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The quantum Fokker-Planck equation is derived for a system nonlinearly coupled to a harmonic
oscillator bath. The system-bath interaction is assumed to be linear in the bath coordinates but
quadratic in the system coordinate. The relaxation induced dynamics of a harmonic system
are investigated by simulating the higher-order correlation functions of the Raman polarizability
and the dipole moment, which represent the nonlinear optical responses of Raman or infrared
spectroscopy. The 5th-order Raman response shows that, in addition to the frequency fluctu-
ations induced by the bath, higher-order energy transfer between the system and bath plays a
role. The nonlinearity of the system-bath interaction yields also an interesting feature in the
7th-order Raman echo or the 3rd-order infrared photon echo response: The calculations predict
a finite signal for the case of a harmonic potential and a linear coordinate dependence of the
polarizability or dipole while for linear system-bath coupling this response vanishes completely
due to destructive interference of different Liouville space pathways.
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monly assumes a certain functional form for the Hamil-
tonian of the medium, which allows for the derivation of
closed form expressions that are fit to the experimental
results. Such model approach, which is useful to un-
derstand the complex molecular interactions involved in
optical processes, is complementary to more “realistic”
approaches such as Molecular dynamics simulations. A
typical example for this strategy is the Brownian oscil-
lator model, which can be used to calculate, e.g., the
first-order resonant IR response or the third-order off-
resonant Raman response.5, 8, 9) Since the dipole moment
or the polarizability is usually expanded in the power
of molecular coordinate Q as µ(Q) = µ1Q + µ2Q

2 · · ·
or α(Q) = α1Q + α2Q

2 · · ·, the first-order IR or the
third-order Raman onse in lowest order of Q is noth-
ing but the two-time correlation functions of Brownian

resp
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rules for the transitions involved.
To calculate the (non)linear optical response one com-

§1. Introduction

Femtosecond nonlinear optical spectroscopies have
proven to be valuable and versatile tools to obtain in-
formation on the dynamic characteristics of condensed
phase systems.1-6) Usually, these experiments are de-
scribed by a response function formalism,5, 7) which is
based on a perturbative expansion of the optical po-
larization in powers of the applied electric fields. For
resonant spectroscopy, which is carried by the Infrared
(IR) laser for molecular vibrational modes, the laser in-
teraction is described by µE(t), where µ is the dipole
moment of the system. Then, for example, the lowest-
order signal is expressed by the dipole correlation func-
tion 〈µ(t′)µ(t)〉. For off-resonant Raman spectroscopy,
in which resonance arises from a pair of laser pulses
through Raman excitation processes, the laser interac-
tion is described by αE2(t), where α is the polarizability
(Fig. 1). Since the Raman excitation requires a pair of
pulses, the lowest-order Raman signal is third-order in
the laser field including one probe field; it can be ex-
pressed by the correlation function of the Raman po-
larizability 〈α(t′)α(t)〉. Higher-order optical responses
are expressed by higher-order correlation functions of
the dipole moment or the polarizability: The dynamic
information of the Nth order resonant IR spectroscopy
corresponds to the (2N + 1)th-order off-resonant Raman
spectroscopy.5) However, it should be noted the two
types of experiments are governed by different selection

that Fig. 1. Schematic view of a model system. A harmonic potential
system is coupled to a heat bath system through a square-linear
(SL) interaction, which causes the frequency modulation on the
harmonic potential. In Raman spectroscopy, the resonance be-
tween vibrational levels arises from a pair of laser pulses through
Raman excitation processes, whereas in IR spectroscopy, the res-

onance arises from an IR laser pulse.
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two-time (three-point) correlation function of the po-
larizability 〈[α(Q(t′′)), α(Q(t′)), α(Q(t))]〉, is such an ex-
ample. It was proposed to experimentally separate the
inhomogeneous distribution of slowly varying parame-
ters, for example of local liquid configurations, from
the total spectral density.8) This experiment uses two
pairs of excitation pulses, followed by a probe pulse
and therefore has two time variables. By plotting the
fifth-order signal as function of these delay times, we
obtain the two-dimensional profile of the signal. Ini-
tial attempts to measure the 2D Raman response10-12)

underestimated the difficulties in suppressing cascading
third-order contributions to the fifth-order signal.13-16)

The size of the unwanted cascading signals depends on
the experimental geometry and on the coordinate de-
pendence of the polarizability.17) Recently, experimental
progress has been made by optimizing the beam geom-
etry and using diffractive optics.18-20) The 2D informa-
tion content of these time domain experiments can also
be obtained from a frequency domain experiment.21-24)

By using narrow-band lasers (two IR excitation pulses,
followed by one probe pulse which generates a Raman
signal), Zhao and Wright demonstrated that such an ex-
periment is indeed possible.25-27) Resonant third-order
experiments such as IR photon echoes28-31) and two-
dimensional IR33-35) and nonresonant seventh-order ex-
periments like the Raman echo36-38) have been reported
as well. Note that the 2D spectroscopy for electronically
resonant experiments has also been proposed and has
been carried out.39-43)

The key to 2D optical experiments is the sensitivity of
a profile to various dynamical information of molecules
in condensed phases. It has been shown that fifth- and
seventh-order 2D Raman experiments are useful to ac-
cess for instance the degree of inhomogeneous broaden-
ing,8, 44, 45) the anharmonicity of potentials and the non-
linearity of ploraziability,46-53) the coupling mechanism
between different vibrational modes54-56) and the struc-
tural information of large molecules.57, 58) In this paper,
we calculate the third-, fifth- and seventh-order Raman
responses, which correspond to the first-, second- and
third-order responses of IR spectroscopy, for a harmonic
system with a nonlinear system-bath interaction focusing
on the mechanism of dephasing. Note that here we re-
strict our discussion to either Raman or IR spectroscopy,
experiments that mix Raman and IR processes are also
possible.59)

Dissipation and dephasing phenomena, which are

oscillator 〈[Q(t′), Q(t)]〉. Correlation functions such as
〈Q2(t)Q2(0)〉 give rise to overtone transitions in conven-
tional IR and Raman spectroscopy. Although models
of vibrational and orientational dynamics can be tested
against IR and Raman studies, there are still ambi-
guities. For example, one usually assigns the spectral
density obtained from experiments to the spectral dis-
tribution of the harmonic oscillators (also called libra-
tors), but this may not be true for orientational dynam-
ics because of the anharmonicity of the potential. In
order to confirm the validity of models, one needs to
have additional decisive experiments. Fifth-order two-
dimensional Raman spectroscopy, which measures the

caused by complicated intra- and intermolecular inter-
actions, can be incorporated at different levels of sophis-
tication. In vibrational spectroscopies population and
phase relaxation are often modeled by phenomenological
level-dependent decay rates, that can be included in a
perturbative treatment without major problems.9, 60-63)

However, these rates reflect the intermolecular dynamics
in a rather indirect way, since they rely on the assump-
tion of a white heat bath spectrum. Frequency fluctua-
tions with a finite correlation time can be described by
the stochastic model of Anderson and Kubo.64-66) The
dissipation of energy can be incorporated in the Brown-
ian oscillator model by coupling the system to a set of
harmonic oscillators.5, 8, 67-70)

In this paper the nonlinear optical response is cal-
culated by using the quantum Fokker-Planck equa-
tion,71, 72) which has several advantages to the
methods described above. To derive closed-form expres-
sions for the response functions, one has to know the
wavefunctions and transition matrix elements of the sys-
tem Hamiltonian. Therefore, this strategy can be ap-
plied basically only to harmonic systems; the influence
of small anharmonicities can then be treated by per-
turbation theory as was shown by Okumura and Tan-
imura.46-48, 73) The quantum Fokker-Planck equation, on
the other hand, can be used for potentials with an arbi-
trary shape and has been applied to Morse potentials49)

and displaced multistate systems.74)

