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For a system strongly coupled to a heat bath, the quantum coherence of the system and the heat
bath plays an important role in the system dynamics. This is particularly true in the case of non-
Markovian noise. We rigorously investigate the influence of system-bath coherence by deriving the
reduced hierarchal equations of motion (HEOM), not only in real time, but also in imaginary time,
which represents an inverse temperature. It is shown that the HEOM in real time obtained when we
include the system-bath coherence of the initial thermal equilibrium state possess the same form as
those obtained from a factorized initial state. We find that the difference in behavior of systems treated
in these two manners results from the difference in initial conditions of the HEOM elements, which
are defined in path integral form. We also derive HEOM along the imaginary time path to obtain
the thermal equilibrium state of a system strongly coupled to a non-Markovian bath. Then, we show
that the steady state hierarchy elements calculated from the real-time HEOM can be expressed in
terms of the hierarchy elements calculated from the imaginary-time HEOM. Moreover, we find that
the imaginary-time HEOM allow us to evaluate a number of thermodynamic variables, including
the free energy, entropy, internal energy, heat capacity, and susceptibility. The expectation values
of the system energy and system-bath interaction energy in the thermal equilibrium state are also
evaluated. © 2014 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4890441]

I. INTRODUCTION

Quantum open systems have been a subject of fundamen-
tal interest for many years. Problems in this category include
those of understanding how the irreversibility of time appears
in system dynamics, why macroscopic systems can be treated
with classical mechanics instead of quantum mechanics, how
wave functions collapse as a result of measurements done
with macroscopic instruments, and why and how quantum
systems approach a thermal equilibrium state through inter-
action with their environments.1–4 Theories of quantum open
systems have also been used to construct models of practi-
cal interest, in particular to account for line shapes in EPR,
NMR,5, 6 and laser spectra,7 to evaluate chemical reaction
rates8 and electron and charge transfer rates9, 10 in chemical
physics, and to explore the lifetimes of quantum entanglement
states in quantum information theory.11

The phenomena mentioned above arise from the unavoid-
able interaction of a system with its environment. In the quan-
tum mechanical case, dissipative systems are often modeled
as main systems coupled to heat-bath degrees of freedom at
finite temperature. This coupling gives rise to thermal fluctu-
ations and dissipation that drive the systems toward the ther-
mal equilibrium state. The heat-bath degrees of freedom are
then reduced using such methods as the projection operator
method and the path integral method.

a)Electronic mail: tanimura@kuchem.kyoto-u.ac.jp.

The projection operator approach is effective if the in-
teraction between the system and the bath is weak. If one
further assumes that the correlation time of the noise arising
from the interaction with the bath is very short (the Marko-
vian assumption), equations of motion for the density ma-
trix elements can be derived, and these can be solved numer-
ically. The most commonly used equations of this kind are
the quantum master equations3, 4 and the Redfield equation.5

It has been proven, however, that quantum master equations
and the Redfield equation do not satisfy the necessary pos-
itivity condition.12–15 Careful analyses addressing this prob-
lem have been carried out by several researchers.16, 17 As a
method to preserve positivity, the rotating wave approxima-
tion (RWA), which modifies the interaction between the sys-
tem and the heat bath, has been applied.18, 19 However, this
may alter the thermal equilibrium state as well as the dynam-
ics of the original total Hamiltonian. Then, building on these
results, it was shown that the violation of the positivity con-
dition results from the Markovian assumption. Specifically, it
was found that even if the dissipation process is Markovian,
the fluctuation process may not be, because it must satisfy the
fluctuation-dissipation theorem.20

The time convolution-less (TCL) master equation has a
wider range of applicability than the quantum master equa-
tions and Redfield equation, because it allows the system-
bath interaction to be non-perturbative and fluctuation and
dissipation to be non-Markovian.21, 22 In order for a non-
perturbative treatment to be possible, however, the system
Hamiltonian and the bath interactions of the TCL equation

0021-9606/2014/141(4)/044114/13 © Author(s) 2014141, 044114-1
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must commute.23, 24 Thus, the TCL equation cannot be used
to treat many important problems involving molecules, atoms,
and spins driven by a time-dependent laser or magnetic field.
In addition, because of the factorized nature of the system-
bath interaction, in the case of a non-commuting excitation,
the TCL equation cannot be used to calculate nonlinear re-
sponse functions of the system operator involved in the opti-
cal multidimensional spectrum.25, 26

Path integral Monte Carlo simulations do not have the
limitations of any of the approaches discussed above, and
for this reason, they are capable of incorporating imaginary
path integrals and unfactorized initial conditions more eas-
ily, but this approach is computationally heavy, because the
number of paths to be evaluated grows rapidly with time,
while sampling fails due to the phase cancellation of wave
functions.27–29 Much effort has been made to extend the ap-
plicability of this method.30–35 Because this approach can eas-
ily incorporate the semi-classical approximation in the bath,
it may have an advantage in the study of polyatomic systems
treated in multi-dimensional coordinates, but applications to
this point incorporating full quantum dynamics have been
limited to relatively small systems.

Many of the above-mentioned limitations can be over-
come with the hierarchal equations of motion (HEOM) for
the reduced density matrix, which are derived by differen-
tiating the reduced density matrix elements defined by path
integrals.20 This approach was introduced to investigate the
connection between the phenomenological stochastic Liou-
ville equation and the dynamical Hamiltonian theory, and
was originally limited to the case in which the spectral dis-
tribution function takes the Drude form (i.e., the Ohmic form
with a Lorentzian cutoff) and the bath temperature is high.36

However, with the inclusion of low temperature corrections
terms, this temperature limitation has been eliminated.37–40 In
addition, with the extension of the dimension of the hierar-
chy, this approach is capable of treating a great variety of
spectral distribution functions.41–48 This formalism is valu-
able because it can treat not only strong system-bath cou-
pling but also quantum coherence between the system and
bath, which is essential to calculate nonlinear response func-
tions. The system-bath coherence becomes particularly im-
portant if the bath interaction is regarded as non-Markovian,
as was found from nonlinear optical measurements in the
late 1980s, when laser technology reached the femto-second
time scale, which is much shorter than the noise correla-
tion time of environmental molecules.7 The HEOM approach
has been used to study such problems, which include multi-
dimensional spectroscopy.49–60 Recently, it was shown that
system-bath coherence also plays an important role in calcula-
tions of quantum measures involving concurrence11 and non-
Markovianity61 under multiple external perturbations.62–64

Because the HEOM approach is computationally
heavy, a variety of algorisms have been developed to
deal with dissipative dynamics in realistic situations.65–72

It has been applied to the study of multi-dimensional
vibrational spectroscopies,52–55 photosynthetic antenna
systems,58–60, 73–76 fermion systems,77–79 quantum ratchets,80

resonant tunneling diodes,81, 82 and dissociation of tightly
bounded electron-hole pairs.83

While the applicability of the HEOM approach contin-
ues to expand, the basic nature of the hierarchy elements
has not been thoroughly explored. The purpose of this pa-
per is to investigate the role of correlated initial equilib-
rium states in the HEOM formalism. Until this time, the
HEOM have been derived by assuming a factorized initial
state, ρ̂tot = exp[−βĤA] exp[−βĤB ], at inverse temperature
β, where ĤA and ĤB are the system and bath Hamiltonians,
respectively, while the true thermal equilibrium state of the
system is given by ρ̂tot = exp[−β(ĤA + ĤI + ĤB)], where
ĤI is the system-bath interaction. The difference between
the factorized and correlated initial states becomes large for
strong ĤI . Analysis based on an analytic solution of a Brow-
nian oscillator system indicates that even if we start from a
factorized initial state, the system reaches the true equilib-
rium state, trB{exp[−β(ĤA + ĤI + ĤB)]}, through transient
phenomena arising from the factorized initial state, for ex-
ample, phenomena known as initial sweeping.84–86 With the
HEOM approach, we have run the HEOM program until all
of the hierarchy elements reach the steady state and then used
these elements as the initial conditions of the correlated ther-
mal equilibrium state. The accuracy of this method has been
confirmed by analyzing multi-dimensional spectra obtained
with it.53 Nevertheless, it would be interesting to derive the
HEOM starting from a correlated initial thermal state in order
to obtain an analytically derived expression for the system-
bath coherence in the HEOM formalism. Moreover, with a
simple generalization, we can also derive the HEOM in imag-
inary time, which corresponds to the inverse temperature. We
show that the imaginary-time HEOM is convenient for ob-
taining correlated thermal equilibrium states and the thermo-
dynamic variables of the reduced system.

