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Abstract

The nonlinear optical response of a molecular system in the condensed phase subjected to a series of five off-resonant
femtosecond laser pulses has been studied using a quantum Fokker–Planck equation. This equation can treat a molecular
system with any shape of potential coupled to a Gaussian–white noise-bath. The third- and fifth-order response functions,
which are equivalent to the second- and third-order correlation functions of the molecular coordinate were obtained from the

w xequation of motion. Assuming the potential surface of a cesium dimer Cs , which is modeled by a Morse potential, and2

considering both the linear and nonlinear coordinate dependence of the polarizability, we calculated the third- and fifth-order
Ž .response functions for various temperatures and heat-bath couplings. The temporally two-dimensional 2D profiles of the

fifth-order signal are affected by both the shape of potential and the coordinate dependence of the polarizability, even at
strong damping. The nonlinearities caused by the anharmonic potential and by the nonlinear polarizability have different
temperature dependence. This indicates that fifth-order two-dimensional spectroscopy carried out for a different temperature
allows us to access information of the potential and the polarizability. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Recent advances in femtosecond laser technology
have lead us to develop higher than third-order spec-

w xtroscopy such as the fifth-order 1 and seventh-order
w x2 off-resonant experiments. Fifth-order two-dimen-

Žsional vibrational spectroscopy two-dimensional Ra-
.man spectroscopy has been proposed to experimen-

tally separate the inhomogeneous distribution of
slowly varying parameters, for example of local
liquid configurations, from the total spectral density.
This experiment uses two pairs of excitation pulses,
followed by a probe pulse and therefore has two time
variables. By plotting the fifth-order signal as func-
tion of these decay times, we obtain the two-dimen-
sional profile of signal. This profile is very sensitive
for the underlying nuclear dynamics and several

experimental and theoretical studies have been car-
w xried out 3–13 . The fifth-order frequency-domain

w xexperiment has also been proposed 14 .
Although the 2D Raman experiment was pro-

posed to study inhomogeneity, the same technique
can be used to access various dynamical information
of molecules in condensed phases, such as the anhar-

w xmonicity of vibrational modes 10 and the coupling
w xmechanism between different vibration modes 8,11 .

In this paper, we explore the possibility to use this
technique to determine the shape of the potential and
the coordinate dependence of polarizability.

In third-order off-resonant experiments, such as
ISS and OKE, the signal is related to the two-time
correlation function of the nuclear polarizability,

Ž3.Ž . ²w Ž . Ž .x: Ž .R t s a t , a 0 , where a t is the polariz-
ability in the Heisenberg representation. In such
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polarizability sensitive measurements, the coordinate
dependence of a is essential, since, if a is a

Ž . Ž . Ž3.c-number, a t commutes with a 0 and R van-
ishes. If one expands the polarizability in terms of
the nuclear coordinate denoted by Q, i.e., asa q0

2 Ž3.Ž . 2²w Ž . Ž .x:a Qqa Q q . . . , then R t fa Q t ,Q 0 .1 2 1

In the fifth-order off-resonant measurements, the sig-
nal is related to the three-time correlation function,

Ž5.Ž X. ²ww Ž X . Ž X.x Ž .x:R t,t s a tq t ,a t ,a 0 . If the poten-
3²ww Žtial is harmonic, then the lowest order term a Q t1

X . Ž X.x Ž .x:q t ,Q t ,Q 0 does not contribute to the signal,
since the operator Q, which is expressed in the

< :² <energy state representation as j j"1 , cannot
< :² <compose the diagonal elements, j j , by the three

� Žproducts of Q, and the elements tr Q t q
X. Ž X. Ž . < :² <4t Q t Q 0 j j , etc. vanish. Therefore, the lead-

2 ²ww Ž X.ing contribution to the signal is a a Q tq t ,1 2
2Ž X.x Ž .x: 2Q t , Q 0 , etc., in which Q is equivalent to

< :² < < :² <j j"2 or j j . If there is anharmonicity in the
potential, however, the lowest order term is

3²ww Ž X. Ž X .x Ž .x:a Q tq t ,Q t ,Q 0 , since the Hamiltonian1

in the Heisenberg operator can connect the different
energy state. The time- and temperature-dependence
of the a 3 and a 2a terms are expected to be1 1 2

different, and can be used to study the anharmonicity
of the potential as well as the coordinate dependence
of the polarizability.