Moreover, this method allows for a sophisticated de-
scription of relaxation phenomena. For a Gaussian-
Markovian heat bath with a finite correlation time, a
hierarchy of equations of motions can be obtained from
the spin-Boson Hamiltonian as was shown by Tanimura
and Kubo.75, 76) This technique allows for the descrip-
tion of a colored noise bath, but it extends the Kubo-
Anderson model65) by predicting an explicitly temper-
ature dependent relaxation. Because it surpasses the
traditional master equation approach, the hierarchy of
equations of motions is often called doctor equation. Re-
cently this method was applied to a harmonic oscilla-
tor and double-well potential,77) tunneling of a quantum
barrier in a dissipative system78) and a three level sys-
tem with Morse potential surfaces.79, 80) Generalizations
to arbitrary colored noise have also been studied.81-83)

Up to now, the quantum Fokker-Planck approach has
been applied only to systems, which were bilinearly cou-
pled to a harmonic heat bath, also called linear-linear
model (LL-model).49, 71, 72, 77-83) The coupling of the sys-
tem coordinate Q and the jth bath oscillator xj by
HSB = cjQxj describes energy relaxation out of the sys-
tem into the heat bath as was first shown by Feynman
and coworkers.67) For harmonic potentials, linear cou-
pling between the system and a continuous set of har-
monic bath oscillators is, however, insufficient to induce
pure dephasing. The loss of phase coherence can be
achieved by anharmonicities in the system and/or bath
potentials, or by a nonlinear coupling mechanism.84) In
the latter case the coupling of the system coordinate Q
and the jth bath oscillator xj is commonly described by
an interaction Hamiltonian HSB = gjQ

2xj/2 (Fig. 1).
This coupling referred to as square-linear model (SL-

compared
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of a solute molecule after electronic excitation can be de-
scribed by the LL model; the strong coupling different
intra- and intermolecular modes to the transition coor-
dinate leads to dominant rapid energy relaxation while
pure phase relaxation is unimportant, see, e.g., ref. 6.
When the bath frequencies are much smaller than the
system frequency, the resonant energy transfer is less ef-
ficient and the elastic fluctuation of the system frequency
due to all bath oscillators can be dominant.84) An exam-
ple for this situation is found in vibrational relaxation:
Often there is a big gap between the vibrational energy
of a solute molecule and the vibrational states of the
surrounding molecules. The phase coherence of solute
molecules is then destroyed by nonresonant interactions
between the solute and the solvent, which lead to fluctu-
ations in the vibrational frequency of the solute.

Very recently, the SL model was investigated by Oku-
mura and Tanimura, who used the Feynman rule on the
unified-time path to derive a perturbative expression for
the third-order Raman response.90) In the limit of weak
coupling they predicted a Lorentzian line shape for the
spontaneous Raman line; the width of the line should
scale linearly with temperature. At strong system-bath
coupling their treatment is expected to break down be-
cause of the a2 and (a†)2 terms, which describe higher-
order energy exchange between the system and the bath.
As it will be shown below, the quantum Fokker-Planck
approach confirms the third-order result of Okumura
and Tanimura for weak coupling and demonstrates its
breakdown for strong coupling. To further investigate
the different relaxation processes due to this nonlinear
system-bath interaction, we also calculate the fifth- and
seventh-order Raman response. These temporally multi-
dimensional techniques allow for an identification of dif-
ferent decay processes such as population relaxation and
pure dephasing and therefore provide valuable additional
insight in the system-bath interaction.8-12, 37)

In §2 the quantum Fokker-Planck equation for
quadratic coupling is presented and compared to the re-
sult for linear system-bath interaction.71, 72) A derivation
of this equation using the Feynman-Vernon path integral
formalism67-70) is given in the appendix. Calculational
details of the simulations and examples for the wavepack-
ets created in a fifth-order experiment are given in §3 and
§4. The results for the first-, second-, and third-order IR
response which are equivalent to the third-, fifth-, and
seventh-order Raman response function are presented in
§5 and §6, and finally conclusions are formulated in §7.

of

model) leads to pure dephasing as can be understood
qualitatively by considering a harmonic coordinate Q,
which can be expressed in terms of the creation and an-
nihilation operators a and a†: The contributions pro-
portional to aa† and a†a describe elastic random fluc-
tuations of the frequency leading to a net loss of phase
coherence without energy transfer to the heat bath.85-89)

Whether the linear or the quadratic coupling is more im-
portant for a particular system depends on the spectral
density of the bath: When the density of states of the
bath is high close to the system frequency, the energy
transfer due to linear coupling can be very efficient. It
has been wn for instance that the ultrafast relaxationsho

§2. The Quantum Fokker-Planck Equation for
Nonlinear System-Bath Interaction

Since the early days of quantum mechanics the de-
scription of dissipation and relaxation phenomena has at-
tracted much attention. Quantum mechanical Langevin
and quantum master equations65) have been applied to
a large number of physical and chemical problems. How-
ever, these methods allow only for a perturbative treat-
ment of the system-bath interaction and, therefore, they
can be applied only in the limit of weak damping. In
contrast to this, the functional integral description of
dissipation, which was initiated by Feynman and Ver-
non,67) can be applied to quantum systems at arbitrary
temperature and coupling strength.68)

In this section the quantum Fokker-Planck equation
is introduced for the SL model and compared to the LL
model.71, 72) For both models the total Hamiltonian of
the system and the bath can be written as:

H =
P 2

2M
+ U(Q)

+

N∑
j=1

 p2
j

2mj
+
mjω

2
j

2

(
xj −

Fj(Q)

mjω
2
j

)2
 .

(1)

Here, Q, P , M and U(Q) denote the effective coordinate,
conjugated momentum, mass and the potential of the
optically active degree of freedom, which is called the
system. The coordinate, conjugated momentum, mass
and frequency of the jth bath oscillator are given by
xj , pj , mj and ωj , respectively. The coupling between
the system and the jth bath oscillator is controlled by
the function Fj(Q) which is related to the system-bath
interaction via: HSB = −

∑
xjFj(Q). In the LL model

it is defined as Fj(Q) = cjQ while in the SL model it
reads Fj(Q) = gjQ

2/2. Note that the Hamiltonian of
eq. (1) comprises a term proportional to Fj(Q)2, which
compensates for the coupling induced renormalization of
the potential.68, 71)

For the derivation of the quantum Fokker-Planck equa-
tion in the LL and the SL model one has to assume Gaus-
sian white noise where the memory time of the heat bath
is zero. The extension to a Gaussian-Markovian heat
bath has been reported for the LL model75-78) but this
approach has not been applied to the SL model, yet. The
spectral density of a Gaussian white bath J(ω) is given
by the Ohmic distribution:

JLL(ω) = π

N∑
j=1

c2j

2mjωj
δ(ω − ωj) = Mζω, (2)

and:

JSL(ω) = π

N∑
j=1

g2
j

8mjωj
δ(ω − ωj) = MζSLω. (3)

It is further necessary to assume that the temperature
of the bath is high, i.e., h̄ω0β ¿ 1 holds where ω0 is the
characteristic frequency of the system and β = 1/kBT .

The dynamics of the system and the bath can be de-
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ing operator, which in the LL model is given by:49, 71, 72)

ΓLL = ζ
∂

∂P

(
P +

M

β

∂

∂P

)
, (9)

while in the SL model it reads:

ΓSL = 4R2ζSL
∂

∂P

(
P +

M

β

∂

∂P

)
+RζSLh̄

2 ∂3

∂2P∂R
.

