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We theoretically investigate an electron transfer (ET) process in a dissipative environment by means
of two-dimensional (2D) correlation spectroscopy. We extend the reduced hierarchy equations of
motion approach to include both overdamped Drude and underdamped Brownian modes. While the
overdamped mode describes the inhomogeneity of a system in the slow modulation limit, the under-
damped mode expresses the primary vibrational mode coupled with the electronic states. We outline
a procedure for calculating 2D correlation spectrum that incorporates the ET processes. The present
approach has the capability of dealing with system-bath coherence under an external perturbation,
which is important to calculate nonlinear response functions for non-Markovian noise. The calcu-
lated 2D spectrum exhibits the effects of the ET processes through the presence of ET transition
peaks along the �1 axis, as well as the decay of echo signals. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4766931]

I. INTRODUCTION

Quantum coherence and its destruction by coupling to a
dissipative environment plays an important role in time re-
solved optical response1, 2 as well as nonadiabatic electron
transfer (ET)3–7 in condensed phases. Each of these pro-
cesses involves coupling between the internal vibrations or
electronic excitations of a molecule and the external degrees
of freedom of its environment.8, 9 Femtosecond spectroscopy
provides a direct means for studying nuclear dynamics in
the condensed phase.10–12 Since the spectral lines for these
processes are often broadened and appear in similar posi-
tions, it is not easy to explore their roles with linear spec-
troscopy. This difficulty can be overcome by ultrafast non-
linear spectroscopies involving many laser interactions such
as pump–probe spectroscopy.13–15 These techniques make
it possible to utilize more than one time-evolution period
and allow us to distinguish dynamical processes with dif-
ferent time responses. Recently, two-dimensional (2D) elec-
tronic spectroscopy has also taken part in the investigation
of the dynamics of exciton transfer16–19 and electron trans-
fer processes,20, 21 which stimulated the investigation of this
field especially focusing on a role of quantum coherence.22–24

In 2D spectroscopies, the multibody correlation function of
a transition dipole as a function of the time durations be-
tween the pulses is measured using ultra short pulses. A two-
dimensional contour map of the signals in a Fourier space can
unveil the exciton-exciton interactions, dephasing, and relax-
ation processes that are usually hidden by the broadening of
spectrum in linear spectroscopy.25

In a widely used model for time resolved optical re-
sponses as well as ET, the electronic states are coupled to
an intermediate harmonic nuclear or intramolecular vibra-

tional mode, which is in turn coupled to a heat-bath.8, 9 The
2D spectroscopies obtained from such systems may provide
useful information especially for relaxation and dephasing
processes. However, its theoretical analysis is much more
complex compared with lower order processes. If ET cou-
pling does not exist, the optical response function approach
based on a perturbative expansion of the optical polariza-
tion in powers of the laser fields can be used to study 2D
spectroscopies even for a general spectral distribution with a
strong system-bath coupling case.2, 26–28 We may handle the
ET processes in a similar manner as the optical transition
if ET coupling is weak,8, 9, 29, 30 but an extension of the re-
sponse function approach to the case of strong ET coupling is
not easy.

Alternatively, optical processes can be calculated using a
direct integration of the equations of motion in the presence
of ET coupling and external fields. In the absence of dissipa-
tion, quantum ET transitions can be studied by a wide variety
of numerical methods based on the relevant wave function.31

When dissipation is important, a reduced density matrix has
to be used in the presence of the bath in order to study the
irreversibility of system dynamics toward the thermal equilib-
rium state.32 A difficulty with this approach is in the treatment
of the dissipation processes induced by a heat bath. These are
usually incorporated by using equations of motion for a re-
duced density matrix such as the Redfield equation33–36 and
the stochastic Liouville equation.37, 38

The Redfield (or master) equation approach requires sev-
eral assumptions, such as the rotating wave approximation,
the white-noise (van Hove) approximation, and a factorized
initial condition. Beyond the limitations of these approxima-
tions, the equations of motion of this type sometime pro-
duce unphysical results such as a negative probability of
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density matrix elements. For the master equation, this phe-
nomenon is known as breaking of dynamic positivity. This
is the limitation of some of the reduced equation of motion
approaches. If one modifies the interaction in the resonant
form or the rotating wave approximation form which leads
to the Lindblad form of the master equation, the positivity
problem does not become apparent, and the dynamics of the
system might be different compared to the real system.39 To
have physically meaningful results, one has to maintain the
conditions to satisfy the approximations. Although the time-
convolution-less (TCL) form of the Redfield equation can
handle non-Markovian noise fairly well for the case where the
system Hamiltonian and the system-bath interaction Hamil-
tonians are commute,40, 41 its applicability is still limited be-
cause it cannot handle the system-bath coherence over the
external laser interaction, which plays a major role in 2D
spectroscopies.42