Since 2D vibrational spectroscopy is based on the
analysis of the temporal profile of the signal, not of
the position or the width of spectral peaks, it is
important to develop a theory which can be com-
pared with the experiments. The fifth-order theory
developed so far was mainly targeting for inter-
molecular vibrational modes in which a Brownian
oscillator model works very well. The intra-vibra-
tional modes are, however, not necessarily harmonic.
In this paper, we employ the quantum kinetic equa-
tion for reduced density matrix elements to study
intra-vibrational modes, which are modeled by a
system with arbitrary potential surface. In the con-
densed phase, a difficulty with kinetic equation ap-
proaches is the proper treatment of dephasing pro-
cesses induced by the environment which serves as a
heat-bath. It can be incorporated into the equation of
motion, if the noise induced from the bath is Gauss-

w x w xian–white 15 or Gaussian–Markovian 16 , in which
the time correlation function of noise fluctuation,
Ž . ² Ž . Ž X.: Ž X.f t , can be expressed as f t f t Ad ty t or

² Ž . Ž .: w Ž X.xf t f t Aexp yg ty t , respectively. In these
cases, by employing the Wigner representation of the
reduced density matrix, one obtains the quantum
Fokker–Planck equation for a Gaussian–white noise

w x w xbath 17 or a Gaussian–Markovian bath 18,19 ,
respectively. These equations have been successfully
applied to analyze femtosecond spectroscopy of
nonadiabatic transitions, dissociation, predissociation
and the optical Stark effect in a displaced harmonic

w xoscillators system 20 and a displaced Morse poten-
w xtial system 21 .

Although the Gaussian–Markovian case is more
general, in this study, we limit our analysis to the
Guassian–white case, since numerical calculations
are much easier. The Gaussian–white noise bath we
employed here has also been used in the previous

w xstudy of the fifth-order spectroscopy 1,10,11 . While
the previous studies are based on the path-integral
approach whose applicability is limited to a har-
monic system or a system with weak anharmonicity,
the present Fokker–Planck approach can deal with a
system with an arbitrary potential surface, but re-
quires intensive numerical integrations.

In Section 2, we show a rigorous procedure for
calculating the third- and fifth-order off-resonant re-
sponse functions using the kinetic equation. The
quantum Fokker–Planck equation for a Gaussian–
white noise bath is given in Section 3. Model calcu-

w xlations for a cesium dimer Cs , which is described2

by a Morse oscillator are presented and discussed in
Section 4 for linear and nonlinear coordinate depen-
dence of the polarizability. Section 5 is devoted to
concluding remarks.

2. The third and fifth order response functions

Consider a molecular system with a ground elec-
tronic state strongly coupled to a single primary
nuclear coordinate Q. The Hamiltonian of the system
is

P 2

H s qU Q 2.1Ž . Ž .S 2 M

where P is the conjugate momentum of Q. The
molecular system is interacting with an off-resonant

Ž .laser field, E r,t , where r is the position of the
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molecular system. We consider the 3rd- and 5th-order
off-resonant experiments. The system first interacts
with N pair of pulses for the 2 Nq1th order optical

Ž .process, which have the same time profile E tj
Ž . Xjs1 and 2 , but different wave vectors k and kj j

and frequencies V and V
X for the jth pair of pulse,j j
Ž .respectively. The last pulse k ,V is the probe thatT T

generates the signal. The pulse configuration of the
5th order experiment is given in Fig. 1. The effective
Hamiltonian including laser interaction is then given

w xby 22,23

H sH yE2 r ,t a Q 2.2Ž . Ž . Ž .eff S

Ž .where a Q is the coordinate dependent polarizabil-
ity. The physical observable in optical experiments is
the polarization. The third-order and the fifth-order

w xpolarization are, respectively, expressed as 1

P Ž3. t s2H` dt E t E2 tytŽ . Ž . Ž .0 1 T 1 1

=exp iV ty ik rŽ .T T

= cos DV tyt yDk r q1Ž .Ž .1 1 1

=RŽ3. t 2.3Ž . Ž .1

and

P Ž5. t s22H` dt H` dt E t E2 tytŽ . Ž . Ž .0 2 0 1 T 2 2

=E2 tyt yt exp iV ty ik rŽ . Ž .1 2 1 T T

= cos DV tyt yD k r q1Ž .Ž .2 2 2

= cos DV tyt yt yD k r q1Ž .Ž .1 2 1 1

=RŽ5. t ,t 2.4Ž . Ž .2 1

where D k 'k ykX , DV 'V yV
X. The third-j j j j j j

and the fifth-order response functions are defined by

i
Ž3.R t s tr a t ,a 0 r 2.5Ž . Ž . Ž . Ž .� 41 1 g

"