(10)
In presence of two independent baths for the two re-
laxation processes the total relaxation operator is Γ =
ΓLL + ΓSL.

§3. Response Functions for Higher-Order Opti-
cal Processes

We now consider the optical measurements where the
molecular system is interacting with a laser field, E(t).
For resonant IR spectroscopy, the Hamiltonian including
laser interaction is given by

HIR = H − E(t)µ(Q), (11)

where µ(Q) is the coordinate dependent dipole moment.
For off-resonant Raman spectroscopy, in which resonance
arises from a pair of laser pulses through Raman excita-
tion processes, the effective Hamiltonian is given by

HRaman = H − E2(t)α(Q), (12)

where α(Q) is the coordinate dependent Raman polar-
izability. Since both dipole moment and Raman polar-
izability can be expanded by coordinate Q as µ(Q) =
µ1Q+µ2Q

2 · · · or α(Q) = α1Q+α2Q
2 · · ·, the optical re-

sponses of resonant IR and Raman identical
besides the fact that the Nth-order IR spectroscopy cor-
responds to the (2N + 1)th-order Raman spectroscopy.
Note that “+1” arises from the probe pulse which in-
duces the Raman signal. Therefore, hereafter we do not
distinguish the Nth-order IR and (2N + 1)th Raman
processes and only present the results for Raman spec-
troscopy. Notice that the even-order of IR responses van-
ish for isotropic material, but they can be detected by us-
ing Raman process for the detection of signal.25-27) This
hints us to use both Raman and IR processes for higher-
order spectroscopy.59) This hybrid type of experiment
has special advantages to study a coupling mechanism
between Raman active and IR active modes. Theoreti-
cal basis is, however, identical to the pure Raman or IR
case.

We consider the third-, fifth- and seventh-order Raman

are formally

−LSW (P,R; t) = −
P

M

∂

∂R
W (P,R; t)

−
1

h̄

∫
dP ′

2πh̄
V (P − P ′, R)W (P ′, R; t),

(7)

where the Wigner representation of the potential U(Q)
is given by

V (P,R)

= 2

∫ ∞
0

dr sin(Pr/h̄)[U(R+ r/2)− U(R − r/2)]. (8)

The relaxation in phase space is described by the damp-

scribed by the coordinate representation
ρtot(Q,x, Q

′,x′; t) ≡ 〈Q,x|ρtot(t)|Q′,x′〉 of the time de-
pendent density operator ρtot(t), where x denotes the
coordinates of all N bath oscillators. The calculation
of ρtot(Q,x, Q

′,x′; t) requires the exact knowledge of all
degrees of freedom; for condensed phase systems this cer-
tainly has to be avoided. For the calculation of the sys-
tem response due to, e.g., external optical fields, it is
sufficient to know the time evolution of this subsystem
only, which is given by:

ρ(Q,Q′; t) =

∫
dxρtot(Q,x, Q

′,x; t). (4)

In the appendix the quantum Fokker-Planck equa-
tion for the SL model is derived by extending the treat-
ment of Caldeira and Leggett71) who investigated the
LL model. Our treatment partly follows their paper,
but deviates in a number of details. In particular,
we start with a renormalized Hamiltonian which com-
prises a term proportional to [Fj(Q)]2, and use modi-
fied effective coordinates to derive the equation of mo-
tion. Since for the derivation of the equation of motion
the dynamics of the reduced density matrix has to be
calculated, it is necessary to average out the bath de-
grees of freedom. For a harmonic bath the integration
over the environment can be done analytically as was
shown by Grabert and coworkers for bilinear system-
bath coupling.68) In the appendix it is demonstrated
that this treatment is also possible for harmonic baths
with system-bath interactions, which are linear in the
bath coordinate, but nonlinear the system coordinate.
Grabert et al.68) established that the system-bath inter-
action leads to a correlation between these two subsys-
tems, even in thermal equilibrium. Initial conditions of
the form ρtot(Qi,xeq, Q

′
i,x
′
eq) = ρ(Qi, Q

′
i)ρB(xeq,x

′
eq),

therefore, lead to unphysical results when these correla-
tions are important, i.e., in the case of colored noise or a
low temperature system. Since we will restrict ourselves
to the high temperature Gaussian white noise case here,
these problems do not affect our treatment.

The numerical calculations presented in the subse-
quent sections are performed in the Wigner representa-
tion, which relates the coordinate representation of the
density matrix ρ(Q,Q′; t) to the phase space representa-
tion W (P,R; t) via:91-93)

W (P,R; t)

=
1

2πh̄

∫ ∞
−∞

dreiPr/h̄ρ(R− r/2, R+ r/2; t). (5)

As was shown by Wigner and coworkers91, 93) the vari-
ables P and R can be associated with the momentum
and the coordinate of the system.

The equation of motion for both the LL49, 71, 72) and
the SL model, i.e., the quantum Fokker-Planck equation,
can be written as:

∂

∂t
W (P,R; t) = −LSW (P,R; t) + ΓW (P,R; t). (6)

Here, the free (undamped) propagation of the system is
governed by:94)

in
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experiments. The system first interacts with N pair of
pulses for the 2N+1th optical cess, which have
the same time profile Ej(t) (j ≤ N). The last pulse
ET (t) is the probe that generates the signal. The laser
pulses are assumed to be impulsive and are configured for
the (i) third-, (ii) fifth-, and (iii) seventh-order processes
as (see Fig. 2)

(i) E1(t) = δ(t), ET (t) = δ(t− T1)

(ii) E1(t) = δ(t), E2(t) = δ(t− T1),

ET (t) = δ(t− T1 − T2)

order pro
E3(t) = δ(t− T1 − T2),

ET (t) = δ(t− T1 − T2 − T3). (13)

The Raman signals are then expressed by the re-
sponse functions as I(2N+1)(T1, T2, . . . , TN ) = |R(2N+1)

(TN , . . . , T2, T1)|, which are the N time correlation func-
tion of the polarizability operator α(Q). By introduc-
ing the Liouville space operator α×(Q)ρ ≡ α(Q)ρ −
ρα(Q) and the Liouville space Green function, G(T ) =
exp[−(LS − Γ )T ],8, 9, 49) they are expressed as

(iii) E1(t) = δ(t), E2(t) = δ(t− T1),

R(3)(T1) =
i

h̄
〈α(Q)G(T1)α×(Q)ρ(−∞)〉, (14)

R(5)(T2, T1) = −
1

h̄2 〈α(Q)G(T2)α×(Q)G(T1)α×(Q)ρ(−∞)〉, (15)

and:

R(7)(T3, T2, T1) = −
i

h̄3 〈α(Q)G(T3)α×(Q)G(T2)α×(Q)G(T1)α×(Q)ρ(−∞)〉. (16)

The processes corresponding to eqs. (14) to (16) can be
depicted by double sided Feynman diagrams as was dis-
cussed in refs. 5, 8, 9 and 62 for different types of Ra-
man response. Initially the equilibrium density matrix
ρ(−∞) is modified by the first interaction, which yields
a wavepacket ρ1 = α×(Q)ρ(−∞). This state is then
propagated for a time T1 by the Green function G(T1).
In higher-order experiments the propagated density ma-
trix is then modified again by the interaction and sub-

sequently propagated. Finally, the expectation value of
the observable polarizability is obtained by calculating
the trace of α(Q)ρn where ρn denotes the density matrix
after the last propagation period.