The organization of the paper is as follows. In Sec. II we
present a model Hamiltonian and its influence functional with
correlated initial states. In Sec. III, we derive the HEOM from
the density matrix elements using the influence functional for-
malism with the correlated initial states given in Sec. II. In
Sec. IV, we derive the imaginary-time HEOM, which is con-
venient for evaluating correlated thermal equilibrium states
and the thermodynamic quantities of the system. In Sec. V, to
confirm the validity and numerical efficiency of our approach,
we report the results of numerical integrations of the HEOM
carried out over real time and imaginary time for a spin-boson
system and compare their results. Thermodynamic variables
and expectation values for the spin-boson system are also cal-
culated as a demonstration. Section VI is devoted to conclud-
ing remarks.

II. INFLUENCE FUNCTIONAL WITH CORRELATED
INITIAL STATES

We consider a situation in which the system interacts with
a heat bath that gives rise to dissipation and fluctuation in the
system. To illustrate this, let us consider a Hamiltonian ex-
pressed as

Ĥtot = ĤA + ĤI + ĤB, (1)

where ĤA ≡ HA(â+, â−) is the Hamiltonian of the sys-
tem, denoted by A, defined by the creation and annihilation
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operators â+ and â−. The bath degrees of freedom are treated
as an ensemble of harmonic oscillators,

ĤB =
∑

j

(
p̂2

j

2mj

+ 1

2
mjω

2
j x̂

2
j

)
, (2)

with the momentum, position, mass, and frequency of the jth
bath oscillator given by p̂j , x̂j , mj, and ωj, respectively. The
system-bath interaction is given by

ĤI = −V̂ (â+, â−)
∑

j

αj x̂j , (3)

where V̂ (â+, â−) is the system part of the interaction, and
αj is the coupling constant between the system and the jth
oscillator.

The heat bath can be characterized by the spectral distri-
bution function, defined by

J (ω) ≡
∑

j

¯α2
j

2mjωj

δ(ω − ωj ), (4)

and the inverse temperature, β ≡ 1/kBT, where kB is the Boltz-
mann constant. Note that if â+ and â−, respectively, repre-
sent the creation and annihilation operators of spin states, the
above Hamiltonian is the spin-boson Hamiltonian,2, 3 which
has been studied with various approaches.5–7, 27–29

Now, let us introduce the fermion coherent state |φ〉,
which satisfies â−|φ〉 = φ|φ〉 and 〈φ|â+ = φ†〈φ|, where φ

and φ† are Grassmann numbers (G-numbers).36–38 Note that
here we consider a two-level system, but extension to a multi-
level system is also straightforward.42, 43 In practice, we can
treat a G-number system in the same manner as a c-number
system, as long as we maintain the time order of the oper-
ators in the integral. In the path integral representation, the
time propagator of the wave function (the Feynman propaga-
tor) for the total system is expressed as

Gtot (φ
†, x, φ0, x0; t)

= 1

N

∫ φ(t)=φ

φ(0)=φ0

D[φ†(τ )φ(τ )]
∫ x(t)=x

x(0)=x0

D[x(τ )]

×e
i
¯
S

A
[φ†, φ; t]+ i

¯

∫ t

0 dτ[ 1
2 mẋ2(τ )− 1

2 mω2x2(τ )+V (τ )x(τ )], (5)

where N is the normalization constant,
∫

D[φ†(τ )φ(τ )] repre-
sents a functional integral over a set of Grassmann variables,
and

∫
D[x(τ )] ≡ 	j

∫
D[xj(τ )] denotes path integrals over

the bath oscillator coordinates, with mẋ2 ≡ ∑
j mj ẋ

2
j , mω2x2

≡ ∑
j mjω

2
j x

2
j , and V (τ )x(τ ) ≡ V (φ†(τ ), φ(τ ))

∑
j αjxj (τ ).

Here, the action for the system’s Hamiltonian, ĤA(â+, â−),
is denoted by SA[φ†, φ; t] = ∫ t

0 dτLA(φ†, φ), with the
Lagrangian

LA(φ†, φ) = i¯φ†φ̇ − HA(φ†, φ). (6)

The thermal equilibrium state can also be expressed in the
path integral representation by making the replacement iτ /¯

→ τ ′ in Eq. (5). We thereby obtain

ρ
eq
tot (φ0, x0, φ

′†
0, x′

0; β¯)

= 1

Ztot

∫ φ̄(β¯)=φ0

φ̄(0)=φ′
0

D[φ̄†(τ ′)φ̄(τ ′)]
∫ x̄(β¯)=x0

x̄(0)=x′
0

D[x̄(τ ′)]

×e− 1
¯
S̄

A
[φ̄†, φ̄; β¯]− 1

¯

∫ β¯

0 dτ ′[ 1
2 m ˙̄x2(τ ′)+ 1

2 mω2x̄2(τ ′)−V̄ (τ ′)x̄(τ ′)],

(7)

where Ztot is the normalization constant, the G-numbers
{φ̄†, φ̄} form the coherent representations of the operators
{â+, â−} for the equilibrium distribution, S̄A[φ̄†, φ̄; β¯] is the
Euclid action of the system obtained from SA[φ†, φ; t] through
the replacement it/¯→ β, and V̄ (τ ′) ≡ V (φ̄†(τ ′), φ̄(τ ′)). The
total density matrix elements is then given by

ρtot (φ
†, x, φ′, x′; t)

=
∫ ∫

dφ
†
0dφ0

∫ ∫
dφ′

0dφ′
0
†
∫

dx0

∫
dx′

0

×Gtot (φ
†, x, φ0, x0, t)ρeq

tot (φ0, x0, φ
′
0
†
, x′

0; β¯)

×G
†
tot (φ

′, x′, φ′
0
†
, x′

0, t). (8)

The heat-bath degrees of freedom can be eliminated by inte-
grating over the bath coordinates as ρ(φ†, φ′; t) = ∫

dxρ tot(φ
†,

x, φ′, x; t). The reduced density operator is then expressed in
the coherent representation of the G-numbers as36–38

ρ̂(t) =
∫ ∫

dφ†dφ

∫ ∫
dφ′†dφ′|φ〉ρ(φ†, φ′; t)〈φ′|, (9)

where

ρ(φ†, φ′; t)

= 1

Ztot

∫ φ(t)=φ

φ(0)=φ0

D[φ†(τ )φ(τ )]
∫ φ̄(β¯)=φ0

φ̄(0)=φ′
0

D[φ̄†(τ ′)φ̄(τ ′)]

×
∫ φ′(t)=φ′

φ′(0)=φ′
0

D[φ′†(τ )φ′(τ )]ρ̄eq

0 [φ̄†, φ̄; β¯]

× e
i
¯
S

A
[φ†, φ; t]F [V; t, β¯]e− i

¯
S
†
A[φ′†, φ′; t].

