
the power spectrum @[w] of &(¢) are related
to each other by

x " (w)=nfwdw], (3.36)

where
¢>[w]=(2n)"5 dre “'@(1). (3.37)

If the symmetrized correlation of X is defined
by

P(1)=< X)X ()+X ()X (0)>/2, (3.38)

its power spectrum

Yiwl=QRn)"" g dte '¥Y(1), (3.39)
is related to that of the canonical correlation
by

P(w]=PLEs(w) P[w] (3.40)

where Eg(w)=(hw/2) coth (Bhw/2) is the
average thermal energy of an oscillator with
the proper frequency w. The spectral density
J(w) appearing in egs. (3.27) and (3.28) is
given by

h h
J(a))::z-?;)(”(a))=}—8—8 Plw]. (3.41)

2
For an oscillator bath, we find from eqs.
(3.22) and (3.34) that

B(1)=3 (cj/2m;wi) e +e™ ) (3.42)
J
to obtain eq. (3.29).

More generally, for any sort of bath, as long
as its effect is considered to cause a Gaussian
noise for the test system, the influence func-
tional eq. (3.24) keeps its form where we have
the kernels

ph

. h(®
iL()= Y P(1)= —Z‘S_ do(iw) e“'?lw],

(3.43)
and
Ly(t)= l}f’(t)=ﬁ‘§ dw e“"Ep(w) P [w].

(3.44)
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Namely, iL,(t) is essentially equal to the
response function of the bath to a pulsive
force K~d&(1) and Ly(t) is the symmetrized
correlation function eq. (3.38). This is seen
from eqs. (3.36) and (3.40).

§4. A Gaussian-Markoffian Interaction in
High Temperature Approximation

Now we assume a simple exponential decay
for the relaxation function (3.34),

& ()=o) exp (—yltl), 4.1)
and introduce the parameter 4 by
A= (0)=<X; X, 4.2)

which gives the measure of the mean square
amplitude of the system-bath interaction eq.
(3.21) and is proportional to 1/B. The interac-
tion V in eq. (3.21) is made a dimensionless
quantity by assigning the dimension of fre-
quency to 4 in order to keep correspondence
to the stochastic approach reviewed in §2.
The power spectrum of @ is

1y
Dlw]l= Yt @(0), 4.3)
and eq. (3.33) yields
By "
x()=—"—"—(0), 4.4)
y+iw
and
h*A* Bhyw
I = 4.5)

The assumption eq. (4.1) is the Debye form,
but the spectrum J(w) eq. (4.5) was called by
Leggett et al. as the Drude form. '
As is seen from eq. (3.43) the kernel L (t) is
simply
h
L‘(t)=h2A2-%z exp (—yt). (4.6)
In the high temperature approximation which
assumes ‘

phy«1, @.7)
we may put SEg(w)~ 1, so that we have
Ly(t)=h* A% exp (— ). (4.8)

Thus we have the influence functional eq.
(3.24) in the form
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I T’ . !
F(Q, Q’; t)=exp {(——iA)ZS dr'g dre 9 VQ,Q'; 1)
I 1

y ,  Bhy ) '
X\VHQ, Q1 0)—i—=- V@, 059 . (4.9)

Hereafter we write ¢ for the final time ¢ and omit the initial time ¢, unless the previous notations
are preferred for clarity.

We now insert this into eq. (3.23) and then differentiate the expression with respect to the final
time 7. For this purpose, we observe that the expression eq. (3.23) yields for an increment ¢

Ppadf, ¢ t+e)=T (SDr[Q(T)] XDf[Q,(T)] exp [(i/h)Sa(Q; t+¢)]

XF(Q, Q'; t+e)exp [—(i/h)SI(Q’; t+8)])- (4.10)