This sequence of modifying and propagating the den-
sity matrix can be translated very conveniently in the
Wigner representation. The modified wavepacket in
phase space W1, which corresponds to the density matrix
ρ1, is given by:49)

W1 ≡ XWeq

≡

∫
dP ′

2πh̄
X(P − P ′, R)Weq(P ′, R;−∞), (17)

where Weq denotes the Wigner representation of the den-
sity matrix of the system in thermal equilibrium. The
Wigner representation X(P,R) of the operator α×(Q) is
defined as:

X(P,R)

= 2

∫ ∞
0

dr sin(Pr/h̄)[α(R− r/2)− α(R+ r/2)].

(18)

The time evolution of the resulting wavepacket is ob-
tained by numerically integrating eq. (6). For higher-
order experiments the subsequent interactions are de-
scribed by eq. (17) where now Weq has to be replaced
by the propagated wavepacket. The ectation value of
the polarizability, which yields the signal after all inter-
actions and propagation periods, is then given by:

tr{A(P,R)Wn(P,R)} ≡

∫
dP

∫
dRA(P,R)Wn(P,R),

(19)

where Wn(P,R) denotes the wavepacket after the last
propagation period. The Wigner transform A(P,R) of
the polarizability operator α(Q) is given by:

exp

Fig. 2. Pulse configuration for (a) the fifth- and (b) the seventh-
order off-resonant Raman experiments. Two or three pairs of
pulses are applied to the system, which followed by the last probe
pulse. In this paper, the temporal profiles of pulses E1(t), E2(t),
E3(t) and ET (t) are assumed to be impulsive, i.e. δ(t−T1−T3),
δ(t−T2), and δ(t) for (a), and δ(t−T1−T2−T3), δ(t−T2−T3),
δ(t− T3), and δ(t) with T2 = for (b).0
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A(P,R) = i

∫ ∞
−∞

dreiPr/h̄α(R− r/2), (20)

Using these equations, it is now possible to numerically
simulate the third-, fifth-, and seventh-order response
functions as will be explained in the next section.

§4. Wavepacket Dynamics in the Wigner Rep-
resentation

In this section some details of the numerical calcu-
lations are given together with a description of the
wavepacket dynamics in the Wigner representation.
Hereafter, we employed dimensionless coordinate and
momentum defined by r ≡ R

√
Mω0/h̄ and p ≡

P
√

1/Mh̄ω0, respectively, where ω0 ≡
√
U ′′(Q)/M .

The simulations are performed for a harmonic mode with
a frequency ω0 = 38.7 cm−1 (T = 1/ω0 = 861 fs), which
is a typical value for low-frequency intermolecular mo-
tions and which has been used in a previous study of
a Morse potential.49) Although the Fokker-Planck ap-
proach can be applied to any potential, we restrict our-
selves in this pilot study to a harmonic coordinate, since
different relaxation processes have been investigated for
this system in great detail.5, 8, 63, 67-72, 84-89) It is then in
principle possible to solve the integral for the potential
kernel [eq. (8)] analytically: the first term on the r.h.s of
eq. (6) reduces to 1/2ω0r∂W/∂p. During the numerical
calculations it turned out that the differential expression
is less stable compared to the integral expression; there-
fore, the latter was used.

The quantum Fokker-Planck equation [eq. (6)] was nu-
merically integrated on a discrete mesh in phase space us-
ing a second-order Runge-Kutta method. The mesh size
was varied between 201×20 and 601×60 for mesh ranges
between −10 < r < 10, −15 < p < 15 and −15 < r < 15,
−23 < p < 23. The time steps for the finite difference
expression ∂W/∂t were between 0.5 and 0.0125 fs. The
accuracy of the calculations was checked by changing the
mesh size, mesh range and time step size. On the mesh
linear difference operators such as ∂W/∂r were approx-
imated by [W (pi, ri+1) − W (pi, ri−1)]/(2∆r), whereas
quadratic difference operators like ∂2W/∂r2 were re-
placed by [W (pi, ri+1)−2W (pi, ri)+W (pi, ri−1)]/(∆r)2.
The wavepacket Weq in thermal equilibrium was gener-
ated numerically by starting with an initial wavepacket
W (p, r) = exp[−βHS(p, r)], where HS(p, r) denotes the
Wigner transform of the undamped system Hamiltonian.
After a short propagation period of typically a few thou-
sand steps this wavepacket becomes stable.

The evolution of the wavepacket in a fifth-order tempo-
rally two-dimensional (2D) Raman experiment8-12) is de-
picted in Fig. 3. In thermal equilibrium the wavepacket
is symmetric and bell shaped as is shown in Fig. 3(a).
In Fig. 3(b) the Wigner distribution is depicted directly
after the first interaction. For this calculation the polar-
izability operator α(r) is expanded in powers of the coor-
dinate up to second order, analogous to the treatment in
refs. 8 and 9: α(r) = α1r+α2r

2. The contribution due to
the quadratic coordinate dependence of the polarizability
is (almost) invisible since the coefficient of the linear con-
tribution is chosen twenty times bigger than that of the

quadratic contribution. Therefore, the distribution after
the first interaction looks still symmetric in r but anti-
symmetric in p. This is completely analogous to the clas-
sical situation where the interaction r×Weq ≡ [r,Weq]
has to be replaced by {r, ρeq} = ∂r/∂r∂ρeq/∂p. Note
that in contrast to the classical density in phase space,
ρ(p, r), the Wigner distribution can be negative.91-93)

This nonequilibrium distribution then starts to evolve
in time due to the free propagator LS , which describes
the periodic transfer of kinetic energy to potential en-
ergy and back: Those points in phase space with large
positive (negative) momentum move in the positive (neg-
ative) r-direction while oscillators with zero momentum
and a large positive (negative) deviation r turn back to
acquire momentum. In other words, the wavepacket ro-

tates in phase space with a frequency ω0. In addition it
changes its shape due to the damping operator Γ , which
for the simulation shown here is chosen so small that the
changes for small propagation times are minor. A snap-
shot of the propagated wavepacket is depicted in Fig. 3(c)
for T1 = 200 fs corresponding to approximately a quar-
ter of a period. Note that the part of the wavepacket
close to the origin is slightly distorted as can be seen
at the grid lines along p for small r, which already re-
flects the nonlinearity of the system-bath interactions.
For the calculation of the third-order Raman response
this propagated wavepacket has to be convoluted with
the Wigner representation of the polarizability operator
A(p, r) and integrated over the entire grid, cf. eq. (19). In
lowest order the third-order response is proportional to
[α1]2. The contributions due to the nonlinear coordinate
dependence of the polarizability are very small.

In a 2D Raman experiment the propagated phase
space distribution such as shown in Fig. 3(c) is mod-
ified by a second interaction operator X. The result-
ing wavepacket for a first propagation time of 200 fs is
shown in Fig. 3(d). Analogous to the first interaction
the symmetry of the wavepacket along the r-direction
is not changed but it is inverted along the p-axis. This
phase distribution then olves in time in a similar
way as described above; a snapshot after a propagation
time T2 = 200 fs is depicted in Fig. 3(e). Analogous to
the calculation of the third-order Raman response the
fifth-order response function is obtained by convoluting
the propagated wavepacket after the second interaction
with the Wigner representation of the polarizability op-
erator A(p, r), see also eq. (19).

In contrast to the third-order response, which is gov-
erned by the entire wavepacket and proportional to [α1]2,
the fifth-order signal is proportional to [α1]2[α2]. There-
fore, the latter is determined by the deformation of
the wavepacket due to the small quadratic contribution.
For the calculation of the temporally three-dimensional
seventh-order Raman response the above described pro-
cedure has to be extended by an additional interaction
and propagation period.