While the stochastic Liouville equation can handle non-
Markovian noise, its applicability is strongly limited.32 This
is because the stochastic theory is phenomenological and does
not ensure the thermal equilibrium state at finite temperature
and it also has to utilize a resolvent in a continued fractional
form to calculate physical observables.37, 38

To eliminate all of the above mentioned limitations,
one can derive the hierarchy equations of motion (HEOM)
for the reduced density matrix derived from a system-bath
Hamiltonian.32, 43 Since HEOM approach is a dynamical the-
ory based on the Hamiltonian, the system approaches a ther-
mal equilibrium state at finite temperature, when the external
perturbation is switched off. Thanks to the truncation schemes
for higher-order hierarchy elements44–47 one can numerically
integrate HEOM for variety of systems expressed as Wigner
distributions48–52 and energy eigen states53–57 as well as when
a time-dependent external perturbation such as laser49 or mag-
netic excitation58 is present. By generalizing hierarchy struc-
tures, one can deal with a low temperature system45, 59, 60 as
well as general spectral distributions61 including Brownian
spectral distributions62–65 and a Lorentzian distribution.66, 67

This formalism is valuable since it can handle not only strong
system-bath coupling, but also quantum coherence between
the system and bath, which plays important roles in multidi-
mensional spectroscopy,50–55, 67–69 energy transfer processes
in photosynthetic antenna systems70–77 and DNA systems,78

ET process,49, 79 and processes discussed in a quantum infor-
mation theory.80–83

While most research with the HEOM approach assumed
the Drude spectral distribution, we have shown that the ET
problem can be handled in a nonperturbative manner for both
the system-bath and ET couplings by applying the hierar-
chy formalism to the Brownian oscillator (BO) spectral dis-
tribution that arises from the canonical transformation of ET
system.62–64 Because realistic environments in many cases in-
volve both the overdamped Drude and underdamped Brown-
ian modes as shown by molecular dynamics simulations,84–88

an extension to the multimode case is necessary. In this pa-
per, we demonstrate a way to deal with the Drude+BO spec-
tral distribution in the framework of HEOM formalism. More-
over, we calculate 2D correlation spectrum for a case that both
ET and optical transitions become important to investigate the

role of dissipation in coherent spectroscopies involving ET
processes.

The organization of the paper is as follows: In Sec. II, we
present a model Hamiltonian for ET transition problem. In
Sec. III, we derive reduced hierarchy equations of motion for
the Drude plus Brownian oscillator mode. In Sec. IV, we ex-
plain a procedure for calculating two-dimensional correlation
spectra. In Sec. V, the numerical results of linear absorption
spectra and 2D spectra for different ET coupling parameters
are shown and discussed. Section VI is devoted to concluding
remarks.

II. MODEL

In a widely used model for time resolved optical re-
sponses as well as ET, the electronic states are coupled to
intermediate harmonic nuclear or intramolecular vibrational
modes, which are in turn coupled to a heat-bath.8, 9 The pri-
mary electronic system A is taken to be a two-level system
with a lower sate |0〉 and an upper state |1〉. The two states
interact through an ET coupling parameter � and a laser in-
teraction f(t). The two-level system is in turn coupled to har-
monic vibrational modes. The molecular Hamiltonian is then
expressed as5–9, 29, 30

ĤA+O = |0〉 H0(p, q) 〈0| + |1〉 H1(p, q) 〈1|

+
(

1

2
¯� + f (t)

)
(|1〉 〈0| + |0〉 〈1|) , (2.1)

where

H0(p, q) =
∑

j

[
p2

j

2mj

+ mjω
2
j

2

(
qj − 1

2
dj

)2
]

− 1

2
¯ω0,

(2.2)

H1(p, q) =
∑

j

[
p2

j

2mj

+ mjω
2
j

2

(
qj + 1

2
dj

)2
]

+ 1

2
¯ω0,

(2.3)
and pj, qj, mj, ωj, and dj represent, respectively, the momen-
tum, coordinate, mass, frequency, and displacement of the jth
nuclear degrees of freedom strongly coupled to the electronic
state. A schematic view of the system for a single mode case
is depicted in Fig. 1. The nuclear oscillator modes further cou-
pled to the harmonic bath systems are expressed as

HB =
∑

j

∑
nj

[
p2

nj

2mnj

+
mnj

ω2
nj

2
(xnj

− qj )2

]
, (2.4)

where xnj
, etc. are the bath oscillator variables for the jth nu-

clear mode. We can reduce the nuclear oscillator mode by per-
forming a canonical transformation of the oscillator+bath co-
ordinates. After the transformation, the total Hamiltonian is
reduced to8