RŽ5. t ,tŽ .2 1

1
sy tr a t qt ,a t ,a 0 rŽ . Ž . Ž .� 41 2 1 g2

"

2.6Ž .

Here, r is the equilibrium distributiong

w x w xr sexp ybH rtr exp ybH 2.7� 4 Ž .g S S

Fig. 1. Pulse configuration for the fifth-order experiment. The
system first interacts with two pairs of pulses, which have the

Ž . Xsame time profile E t , but different wave vectors k and k andj j j
X Ž .frequencies V and V for the jth pair of pulse js1 and 2 ,j j

Ž .respectively. The last pulse k , V is the probe that generatesT T

the signal.

Ž .and a t represents

i i
a t 'exp H t a Q exp y H t 2.8Ž . Ž . Ž .S Sž / ž /" "

The response function can be rewritten as

i
Ž3. =R t s tr a t a 0 rŽ . Ž . Ž .½ 5Ž .1 1 g

"

i i iy H t = H tS 1 S 1" "s tr a e a r e 2.9Ž .Ž .½ 5g
"

RŽ5. t ,tŽ .2 1

1
= =sy tr a t qt a t a 0 rŽ . Ž . Ž .Ž .½ 51 2 1 g2

"

1
sy 2

"

=
i i iy H t = y H t = H tS 2 S 1 S 1" " "tr a e a e a r eŽ .½ ž /g

=
i Ž .H tS 2"e 2.10Ž .5
= Ž .where A B'AByBA. Eq. 2.10 describes the

following time evolution of the density matrix ele-
Ž .ment: i Initially, the system is in the equilibrium

state, r . The polarization operator attached with theg

first pair of laser pulses, a=, then operates upon r .g
Ž .This sets the time ts0. ii The density matrix

Ž .obtained by i then evolves in time from ts0 to
tst following the time evolution operator of the1

Ž . w xŽ = .system, i.e., r t s exp y iH t r" a r1 S 1 g
w x Ž .exp iH t r" . iii At time tst the polarizationS 1 1

operator attached with the second pair of laser pulses,
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= Ž .a , operates upon the density matrix, r t , which1
Ž . Ž .is obtained by ii . iv After the second pair of laser

interaction, the density matrix then evolves in time
from tst to tst , following the time evolution1 2

XŽ . w xw =operator, i.e., r t , t s exp yiH t r" a2 1 S 2
Ž .x w x Ž .r t exp iH t r" . v The polarization operator of1 S 2

the last laser pulse, a , then operates upon the density
Ž . Ž .matrix calculated by iv . vi Tracing over all de-

grees of freedom reduces the response function given
Ž . Ž5.Ž . � Žby Eq. 2.10 , i.e., R t , t s tr ar t q2 1 1

.4 2t r" . A representative calculation for the Morse2

potential will be presented in Section 4. Note that the
Ž .time evolution of the third-order signal, Eq. 2.9 ,

Ž . Ž . Ž . Ž .corresponds to the steps i , ii , v and vi .
The time evolution of the density matrix can be

evaluated by integrating the quantum Liouville equa-
tion,

i
r t sy r t , H 2.11Ž . Ž . Ž .˙ s

"

For example, the density matrix elements described
Ž .by step ii can be calculated by integrating Eq.

Ž .2.11 from ts0 to t with the initial condition1
Ž = .a r . Similarly the density matrix elements de-g

Ž .scribed by step iv can be calculated by integrating
Ž .Eq. 2.11 from tst to t qt with the initial1 1 2

w = Ž .xcondition a r t . One can apply the above pre-1

scription of calculating response functions to any
kind of system, if one knows the polarization opera-
tor and the equation of motion for the density matrix.
In the following, we evaluate the third and fifth-order
response function using the quantum Fokker–Planck

Žequation instead of the Liouville Equation Eq.
Ž ..2.11 .