§5. Numerical Results

In this section the third-, fifth-, and seventh-order re-
sponse functions of off-resonant Raman process, which
are equivalent to the first-, second- and third-order re-

space ev
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sponse function of IR process, are calculated for the SL
model for different temperatures and coupling
The results are compared to the LL model, which for
Gaussian white noise and a harmonic system can be
solved analytically.8, 9) In the LL model the line width is
temperature-independent and there is no pure dephas-
ing. The third-, fifth-order and seventh-order response
function for α(r) = α1r + α2r

2 are then in lowest order
given by:8, 9)

strengths.

Fig. 3. The time evolution of the wavepacket in a 2D Raman experiment is shown for thermal equilibrium (a), directly after the first
interaction at T1 = (b), at T1 = fs (c), after the second interaction at T1 = fs and T2 = (d) and at T2 = fs (e). Consult
text for details.

0 200 200 0 200

R
(3)
LL(T1) =

2α2
1

h̄
C ′′(T1), (21)

R
(5)
LL(T2, T1) =

4α2
1α2

h̄2 C ′′(T2)[C ′′(T1 + T2) + C ′′(T1)],

(22)

and

R
(7)
LL(T3, 0, T1) =

16α2
1α

2
2

h̄3 C ′′(T1)[C ′′(T3)]2, (23)
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where we have introduced the anti-correlation function
of the Brownian oscillator

C ′′(t) ≡ 〈[Q(t), Q]〉 =
ω0

Ω
e−ζ|t|/2 sin Ωt, (24)

in which the reduced frequency Ω is defined as Ω =
(ω2

0−ζ
2/4)1/2. When the polarizability depends only lin-

early on the coordinate, the seventh-order response func-
tion vanishes in the LL model due to perfect destructive
interference of the Liouville space pathways involved.8)

For level-dependent damping, however, this interference
can be (partly) destroyed, resulting in a finite signal as
was discussed by Fourkas and coworkers.62)

5.1 Third-order Raman signals (first-order IR signals)

In the SL model it is possible to derive a perturba-
tive expression for the third-order response in the limit
of weak damping, as was shown recently by Okumura
and Tanimura.90) They obtained the spontaneous off-
resonant Raman line shape function J(ω), which looks
similar to the one found in the LL model. The corre-
sponding third-order response function is of the form of
eq. (21), but in the SL model the effective damping con-
stant ζSL and the overall intensity both scale linearly
with the temperature. Because the calculations are quite
complicated, the response for higher-order experiments
has not been computed by this perturbation theory, yet.

As a reference, in Fig. 4 first we present the third-order
signal for the LL model for different coupling strength
ζ/ω0 = 0.1, 0.5 and 1 calculated from eq. (21). In this
case, the signal is the temperature independent. The
spectral density displayed in the figure is the imaginary
part of the Fourier transform of the third-order Raman
response function,

R(3)(ω) =

∫ ∞
0

dteiωtR(3)(t), (25)

which is often used for the analysis of optically hetero-
dyned detected optical Kerr effect data.95-97) As can be
seen from eq. (21) the peak position and width for the LL
model are given by Ω = (ω2

0 − ζ
2/4)1/2 and ζ/2, respec-

tively. Therefore the peak shifts to the red and becomes
broader as the coupling ζ increases.

Figures 5 and 6 show the third-order results for the
SL model for different temperature (T = 150, 300,
and 450 for fixed ζ ′/ω0 = 0.025) and coupling strength
(ζ ′/ω0 = 0.01, 0.1, and 0.5 for fixed T = 300 K, where
we set ζ ′ = h̄ζSL/mω

2
0 .) In Fig. 5, the third-order results

of the quantum Fokker-Planck simulation are compared
to the predictions of the theory by Okumura and Tani-
mura.90) For weak coupling the line width increases lin-
early with temperature and the two methods agree very
well. This temperature dependence is expected because
of the nonlinear coordinate dependence of the damping
operator ΓSL [see eq. (10)]: As the temperature is in-
creased, the wavepacket becomes broader and in partic-
ular the outer parts of the wavepacket are damped more
strongly. With increasing damping the perturbation the-
ory breaks down as is shown in Fig. 6. When ζ ′/2 is
bigger than ω0, the line shape becomes bimodal: In ad-
dition to a broad feature around ω0 there is a (nearly)
Lorentzian peak close to zero frequency. In time domain
this feature, which is also found in the OHD-OKE re-
sponse of many molecular liquids95-97) shows up as an
exponential decay.

The physical origin of the bimodal structure at strong
damping can be understood qualitatively from the form

Fig. 4. The spectral density of the third-order Raman response
of a harmonic mode in the LL-model for ζ/ω0 = 0.1 (dashed-
dotted), 0.5 (solid line) and 1.0 (dashed). Note that the results
for the LL model are the temperature independent.

Fig. 5. The spectral density of the third-order Raman response
of a harmonic mode in the SL-model for T = 300 and 450 K
(bottom to top) by the quantum Fokker-Planck equa-
tion (solid line) and by the perturbation theory of Okumura and
Tanimura (dotted). The frequency of the undamped mode is
ω0 = .7 cm1, the damping constant ζ′ was equal 0.025ω0.

150,

calculated

38
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of the system-bath coupling HSB = −gjQ2xj . When
expressed in terms of the creation and annihilation op-
erators of the system, a and a†, one directly sees that
in addition to pure dephasing due to the coupling terms
proportional to aa† and a†a there is also energy exchange
between the system and the bath via the terms a2 and
[a†]2. Analogous to the LL model, the energy relaxation
will lead to the large red peak shift for strong coupling,
whereas the pure dephasing will not change the peak po-
sition regardless of the coupling strength. If two types
of the relaxation processes play a role at once, we thus
observe the bimodal structure for strong coupling.

5.2 Fifth-order Raman signals (second-order IR sig-
nals)

In order to better distinguish the effects of popula-
tion and phase relaxation it is instructive to investigate
the fifth-order Raman response, which due to its tempo-
rally two-dimensional character provides additional in-
sight. In the following, we plot the fifth-order response
function, R(5)(T2, T1), which corresponds to the signal
for impulsive excitation and heterodyne detection.98) As
a reference, in Fig. 7 we present the fifth-order signal
for the LL model in weak coupling case ζ = 0.1ω0 cal-
culated from eq. (22). As can be seen from eq. (22)
the period in the T1 direction is 1/2Ω ≈ 0.4 ps (note
that dashed contours are the negative part). On the
other hand, the period in the T2 direction is determined
by the interference of the oscillations with the period
1/2Ω and 1/Ω (remember that sin. T2[sin Ω(T1 + T2)] =
[cos Ω(T1 + 2T2) − cos ΩT1]/2), resulting in twin peaks
with a period of 1/Ω = 0.8 ps.

Figures 8 and 9 show the fifth-order signal
I(5)(T1, T2) = R(5)(T2, T1) for the SL model for differ-
ent temperatures (T = 450, 300, and 150 K for fixed

ζ ′/ω0 = 0.025) and coupling strengths (ζ ′/ω0 = 0.01,
0.1 and 0.5 for fixed T = 300 K), respectively. For a
weak coupling and a low bath temperature the 2D Ra-
man response function R(5)(T2, T1) exhibits clear oscil-
lations with the frequency ω0 as is shown in Fig. 8(c).
For weak coupling, the fifth-order signals also show twin
peaks for all temperatures, however, the phase in T2 di-
rection is different from the LL model, Fig. 7. A similar
feature is found in Fig. 7(c) of ref. 66, which shows the
fifth-order response of a harmonic oscillator in the fast
fluctuation (homogeneous) limit of the stochastic model.
In this limit the dynamics is due to pure dephasing with
a level dependent rate constant Γλµ = (λ−µ)2Γ ∗ where
λ and µ are the quantum numbers of the involved states
and Γ ∗ denotes the pure dephasing rate constant. This
indicates that for small ζ ′ the SL model describes pure
dephasing.