Ĥtot = ĤA + V̂
∑

j

∑
n′

j

cn′
j
xn′

j

+
∑

j

∑
n′

j

[
p2

n′
j

2mn′
j

+
mn′

j
ω2

n′
j

2
x2

n′
j

]
, (2.5)
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FIG. 1. Potential surfaces of the linearly displaced harmonic oscillator sys-
tem. The lower state is denoted |0〉, whereas the upper is |1〉. The equilibrium
coordinate displacement, the ET coupling, the oscillator frequency, and the
energy difference between two potentials are expressed by dj, �j, ωj, and
ω0, respectively. Red and blue represents the pump excitation and probe de-
excitation with frequencies �1 and �3, respectively.

where V̂ = σ̂z/2,

ĤA = 1

2
¯ω0σ̂z +

(
1

2
¯� + f (t)

)
σ̂x, (2.6)

and σ̂i (i = x, y, z) are the Pauli matrices. If we assume the
spectral density of the oscillator-bath to be Jj(ω) = γ jω, then
the spectral density of Eq. (2.5) becomes

J ′
j (ω) = 2¯λj

π

γjω
2
jω(

ω2
j − ω2

)2 + γ 2
j ω2

, (2.7)

where

λj = mjd
2
j ω2

j

2¯
. (2.8)

Note that the above spectral distribution effectively reduces to
the Drude form for γ j � ωj as62

JD(ω) = 2¯λD

π

γDω

γ 2
D + ω2

. (2.9)

We consider one overdamped mode and one underdamped
mode to model electron transfer process in a solvated or pro-
tein environment. While the underdamped mode represents a
vibrational mode, the overdamped mode represents an inho-
mogeneity of the system in the slow modulation limit.26–28, 32

Such example involves a large dye molecule with two elec-
tronic states (the ground state and an excited sate or two ex-
cited states).7 Note that an optical metal-metal charge transfer
(MMCT) system in a solvated environment13–15 may be de-
scribed in a similar framework, although MMCT is described
by the free energy potential surface while the present model
is described by the potential energy surface.

III. REDUCED HIERACHY EQUATIONS OF MOTION
FOR DRUDE+BROWNIAN BATH

After the bath degrees of freedom are traced out, the re-
duced density matrix element is expressed in the path integral

B

B

O

O
system

11

22

B

B

Osystem

1

1

2

(a)

(b)

FIG. 2. Schematic view of the system-oscillator-bath coupling. In the case
(a), the two oscillators are independently coupled to their own bath, whereas,
in the case (b), one oscillator coupled to two baths. In the present Drude+BO
model, the cases (a) and (b) become identical.

form as32

ρ(ψ̄, ψ ′; t) =
∫

D [Q(τ )]
∫

D[Q′(τ )]e
i
¯
SA[Q;t]

×
⎛
⎝∏

j

Fj [Q,Q′; t]

⎞
⎠ e− i

¯
SA[Q′;t], (3.1)

where Q(τ ) = {ψ(τ ), ψ̄(τ )} and Q′(τ ) = {ψ ′(τ ), ψ̄ ′(τ )} are
the coherent state representation of sets of Grassmann num-
bers that describe the states of the system, |0〉 and |1〉 and∫

D[Q(τ )] represents the functional integral. The action for
the system’s Hamiltonian HA is denoted by SA[Q; t]. The bath
effects are described by the Feynman-Vernon influence func-
tional. For the distribution equation (2.7), the influence func-
tional is calculated as

Fj [Q,Q′; t] = e− i
¯

∫ t

t0
ds

∫ s

t0
duσ×

z (s)(−iL
j

1(s−u)σ©
z (u)+L

j

2(s−u)σ×
z (u))

,

(3.2)
where σ×

z (s) ≡ σz(Q(s)) − σz(Q′(s)) and σ
©
z (s) ≡ σz(Q(s))

+ σz(Q′(s)) are the commutator and anticommutator
expressed in the Grassmann variables, respectively. The time-
dependent kernels corresponding to the fluctuation iL

j

1(t)
= 〈[qj (t), qj ]〉/¯ and the dissipation L

j

2(t) = 〈{qj (t), qj }〉
/2¯ are expressed by the spectral distribution as
iL

j

1(t) = ∫ ∞
0 dωJ ′

j (ω) sin(ωt) and L
j

2(t) = ∫ ∞
0 dωJ ′

j (ω)
cos(ωt) coth(β¯ω/2), respectively.