(10)

Here, ρ
eq

0 [φ̄†, φ̄; β¯] is the thermal equilibrium distri-
bution of the system A itself, defined by the Euclid
action, S̄A[φ̄†, φ̄; β¯], and F [V; t, β¯] with V ≡ {V (φ′†,
φ′), V (φ̄†, φ̄), V (φ†, φ)} is the influence functional for cor-
related initial states.85 Employing the counter path illustrated
in Fig. 1, we can express the influence functional in the path
integral representation as (see Appendix A)

F [ṼC ; t, β¯]

=
∫

dx
∫ x(t)=x

x′(t)=x
D[x̃(s)]e− i

¯

∫
C

ds
[

1
2 m ˙̃x2(s)− 1

2 mω2x̃2(s)+Ṽ
C

(s)x̃(s)
]
,

(11)
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FIG. 1. The counter path for the influence functional given in Eq. (11).

where
∫

D[x̃(s)] ≡ 	j

∫
D[xj (τ )]

∫
D[x̄j (τ ′)]

∫
D[x ′

j (τ )],
with the contour path defined by

∫
C

ds =
∫ t

0
ds +

∫ t+iβ¯

t

ds +
∫ iβ¯

t+iβ¯

ds, (12)

and

x̃(s) =
⎧⎨
⎩

x′(t − s) on C1
x̄(−i(s − t)) on C2

x(t − s + i¯β) on C3

,

(13)

ṼC(s) =
⎧⎨
⎩

V ′(t − s) on C1
V̄ (−i(s − t)) on C2

V (t − s + i¯β) on C3

with V (τ ) ≡ V (φ†(τ ), φ(τ )), V ′(τ ) ≡ V (φ′(τ ), φ′†(τ )), and
V̄ (τ ′) ≡ V (φ̄†(τ ′), φ̄(τ ′)), respectively. The path integral used
here to derive the HEOM is expressed in terms of an influence
functional. The calculation of the influence functional for a
heat bath consisting of harmonic oscillators is analogous to
that of the generating functional for a Brownian oscillator
system if we regard the system operator in the system-bath
interaction V̂ as an external force acting on the bath.87–90

Then, the influence functional can be calculated analytically
and is found to be F [ṼC ; t, β¯] = exp{
̃[ṼC ; t, β¯]}, where
the influence phase is expressed as (see Appendix A)


̃[ṼC ; t, β¯] = 1

¯2

∫
C

ds ′′
∫

C ′
ds ′ṼC(s ′′)ṼC ′ (s ′)L(s ′′ − s ′).

(14)

Here, C′ represents the counter path for s′ that follows s′′

along C under the condition s′′ > s′ and

L(t + iτ ) =
∫ ∞

0
dωJ (ω)

1

sinh
(

β¯ω
2

)

×
[

cosh

(
β¯ω

2
− ωτ

)
cos(ωt)

+i sinh

(
β¯ω

2
− ωτ

)
sin(ωt)

]
. (15)

After dividing the contour of the integral in Eq. (14) into C1,
C2, and C3, we have (see Appendix B)


̃[V; t, β¯]

=− 1

¯2

∫ t

0
dt ′′

∫ t ′′

0
dt ′V ×(t ′′)[−iL1(t ′′−t ′)V ◦(t ′)

+L2(t ′′ − t ′)V ×(t ′)]

+ i

¯2

∫ t

0
dt ′′

∫ β¯

0
dτ ′V ×(t ′′)L(t ′′ + iτ ′)V̄ (τ ′)

+ 1

¯2

∫ β¯

0
dτ ′′

∫ τ ′′

0
dτ ′V̄ (τ ′′)V̄ (τ ′)L̄(τ ′′ − τ ′), (16)

where we define L(t) ≡ iL1(t) + L2(t), L̄(τ ) ≡ L(iτ ), and

V ×(t) ≡ V (t) − V ′(t),
(17)

V ◦(t) ≡ V (t) + V ′(t).

The functionals V ×(t) and V ◦(t) represent the commutator
and anticommutator of V̂ . This form of the influence func-
tional has been used to analytically study quantum Brownian
systems.85

The first term in Eq. (16) represents a commonly
used influence functional derived from the factorized ini-
tial conditions.1–3 The collective bath oscillator coordinate,
X̂ ≡ ∑

j αj x̂j , is regarded as a driving force for the sys-

tem through the interaction −V̂ X̂. The time-dependent
kernels are then represented by iL1(t) ≡ 〈[X̂(t), X̂]〉 and
L2(t) ≡ 〈X̂(t)X̂ + X̂X̂(t)〉/2, respectively, where X̂(t) is the
Heisenberg representation of the operator X̂.20 The func-
tion L2(t) is analogous to the classical correlation func-
tion of the bath induced noise X(t) and corresponds to
the fluctuations. The dissipation corresponding to C̄(t)
= − ∫

dtL1(t) is related to L2(t) through the quan-
tum version of the fluctuation-dissipation theorem, L2[ω]
= ¯ω coth(β¯ω/2)C̄[ω]/2, which insures that the system
evolves toward the thermal equilibrium state for finite
temperatures.4 The second term in Eq. (16) consists of the
cross-terms between the real-time and imaginary-time inte-
grals that describe the correlation between the initial equilib-
rium state and the dynamical state at time t. This term repre-
sents the contribution of the correlated initial conditions and
can be regarded as the non-Markovian effects with respect to
both real and imaginary times. The last term describes the in-
fluence of the heat bath on the thermal equilibrium state of the
system. In Secs. III–V, in order to derive the imaginary-time
HOEM, we consider the full equilibrium state of the system,
ρeq [φ̄†, φ̄; β¯], by including the last term in ρ

eq

0 [φ̄†, φ̄; β¯].
For 0 < τ < β¯, we have85, 88, 89

cosh
(

β¯ω
2 − ωτ

)
sinh

(
β¯ω

2

) = 2

β¯

∞∑
k=−∞

ωeiν
k
τ

ω2 + ν2
k

, (18)

sinh
(

β¯ω
2 − ωτ

)
sinh

(
β¯ω

2

) = 2

β¯

∞∑
k=−∞

−iνke
iν

k
τ

ω2 + ν2
k

, (19)
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where νk ≡ 2kπ /¯β are the Matsubara frequencies. We thus
have

L(t + iτ ) = 2

β¯

∫ ∞

0
dωJ (ω)

×
[

1

ω
+

∞∑
k=1

2ω

ν2
k + ω2

cos(νkτ )

]
cos(ωt)

+i
2

β¯

∫ ∞

0
dωJ (ω)

∞∑
k=1

2νk

ν2
k + ω2

sin(νkτ ) sin(ωt)

(20)

and

L̄(τ ) = 2

β¯

∫ ∞

0
dωJ (ω)

[
1

ω
+

∞∑
k=1

2ω

ν2
k + ω2

cos(νkτ )

]
.

(21)

For the case τ = 0, we use the definition given in Eq. (15)
to obtain

L1(t) =
∫ ∞

0
dωJ (ω) sin(ωt), (22)

L2(t) = 2

β¯

∫ ∞

0
dωJ (ω)

[
1

ω
+

∞∑
k=1

2ω

ν2
k + ω2

]
cos(ωt).

(23)

III. REDUCED HIERARCHAL EQUATIONS OF MOTION
IN REAL TIME

We assume that the spectral density J(ω) has an Ohmic
form with a Lorentzian cutoff and write20

J (ω) = ¯η
π

γ 2ω

γ 2 + ω2
, (24)

where the constant γ represents the width of the spectral dis-
tribution of the collective bath modes and is the reciprocal
of the correlation time of the noise induced by the bath. The
parameter η is the system-bath coupling strength, which rep-
resents the magnitude of damping.

With Eq. (24) for 0 < τ < β¯, we obtain

L(t + iτ ) =
{

c′′
0 +

∞∑
k=1

c′′
k [cos(νkτ ) − sin(νkτ )]

}
e−γ |t |

+
∞∑

k=1

[c′
k cos(νkτ ) + c′′

k sin(νkτ )]e−ν
k
|t |, (25)

where

c′
k = −2ηγ 2

β

νk

γ 2 − ν2
k

, (26)

c′′
k = 2ηγ 2

β

γ

γ 2 − ν2
k

, (27)

and c′′
0 = ηγ /β. At t = 0, the above equation reduces to

L̄(τ ) =
∞∑

k=0

c̄k cos(νkτ ), (28)

where ν0 ≡ 0, c̄0 = c′′
0 , and c̄k ≡ c′

k + c′′
k for 1 ≤ k, while at τ

= 0, we have

L1(t) = ηγ 2

2
e−γ |t | (29)

and

L2(t) = c′
0e

−γ |t | +
∞∑

j=1

c′
ke

−ν
k
|t |

≈ c′
0e

−γ |t | +
K∑

j=1

c′
ke

−ν
k
|t | + δ(t)

∞∑
j=K+1

c′
k

νk

, (30)

with c′
0 = c′′

0 + ∑∞
k=1 c′′

k = ¯ηγ 2 cot(β¯γ /2)/2. Here, we
choose K so as to satisfy νk = 2πK/(β¯) � ωc, where ωc
represents the characteristic frequency of the system. Un-
der this condition we can apply the approximation νke−ν

k
|t |

� δ(t) (for j ≥ K + 1) with negligible error at the desired
temperature, 1/β.