3. Quantum Fokker–Plank equation for a Gauss-
ian–white noise

We assume that the primary nuclear coordinate is
coupled to a bath which is represented by a set of
harmonic oscillators with frequencies v , massesn

m , coordinate x , and momenta p . The interactionn n n

between the primary nuclear coordinate and the nth
bath oscillator is assumed to be linear with a cou-

pling strength c . The total Hamiltonian is thenn

given by

22 2p m v c Qn n n n
HsH q q x yÝS n 2ž /2m 2 m vn n nn

3.1Ž .

All information about the bath, which is required for
the reduced description of the system dynamics, is
contained in its initial temperature and its spectral
density

c2
n

J v 'v d vyvŽ . Ž .ŽÝ n2ž /4m vn nn

qd vqv 3.2Ž . Ž ..n

Ž .The function J v is related to the symmetric corre-
Žlation function of a collective bath coordinate Xs

. w xÝc x 16 ,n n

1
² :X t XqXX tŽ . Ž .

2

b "v
s"H dv J v coth cos v t 3.3Ž . Ž . Ž .ž /2

where bs1rk T is the inverse temperature of theB

bath, and the time evolution of X is determined by
the bath Hamiltonian. If the spectral distribution is

Ž . Ž .given by J v sMzvr2p the Ohmic distribution
Ž Ž .and the bath temperature is high i.e., coth b "vr2

1. ² Ž . Ž .:f 2rb " v , we have X t X q XX t s2

Ž .2 Mzd t rb. This correlation function corresponds
to the Gaussian–white noise. In this case, we can
obtain an equation of motion for the reduced system

Ž X . � < :² X X <4 Ždensity matrix, r Q,Q ;t s tr Q, x Q , x theB
. Žquantum master equation . In the Wigner phase

. w xspace representation 17

1
` i P rr "W P , R ;t ' H d reŽ . y`2p "

=r Ryrr2, Rqrr2;t 3.4Ž . Ž .
Žthe equation of motion the quantum Fokker–Planck

.equation is expressed as

E
WsyLL WqG W 3.5Ž .S

Et
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Fig. 2. The time-evolution of the wave packet in the fifth-order response function.

w xHere, 24 ,
P E

yLL W'y W P , R ;tŽ .S M ER
1 d PX

X Xy H V PyP , R W P , R ;tŽ . Ž .
" 2p "

3.6Ž .
with

Pr
`V P , R s2H d r sinŽ . y` ž /"

=
Rqr Ryr

U yU 3.7Ž .ž / ž /2 2

and the Ornstein–Uhlenbeck operator which de-
scribes Brownian motion in momentum space is

E M E
G'z Pq 3.8Ž .ž /EP b EP

In the Wigner representation, the polarization opera-
tors are expressed as

d PX

X Xˆa Q r ™ AW'H A PyP , R W P , R ;tŽ . Ž . Ž .
2p "

i 1 d PX

X= ˆa Q r ™ XW' H X PyP , RŽ . Ž .
" " 2p "

=W PX , R ;t 3.9Ž . Ž .

where
A P , R s iH` d r exp iPrr" a Ryrr2Ž . Ž . Ž .y`

X P , R s2H` d r sin Prr"Ž . Ž .y`

= a Ryrr2 ya Rqrr2Ž . Ž .
3.10Ž .

Notice that the quantum Fokker–Planck equation for
a Gaussian–white noise bath can be applied only for
the high temperature system, i.e., "v rk T<1,c B

where v is the characteristic frequency of the sys-c
Ž .tem, since to obtain Eq. 3.8 we have made the high

Ž .temperature approximation coth b " v r2 fc

2rb "v . In the case of a harmonic potential system,c

the quantum Fokker–Planck equation coincides with
the classical one, however, in the low temperature
case, the ‘quantum results’ obtained from this equa-
tion differ from the exact results obtained from the

w xpath integral approach 25 . In the flowing analysis,
the temperatures are chosen to satisfy this limitation.
If one applies the equation beyond this limitation,
then one obtains nonphysical results such as the
negative probability of density matrix elements,
which is known as breaking of dynamic positivity
w x26 . This limitation can be reduced if one uses the
quantum Fokker–Planck equation for a Gaussian–

w xMarkovian bath 18,19,21 .