In this paper, we deal with two modes, one with an over-
damped oscillator and the other with an underdamped oscil-
lator. The ET coupling and the energy difference between the
two potentials are chosen to be the same and denoted by �

and ω0, respectively. As illustrated in Fig. 2, we may con-
sider two cases. Namely (a) the two oscillators are indepen-
dently coupled to their own bath or (b) one oscillator coupled
to two baths. If the frequencies of the two oscillators in the
case (a) are the same, the cases (a) and (b) become identi-
cal because the system-oscillator-bath interactions are linear.
Since the frequency of the oscillator does not play a role in
the overdamped mode, the case (a) and (b) become identical.
We thus consider the spectral distribution expressed as

J ′(ω) = 2¯λo

π

γoω

γ 2
o + ω2

+ 2¯λu

π

γuω
2
uω(

ω2
u − ω2

)2 + γ 2
u ω2

. (3.3)
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The correlation functions are then calculated as61–64

iL1(t) = iλoγo

2
e−γot − iλuω

2
u

2ζu

(e−( γu
2 −iζu)t − e−( γu

2 +iζu)t ), (3.4)

L2(t) = λo

2ω0
cot

(
β¯γo

2

)
e−γot − λu

2ζu

[
A−

u e−( γu
2 −iζu)t − A+

u e−( γu
2 +iζu)t]

−
∞∑

k=1

(
2λoγo

β¯

νk

ν2
k − γ 2

o

+ 4λuγuω
2
u

β¯

νk(
ω2

u + ν2
k

)2 − γ 2
u ν2

k

)
e−νkt , (3.5)

where ζu = √
ω2

u − γ 2
u /2 and A±

u = coth
(β¯i(γu ± 2iζu)/4). The reduced hierarchy equations of
motion (HEOM) can be obtained by considering the time
derivative of the reduced density matrix with the kernel Eqs.
(3.4) and (3.5). The procedures are parallel to Refs. 32, 45,

63, and 64. We denote the number of the hierarchy elements
for γ u ± 2iζ u as m± and the number of kth Matsubara
frequencies by jk. The cutoff of Matsubara frequencies is
expressed by K. The hierarchy equations of motion for
Drude+Brownian spectral distribution is then expressed as

˙̂ρ(n,m−,m+)
j1···jK

(t) = −
[

i

¯
Ĥ×

A − γ (n,m−,m+) +
K∑

k=1

jkνk − �̂DB

]
ρ̂

(n,m−,m+)
j1···jK

(t)

+ V̂ ×[
ρ̂

(n+1,m−,m+)
j1···jK

(t) + ρ̂
(n,m−+1,m+)
j1···jK

(t) + ρ̂
(n,m−,m++1)
j1···jK

(t)
]

+ n�̂ρ̂
(n−1,m−,m+)
j1···jK

(t) + m−�̂−ρ̂
(n,m−−1,m+)
j1···jK

(t) + m+�̂+ρ̂
(n,m−,m+−1)
j1···jK

(t)

+
K∑

k=1

V̂ ×ρ̂
(n,m−,m+)
j1··· ,jk+1,···jK

(t) +
K∑

k=1

jkνk�̂
DB
k ρ̂

(n,m−,m+)
j1··· ,jk−1,···jK

(t), (3.6)

where

γ (n,m−,m+) = nγo + (m− + m+)γu

2
− i(m− − m+)ζu, (3.7)

�̂ = λo

2ω0

[
V̂ © + i cot

(
β¯γo

2

)
V̂ ×

]
, (3.8)

�̂± = λuω
2
u

2ζu

{∓V̂ © ± A∓
u V̂ ×}, (3.9)

�̂DB
k =

(
2λoγo

β¯

νk

ν2
k −γ 2

o

+ 4λuγuω
2
u

β¯

νk(
ω2

u + ν2
k

)2−γ 2
u ν2

k

)
V̂ ×,

(3.10)

and �̂DB = V̂ × ∑∞
k=K+1 �̂DB

k . For the condition γ (n,m−,m+)

+ ∑K
k=1 jkνk � max {ω0,�}, this infinite hierarchy can be

truncated by the terminator as

˙̂ρ(n,m−,m+)
j1···jK

(t) ≈ −
[

i

¯
Ĥ×

A − γ (n,m−,m+) +
K∑

k=1

jkνk − �̂DB

]

×ρ̂
(n,m−,m+)
j1···jK

(t). (3.11)

Since both the Drude and Brownian modes can share the Mat-
subara frequency expansion terms, the increase in the num-
ber of hierarchies is moderate. The total number of hierar-
chy elements is evaluated as Ltot = (N + M + K + 1)/(K
+ 1)!/(N + M)!, while the total number of termination ele-
ments is Lterm = (N + M + K)/K!/(N + M)!, where N is the
depth of hierarchy for n, m+, and m−, and M is the increase
of hierarchy for a different mode (M = 2 for m+ and m− in
the BO case). In practice, we can set the termination elements
ρ̂

(n,m−,m+)
j1···jK

(t) = 0 for γ (n,m−,m+) + ∑K
k=1 jkνk � max {ω0,�}

and can reduce the number of hierarchy elements for calcula-
tions as Lcalc = Ltot − Lterm. Further inclusion of BO modes
may be possible but the calculations become computationally
expensive. In such case, we may incorporate a variety of tech-
niques developed for the HEOM approach to accelerate nu-
merical calculations.46, 47, 89–93