Here
exp [(i/h)Sa(Q; t+e)l=exp [— ¥ ¢+ dF d1(1—i(e/ h) Ha(oF, ¢)) exp [(i/ h)Sa(Q; 1)], (4.11)
and
F(Q, Q"5 t+e)=F(Q, Q'; )+e(—id) V™ (Q, Q’; I)S dre 777
y , Bhy , ,
x(V (Q,Q;r)—ITV (Q, Q%0 F(Q,0; 1), (4.12)
where the boundary value of V' * needs a precise definition
VAQ, Q5 )=V(éf, ¢)—V(e'*, ¢f). (4.13)
By taking the limit é—~0, we thus obtain
a .ok
E;PA(dJ?', ot )=T (SjN_ldd)* d¢'ﬂN_' do’* dgp’ e ¢iertere
X[/ h)Y(HA(Q()—Ha(Q'())pa(d*, ¢'; t)
—iAV*(Q, Q'; 1)pi(#*, ¢'; 1)] e-¢f'¢f+¢"‘¢*). (4.14)

Here we introduce the set {p,(¢*, ¢’; t)_v} and the corresponding operators {p,(#)} by the defini-
tions

P4, 9 =T (§DIQ(t)] | prorn
X {—iA S' dre "7 [V"(Q, Q’; r)—iég—y Ve(Q, Q' r)}} "

xexp [(i/7)Sa(Q; DIF(Q, Q'; t)exp [—(i/h)SH(Q’; t)]), (4.15)

of which the first member has appeared in eq. (4.14). For later convenience we define the
operator

n
@EV"—iéz—y ve, (4.16)

with the notation for an anticommutator operation,
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VoG=VG+GYV.

Equation (4.14) yields the operator equation

0
&po(f)=(ih)"'H§ po(1) =14V ™ pi(t),

where we write po(t) for pa(?).
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(4.17)

(4.18)

Now we repeat the process to differentiate the expression eq. (4.14) or eq. (4.18) to get

at

and more generally the set of equations

d
— p()=((R) ' H i —ny)pa(t) =14V " pusi(1) =i 4Op,-1(2).

at

ad
—pu()=((Gh) ' H i —y)p (1) =14V pa(1) =146Opo(1),

(4.19)

(4.20)

Equations of motion (4.18)-(4.20) are a non-perturbative extension of the master equation in-
cluding finite correlation effects of the bath modulation. The important point is that a motion of
the test system is now described by the set of equations.

Now we define the Laplace transforms of {p,(¢)} by

with the initial condition

and

polsl=

pn[S]:S e " p, (1) dt, (4.21)
4
pn(t)=0, (for n<0and nz1), (4.22)
po(t)=pa(t). (4.23)
The recurrence formula is solved to yield po[s] in a continued fractional expression as
1
p(t), (4.24)
AZ
s—({in) ' Hi+V"™ 0]

s+y—@Gh) 'Hi+ V™

242 o
s+2y—GR)'Hi+ -

where each fraction means the corresponding inverse operator. The method of derivation of this

is given in Appendix A.

The above result is quite in parallel to eq. (2.17). The main difference is that the operator ap-
pearing on the right of each fraction is not the same as that on the left side. Corresponding to eq.
(2.14) we can show that eq. (4.24) is equivalent to the evolution equation

Q _ : : . Bhy
'é—tp(.Q, )= (lh)_lH:—IA'.QVX—IAT

where p(,t) is like that in eq. (2.7) the
average of p4(¢) over all possible paths of the
noise produced by the bath-state of which is
designated by a random variable . This
equivalence is seen by noticing that the diffu-
sion operator I, eq. (2.8) is essentially the
same as the operator of harmonic oscillator ex-

3 3 A\ .
g+—) VOty— (9+——)} p(Q, 1), (4.25)

a0 a0 a2

cept for a difference in the weight function and
so by using expansions in the eigenfunctions
of I'p. Integer multiples of y appears in this
way in the expressions in eq. (4.25). By this
procedure, we recover the similar recurrence
equation as eq. (4.20) from eq. (4.25). In fact
in the same way we easily prove eq. (2.17)
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from eq. (2.14).

The presence of the imaginary term in @ eq.
(4.16) is an effect of reaction of the test system
to the bath which was ignored in the stochastic
approach. In order to retain the Markoffian
property, namely the simple exponential decay
of the kernels, the high temperature approx-
imation is needed. The condition eq. (4.7)
means that the bath temperature is high in
comparison with the magnitude of energy
quanta exchanged between the bath and the
test system, or the temperature is high in com-
parison with the inverse of the characteristic
time constant y of the system-bath interaction.
The high-temperature approximation takes ac-
count of the unbalance of energy of exchange
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to the first order of the smallness parameter
Lhy.