For large ζ ′ the fifth-order response is distinctly dif-
ferent as is shown in Fig. 9(c): As function of the first
delay time T1 the fifth-order signal rapidly decays within
a few hundred fs, while along T2 it shows slow diffusive
dynamics on a ps time scale. This asymmetry of the 2D
Raman response can be understood by considering the
Liouville space pathways involved: In all Liouville space
pathways contributing to the fifth-order 2D Raman re-
sponse the system first propagates in a coherence, which
rapidly decays due to the strong coupling ζ ′. As was dis-
cussed in ref. 9, the fifth-order response comprises one
contribution proportional to cosωT1, which involves a
population during the second propagation time. In the
limit of pure dephasing this term does not decay at all
and yields a plateau along T2 for small T1, as was also
found in Fig. 7 of ref. 9. In the SL model, however, the
signal does decay as function of T2 when ζ ′ is large [see
Fig. 9(c)]. The underlying population relaxation is in-
duced by two quantum transitions between the system

Fig. 6. The spectral density of the third-order Raman response
of a harmonic mode in the SL-model at the temperature T =
300 K for ζ/ω0 = 0.01 (dashed-dotted), 0.1 (solid line) and 0.5
(dashed).

Fig. 7. Contour plot of the fifth-order Raman signal I(5)(T1, T2) =
R(5)(T2, T1) in the LL-model for ζ/ω0 = 0.1. Dashed contours
are negative. We set the nonlinear polarizability α2 = .01α1.0
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and the bath, which are due to the coupling terms pro-
portional to a2 and [a†]2.

5.3 Seventh-order Raman signals (third-order IR sig-
nals)

The nonlinear character of the relaxation in the SL
model becomes also evident in the seventh-order re-

sponse or, equivalently, the third-order IR response. In
the LL model the seventh-order response function van-
ishes when the polarizability depends only linearly on the
coordinate because the different Liouville space pathways
interfere destructively.8, 62) This reflects the fact that the
leading term in eq. (23) is not α4

1 but α2
1α

2
2. The LL

model is a linear problem, which can be diagonalized

Fig. 9. Contour plot of the fifth-order Raman signal I(5)(T1, T2) =
R(5)(T2, T1) in the SL-model at T = K for different coupling
strength (a) ζ′ = 0.01ω0, (b) ζ′ = 0.1ω0, and (c) ζ′ = 0.5ω0.
Dashed contours are negative. We set the nonlinear polarizabil-
ity α2 = .01α1.

300

0

Fig. 8. Contour plot of the fifth-order Raman signal I(5)(T1, T2) =
R(5)(T2, T1) in the SL-model for ζ′ = 0.025ω0 at different tem-
perature at (a) T = 450, (b) T = 300 K, and (c) T = 150 K.
Dashed contours are negative. We set the nonlinear polarizabil-
ity α2 = .01α1.0
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that although some profiles in SL model are similar to
Fig. 10, the origin of the signal is very different. This also
indicates that even though the fifth-order signal, which
is proportional to α2

1α2 in both the LL and SL case, is
very weak due to the small nonlinearlity α2 ¿ 1, the
seventh-order signal may be strong for the SL case.

also asymmetric, because sin2 ΩT2 ∝ sin 2ΩT2.
Figures 11 and 12 show the seventh-order signal for

the SL model for different temperatures (T = 150, 300,
and 450 for fixed ζ ′/ω0 = 0.025) and coupling strength
(ζ ′/ω0 = 0.01, 0.1, and 0.5 for fixed T = 300 K). The
parameters are chosen to be the same as Figs. 8 and 9.
As mentioned before the leading order of the signal in the
SL case is α4

1, whereas the LL case is α2
1α

2
2. This indicates

and, therefore, there is no nonlinear response. When
the damping is level-dependent, the interference can be
partly destroyed and the seventh-order response is finite
even for a linear coordinate dependence of the polariz-
ability.62) In the SL model the damping operator ΓSL

has a large nonlinear contribution in r, see eq. (10), and
one, therefore, can expect a finite response. The impul-
sive seventh-order Raman response function [eq. (16)] is
temporally three-dimensional but up to now only tem-
porally two-dimensional seventh-order experiments have
been performed. In the Raman echo the second propaga-
tion time T2 is zero whereas in the Raman pump probe
experiment the time variable T1 is zero.37, 99, 100) Note
that in IR spectroscopy, the former case corresponds to
the IR photon echo experiment.28-31, 34) In this study we
set T2 to zero to compare our results with the echo exper-
iments. We should notice that due to the anharmonicity
of the molecular vibrations, the transitions to higher vi-
brational states were not resonant with the applied ps
pulse. The seventh-order Raman and third-order IR ex-
periments reported so far were done nonimpulsively on
a two level system.

In the following, we plot the seventh-order response,
I(7)(T1, T3) = R(7)(T3, 0, T1). We first present the signal
for the LL model in Fig. 10. The coupling strength is
chosen as ζ/ω0 = 0.1. This result is also temperature
independent. As can be seen from eq. (23) the signal is

Fig. 11. Contour plot of the seventh-order Raman signal
I(7)(T1, T3) = R(7)(T3, 0, T1) in the SL-model for ζ′ = 0.025ω0

at different temperature at (a) T = 450, (b) T = 300 K, and
(c) T = 150 K. We set the nonlinear polarizability α2 = 0.0.
Dashed contours are negative.

Fig. 10. Contour plot of the seventh-order Raman signal
I(7)(T1, T3) = R(7)(T3, 0, T1), in the LL-model for ζ/ω0 = 0.1.
Dashed contours are negative. We set the nonlinear polarizabil-
ity α2 = .01α1.0
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In the limit of low temperature (but βh̄ω0 ¿ 1) and
weak coupling, Fig. 11(c) or 12(a), the response shows
clear oscillations with frequency ω0 that slowly decay. A
similar behavior is found in the model of Fourkas and
coworkers62) who calculated the seventh-order response
for level dependent population and phase relaxation. For
strong coupling, Fig. 12(c), the response changes quite

Fig. 12. Contour plot of the seventh-order Raman signal
I(7)(T1, T3) = R(7)(T3, 0, T1) in the SL-model at T = 300 K
for different coupling strength (a) ζ′ = 0.01ω0, (b) ζ′ = 0.1ω0,
and (c) ζ′ = .5ω0. Dashed contours are negative.0

significantly: The signal decays more rapidly and the
oscillation frequency becomes higher. Note that in the
LL model the reduced frequency becomes smaller as the
damping strength is increased. In the SL model, the bath
interaction modulates the system frequency and thus the
coupling strength between the system and bath increases
the system frequency. Damping can be stronger, since
the energy exchange between the system and the bath
via the terms a2 and [a†]2 is more effective than the a
and a† in LL model case.