IV. LINEAR ABSORPTION AND TWO-DIMENSIONAL
CORRELATION SPECTRA

In quantum mechanics, any physical observable is ex-
pressed as an expectation value of a physical operator. In
an optical measurement, the observable at time t is defined
by 〈μ̂ρ̂tot (t)〉, where μ̂ is the dipole operator and ρ̂tot (t)
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is the density matrix which depends on the interaction be-
tween the driving field and the system.32 For linear absorp-
tion spectroscopy, the density matrix is expanded in terms
of the laser interaction. If the laser interaction is expressed
asf (t)μ̂, where μ̂ = |1〉 〈0| + |0〉 〈1|, then the first-order ex-
pansion term for the impulsive excitation f(t) = δ(t − t1) is
expressed as

R(1)(t1) = i

¯
〈[μ̂(t1), μ̂(0)]〉

= i

¯
tr

{
μ̂e−iL̂0

tot t1μ̂×ρ̂
eq
tot

}
. (4.1)

Here, ρ̂eq
tot = e−βĤ 0

tot /tr{e−βĤ 0
tot } is the equilibrium state of the

total system and we introduce the total Hamiltonian without
the laser interaction Ĥ 0

tot . The super-operators are defined by
e−iL̂0

tot t1Â ≡ e− i
¯
Ĥ 0

tot t Âe
i
¯
Ĥ 0

tot t and Â×B̂ = ÂB̂ − B̂Â, where Â

and B̂ are ordinary operators. In 2D spectroscopy, the multi-
body correlation functions of a molecular dipole or polar-
izability are measured using ultra short pulses.25 The third-
order optical processes such as two-dimensional infrared and
electronic spectroscopies are calculated for pulse sequences
f1(t) = δ(t − t1), f2(t) = δ(t − t1 − t2), and f3(t) = δ(t − t1
− t2 − t3) as93

R(3)(t3, t2, t1)

= − i

¯3
〈[[[μ̂(t1 + t2 + t3), μ̂(t1 + t2)] , μ̂(t1)] , μ̂(0)]〉

= − i

¯3
tr{μ̂e−iL̂0

tot t3μ̂×e−iL̂0
tot t2μ̂×e−iL̂0

tot t1μ̂×ρ̂
eq
tot }. (4.2)

Here, Â×B̂×Ĉ = Â(B̂Ĉ − ĈB̂) − (B̂Ĉ − ĈB̂)Â, where Â,
B̂, and Ĉ are ordinary operators. Since each μ̂× can act either
from the left or from the right, and since R(3)(t3, t2, t1) con-
tains three μ̂×, Eq. (4.2) naturally separates into eight terms.
In practice, we need to evaluate only half of these terms, since
they always come in Hermitian conjugate pairs and we need
four terms. Accordingly, the laser interactions are described
by the transitions between the energy states, and the opti-
cal processes including the time ordering of the laser pulses
are conveniently described by diagrams such as the double-
sided Feynman (Liouville space) diagrams denote by (I)-(IV)
in Fig. 3.2 By formulating third-order optical spectroscopy in
Liouville space, it becomes possible to separate the process
into three steps. The first pulse creates coherence during the
t1 period and then the second pulse brings the system in the
population. There are actually two population states, one be-
ing the upper state |1〉 coming from paths (I) and (II), and the
other being the lower state |0〉 coming from paths (III) and
(IV). These two population states then propagate during the
delay time t2. In addition to the optical transitions obtained
from coherent states, the population evolution is the signifi-
cant information that is obtained from 2D spectroscopies. Fi-
nally, the system interacts with the third probe pulse and the
signal for a single de-excited coherent state is generated in the
t3 period. Note that if the system consists of more than two
levels, there is a contribution from double excitations corre-
sponding to the |0〉 → |1〉 → |2〉 transition.94–96

By utilizing the phase matching condition, experimental-
ists can measure (I) and (IV), and (II) and (III) separately.
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FIG. 3. Double-sided Feynman diagrams of the third-order response func-
tion. The left and right lines represent the time evolution of the left (ket) and
the right (bra) hand side of the density matrix, respectively. The thin blue and
the thick red lines denote the lower state |0〉 or 〈0| and the upper state |1〉 or
〈1|. The paths (I)-(IV) correspond to the process |0〉〈0| to |0〉〈0|. The Her-
mitian conjugate paths which can be obtained by interchanging the left and
right lines, respectively, are not shown here.

Numerically such separation can be done by performing two-
dimensional Fourier transformation in time t1 and t3 as

I (3)(�3, t2, �1) =
∫ ∞

0
dt1

∫ ∞

0
dt3e−i�1t1 ei�3t3R(3)(t3, t2, t1).