Within this limitation, eq. (4.24) or (4.25)
can be used as the basis of a generalized
stochastic approach to study quantum systems
which are in contact with a heat bath and are
accordingly susceptible to dissipative effect to
destroy the dynamical coherence of their evolu-
tion. The effect is generally characterized by
the parameters 4, y, and v4. The last one is a
characteristic frequency, or quantum level

difference of the test system. If the conditions
Aly«l, (4.26)

Vya <K Y

are satisfied, the effect of interaction is re-
duced so that eq. (4.24) is approximated by

plsl= , p(t), (4.27)
s—G(R) " HI+ V™ Y o
- 2iphy’ /2 Lo
5 313ﬁ-hy’/2 .,
where we put
y =A4%/y. (4.28)

The condition may be called motional narrowing limit after the well known example in nuclear
resonance problem. More generally v4 may not be small compared with y, then eq. (4.24) is
replaced by

1
p[S]= A?.
—GR) ' H; AV~ O
s—UR) " Ha y—(ih) 'H

p(t), (4.29)

in the lowest approximation. Now the interaction is reduced to the order of A%/ (y+iv,). As will
be remarked in the concluding section, the Gaussian assumption for the system-bath interaction
is not really needed if one is satisfied with the approximation, which correspond to eq. (4.29) and
essentially assumes weak and fast interaction.

On the other hand, if the parameter y is small, namely if A/y> 1, the system-bath interaction
is essentially static and so dynamical coherence is not destroyed. It is not easy to make analytical
treatments for the intermediate cases. However, numerical analysis can be made in such problem
with use of eq. (4.20) or (4.24).

§5. Remarks on Non-Markoffian Weak Interactions

If the relaxation function @(¢) or the spectral function J(w) is not as simple as eq. (4.1) or
(4.5), or the high temperature condition eq. (4.7) is not satisfied, it is not possible to obtain a
non-perturbative expression like eq. (4.24). Here are added a few remarks for such cases.

The influence functional (3.24) is written generally as
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F(Q, Q'; t)=exp {(——i/h)ZS drrS drS de e w0
- 4 t -0

xVX(Q, Q" U NN@V(Q,Q"; )+J(@)V (Q, Q0 T))}, (5.1
where
Bho. ' :

N(w)=J(w) coth (T) ' (5.2)
Corresponding to eq. (4.15) we introduce the set of density operators by
p(oF, dfs t, w1, w2, -, Wy)=T (gD[Q(t)]SD[Q’(t)]

xkﬁ[ {(—i/h)g dre I N(wn)V *(Q, Q'; 1)

+J(w)V(Q, Q% T))} exp [(i/h) S4(Q; DIF(Q, Q5 1)

xexp [—(i/h)SA(Q’; t)])- (5.3)
Then we have the operator equation
:;Ztp(t)=(ih)“‘H}{p(t)-i-(ih)"S:) dw V *p(t, wi). | (5.4)
We repeat the same process to get

a <0
5;1)([’ w)=((1h)"'H i —iw)p(t, w1)+(ih)"‘S dw,V *p(t, wi, w)+({h)"'O(w)p(t), (5.5

where we define
OW)=N@)V*+J(w)V°. (5.6)

We could continue the same process to higher hierarchies but it does not lead us to useful results.
If we terminate this hierarchal equation by ignoring the operator p(Z, w1, @2) in eq. (5.5), then
we obtain

1

plsl= p(t), 5.7

s—(@{h)"'H A +(h)“2§dw,V" O(wy)

s—(@{ih)"'H } +iw;
for the Laplace transform of p(¢). If the interaction is weak enough, the relaxation induced by
the perturbation is slow. Then we consider p(f) at long times so that the integral in the
denominator of eq. (5.7) is evaluated by setting s equal to zero, yielding the master equation, or
the Pauli equation

d
b—tp(t)=(ih)"‘H,Z‘p(t)—F’p(t), (5.8)
where I’ is defined by
F"—'h“zg drS dw e VX (O N(@)V *(—1)+J(@)V°(—1)), (5.9
0 — 0

or by
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[¢ o]