( )Y. TanimurarChemical Physics 233 1998 217–229222

Ž .It is now straightforward to specialize Eqs. 2.9
Ž .and 2.10 to the Fokker–Planck equation. The re-

sponse functions are then expresses as
Ž3. ˆ ˆR t s tr Aexp y LL yG t XW 3.11Ž . Ž . Ž .½ 51 S 1 g

Ž5. ˆ ˆR t ,t s tr Aexp y LL yG t XŽ . Ž .½2 1 S 2

ˆ=exp y LL yG t XWŽ . 5S 1 g

3.12Ž .
where W is the equilibrium distribution function ing

the Wigner representation. This can be obtained by
Ž Ž ..integrating the Fokker–Planck equation Eq. 3.6

with same temporally initial condition, such as
Ž . w Ž .xW P,Q sexp ybH P,Q , since if one integratesS

the equation of motion long enough, the distribution

Ž3.Ž . Ž .Fig. 3. The third-order signal I T for a the harmonic poten-1
Ž Ž . . Ž .tial with the linear polarizability a q s a q ; b the Morse1

Ž Ž . . Ž .potential with the linear polarizability a q s a q ; c the1
Ž Ž .Morse potential with nonlinear polarizability a q s a qq1

2 .a q in the weak damping case. Here, we used the arbitrary unit2
Ž3. Ž . Ž .for I . In cases b and c , we calculated the signals for the

Ž .different temperatures T s150, 300, and 450 K . The signal in
Ž .case a is temperature independent and we show only one exam-

ple.

Ž3.Ž . Ž .Fig. 4. The third-order signal I T for a the harmonic poten-1
Ž .tial with the linear polarizability; b the Morse potential with the

Ž .linear polarizability; c the Morse potential with nonlinear polar-
izability in the strong damping case. The parameters are the same
as in Fig. 3 except the damping constant.

reaches to the ‘true’ quantum equilibrium distribu-
tion. We then calculate the third- and fifth-order

Ž . Ž .signal as described by the steps i – vi in Section 2
Žusing the quantum Fokker–Planck equation Eq.

Ž .. Ž .3.6 . Note that the trace operation in Eqs. 3.11
Ž .and 3.12 corresponds to the integration over P and

Q.
In Section 4, we calculate the 3rd and 5th order

response function for a Morse potential system.

4. Numerical calculations of the third- and fifth-
order off-resonant signals

In the impulsive limit the pulse envelope can be
Ž . Ž . Ž . Ž .approximated by E t sd tyT and E t sd tT 1 1

Ž . Ž . Ž .for the 3rd order, and E t sd tyT yT , E tT 1 2 1
Ž . Ž . Ž . Žsd t , and E t sd tyT for the 5th order see2 1
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.Fig. 1 . Then we can perform the time integrations
over t and the total signal intensity which is relatedj

Žto the square of the polarization, is given by up to a
.proportionality constant

Ž3. < Ž3. < 2I T s R T 4.1Ž . Ž . Ž .1 1

The 5th order signal is given by

Ž5. < Ž5. < 2I T ,T s R T ,T 4.2Ž . Ž . Ž .1 2 2 1

In the following, we calculate the 3rd and 5th order
signals for a Morse potential surface expressed as

2yaQ� 4U Q sE 1ye 4.3Ž . Ž .e

where E and a are the dissociation energy and thee

curvature of the potential, respectively. Hereafter, we
employed the dimensionless coordinate and momen-
tum defined by q ' Q Mv r" and p '( 0

Ž5.Ž .Fig. 5. The 2D signal I T ,T for the harmonic potential with1 2
Ž Ž . 2 .nonlinear polarizability a q s a qq a q in the weak damp-1 2

ing case. In this harmonic case, the signals are temperature
independent. The upper figure shows the profile of the signal,
whereas the lower one shows its counter plot. Here, we used the
arbitrary unit for I Ž5.. Note that the signal in this case is tempera-
ture independent.