We define the equilibrium distribution function of the
system under the influence of the heat bath through the re-
placement of the last term of 
̃[V; t, β¯] (as expressed in
Eq. (16)) appearing F [V; t, β¯] with ρ

eq

0 [φ̄†, φ̄; β¯]. We then
obtain

ρeq[φ̄†, φ̄; β¯]

= 1

ZB

exp

[
− 1

¯
S̄A[φ̄†, φ̄; β¯]

+
∞∑

k=0

c̄k

¯2

∫ β¯

0
dτ ′′

∫ τ ′′

0
dτ ′V̄ (τ ′′)V̄ (τ ′) cos(νk(τ ′′ − τ ′))

]
.

(31)

The influence functional F [V; t, β¯] is redefined through this
replacement as

FCI [V; t, β¯] = exp

[(
− i

¯

)2 ∫ t

0
dt ′′ e−γ t ′′ V ×(t ′′)

×
(∫ t ′′

0
dt ′ eγ t ′ �(t ′) − i�̄(β¯)

)]

× exp

[(
− i

¯

)2 ∫ t

0
dt ′′

K∑
k=1

e−ν
k
t ′′ V ×(t ′′)

×
(∫ t ′′

0
dt ′ eν

k
t ′ �k(t ′) − i�̄k(β¯)

)]

× exp

[
−

∫ t

0
dt ′′�(t ′′)

]
, (32)

where

�(t) ≡ c′
0V

×(t) − i¯ηγ 2

2
V ◦(t), (33)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.54.110.71 On: Mon, 28 Jul 2014 00:11:50



044114-6 Yoshitaka Tanimura J. Chem. Phys. 141, 044114 (2014)

�̄(β¯) ≡
∫ β¯

0
dτ ′V̄ (τ ′)

{
c′′

0 +
∞∑

k=1

c′′
k [cos(νkτ

′) − sin(νkτ
′)]

}
,

(34)

and for k ≥ 1,

�k(t) ≡ c′
kV

×(t), (35)

�̄k(β¯) ≡
∫ β¯

0
dτ ′V̄ (τ ′)[c′

k cos(νkτ
′) + c′′

k sin(νkτ
′)], (36)

and

�(t) ≡ −
∞∑

k=K+1

V̂ ×(t)�̂k(t). (37)

Note that in the high temperature limit, β¯γ � 1, the noise
correlation function reduces to L2(t) ∝ e−γ |t|. This indicates
that the heat bath oscillators interact with the system in the
form of Gaussian Markovian noise.36

The equations of motion for the reduced density op-
erator can be derived by evaluating the time derivative of
the wavefunctions on the left-hand and right-hand sides and
the influence functional.20, 36–44 If we consider the auxiliary
matrix defined by

ρ
(n)
j1,...,jK

(φ†, φ′; t)

= 1

Ztot

∫ φ(t)=φ

φ(0)=φ0

D[φ†(τ )φ(τ )]
∫ φ̄(β¯)=φ0

φ̄(0)=φ′
0

D[φ̄†(τ ′)φ̄(τ ′)]

×
∫ φ′(t)=φ′

φ′(0)=φ′
0

D[φ′†(τ )φ′(τ )]ρ̄eq[φ̄†, φ̄; β¯]

× e
i
¯
S

A
[φ†, φ; t]F

(n)
j1,··· ,jK

[V; t, β¯]e− i
¯
S
†
A[φ′†, φ′; t], (38)

where

F
(n)
j1,··· ,jK

[V; t, β¯]

=
{∫ t

0
dt ′ e−γ (t−t ′) �(t ′) − i e−γ t �̄(β¯)

}n

×
K∏

k=1

{∫ t

0
dt ′ e−ν

k
(t−t ′) �k(t ′) − i e−ν

k
t �̄k(β¯)

}j
k

×FCI [V; t, β¯] (39)

for nonnegative integers n, j1, . . . , jK. Among the ρ̂
(n)
j1,...,jK

(t),

only ρ̂
(0)
0,...,0(t) = ρ̂(t) has a physical meaning, and the oth-

ers are introduced for computational purposes. Differentiating
ρ

(n)
j1,...,jK

(φ†, φ′; t) with respect to t, we obtain the following hi-

erarchy of equations in operator form:

∂

∂t
ρ̂

(n)
j1,...,jK

(t)

= −
[

i

¯
Ĥ×

A + nγ +
K∑

k=1

jkνk + �̂

]
ρ̂

(n)
j1,...,jK

(t)

− i

¯
V̂ ×ρ̂

(n+1)
j1,...,jK

(t) − i

¯

K∑
k=1

V̂ ×ρ̂
(n)
j1,...,jk

+1,...,j
K

(t)

− in

¯
�̂ρ̂

(n−1)
j1,...,jK

(t) −
K∑

k=1

ijk

¯
�̂kρ̂

(n)
j1,...,jk

−1,...,j
K

(t), (40)

where Ĥ× is the Liouvillian of ĤA, and the relaxation oper-
ators �̂ and �̂k are obtained through the replacement V ×(t)
→ V̂ × and V ◦(t) → V̂ ◦ in Eqs. (33) and (35), where Ô×f̂

≡ Ôf̂ − f̂ Ô and Ô◦f̂ ≡ Ôf̂ + f̂ Ô for any operand opera-
tor Ô and f̂ , and

�̂ ≡
{

− η

β

[
1 − β¯γ

2
cot

(
β¯γ

2

)]
+

K∑
k=1

c′
k

νk

}
V̂ ×V̂ ×.

(41)

The above expression is identical to the HEOM with a fac-
torized initial state and can be truncated in the same manner
as in the factorized case for large N ≡ n + �K

k=1jk � ωc/

min(γ, μ1), where ωc is the characteristic frequency of the
system.20, 38 If we add the counter term to the Hamiltonian
(1), we have an additional term in Eq. (41).53

While the terms from the correlated initial state �̄ and �̄k

do not appear in Eq. (40), they define the hierarchy elements
for the correlated initial equilibrium state. To demonstrate this
point, we consider the initial states of the density operators,
obtained by setting t = 0 in Eqs. (38) and (39):

ρ
(n)
j1,...,jK

(φ†, φ′; 0) = 1

ZA

∫ φ̄(β¯)=φ0

φ̄(0)=φ′
0

D[φ̄†(τ )φ̄(τ )](−i�̄(β¯))n

×
K∏

k=1

(−i�̄k(β¯))jk ρ̄[φ̄†, φ̄; β¯]. (42)

Here, ZA = Ztot/ZB and

ρ̄[φ̄†, φ̄; τ ]

= exp

[
− 1

¯
S̄A[φ̄†, φ̄; τ ]

]

×exp

[ ∞∑
k=0

c̄k

¯2

∫ τ

0
dτ ′′

∫ τ ′′

0
dτ ′V̄ (τ ′′)V̄ (τ ′) cos(νkτ

′′) cos(νkτ
′)

]

×exp

[ ∞∑
k=1

c̄k

¯2

∫ τ

0
dτ ′′

∫ τ ′′

0
dτ ′V̄ (τ ′′)V̄ (τ ′) sin(νkτ

′′) sin(νkτ
′)

]
,

(43)

and we have ρeq [φ̄†, φ̄; β¯] = ZBρ̄[φ̄†, φ̄; β¯]. This defines
the correlated equilibrium initial conditions of Eq. (40). In
Sec. IV, we derive the equations of motion to evaluate these
hierarchy elements.
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IV. REDUCED HIERARCHAL EQUATIONS OF MOTION
IN IMAGINARY TIME: CORRELATED THERMAL
EQUILIBRIUM STATE