(4.3)
The first (+ �1, + �3) and the second (− �1, + �3) quadrant
of the Fourier plane correspond to pump–probe and photon
echo spectra that arise from the diagrams (I) and (IV) and the
diagrams (II) and (III), respectively.94–96

Using Eq. (3.6) we can evaluate the response function
equation (4.3) as the following.32, 50–52 We first run the pro-
gram sufficiently long period from a temporally initial con-
dition (such as the factorized initial condition, ρ̂

(0,0,0)
0···0 (0)

= e−βĤ 0
A with the other hierarchy elements set to be zero) to

have a true thermal equilibrium denoted by ρ̂
(n,m−,m+)
j1···jK

(t∞).

Here and hereafter, Ĥ 0
A represents the system Hamilto-

nian without the laser interaction (f (t)σ̂x = 0). All of the
hierarchy elements have to be utilized to define a cor-
related initial condition. Then the system is excited by
the first dipole interaction μ̂ at t = 0 as ρ̂

′(n,m−,m+)
j1···jK

(0)

= μ̂×ρ̂
(n,m−,m+)
j1···jK

(t∞). The perturbed elements ρ̂
′(n,m−,m+)
j1···jK

(t)
then evolve in time by numerically integrating Eq. (3.6) with
Ĥ 0

A up to t = t1. At t = t1, the system is excited by the sec-
ond laser interaction as ρ̂

′′(n,m−,m+)
j1···jK

(t1) = μ̂×ρ̂
′(n,m−,m+)
j1···jK

(t1).

After the distribution functions ρ̂
′′(n,m−,m+)
j1···jK

(t) evolve in time

with the initial condition ρ̂
′′(n,m−,m+)
j1···jK

(t1), at t = t1 + t2,
the system is again excited by the third laser interaction as
ρ̂

′′′(n,m−,m+)
j1···jK

(t1 + t2) = μ̂×ρ̂
′′(n,m−,m+)
j1···jK

(t1 + t2). The elements

ρ̂
′′′(n,m−,m+)
j1···jK

(t) then evolve in time as t = t1 + t2 + t3. Fi-
nally, the response function defined by Eq. (4.3) is calcu-
lated from the expectation value of the dipole moment as
R(3)(t3, t2, t1) = −itr{μ̂ρ̂

′′′(0,0,0)
0···0 (t1 + t2 + t3)}/¯.32 The lin-

ear absorption spectrum Eq. (4.1) can also be calculated in a
same manner. Note that, to take into account the system-bath
coherence (or system-bath entanglement82, 97) during the ex-
ternal perturbation, it is important to operate μ̂ to all of the hi-
erarchy elements ρ̂

(n,m−,m+)
j1···jK

(t). Although we only use ρ̂
(0,0,0)
0···0

to calculate an expectation value, the other elements are
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essential to have an echo signal for a non-Markovian noise
in 2D spectroscopy.42, 54, 55

It has been shown that population change through ET
(or nonadiabatic) coupling can be explored by pump–probe
spectroscopy.49, 98 If we explore not only population dynamics
but also the system-bath coherence (or system-bath entangle-
ment) through the different pulse excitation, two-dimensional
correlation spectra may be a better choice. This spectrum
can be calculated from the first and second quadrant of the
Fourier transformed response function I

(3)
1 (�3, t2, �1) and

I
(3)
2 (�3, t2, �1) as94–96

Ic(�3, t2, �1) = Re
{
I

(3)
1 (�3, t2, �1) + I

(3)
2 (�3, t2,−�1)

}
,

(4.4)
and the signals are plotted as the function of �1 and �3 for
different t2. Note that since we consider the two-level system,
the contribution from the double excitation which may be cre-
ated by the third pulse for multilevel system does not exist and
can be neglected.94

V. NUMERICAL RESULTS

In the following, we set the excitation energy of the sys-
tem as the base unit ω0 = 1 and calculated linear absorption
spectrum and 2D correlation spectrum for different ET cou-
pling strength � = 0.0ω0, 0.2ω0, and 0.4ω0. The bath pa-
rameters were β¯ = 2.0/ω0, λo = 0.01ω0, γ o = 0.1ω0, γ u

= 0.01ω0, ωu = 0.2ω0 and we consider the two cases of the
displacement (reorganization energies) (a) λu = 0.05ω0 and
(b) λu = 0.2ω0. The temperature here we considered is very
high for a case between the lower state and upper state transi-
tion. To lower the temperature (β¯ω0 ≈ 10), one may need to
employ numerical techniques to accelerate calculations.89–92

It should be noted that dynamical behavior of the system
does not change so much once the temperature becomes low
enough compared with the characteristic frequency of the sys-
tem (such as ωu), since the thermal excitation becomes so
small that the fluctuation does not play any role for electronic
excitation at very low temperature. So, in practice, we do not
have to lower the temperature below β¯ωu ≈ 10 for ω0 � ωu.