Ž5.Ž .Fig. 6. The 2D signal I T ,T for the harmonic potential with1 2
Ž Ž . 2 .nonlinear polarizability a q s a qq a q in the strong damp-1 2

ing case. Note that the signal in this case is temperature indepen-
dent.

Y(P 1rM"v , respectively, where v ' U Q rM .Ž .( 0 0

The curvature of the potential, a, is also measured in
this unit. We set E s3649.5 cmy1, as0.6361 ase

w xthe ground state of the Cs molecule 27,28 . The2

fundamental frequency is then given by v s38.70

cmy1. Note that we did not specify M, since it does
not play any role in this dimensionless unit. The
polarizability is assumed to be

a q 'a qqa q2 4.4Ž . Ž .1 2

Žand we consider two special cases of linear a s11
. Žand a s0 and the nonlinear polarizability a s12 1

.and a s0.05 . As a reference, we also calculated2

signals for a harmonic potential surface defined by

1
2U q s "v q 4.5Ž . Ž .02

In the harmonic case, the 3rd and the 5th order
response functions in the lowest order of a are
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analytically calculated for the Gaussian–white noise
w xcase as 1

2 ia 2
1Ž3. Žyq.R t s D t 4.6Ž . Ž . Ž .1 1

"

4
Ž5. 2 Žyq.R t ,t s a a D tŽ . Ž .2 1 1 2 22

"

= Žyq. Žyq.D t qD t qtŽ . Ž .1 1 2

4.7Ž .
where

v0yqD t ' exp yz tr2 sin V t 4.8Ž . Ž . Ž . Ž .
V

2 2(with V' v yg r4 . We should notice that, in0

this harmonic case, both the 3rd and 5th order sig-
nals do not depend on the temperature. In addition,
the lowest order contribution of the 5th order signals
start from a 2a not from a 3 as mentioned before.1 2 1

In the following, we use two values of friction
y1 Ž . y1 Ž .zs10 cm weak and zs100 cm strong and

three values of temperature Ts150, 300, and 450 K
all of which satisfy the condition, 2p "v rk T<1.0 B

The numerical integrations of the Fokker–Planck
equations were performed by using second order
Runge–Kutta method for finite difference expres-
sions of the momentum and the coordinate space.
The size of mesh was chosen to be 80=400 in the
mesh range y10-p-10 and y10-q-18. On
the mesh, the kinetic operator pEWrEr was approxi-

Ž Ž .mated by a left-hand difference, p W p ,q yi i j
Ž ..W p ,q rD r for p )0 and by a right-handi jy1 i

Ž Ž . Ž ..difference p W p ,q yW p ,q rDq for p -i i jq1 i j i

0. The discrete Fourier expression was used for the
Ž .potential kernel Eq. 3.6 . The accuracy of the calcu-

lations had been checked by changing the mesh size.
For a harmonic case, we compared the present nu-
merical results to the analytical result given in Eq.

Ž5.Ž . Ž Ž . .Fig. 7. The 2D signal I T ,T for the Morse potential with the linear polarizability a q sa q in the weak damping case. We1 2 1
Ž .calculated signals for three different temperatures Ts150, 300, and 450 K and displayed as the counter plots.
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Ž .4.6 and verified the results. We then calculated the
3rd and 5th order signals by integrating the Fokker–
Planck equation following the steps shown in Sec-
tion 2.

First, we present the time-evolution of wave pack-
ets during the different propagation periods. Here,
we consider the weak damping case with linear
polarizability. Fig. 2a depicts the equilibrium Wigner

Ž . Ž .distribution, W p,q , calculated from Eq. 3.5 . Tog

obtain this, we set the temporary initial condition,
Ž . w Ž 2 Ž .xW p,q;t s exp ybv p q U q , and integratei

the equation of motion from tsy1 to 0 ps so that
the distribution attains to the steady state. Fig. 2b
shows the distribution after the operator a= oper-

Ž .ated on W , i.e., W t s0 sXW . The wave packet,g 1 g
Ž .W t , then time evolves and rotates in the phase1

space as shown in Fig. 2c and d. At time ts2 ps, a
second pair of laser pulses interacts with the distribu-

XŽ .tion function. The distribution W t , t s0 s1 2
ˆ Ž .XW t is displayed in Fig. 2e. The excited wave1

packet then rotates in the phase space as shown in
Fig. 2f. The fifth-order signal can be calculated from

Ž .AW t by integrating over q and p. Note that the2

time-evolution of the wave packet in the third-order
response function from time ts0 to 2 ps corre-
sponds to Fig. 2a–d.