The thermal equilibrium state ρ̄[φ̄†, φ̄; τ ] at time t = 0
and inverse temperature τ can be obtained by considering the
imaginary-time derivative of the reduced density matrix ele-
ments given in Eq. (31). This is expressed as

∂

∂τ
ˆ̄ρ [m:l]
k1,...,km (τ ) = −ĤA

ˆ̄ρ [m:l]
k1,...,km (τ )

+ 1

¯

K∑
km+1=0

c̄km+1 cos(νkm+1τ )V̂ ˆ̄ρ [m+1:l]
k1,...,km+1 (τ )

+ 1

¯

K∑
km+1=0

c̄km+1 sin(νkm+1τ )V̂ ˆ̄ρ [m+1:l+1]
k1,...,km+1 (τ )

+ 1

¯

m−l∑
h=1

cos(νkhτ )V̂ ˆ̄ρ [m−1:l]
k1,...,kh−1,kh+1,...,km (τ )

+ 1

¯

n∑
h=m−l+1

sin(νkhτ )V̂ ˆ̄ρ [m−1:l−1]
k1,...,kh−1,kh+1,...,km (τ ),

(44)

where ˆ̄ρ [m:l]
k1,...,km (τ ) is the density operator defined in path inte-

gral form as

ρ̄
[m:l]
k1,...,km (φ†

0, φ
′
0; τ )

=
∫ φ̄(τ )=φ0

φ̄(0)=φ′
0

D[φ̄†(τ )φ̄(τ )]
m−l∏
g=1

(∫ τ

0
dτg cos(νkg τg)V̄ (τg)

)

×
m∏

g′=m−l+1

(∫ τ

0
dτg′ sin(νkg′ τg′ )V̄ (τg′)

)
ρ̄[φ̄†, φ̄; τ ].

(45)

Note that the first product in Eq. (45) contains (m − l)
factors, and the second contains l factors. Thus, the ex-
pression there is (m − l)th order in (

∫
dτcos (νkτ )) and

lth order in (
∫

dτ sin (νkτ )). Also, ˆ̄ρ [m−1,l]
k1,...,kh−1,kh+1,...,km (τ ) and

ˆ̄ρ [m−1,l−1]
k1,...,kh−1,kh+1,...,km (τ ) in Eq. (44) denote the hierarchy ele-

ments defined by Eq. (45) without the index kh for 0 ≤ h ≤ m.
Note that any exchange of suffices ki and k j in Eq. (45) that
merely results in the permutation of two cosine factors or two
sine factors leaves the total integral unchanged, while one that
results in the arguments of a sine and cosine being exchanged
will generally cause the total integral to change. To trun-
cate the hierarchy equations, we choose some large value of
K′ ≡ m and set the elements at (m + 1)th order to 0. We thus
obtain a closed set of equations up to mth order.

To illustrate the structure of the hierarchy given in
Eq. (44), here we write out the equations up to second order.
The hierarchy starts from the zeroth-order equation, which is

that for the thermal equilibrium state density matrix:

∂

∂τ
ˆ̄ρ [0:0](τ ) = −ĤA

ˆ̄ρ [0:0](τ )

+ 1

¯

K ′∑
k1=0

c̄k1 cos(νk1τ )V̂ ˆ̄ρ [1:0]
k1 (τ )

+ 1

¯

K ′∑
k1=0

c̄k1 sin(νk1τ )V̂ ˆ̄ρ [1:1]
k1 (τ ). (46)

Then, the first order consists of two equations,

∂

∂τ
ˆ̄ρ [1:0]
k1 (τ ) = −ĤA

ˆ̄ρ [1:0]
k1 (τ ) + 1

¯
cos(νk1τ )V̂ ˆ̄ρ [0:0](τ )

+ 1

¯

K ′∑
k2=0

c̄k2 cos(νk2τ )V̂ ˆ̄ρ [2:0]
k1,k2 (τ )

+ 1

¯

K ′∑
k2=0

c̄k2 sin(νk2τ )V̂ ˆ̄ρ [2:1]
k1,k2 (τ ), (47)

∂

∂τ
ˆ̄ρ [1:1]
k1 (τ ) = −ĤA

ˆ̄ρ [1:1]
k1 (τ ) + 1

¯
sin(νk1τ )V̂ ˆ̄ρ [0:0](τ )

+ 1

¯

K ′∑
k2=0

c̄k2 cos(νk2τ )V̂ ˆ̄ρ [2:1]
k1,k2 (τ )

+ 1

¯

K ′∑
k2=0

c̄k2 sin(νk2τ )V̂ ˆ̄ρ [2:2]
k1,k2 (τ ), (48)

and the second order consists of three equations,

∂

∂τ
ˆ̄ρ [2:0]
k1,k2 (τ ) = −ĤA

ˆ̄ρ [2:0]
k1,k2 (τ ) + 1

¯
cos(νk1τ )V̂ ˆ̄ρ [1:0]

k2 (τ )

+ 1

¯
cos(νk2τ )V̂ ˆ̄ρ [1:0]

k1 (τ )

+ 1

¯

K ′∑
k3=0

c̄k3 cos(νk3τ )V̂ ˆ̄ρ [3:0]
k1,k2,k3 (τ )

+ 1

¯

K ′∑
k3=0

c̄k3 sin(νk3τ )V̂ ˆ̄ρ [3:1]
k1,k2,k3 (τ ), (49)

∂

∂τ
ˆ̄ρ [2:1]
k1,k2 (τ ) = −ĤA

ˆ̄ρ [2:1]
k1,k2 (τ ) + 1

¯
cos(νk1τ )V̂ ˆ̄ρ [1:1]

k2 (τ )

+ 1

¯
sin(νk2τ )V̂ ˆ̄ρ [1:0]

k1 (τ )

+ 1

¯

K ′∑
k3=0

c̄k3 cos(νk3τ )V̂ ˆ̄ρ [3:1]
k1,k2,k3 (τ )

+ 1

¯

K ′∑
k3=0

c̄k3 sin(νk3τ )V̂ ˆ̄ρ [3:2]
k1,k2,k3 (τ ), (50)
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∂

∂τ
ˆ̄ρ [2:2]
k1,k2 (τ ) = −ĤA

ˆ̄ρ [2:2]
k1,k2 (τ ) + 1

¯
sin(νk1τ )V̂ ˆ̄ρ [1:1]

k2 (τ )

+ 1

¯
sin(νk2τ )V̂ ˆ̄ρ [1:1]

k1 (τ )

+ 1

¯

K ′∑
k3=0

c̄k3 cos(νk3τ )V̂ ˆ̄ρ [3:2]
k1,k2,k3 (τ )

+ 1

¯

K ′∑
k3=0

c̄k3 sin(νk3τ )V̂ ˆ̄ρ [3:3]
k1,k2,k3 (τ ). (51)

From the definition, the initial conditions are set as
ˆ̄ρ[0:0](0) = I, where I is the unit operator, with all other hierar-
chy elements set to zero. The calculated elements ˆ̄ρ [m:l]

k1,...,km (β¯)
must be normalized after the integration over imaginary time
is carried out by dividing by ZA = trA{ ˆ̄ρ[0:0](β¯)}. A sig-
nificant difference between the real-time HEOM, given in
Eq. (40), and the above imaginary-time HEOM is that the
former contain damping terms proportional to γ and νk,
whereas the latter contain sinusoidal terms. The imaginary-
time HEOM readily yield the desired quantities, as they are
solved by integrating over the pre-determined interval from τ

= 0 to τ = β¯, in contrast to the situation for the real-time
HEOM, in which the integration must be carried out until
convergence to the steady state is realized. Any equilibrium
expectation value of the system can be easily evaluated from
ˆ̄ρ[0:0](β¯). Moreover, we can evaluate the imaginary-time cor-
relation functions91 from Eq. (44) in the same manner that
the real-time correlation functions are evaluated from the real-
time HEOM.20