The case for � = 0.0 can be calculated analytically us-
ing the response function approach26–28 even higher than the
third-order response,29, 30 the other cases are almost impossi-
ble to study from other approaches including the TCL Read-
field approaches, since, to have right 2D profiles, we have to
deal with a non-Markovian noise with a strong-system bath
coupling characterized by λo/γo and λu/γ u with including a
system-bath coherence that cannot be neglected to calculate
multidimensional spectra.42

The numerical integrations of the hierarchy equations of
motion were performed by using the 4th-order Runge-Kutta
method. We chose N = 12 ∼ 14 and K = 4, so the total
numbers of the hierarchy elements used for calculations are
Lcalc = 31 823 ∼ 38 759. The profiles of calculated distribu-
tion function J′(ω) for the case (a) and (b) are depicted in
Fig. 4.

The Fourier transformed linear absorption spectra calcu-
lated from Eq. (4.1) are presented in Fig. 5. Each of the side
peaks represents transitions between the vibrational levels of

0.0 0.5 1.0 1.5

ω

FIG. 4. Spectral distribution J′(ω) defined by Eq. (3.3) is plotted in the small
displacement case λu = 0.05ω0 (blue) and the large displacement case λu

= 0.2ω0 (red) for the parameters λo = 0.01ω0, γ o = 0.1ω0, γ u = 0.01ω0,
and ωu = 0.2ω0.

the lower and upper electronic states. If we denote the lower
and upper states vibrational levels by n and m′, where n and m′

are the integer, the peak at around �1/ω0 = 0.6, 0.8, 1.0, 1.2,
and 1.4 in Fig. 5(a), for example, corresponds to the 2 → 0′,
1 → 0′, 0 → 0′, 0 → 1′, and 0 → 2′ transitions, respectively.
Note that the peak at �1/ω0 = 1.0 also involves a contribution
from 1 → 1′ and 2 → 2′ transitions, since the temperature is
higher than the vibrational excitation energy. Since the system
is initially in the thermal equilibrium state, the populations
in the lower vibrational levels are higher. Thus, the 1 → 0′

peak is lower than the 0 → 1′ peak. The contribution from the
Drude spectral distribution is observed as a broadened Gaus-
sian peak under the vibrational transition peaks. As can be
seen from Eq. (2.8), the displacement of oscillators between
the |0〉 and |1〉 states is determined by λu. In Fig. 5(b) for large
λu, we observe many phonon peaks due to the varieties of the
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FIG. 5. Absorption spectrum (Eq. (4.1)) plotted in (a) the small displacement
case λu = 0.05ω0 and (b) the large displacement case λu = 0.2ω0 for different
ET couplings � = 0.0ω0 (green), 0.2ω0 (red), and 0.4ω0 (blue), respectively.



22A550-7 Yoshitaka Tanimura J. Chem. Phys. 137, 22A550 (2012)

FIG. 6. Two-dimensional correlation spectrum Ic(�3, t2, �1) for different
values of t2 and different ET couplings �in the small displacement case λu

= 0.05ω0. We plot (a) � = 0.0ω0, (b) � = 0.2ω0, and (c) � = 0.4ω0 at dif-
ferent times (i) t2 = 0, (ii) t2 = 5, (iii) t2 = 10, and (iv) t2 = 20, respectively.
The scale of the signal intensity is chosen to be the same. The peaks at �3 =
0 spreads on the �1 axis arise from the ET coupling in the cases (b) and (c).

vibrational transitions arises from the large displacement of
the potential surfaces.

When the ET coupling � becomes stronger, the spectrum
shifts to the blue because the energy levels are defined by

±
√

ω2
0 + �2/2. Besides this blueshift, the effects of the ET

coupling are negligible. This is because the linear absorption
process does not involve the population state |1〉〈1| as shown
in the t2 period of the third-order response in Fig. 3. The lin-
ear absorption measurement can only detect the coherence be-
tween the |0〉 and |1〉 states.

The calculated 2D correlation spectra in the cases (a) and
(b) for different t2 are presented in Figs. 6 and 7, respec-
tively. In each of the figures, the diagonal peaks around (�1,
�3) = (0.8, 0.8), (1.0, 1.0), (1.2, 1.2), and so on in Fig. 6
and (�1, �3) = (0.7, 0.7), (1.0, 1.0), (1.3, 1.3) and so on in
Fig. 7 correspond to the 1 → 0′ → 1, 0 → 0′ → 0, 1 → 0′

→ 1 transitions and so on, while the off-diagonal peaks such
as (�1, �3) = (1.0, 0.8), (1.0, 1.2) in Fig. 6 correspond to
0 → 0′ → 1, 1 → 1′ → 0, and so on.