4.1. Third-order signal

Ž .Figs. 3 and 4 present the 3rd order signal for a
the harmonic potential with linear polarizability
Ž Ž . . Ž .a q sa q , b the Morse potential with linear1

Ž Ž . . Ž .polarizability a q sa q , and c the Morse po-1
Ž Ž .tential with nonlinear polarizability a q sa qq1

2 . Ža q for different temperatures Ts150, 300, and2
. Ž .450 K . Here, we set a s0.05a . In case a , the2 1

signal is temperature independent and we show the
Ž . Ž .figure at Ts300 K only. In cases b and c , all

peaks shift to longer times as the temperature is
Ž . Ž .increased. In cases b and c , the oscillation period

Ž5.Ž . Ž Ž . .Fig. 8. The 2D signal I T ,T for the Morse potential with the linear polarizability a q sa q in the strong damping case.1 2 1
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becomes longer as the temperature is increased. In
the Morse potential, the energy between adjacent
levels decreases with increasing quantum number. At
higher temperature more levels become populated,
showing up in a smaller effective frequency.

Ž . Ž .The temperature dependence in cases b and c
is, however, quite different. In the linear polarizabil-

Ž .ity case b , the peak height around Ts0.2 does not
depend on temperature, while the heights of the
second and third peak around Ts0.65 and 1.1 ps,
respectively, decay faster when the temperature is
higher. This is because the transition frequencies
between vibrational levels are not the same in the
Morse potential system and, at high temperatures,
the contribution of higher levels, which have longer
vibrational periods, become important.

Fig. 3c shows the nonlinear case. In addition to
²w Ž . Ž .x:Q t ,Q 0 , we have the contribution from
²w Ž . 2Ž .x: ²w 2Ž . Ž .x:Q t ,Q 0 , Q t ,Q 0 , etc. Then, the peaks
are higher than those of Fig. 2b. If the temperature is

low, however, the distribution function is well local-
ized at the bottom of the potential, so that we have
Q2W < QW. Therefore, the contribution from
²w 2Ž . Ž .x:Q t ,Q 0 , etc. can be neglected at low temper-
atures, and the signal approaches to the harmonic
one.

Fig. 4 shows the strong damping case. Because of
the overdamped motion of the wave packet, the

Ž .signal decays monochromatically. In case b , we
observe a small peak shift with changing of tempera-

Ž .ture. In case c , the heights of peaks also change as
discussed above. In any case, however, the differ-
ences between the harmonic and Morse potential are
very small and it is impossible to determine the
shape of the potential based on the third-order exper-
iments.

4.2. Fifth-order signal

Next, we present the fifth-order off-resonant 2D
signals for different couplings and temperatures as a

Ž5.Ž . Ž Ž . 2 .Fig. 9. The 2D signal I T ,T for the Morse potential with nonlinear polarizability a q sa qqa q in the weak damping case.1 2 1 2
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function of time. First we discuss the signal for the
harmonic potential with nonlinear polarizability
Ž . 2a q sa qqa q in the cases of weak and strong1 2

Ž . Ž .damping Figs. 5 and 6 . As seen from Eq. 4.7 , the
signal of the harmonic system is temperature inde-
pendent, therefore we present the case Ts300 K
only. In Fig. 5, we observe the coherent oscillation
with the frequency 2v in T directions as was0 1

w xshown in Ref. 10 . As seen from the analytical
Ž . Ž .expression Eq. 4.7 with Eq. 4.8 , the decay rate of

peaks in T direction is yz , whereas in the T1 2

direction consists of three components with the de-
cay rates yz , y2z , and y3r2z , respectively. Thus,
the decay in T direction is faster than T direction.2 1

In the overdamped case, Fig. 5, the signal decays
mono chromatically. As observed in the weak damp-
ing case, the decay rate in T direction is larger than1

that in T .2

Figs. 7 and 8 show the 2D signals for the Morse
Ž .potential with linear polarizability a Q sa Q. Due1

to the anharmonicity, we observe the signal in the
Ž 3.lowest order a . In fifth-order, anharmonicity is1

the essential source of the signal, whereas in third-
order, it gives only a minor correction to the signal.
Thereby, the profile of the signal is very different
from that of the harmonic case.