Neither of plots in Figs. 11 and 12 shows an echo fea-
ture at the diagonal T1 = T2, which would be expected
for an inhomogeneously broadened two-level system.36)

Since the spectral density J(ω) of eq. (3) is chosen for
the case of Gaussian white noise, one can indeed antici-
pate that the memory time of the system is zero and that
there is no echo. The effect of a finite correlation time
of the bath fluctuations can be described, in principle,
by the theory of Tanimura and Kubo75-79) but this ap-
proach has not been applied, yet, to the SL model. We
will discuss it in the next paper.101)

§6. Frequency domain experiments

The signal we presented in §5 is induced Raman sig-
nal or IR intensity. These signals are equivalent to the
response function itself. If we perform the Fourier trans-
formation of signals:

R(n)(ω2, ω1) =

∫ ∞
0

dt1

∫ ∞
0

dt2eiω1t1+iω2t2R(n)(t2, t1)

(26)

for n = 5 or 7, we can carry out more detailed analy-
sis based on the frequency. It was shown that by us-
ing frequency domain experiment instead of the time
domain, one can directly obtain the frequency domain
information eqs. (26).21) Wright, et al. carried out such
frequency domain experiments by using two tunable IR
laser and one set of Raman detection pulse.25-27) Here,
we present the 3D profiles of bare response functions
R(n)(T2, T1) and absolute value of their Fourier trans-

formation I(n)(ω2, ω1) = |R(n)(ω2, ω1)|.
Figs. 13 and 14 show the profiles of the fifth- and

seventh-order response functions for (a) the harmonic
LL case, and (b) the SL case and the absolute values
of their double Fourier transformation (a′) and (b′). To
calculate the response functions we set T = 150 K and
ζ/ω0 = 1 for (a) and (a′), and ζ ′/ω0 = 0.5 for (b) and
(b′). Compared with the time-domain results Figs. 13(a)
and 13(b), we can easily observe the change of the res-
onant frequency in Figs. 13(b) and 13(b′). In the LL
case (a) the peaks shift to the red (small frequency) in
both ω1 and ω2 direction, since the peak frequency is
determined by Ω = (ω2

0 − ζ
2/4)1/2 and Ω becomes small

for large ζ as was observed in Fig. (3). In the SL case
(b′), on the other hand, the peaks shift to the blue (large
frequency), since the SL model induces the modulation
on the system frequency and therefore the effective fre-
quency becomes large when the coupling becomes strong.
In Fig. 13(b′), we also observe the central peak at (0, 0),
which were originated from the energy relaxation via the
terms a2 and [a†]2 discussed as the bimodal structure
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of the third-order signal in Fig. 4. Figure 14 shows the
seventh-order signal. As was seen in the fifth-order case,
we observe the peaks shift to the red in the LL model
whereas the blue in the SL model. Although the profile
of (a) and (b) are somewhat similar, the signal for (a)
is proportional to the polarizability (α2

1α
2
2) and that for

(b) is proportional to the (α4
1). Therefore the intensity

of signals (a) and (b) can be very different especially for
small α2.

§7. Conclusions

The quantum Fokker-Planck equation is derived for
a system that is nonlinearly coupled to a heat bath. In
the SL model studied here, it is assumed that the system-
bath interactions are linear in the bath coordinate but
quadratic in the system coordinate. The equation of mo-
tion for the wavepacket in Wigner space is solved numer-
ically which allows for the calculation of the third-, fifth-,

and seventh-order Raman response of a harmonic oscil-
lator with (non)linear coordinate dependence of the po-
larizability. For weak coupling the third-order response
function can be modeled by the perturbation theory of
Okumura and Tanimura.90) In the SL model the width of
the third-order Raman line scales linearly with the tem-
perature while it is temperature independent in the LL
model. When the system and the bath are strongly cou-
pled, the third-order response becomes bimodal: Next
to the original line there is a Lorentzian line close to
zero frequency, which is not present in the perturbation
theory. This line is attributed to two-quantum energy
transfer from the system to the bath, which is described
by the coupling terms proportional to a2 and [a†]2.

The contributions of energy and phase relaxation can
be disentangled in the fifth-order 2D Raman response.
For weak coupling the neighboring maxima of the 2D Ra-
man response form twins; a feature that was also found

Fig. 13. Three-dimensional profile of the fifth-order Raman signal I(5)(T1, T2) = R(5)(T2, T1) and its double Fourier transformation
for the LL model (a) and (a′) (ζ = .0ω0), and for the SL model (b) and (b′) (ζ′ = .5ω0 and T = K).01 150
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ation becomes level-dependent in the SL model. There-
fore, a finite seventh-order response is predicted for a
harmonic oscillator with linear coordinate dependence
of the polarizability α1. In the LL model this response
vanishes due to perfect destructive interference of the in-
volved Liouville space path ways.62) This indicates that
even the signal is very weak in the fifth-order experi-
ment, due to the small nonlinearlity α2, one may detect
the signal in the seventh-order experiment if the system
is described by the SL model. For weak coupling the
response shows oscillations with the frequency of the un-
perturbed system while for strong coupling the frequency
becomes higher. This effect is attributed to a level de-
pendent effective frequency Ω.

For the calculations presented here it was assumed
that the heat bath induces Gaussian white noise. There-
fore, the memory time of the fluctuations is zero and
there is no echo feature predicted, neither in the fifth-nor

time, which is assigned to very effective phase relax-
ation. Along the second time variable the decay is an
order of magnitude slower which is attributed to a Liou-
ville space path way involving a population during the
second propagation time. The impulsive 2D Raman re-
sponse of molecular liquids reported so far cannot be
explained by this model. In the experimental data the
tail is along the first propagation time whereas it is along
the second propagation time in the simulations.11) The
experimental signal is attributed to strong mode cou-
pling, predominant contributions of ΓLL, and to other
scattering mechanisms.

Due to the nonlinear coordinate dependence of the
damping operator ΓSL the population and phase relax-

for level-dependent homogeneous pure dephasing. When
the system and the bath are strongly coupled, the 2D
Raman response becomes highly asymmetric. The sig-
nal decays rapidly as function of the first propagation

Fig. 14. Three-dimensional profile of the seventh-order Raman signal I(7)(T1, T3) = R(7)(T3, 0, T1) in the SL-model and its double
Fourier transformation for the LL model (a) and (a′) (ζ = .0ω0), and the SL model (b) and (b′) (ζ′ = .5ω0 and T = K).0 1501
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in the seventh-order Raman response. Memory effects
can, in principle, be induced by a different spectral den-
sity JSL(ω) of the heat bath. As was shown by Tanimura
and coworkers75-79) it is possible to derive a hierarchy of
coupled equations of motion for a Gaussian-Markovian
heat bath. Up to now this approach, which explicitly in-
cludes memory effects, has only been applied to the LL
model. The extension of this so-called doctor equation
to the SL model is very interesting since it allows for
a direct comparison with the stochastic model by An-
derson and Kubo.65) In contrast to the latter case the
damping operator in the SL model does depend explic-
itly on temperature and, therefore, partly bridges the
gap between the stochastic and the dynamic theories.
As demonstrated here the damping operator ΓSL yields
reasonable predictions of the third-, fifth-, and seventh-
order Raman response for the special case of Gaussian
white noise; the extension to Gaussian-Markovian noise
should be possible as well.