F’p=h’2S drg dw e“"G(){V*O)V (—1)p)—e” V) pV(—1)}, (5.10)
0 —

(5.11)

This is usually derived by applying the lowest order perturbative calculation. It should be noticed
that the above equation describes evolution of the reduced density matrix including the off-
diagonal elements with respect to the unperturbed Hamiltonian. This corresponds to eq. (4.29).
As was already remarked, this does not necessarily require the Gaussian nature of the interaction
but only its weakness in the sense that the magnitude of the interaction is small in comparison
with the characteristic frequencies.
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Appendix A
The Laplace transform of egs. (4.8)-(4.20), - - -, may be expressed as

i 1V (exlpmgs  iap” - — -
pols] —s—+ h HAE_ 4V 0 0 (1)
______ L e
pils] 140 |st—Hi+y idV” 0 0
|
| .
] 1 . x
pls] | = 0 E 21460 s+—Hi+2y 14V 0 L AD
|
0o ! 31460
pals] 0 ‘ 0
|
|
|
|
L . p L :
For any operators or matrices A, B, C and D we have
[ A B 1—1 1 A-2)
PR R _ .
c.D lu 1 ’
A—-B—C
D

where fractional expressions mean inverse operators. Then, by successive applications of eq.
(A-2) to eq. (A-1), we obtain

pols]= o p(t). (A:3)
s—(in) " Hi+ V" )
+y—Gh)H+ V™ 24 )
sty=Qh) H Y =Gy Hi+ -

Appendix B

In order to illustrate the points more closely, we consider a simple two-level system with the
energy separation wy described by the Hamiltonian

Hu(at, a)=hwa* a. (B-1)
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The operator of eq. (3.21) is assumed to be
Vat,a)=a"a. (B-2)

This interaction causes the frequency shift of energy level as wo+£2(7), where Q(¢) is a similar
modulation discussed in §2. The excited and ground states of two-level system are denoted by | 1)
and 10)>. Then the density operator of the system may be written as

p(1)=Pi()|1, 1)+ Po(£)10, 0)+ P5(2)11, 0)+ Pu(£)10, 1), (B-3)
where we have introduced the notation
L, j =1 <1 (B-4)
From eq. (4.24), the Laplace transform of this elements may be exprgssed as

" Pils] ] 1/s 0 0 0 1 Pi(t)

Pz[S] _ 0 1/5 0 0 P?_(ti) , (BS)
P;[s] 0 0 Gils] 0 Ps(t)
PIs] | L0 0 0 GIsl) LPu)._
where
1
G:[s]= R . (B-6)
Siiw0+ ( +1ﬁ Y )
) 2(1 Fiphy/2)A*
s+yEiwe+ 31T i DA
s+2ytiwet+ (Fifhy/2)

s+3ytiwet -

In the stochastic approach, the factor of con-  tion y«<sztiwo, €q. (B-6) is evaluated as
tinued fraction is given by 4% but now

(1Fiphy/2)A*. This difference makes a slight Gt[s]=Q exp [(sxiwo)?/24%
difference to the nature of resolvent G- [s]. 4
When y satisfies the condition eq. (4.26), eq. x Brfc [(s+iwe)/v2 4], (B-9)

B-6) is expressed in the Lorentzian form as . .
(B-6) P where Erfc (x) is the error integral and, to

1 derive eq. (B-9), we have used the Laplace-

Gulsl=—————, B-7 ,
=[s] stiwetns ( ) Jacobi formula
h . x/2
where eV Erfc (1/x)=
y' (1Fifhy/2) x%/2
ne= . , (B-8) 1+ ;
| F2iphy/2 - 2x /2_
F3iphy/2 I+ 3x2/2
3+ .......... l+ .....

with A%/y—y’. The real part of eq. (B-8) (B-10)

works upon eq. (B-7) as the damping, whereas  In the case (s*iwo)« V2 A, the error integral
the imaginary part the frequency shift. Hence  gives v 7 /2 and eq. (B-9) becomes the Gauss-
we see that not only does the reaction parts ian form. This result is well known in the
causes the frequency shift, but also changes  stochastic theory concerning on the spectral
the damping rate. distribution.

In the slow modulation limit with the condi-
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