The correlated initial states for the real-time HEOM
can be constructed from the hierarchy elements of the
imaginary-time HEOM. The relations between the real-time
and imaginary-time HEOM elements are similar to the rela-
tions between the expectation value of the collective bath os-
cillator coordinate and the real-time HEOM elements.92 Here,
we present the relations between the two sets of elements up
to second order in the system-bath interaction:

ρ̂
(0)
0,...,0(0) = 1

ZA

ˆ̄ρ [0:0](β¯), (52)

ρ̂
(1)
0,...,0(0) = − 1

ZA

[
c′′

0
ˆ̄ρ [1:0]
0 (β¯)

+
K ′∑
k=1

c′′
k

(
ˆ̄ρ [1:0]
k (β¯) − ˆ̄ρ [1:1]

k (β¯)
) ]

, (53)

ρ̂
(0)
0,...,j

k
=1,0,...,0(0) = − 1

ZA

(c′
k

ˆ̄ρ [1:0]
k (β¯) + c′′

k
ˆ̄ρ [1:1]
k (β¯)),

(54)

ρ̂
(2)
0,...,0(0)

= 1

ZA

[
c′′2

0
ˆ̄ρ [2:0]
00 (β¯) + c′′

0

K ′∑
k=1

c′′
k ( ˆ̄ρ [2:0]

0k (β¯) − ˆ̄ρ [2:1]
0k (β¯))

+
K ′∑
k=1

K ′∑
k′=1

c′′
k c

′′
k′( ˆ̄ρ [2:0]

kk′ (β¯) − 2 ˆ̄ρ [2:1]
kk′ (β¯) + ˆ̄ρ [2:2]

kk′ (β¯))

]
,

(55)

ρ̂
(0)
0,...,j

k
=1,0,...,j

k′ =1,0,...,0(0)

= 1

ZA

(
c′
kc

′
k′ ˆ̄ρ [2:0]

k,k′ (β¯) + c′
kc

′′
k′ ˆ̄ρ [2:1]

k,k′ (β¯)

+ c′′
k c

′
k′ ˆ̄ρ [2:1]

k′,k (β¯) + c′′
k c

′′
k′ ˆ̄ρ [2:2]

k,k′ (β¯)
)

. (56)

The elements ρ̂
(0)
0,...,j

k
=2,0,...,0(0) are obtained by setting k = k′

in Eq. (56). In practice, in order to evaluate the HEOM el-
ements in the case of correlated initial conditions from the
imaginary-time HEOM, the cutoff, K′, must be comparable to
the cutoff of used for the real-time HEOM given in Eq. (40),
K. If we only need the equilibrium distribution, Eq. (52), how-
ever, we may choose K′ even slightly smaller than K/2.

The equilibrium reduced density matrix has been evalu-
ated from various approaches.93, 94 Equation (44) allows us to
calculate the same matrix elements using the reduced equa-
tion of motion approach. Moreover, this approach allows us
to evaluate the correlated initial conditions of the real-time
HEOM.

V. NUMERICAL RESULTS: CORRELATED INITIAL
CONDITIONS, THERMODYNAMIC VARIABLES,
AND EXPECTATION VALUES

In this section, we report the results of numerical simu-
lations that demonstrate the applicability and validity of the
imaginary-time HEOM, given in Eq. (44), for the system
Hamiltonian

ĤA = 1

2
ω0σ̂z + 1

2
�σ̂x. (57)

We chose the system parameters as ω0 = 1 and � = 0
or 1, and the bath parameters as β = 0.5–5, η = 0–2, and
γ = 0.5 for the system-bath interaction V̂ = σ̂x . We trun-
cated the hierarchy by setting ˆ̄ρ [K ′+1:l]

k1,...,kK′+1 (τ ) = 0 for K′ = 6
in the imaginary-time HEOM, while we truncated by set-
ting ρ̂

(n)
j1,...,jK

(t) = 0 for N ≡ n + �K
k=1jk = 10 with K = 7

in the real-time HEOM. The 4th-order Runge-Kutta method
was used for both the imaginary-time and real-time integra-
tions with time steps of �τ = 1.0 × 10−4 and �t = 5.0
× 10−4, respectively. The real-time HEOM were in-
tegrated from the factorized initial conditions ρ

(0)
0,...,0(0)

= exp[−βĤA]/tr{exp[−βĤA]} and ρ̂
(n)
j1,...,jK

(0) = 0 at t = 0,
and steady states were realized between t = 100 and t = 200.

A. Correlated initial states

First, we verified the accuracy of the imaginary-time
HEOM by comparing the equilibrium state obtained from
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TABLE I. Hierarchy elements calculated from the imaginary-time HEOM and real-time HEOM for several values of the inverse temperature, β.

β¯ HEOM ρ
(0)
0000000 ρ

(1)
0000000 ρ

(0)
1000000 ρ

(0)
0010000 ρ

(0)
0000010 ρ

(2)
0000000

0.5 Imaginary 0.617712 0.032478 −0.000058 −0.0000022 −0.0000003 0.033128
Real 0.617712 0.032478 −0.000059 −0.0000022 −0.0000003 0.033116

1.0 Imaginary 0.707858 0.062522 −0.000395 −0.0000157 −0.0000020 0.033651
Real 0.707867 0.062530 −0.000403 −0.0000159 −0.0000020 0.033562

3.0 Imaginary 0.823431 0.121889 −0.003975 −0.0002132 −0.0000280 0.031429
Real 0.823576 0.122238 −0.004294 −0.0002227 −0.0000291 0.030249

them with the steady state distributions obtained from the
real-time HEOM for the temperatures β = 0.5, 1.0, and 3.0
with η = 1 and � = 1 (Table I). We found that the steady-
state calculated from the real-time HEOM, ρ̂

(0)
0,...,0(0), deviates

from the equilibrium state calculated from the imaginary-time
HEOM, ˆ̄ρ [0:0](β¯)/ZA by less than 0.0001% of difference
at β = 0.5. The difference between the two results becomes
larger for larger β and for deeper hierarchy elements, because
we solved the two kinds of HEOM using different truncation
schemes. Other than this difference, however, the imaginary-
time HEOM results are consistent with the real-time HEOM
results. This also indicates that the steady-state elements ob-
tained from Eq. (40) indeed represent the correlated thermal
equilibrium state defined by Eq. (42).

Note that we must chose K′ ≈ K in order to accurately
calculate the real-time HEOM elements for the correlated ini-
tial conditions from the imaginary-time HEOM. Then, in or-
der to obtain a better accuracy for deeper hierarchy elements
in the imaginary-time HEOM, we used a small time step in
the numerical integrations. For this reason, the computational
costs for the real-time and imaginary-time HEOM were com-
parable. However, if we merely needed the equilibrium distri-
bution ˆ̄ρ [0:0](β¯) to 1% accuracy, we could use a smaller cut-
toff K′ and/or a larger time step for the imaginary-time HEOM
and thereby reduce the computational costs to less than 1% of
that for the results reported here.