The SL model with colored noise describes nonreso-
nant interaction of a quantum system coupled to a bath
with a finite memory time. It can, for instance, represent
the intramolecular vibrational dynamics of a set of inho-
mogeneously distributed solute molecules, which are sub-
jected to inertial interactions with the surrounding sol-
vent molecules (solvation). By changing the characteris-
tics of the noise spectrum it is possible to continuously
interpolate between the present analysis of Gaussian-
white case (homogeneous limit), where the fluctuations

induced by the bath are very fast compared to the char-

acteristic time of the system, and the situation where
the vibrational frequencies of the solute molecules can
be described by a static statistical distribution (inho-
mogeneous limit). Thus, by using the SL model with
colored noise, we can study a distribution of solvent
molecules from homogeneous to inhomogeneous broad-
ening by changing a single parameter as will be demon-
strated in the next paper.101)
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Appendix: Derivation of the Quantum Fokker-
Planck Equation for Square-Linear
Interaction

For the derivation of the quantum Fokker-Planck equa-
tion in the SL model we first consider the time evolution
of the reduced density matrix, which can be represented
by a functional integral:67, 68, 71, 72)

The influence of the environment is completely deter-
mined by the spectral density JSL(ω) of the bath oscil-
lators:

JSL(ω) = π

N∑
j=1

g2
j

8mjωj
δ(ω − ωj). (A.4)

The complex kernel L(s) = L2(s) + iL1(s) can be ex-
pressed in terms of JSL(ω) via:

L2(s) =

∫ ∞
0

dω

π
JSL(ω) coth

ωh̄β

2
cosωs, (A.5)

and:

Φ[Q,Q′] =

∫ t

0

ds

∫ s

0

du[Q2(s)−Q′2(s)][Q2(u)−Q′2(u)]L2(s− u)

+i

∫ t

0

ds

∫ s

0

du[Q2(s)−Q′2(s)][Q2(u) +Q′2(u)]L1(s− u) (A.3)

where the two real time path integrals are over all paths
Q(s), Q′(s), 0 ≤ s ≤ t with Q(0) = Qi, Q

′(0) = Q′i,
Q(t) = Qf and Q′(t) = Qf while the outer two integrals
are over all possible coordinates of the initial system state
Qi and Q′i. The path probability is weighted not only by
the usual action S[Q] given by:

S[Q]

∫ t

0

ds

(
M

2
Q̇2 − U ′(Q)

)
, (A.2)=

but also by the Feynman-Vernon influence functional,
which accounts for the bath-induced relaxation. Note
that the counter term in eq. (1) is included in the poten-
tial U(Q) and is denoted y U ′(Q). For both LL and
the SL model this quantity can be expressed in terms of
the influence phase Φ[Q,Q′], which in the SL model is
given by:

b the

ρ(Qf , Q
′
f ; t) =

∫ ∞
−∞

dQi

∫ ∞
−∞

dQ′i

∫ Q(t)=Qf

Q(ti)=Qi

D[Q(t)]

∫ Q′(t)=Q′f

Q′(ti)=Q′i

D[Q′(t)]

× exp

{
i

h̄
(S[Q]− S[Q′])

}
exp

{
−

1

h̄
Φ[Q,Q′]

}
ρ(Qi, Q

′
i; 0), (A.1)
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ρ(Q,Q′; t+ ε) =

∫ ∞
−∞

dQi

∫ ∞
−∞

dQ′i

∫ Q(t+ε)=Qf

Q(ti)=Qi

D[Q(t)]

∫ Q′(t+ε)=Q′f

Q′(ti)=Q′i

D[Q′(t)]

× exp

{
i

h̄
(S[Q]− S[Q′])

}
exp

{
−

1

h̄
Φ[Q,Q′]

}
ρ(Qi, Q

′
i; 0). (A.7)

L1(s) = −

∫ ∞
0

dω

π
JSL(ω) sinωs. (A.6)

In the LL model the influence phase Φ and the spec-
tral density J(ω) have to be slightly changed: all Q2 in
eq. (A.3) and gj/2 in eq. (A.4) have to be replaced by Q

and cj , respectively.
For the derivation of the quantum Fokker-Planck equa-

tion let us consider eq. (A.1) at a small time instant later,
where the system propagated from Qf and Q′f to Q and
Q′, respectively:

Note that now the integrals in the expression for the
action [eq. (A.2)] and for the influence phase [eq. (A.3)]
also run to t+ ε instead of t.

For small the last part of the path integrals, which
run from Qf to Q and from Q′f to Q′, can be split and
approximated by a straight line times a normalization
constant C. Similarly, the integrals from 0 to t + ε can

be split into two integrals running from 0 to t and from t
to t+ε, respectively. The latter integrals can be approx-
imated by times the integrand at t+ ε; moreover, it is a
good approximation to replace derivatives around t + ε
by finite differences, e.g., ∂Q/∂t by (Q−Qf )/ε. The last
equation can then be rewritten as:

ρ(Q,Q′; t+ ε) =
1

C2

∫ ∞
−∞

dQi

∫ ∞
−∞

dQ′i

∫ ∞
−∞

dQf

∫ ∞
−∞

dQ′f

∫ Q(t)=Qf

Q(ti)=Qi

D[Q(t)]

∫ Q′(t)=Q′f

Q′(ti)=Q′i

D[Q′(t)]

× exp

{
iM

2h̄ε
[(Q−Qf )2 − (Q′ −Q′f )2]

}
exp

{
−

iε

h̄
[U ′(Q)− U ′(Q′)]

}
× exp

{
−
ε

h̄
(Q2 −Q′2)

∫ t+ε

0

ds[Q2(s)−Q′2(s)]L2(t+ ε− s)

}
× exp

{
−

iε

h̄
(Q2 −Q′2)

∫ t+ε

0

ds[Q2(s) +Q′2(s)]L1(t+ ε− s)

}
× exp

{
i

h̄
(S[Q]− S[Q′])

}
exp

{
−

1

h̄
Φ[Q,Q′]

}
ρ(Qi, Q

′
i; 0). (A.8)

For small ε almost all exponents are expanded up to first order in ε-except the first exponent, which rapidly oscillates
as ε→ 0. It can be shown71) that only the parts with Q−Qf ∝ ε1/2 and Q′−Q′f ∝ ε

1/2 will yield a finite contribution
since the exponent hardly changes in this range:

ρ(Q,Q′; t+ ε) =
1

C2

∫ ∞
−∞

dQi

∫ ∞
−∞

dQ′i

∫ ∞
−∞

dQf

∫ ∞
−∞

dQ′f

∫ Q(t)=Qf

Q(ti)=Qi

D[Q(t)]

∫ Q′(t)=Q′f

Q′(ti)=Q′i

D[Q′(t)]

× exp

{
iM

2h̄ε
[(Q−Qf )2 − (Q′ −Q′f )2]

}

×

[
1−

iε

h̄
[U ′(Q)− U ′(Q′)]−

ε

h̄
(Q2 −Q′2)

∫ t+ε

0

ds[Q2(s)−Q′2(s)]L2(t+ ε− s)

−
iε

h̄
(Q2 −Q′2)

∫ t+ε

0

ds[Q2(s) +Q′2(s)]L1(t+ ε− s)

]

× exp

{
i

h̄
(S[Q]− S[Q′])

}
exp

{
−

1

h̄
Φ[Q,Q′]

}
ρ(Qi, Q

′
i; 0). (A.9)

The last two terms in the big squared brackets can be
rearranged by introducing the function;

L̄1(s) = 2

∫ ∞
0

dω

π

JSL(ω)

ω
cosωs. (A.10)

This function is proportional to the correlation func-
tion of the collective bath coordinate.71) From the def-
inition of L1(s) in eq. (A.6) it is directly evident that

dL̄1/ds = 2L1(s) holds. Using this identity and the re-
lation L̄1(0) = µ the last two terms in the big squared
brackets of eq. (A.9) can be replaced by:

−
iε

2h̄
(Q2 −Q′2)

d

d(t+ ε)

×

∫ t+ε

0

ds[Q2(s) +Q′2(s)]L̄1(t+ ε− s). (A.11)
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A(P̂ , Q̂)ρ̂→ A

(
P +

h̄

2i

∂

∂R
,R−

h̄

2i

∂

∂P

)
W (P,R),

ρ̂A(P̂ , Q̂)→ A

(
P −

h̄

2i

∂

∂R
,R+

h̄

2i

∂

∂P

)
W (P,R),

(A.17)

which directly results in the quantum Fokker-Planck
equation, see eq. (6) with the damping operator as de-
fined in eq. (10).
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