At time t2 = 0 in Figs. 6(i-a)–6(i-c), and Figs. 7(i-a)–
7(i-c), only the diagonal peaks are prominent, since there is
not enough time for the excited wave packets to decay. At
time t2 = 5 in Figs. 6(ii-a)–6(ii-c) and Figs. 7(ii-a)–7(ii-c), the
peak profiles become a symmetrical cross like shape. This is
because the coherence between the ground and excited states

FIG. 7. Two-dimensional correlation spectrum Ic(�3, t2, �1) for different
values of t2 and different ET couplings � in the large displacement case λu

= 0.2ω0. The other parameters are the same as the case in Fig. 6. The peaks
at �3 = 0 spreads on the �1 axis arise from the ET coupling in the cases (b)
and (c).

vibrational motions are lost quickly in the present parame-
ter regime and, as a result, the present 2D signal exhibits the
uncorrelated transitions in the t1 period such as 0 → 0′, 1
→ 0′, 0 → 1′ and in the t3 period such as 0′ → 1, 1′ → 0
etc.94, 95 In Figs. 6(iii), 6(iv), 7(iii), and 7(iv), the height of
each phone peak slightly changes in time due to the move-
ment of the wavepacket created in the upper potential surface.
The movement of wavepacket itself can be observed explicitly
if we include the coordinates qj in the calculations.49, 98

In the present model, the ET transition between the elec-
tronic states as well as relaxation between the phonon bands
takes place. The relaxation of phonon bands is much faster
than the ET process, thus, at the early stage of the t2 evolu-
tion, the profiles of phonon peaks are similar regardless of the
ET coupling. In the case λu = 0.05, the energy barrier be-
tween the two potential surfaces is high due to the small dis-
placement and the ET transition only occurs at higher vibra-
tional levels in the excited state potential, while, in the case λu

= 0.2, the energy barrier is low and the ET transition occurs
at lower vibrational levels. Thus, while the signals exhibit the
similarity in Figs. 6(ii)–(iv), the lower frequency peaks in the
�3 direction are suppressed in Figs. 7(ii)–(iv) if the ET cou-
pling becomes strong, since the lower vibrational excitations
in the |1〉 state vanishes due to the ET transition. In Fig. 7,
the entire peak volume decreases as t2 increases for large ET
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FIG. 8. Three-dimensional profile of the two-dimensional correlation spec-
trum presented in Fig. 7(ii–c). The narrow peaks along �3 = 0 at phonon-
band positions arise from the ET transition.

coupling, while, in Fig. 6, the decrease of the volume is small
due to the large energy barrier.

A clear indication of ET coupling in Figs. 6 and 7 is ob-
served as the peaks at �3 = 0 spreads on the �1 axis. To illus-
trate the outline of these narrow peaks, we replot Fig. 7(ii-c)
as the 3D picture in Fig. 8 as an example. The narrow peaks
along �3 = 0 at phonon-band positions are observed. The ex-
istence of these peaks can be easily understood if we regard
the ET coupling � as a laser interaction with frequency 0.
These peaks do not appear on the �3 axis, since ω0 is very
large compared with the thermal activation energy and there
is no |0〉 → |1〉 transition without the pump excitation. The
existence of the �3 = 0 peaks indicate that if the ET cou-
pling is time-dependent due to some other degrees of freedom
like in the case of proton-coupled electron transfer,99–101 then
we may monitor that time-dependence from the peak profile.
Since ET coupling is in a same form as a laser interaction,
we may also investigate the ET transition induced by Stark
effects by strong laser in a same manner.102–104

VI. CONCLUSIONS

We have analyzed the ET process of a two-level system
coupled to an overdamped Drude and underdamped Brownian
oscillators using equations of motion that allowed us to incor-
porate two dephasing modes at finite temperature. Although
2D correlation spectrum is also based on the third-order re-
sponse function like the pump–probe, hole burning, and pho-
ton echo, we demonstrated that we can subtract the informa-
tion for the ET coupling and relaxation process by analyzing
a 2D signal as the peaks along the �3 = 0 and the decrease
of the total peak volume in time t2. For a large displacement
case, we also observe the suppression of the lower phonon
sideband peaks due to the ET transition.

Here, we analyze 2D spectrum for a two-level system
in a limited parameter regime, but an extension to a multi-
level system for a realistic parameter set corresponds to the
ET transition in a reaction center is possible.63, 64 The present
approach can also be applied to a system driven by pulses
of arbitrary number, shape, and strength, as well as a system
with time-dependent ET couplings.62 The present formula-
tion can also be extended to multimode Brownian oscillator
systems by introducing a higher dimensional hierarchy. In-
clusions of multimode are computationally very expensive,
and therefore one has to employ a variety of numerical tech-
niques developed for HEOM approach to accelerate numeri-
cal calculations.46, 47, 89–92 Here, we assumed that the primary
oscillator modes are harmonic. However, if we employ a less
reduced density matrix in which the bath (xnj

) modes are
eliminated and we still keep the oscillator coordinates qj, we
can relax this limitation. The density matrix can then be de-
scribed as a wavepacket in phase space by using the Wigner
representation.44, 48, 49, 98
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