B. Partition functions and thermodynamic variables

Although with the real-time HEOM, we can calcu-
late only the probability distribution, with the imaginary-
time HEOM we are able to calculate thermodynamic vari-
ables via the partition function of the reduced system, ZA

= trA{ ˆ̄ρ[0:0](β¯)}. Note that the total partition function can
be expressed as Ztot = ZAZB, where the partition function of
the bath is given by

ZB =
∏
j

1

2 sinh
(

β¯ω
j

2

) . (58)

Because we consider an infinite number of oscillators, how-
ever, the partition function of the bath cannot be deter-
mined. For this reason, we consider the system part, ZA, only.
We calculated the Helmholtz free energy, FA = −ln (ZA)/β,
the entropy, SA = kBβ2∂FA/∂β, the internal energy, UA
= −∂ln (ZA)/∂β, the heat capacity, CA = −kBβ2∂UA/∂β, and
the susceptibility, χA = −(∂F/∂�), from ZA for several val-
ues of β. To obtain these quantities, we numerically integrated
the imaginary-time HEOM for fixed η = 1 and � = 0 to ob-

tain ZA for β satisfying 0.05 ≥ β ≥ 5 at steps of �β = 0.05.
For the susceptibility, we also calculated the free energy for
� = 0.05 in order to evaluate the derivative with respect to �

at � = 0.025.
The quantities mentioned above obtained using the

imaginary-time HEOM are compared in Fig. 2 with the
corresponding quantities for a system characterized by
the canonical distribution, Z0

A = trA{exp[−βĤA]}, with the
same Hamiltonian ĤA (with � = 0) and inverse temperature
β. This corresponds to the partition function of the system in
the case that the total partition function takes the factorized
form Z0

tot = trA{exp[−βĤA]}trB{exp[−βĤB]}. The thermo-
dynamic quantities are then given by Z0

A = 2 cosh(β¯ω0/2),
F 0

A = − ln(2 cosh(β¯ω0/2))/β, U 0
A = − tanh(β¯ω0/2)/2,

S0
A = −kB[(β¯ω0/2) tanh(β¯ω0/2) − ln (2cosh (β¯ω0/2))],

and C0
A = kB(β¯ω0)2/4 cosh2(β¯ω0/2). Also, note

that the susceptibility for finite � is expressed as

χ0
A = � tanh[β¯

√
ω2

0 + �2)/2]/2. The superscript “0”
on these quantities indicates that these are calculated using
the conventional statistical physics approach, which is
equivalent to assuming a factorized thermal equilibrium state.

As seen in Fig. 2, in both cases of the spin-boson and fac-
torized spin system, the entropy and internal energy decrease
with the inverse temperature, while the heat capacities of both
systems exhibit maxima at inverse temperatures near β = 2,
where the thermal excitation energy becomes comparable to

0 1 2 3 4 5
β

0

0.3

0.6

S

(a)

β

-0.6

-0.3

0

U

(b)

0 1 2 3 4 5

β

0

0.2

0.4

C

(c)

0 1 2 3 4 5

0 1 2 3 4 5

β

0

0.2

0.4

χ

(d)

FIG. 2. The entropy, S, internal energy, U, heat capacity, C, and suscepti-
bility, χ , of a spin-boson system (solid curves) and a factorized spin system
(dashed curves) as functions of the inverse temperature, β. The susceptibility,
χ , is calculated at � = δ � ω0, and is normalized by dividing by δ.
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the excitation energy. The entropy in the spin-boson case is
larger than that in the factorized case at lower temperatures
because the spin-boson system involves more degrees of free-
dom, due to the presence of the system-bath interaction. It
is also seen that the internal energy is systematically lower
in the spin-boson case than in the factorized case. This indi-
cates that the bath absorbs some of the system energy through
the interaction. The degree to which the system energy is ab-
sorbed by the bath increases as β approaches the thermal ex-
citation energy of the system and, as a result, the heat capac-
ity of the spin-boson system becomes smaller than that of the
factorized spin system near the peak position at β = 2. Com-
pared with the other thermodynamic variables, the difference
between the susceptibilities in the two cases is small. This is
because the system-bath interaction has the same form as the
magnetic excitation, and the effects of � are suppressed by
the strong system-bath interaction.

It is important to note here that those states regarded
as the thermal equilibrium states in the two cases compared
above are different. In the conventional treatment, the thermal
equilibrium state of the system corresponds to the case of a
factorized partition function, while in the present treatment of
the spin-boson system, we consider the thermal equilibrium
state of the total system. Although the difference between
the equilibrium thermodynamic quantities for the spin-boson
system and the factorized spin system is rather minor in the
static case considered in Fig. 2, the difference becomes signif-
icant when we study the dynamics of the system, because in
this case, the positivity condition is often violated in the con-
ventional treatment. This may indicate that treatments based
on the canonical distribution are inherently incompatible with
dynamical states.

C. Auxiliary hierarchy elements and expectation
values

By utilizing the hierarchy elements, we can calculate ex-
pectation values of the system and bath. For example, the ex-
pectation value of the system energy, 〈ĤA〉, is obtained from
Eq. (52) as

〈ĤA〉 = trA{ĤAρ̂
(0)
0,...,0(0)}. (59)

Using the first element of the hierarchy, the ex-
pectation value of the system-bath interaction, 〈ĤI 〉
= tr{V̂ ∑

cj x̂j exp[−βĤtot ]}, is evaluated as

〈ĤI 〉 = trA{V̂ ρ̂
(1)
0,...,0(0)} +

K∑
k=1

trA{V̂ ρ̂
(0)
0,...,j

k
=1,0,...,0(0)},

(60)

where ρ̂
(0)
0,...,0(0) and ρ

(0)
0,...,j

k
=1,0,...,0(0) are obtained from

Eqs. (53) and (54), respectively.
In Fig. 3, we present the expectation values 〈ĤA〉 and

〈ĤI 〉 and the internal energy of the system, UA, as obtained
by numerically integrating Eq. (44) for various coupling
strengths, η, at β = 1 and β = 3, with a step size of δη

= 0.2. At those temperatures, the system part of the energy
increases linearly, while the interaction part decreases linearly

0 1
-2

-1

0

E
ne

rg
y

<HA>

<HI>

  UA

(a) β=1

0 1
η

<HA>

<HI>

  UA

(b) β=3

0 1 2

<HA>

<HI>

  UA

(c) β=5

FIG. 3. The self energy of the system, 〈Ĥ
A
〉, the interaction energy, 〈Ĥ

I
〉,

and the internal energy of the system, UA, as function of the system-bath
coupling strength, η, at (a) β = 1, (b) 3, and (c) 5.

as a function of the coupling strength, η, but the rates of de-
crease and increase are smaller for lower temperatures, be-
cause the thermal activity of the bath is lower in this regime.
We should mention that the internal energy, UA, contains the
system part of the interaction energy but not the bath part. The
system part and bath part of the interaction energies are calcu-
lated as (UA − 〈ĤA〉) and 〈ĤI 〉 − (UA − 〈ĤA〉), respectively.
The internal energy decreases as a function of η because the
system part of the interaction energy also decreases as a func-
tion of η. Both the bath and system parts of the interaction
energy decrease as function of η, but the bath part of the con-
tribution is much larger than the system part, because the bath
contains many degrees of freedom.

VI. CONCLUDING REMARKS

In this paper, we derived the real-time and imaginary-
time HEOM starting from the influence functional formalism
with a correlated thermal initial state. It was shown that the
thermal equilibrium state calculated from the imaginary-time
HEOM is equivalent to the steady state solution of the real-
time HEOM. Because the imaginary-time HEOM is defined
in terms of integrals carried out over the definite time inter-
val from τ ′ = 0 to τ ′ = β and because the elements of the
imaginary-time HEOM are real, we were able to calculate the
hierarchy elements more easily in this case than in the case
of the real-time HEOM. Moreover, using the imaginary-time
HEOM, we were able to calculate the partition function, and
from this, we could directly obtain several thermodynamic
quantities, namely, the free energy, entropy, internal energy,
heat capacity, and susceptibility of the system in the dissipa-
tive environment. The expectation values of not only the sys-
tem energy but also the system-bath interaction energy were
evaluated from the hierarchy elements obtained from the real-
and imaginary-time HEOM. We found that for the purpose of
studying equilibrium properties, rather than dynamical behav-
ior, the imaginary-time HEOM is more useful than the real-
time HEOM.