Fig. 7 shows the signal for weak damping. Com-
pared with the harmonic case, the peaks in this figure
shift to longer T . The time period between the2

peaks in T direction is also changed. Such features2

had been found in the analysis of a system with
w xweak anharmonicity 10 . Our results are similar

especially in the low temperature case, where the
initial distribution of the wave packet is localized in
the bottom of the potential and the Morse potential
can be approximated by a harmonic potential with
weak anharmonicity. We should notice, however,
that the previous results for a system with weak
anharmonicity are temperature independent, since the
calculations were done by assuming very weak an-

Ž5.Ž . Ž Ž . 2 .Fig. 10. The 2D signal I T ,T for the Morse potential with nonlinear polarizability a q sa qqa q in the strong damping case.1 2 1 2
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harmonicity. In the present case, we employed the
Morse potential in which the anharmonicity is very
strong, and hence the profiles of the signals strongly
depend on temperature. As seen in Fig. 7, the dis-
tances between the peaks become larger with in-
creasing temperature. This is because the transition
frequencies between vibrational levels become
smaller at higher levels and they play major roles at
high temperatures as discussed in the third-order
case. This phenomenon is especially seen in the T2

direction. The enhanced decay of the signal with
increasing temperature is due to the beating between
different transition frequencies.

Fig. 8 is for the strong damping case. The main
difference from the harmonic case is the longer
decay rate in the T direction, which was also ob-2

w xserved in Ref. 10 . The dependence of the tempera-
ture is smaller, since the coherent oscillations with
different oscillation periods cannot play a role in this
strong damping case.

Figs. 9 and 10 show these result for the nonlinear
polarizability case. In addition to the contribution
²ww Ž . Ž X .x Ž .x:Q t ,Q t ,Q 0 , in which the anharmonicity
plays a major role, here, we have the contribution

²ww Ž . 2Ž X.x Ž .x:from Q t ,Q t ,Q 0 , etc., in which the non-
linearity of the polarizability is the source of the
signal. The obtained signal then shows mixed charac-
ter of Figs. 5 and 7, and the peaks are spread out at
the positions of peaks appeared in both Figs. 5 and 7.
This mixed character can be observed not only in the
weak damping case of Fig. 9, but also in the strong
damping case of Fig. 10.

In any case, the differences between Figs. 5–10
are very large and one can easily identify the shape
of the potential and the form of the polarizability
even in the strong damping case.

5. Conclusion

In this paper, a theory was presented to study the
dynamics of molecular systems with arbitrary poten-
tial by femtosecond third- and fifth-order Raman
experiments. Our approach makes use of the quan-
tum Fokker–Planck equation, which describes the
quantum dynamics of a molecular system coupled to
a Gaussian–white noise bath. We presented a rigor-
ous procedure for calculating the third and fifth-order

off-resonant signals, which can be used for any kind
of kinetic equation. Then, we calculated the signals

Ž . Ž .for a the harmonic case; b the Morse potential
Ž .with linear polarizability case, and c the Morse

potential with nonlinear polarizability for different
temperatures and different coupling strengths. We
show that, in contrast to the third-order experiments,
the signals in fifth-order are very sensitive to the
shape of potential and the coordinate dependence of
the polarizability. In the Morse potential case, the
temperature dependence of the signal, which could
not be observed from the previous perturbative anal-
ysis, was studied. This temperature dependence arises
because the transition frequencies in the higher vi-
brational levels, which have shorter oscillation peri-
ods, play a major role at high temperatures.

Although, we discuss here the Morse potential
system only, our approach can be applied to systems
with any shape of the potential. For instance, the
applied Fokker–Planck approach allows us to study
a potential system in trigonometric form with period-
ical boundary condition. It is also possible to calcu-
late the fifth-order signal for a double well potential
system where tunneling is important. By taking an
advantage of the development of high speed work
stations, we may study multi modes system de-
scribed by a multidimensional potential surface. We
leave them for future studies.
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