In this paper, we derived the HEOM for a system in the
energy eigenstate representation, but extension to a system
in the coordinate space representation (or the Wigner rep-
resentation) is straightforward.80–83, 95–98 This extension will
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be helpful for identifying the pure quantum effects, because
we can compare the quantum results with the classical re-
sults obtained from the classical limit of the imaginary-time
HEOM.55, 80, 96
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APPENDIX A: DERIVATION OF CORRELATED
INFLUENCE FUNCTIONAL

Because the extension to a many oscillator system is
straightforward, we start from a single oscillator bath, de-
scribed by the Hamiltonian

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 − V (t)x̂. (A1)

We then consider the density matrix elements with the three
source terms V , V̄ , and V ′ defined by87–90

ρ(x, x ′; t, β¯; V)

=
∫

dx0

∫
dx ′

0

∫ x(t)=x

x(0)=x0

D[x(τ )]e
i
¯

∫ t

0 dτ[ 1
2 mẋ2− 1

2 mω2x2+V (τ )x]

×
∫ x̄(β¯)=x0

x̄(0)=x ′
0

D[x̄(τ ′)]e− 1
¯

∫ β¯

0 dτ ′[ 1
2 m ˙̄x2+ 1

2 mω2x̄2−V̄ (τ ′)x̄]

×
∫ x ′(t)=x ′

x ′(0)=x ′
0

D[x ′(τ )]e− i
¯

∫ t

0 dτ[ 1
2 mẋ ′2− 1

2 mω2x ′2+V ′(τ )x ′]. (A2)

In order to evaluate ρ(x, x ′; t, β¯; V), we start from the Feyn-
man propagator for Eq. (A1), expressed as

G(x, x0, t ; V ) =
∫ x(t)=x

x(0)=x0

D[x(τ )]e
i
¯

∫ t

0 dτ[ 1
2 mẋ2− 1

2 mω2x2+V (τ )x]

=
√

mω

2πi¯ sin(ωt)
e

i
¯
S(x,x0;t ;V ), (A3)

where

S(x, x0; t ; V )

= mω

2 sin(ωt)

[
(x2 + x0

2)cos(ωt) − 2xx0

+ 2x

mω

∫ t

0
dt ′ V (t ′)sin(ωt ′)+ 2x0

mω

∫ t

0
dt ′ V (t ′)sin(ω(t − t ′))

− 2

m2ω2

∫ t

0
dt ′′

∫ t ′′

0
dt ′ V (t ′′)sin(ω(t − t ′′))V (t ′)sin(ωt ′)

]
.

(A4)

The equilibrium distribution, ρeq(x, x ′; β¯; V̄ ), is obtained
from Eq. (A3) by replacing iτ /¯ with τ ′. This yields

ρeq(x, x ′; β¯; V̄ )

=
∫ x̄(β¯)=x

x̄(0)=x ′
D[x̄(τ ′)]e− 1

¯

∫ β¯

0 dτ ′[ 1
2 m ˙̄x2+ 1

2 mω2x̄2−V̄ (τ ′)x̄]

= 1

2 sinh
(

β¯ω
2

)
√

1

2π〈x2〉

× exp

[
− 1

2〈x2〉
(

x + x ′

2
− r̄[V̄ ; β¯]

)2

− 1

2¯2
〈p2〉(x−x ′)2+ i

¯
p̄[V̄ ; β¯](x−x ′)+
̄[V̄ ; β¯]

]
,

(A5)

where

〈x2〉 = ¯

2mω
coth

β¯ω

2
, (A6)

〈p2〉 = ¯mω

2
coth

β¯ω

2
, (A7)

r̄[V̄ ; β¯] = 1

¯

∫ β¯

0
dτ ′V̄ (τ ′)L̄(τ ′), (A8)

p̄[V̄ ; β¯] = im

¯

∫ β¯

0
dτ ′V̄ (τ ′) ˙̄L(τ ′), (A9)

and


̄[V̄ ; β¯] = 1

¯2

∫ β¯

0
dτ ′′

∫ τ ′′

0
dτ ′V̄ (τ ′′)V̄ (τ ′)L̄(τ ′′ − τ ′).

(A10)

Here, we have

L̄(τ ′) = ¯

2mω

cosh
(

β¯ω
2 − ωτ ′

)
sinh

(
β¯ω

2

) . (A11)

Note that the partition function for the oscillator itself,
Z ≡ ∫

dxρeq (x, x; β¯; V̄ = 0), can be obtained from
Eq. (A5) as

Z = 1

2 sinh
(

β¯ω
2

) . (A12)

Using the counter path, we can express the total density
matrix, Eq. (A2), as88–90

ρ(x, x ′; t, β¯; ṼC)

=
∫

D[x̃(s)]e− i
¯

∫
C

ds
[

1
2 m ˙̃x2(s)− 1

2 mω2x̃2(s)+Ṽ
C

(s)x̃(s)
]
, (A13)

where
∫

D[x̃(s)] ≡ ∫
D[x(τ )]

∫
D[x̄(τ ′)]

∫
D[x ′(τ )] and the

contour paths depicted in Fig. 1 are defined by Eqs. (12) and
(13). We can obtain the full density matrix elements by sim-
ply replacing the integral

∫
dτ ′ in Eqs. (A5)–(A10) with the

contour integral
∫

Cds. In the Wigner representation, we have

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.54.110.71 On: Mon, 28 Jul 2014 00:11:50



044114-12 Yoshitaka Tanimura J. Chem. Phys. 141, 044114 (2014)

the distribution

W (p, r; t) = 1

2π¯

∫ ∞

−∞
e−ipq/¯ρ(r + q/2, r − q/2; t)dq.

(A14)

After the normalization, this can be expressed as87

W (p, r; t ; ṼC)

= 1

2π

√
1

〈p2〉〈x2〉

× exp

[
− 1

2〈x2〉 (r − r̃[ṼC ; t, β¯])2

− 1

2〈p2〉 (p − p̃[ṼC ; t, β¯])2 + 
̃[ṼC ; t, β¯]

]
, (A15)

where

r̃[ṼC ; t, β¯] = − i

¯

∫
C

ds ′ṼC(s ′)L(s ′), (A16)

p̃[ṼC ; t, β¯] = im

¯

∫
C

ds ′ṼC(s ′)L̇(s ′), (A17)


̃[ṼC ; t, β¯] = − 1

¯2

∫
C

ds ′′
∫

C ′
ds ′ṼC(s ′′)ṼC ′(s ′)L(s ′′ − s ′).

(A18)

Here, L(s) is the analytically continued Matsubara Green
function for the harmonic oscillator obtained from Eq. (A11)
through the replacement τ ′ → −is′ = −i(t′ + iτ ′), given by

L(t ′ + iτ ′) = ¯

2mω

cosh
(

β¯ω
2 − ωτ ′ + iωt ′

)
sinh

(
β¯ω

2

) , (A19)

and C′ represents the counter path for s′ that follows s′′ along
C under the condition s′′ > s′. For the bath Hamiltonian ap-
pearing in Eq. (2) with the interaction −V

∑
αjxj , Eq. (A19)

is expressed as Eq. (15). By tracing out p and r, we ob-
tain the influence functional for correlated initial conditions,
F [ṼC ; t, β¯] = exp{
̃[ṼC ; t, β¯]}.

APPENDIX B: INFLUENCE PHASE

For the counter path defined by Eqs. (12) and (13), the
influence phase given in Eq. (A18) is expressed as


̃[V; t, β¯]

= − 1

¯2

[∫ t

0
dt ′′

∫ t ′′

0
dt ′V (t ′′)V (t ′)L(−|t ′′ − t ′|)

− i

∫ t

0
dt ′′

∫ β¯

0
dτ ′V (t ′′)V̄ (τ ′)L(−t ′′ − iτ ′ + iβ¯)

−
∫ t

0
dt ′′

∫ t

0
dt ′V (t ′′)V ′(t ′)L(t ′ − t ′′ + iβ¯)

−
∫ β¯

0
dτ ′′

∫ τ ′′

0
dτ ′V̄ (τ ′′)V̄ (τ ′)L(iτ ′′ − iτ ′)

+ i

∫ β¯

0
dτ ′′

∫ t

0
dt ′V̄ (τ ′′)V ′(t ′)L(t ′ + iτ ′′)

+
∫ t

0
dt ′′

∫ t ′′

0
dt ′V ′(t ′′)V ′(t ′)L(−|t ′′ − t ′|)

]
. (B1)

From the definitions L(±t′) ≡ ±iL1(t′) + L2(t′) and Eqs.
(A11) and (A19), we have the relations L(iτ ′) = L̄(τ ′), L(±t′

+ iβ¯) = L(∓t′), and L(t′ + iτ ′ + iβ¯) = L(−t′ − iτ ′). With
these, the influence phase can be expressed as Eq. (16).
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