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ABSTRACT
We present a scheme to evaluate thermodynamic variables for a system coupled to a heat bath under a time-dependent external force using the
quasi-static Helmholtz energy from the numerically “exact” hierarchical equations of motion (HEOM). We computed the entropy produced
by a spin system strongly coupled to a non-Markovian heat bath for various temperatures. We showed that when changes to the external
perturbation occurred sufficiently slowly, the system always reached thermal equilibrium. Thus, we calculated the Boltzmann entropy and
the von Neumann entropy for an isothermal process, as well as various thermodynamic variables, such as changes in internal energies, heat,
and work, for a system in quasi-static equilibrium based on the HEOM. We found that although the characteristic features of the system
entropies in the Boltzmann and von Neumann cases as a function of the system–bath coupling strength are similar, those for the total entropy
production are completely different. The total entropy production in the Boltzmann case is always positive, whereas that in the von Neumann
case becomes negative if we chose a thermal equilibrium state of the total system (an unfactorized thermal equilibrium state) as the initial
state. This is because the total entropy production in the von Neumann case does not properly take into account the contribution of the
entropy from the system–bath interaction. Thus, the Boltzmann entropy must be used to investigate entropy production in the fully quantum
regime. Finally, we examined the applicability of the Jarzynski equality.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0033664., s

I. INTRODUCTION

In thermodynamics and statistical mechanics, entropy is an
important metric representing the time-irreversible dynamics of
an isolated system. The second law of thermodynamics states that
the entropy production of an isolated system is always positive,
whereas it is zero if the processes are reversible under thermo-
dynamic conditions. Although investigating entropy production in
the classical regime is straightforward, for example, using analyti-
cal approaches1–6 and classical molecular dynamics simulations,7–10

doing so in the quantum regime remains challenging because the
microscopic nature of the main system is described by quan-
tized energy states and the dynamics of the system is reversible
in time.

In the real world, however, even if the universe has only an iso-
lated excited atom, it will evolve toward thermal equilibrium at 3 K

due to the unavoidable interaction of the system with the surround-
ing vacuum radiation fields. Thus, a system–bath model, in which
a small quantum system is coupled to a bath typically modeled by
an infinite number of harmonic oscillators, has been employed to
study open quantum dynamics.11–20 This system–bath model can
describe the time irreversibility of the dynamics as the system evolves
toward thermal equilibrium in which the energy supplied by fluc-
tuations and the energy lost through dissipation are balanced. The
temperature of the bath does not change because its heat capacity is
infinite. Moreover, the total energy of the system is conserved if the
dynamics described by the total system–bath Hamiltonian is treated
properly. To obtain the reduced equations of motion in a compact
form, the Markovian assumption is usually employed, in which the
correlation time is very short in comparison to the characteristic
time of the system dynamics. Widely used approaches for investi-
gating open quantum dynamics employ the Redfield equation and
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the quantum master equation, which can be derived from the quan-
tum Liouville equation with the full Hamiltonian by reducing the
number of degrees of freedom of the heat bath.21–27 Several studies
on the origin of irreversibility,28–30 including a fluctuation theorem,
have been developed.31–38

It has been shown, however, that these equations do not satisfy
the necessary positivity condition of the population states without
imposing a rotating-wave approximation. Because such approxima-
tions modify the form of the system–bath interaction, the thermal
equilibrium state and the dynamics of the original Hamiltonian are
altered.39–42 Moreover, the majority of previous studies had to adopt
a factorized description of the total system, ρ̂(t) = ρ̂A(t) ⊗ ρ̂eqB ,
where ρ̂A(t) is the system density operator and ρ̂eqB is the ther-
mal equilibrium state of the bath without the system–bath inter-
action.21–27,43–46 However, this violates the energy conservation of
the total system because this assumption ignores the contribution of
the energy from the system–bath interaction. This is a fundamen-
tal limitation in applying these approaches to investigate entropy
production.

The different definitions of entropy give rise to another com-
plexity. When investigating entropy production, the Boltzmann
entropy has been used in the classical case, whereas the von
Neumann entropy has been used in the quantum case.43–51 Note
that throughout this paper, the Boltzmann entropy refers to the
entropy derived from the Helmholtz energy. Although the Boltz-
mann entropy and the von Neumann entropy coincide when the
main system is in thermal equilibrium, they are different when there
is an external perturbation that is the source of entropy produc-
tion. The relation between the von Neumann entropy and the sec-
ond law has been extensively studied, for both thermal equilibrium
and nonequilibrium cases.43–51 Because the main system is micro-
scopic in the quantum case and because the quantum coherence
between the system and bath characterizes the quantum nature of
the system–bath dynamics, the role of the system–bath interaction
has to be examined carefully. For example, although the factor-
ized thermal equilibrium state, ρ̂eqtot = ρ̂eqA ⊗ ρ̂eqB , where ρ̂eqA is the
equilibrium state of the system without the system–bath interac-
tion, is often employed as an initial state when investigating open
quantum dynamics, in real situations, the system and the bath are
quantum mechanically entangled (bath entanglement).42 As we will
illustrate below, the contribution of the entropy from the system–
bath interaction must be taken into account for the total entropy
production; otherwise, the second law of thermodynamics is vio-
lated, in particular, if there is strong system–bath coupling at low
temperatures.

In the present paper, we examine the role of the system–
bath interaction for entropy production and various thermodynamic
variables by computing the von Neumann entropy and the Boltz-
mann entropy. For this purpose, we employ the real-time hierar-
chical equations of motion (HEOM).39–42,52–60 Because the HEOM
can provide an “exact” numerical treatment of the dynamics defined
by a system–bath Hamiltonian, it is possible to carry out desk-
top experiments to verify quantitatively fundamental aspects of
the quantum thermodynamics. The effects of non-perturbative and
entangled system–bath interactions have been investigated with the
HEOM approach, based on quantum thermodynamics, for heat
currents58–63 and heat engines.64–69 Here, we investigate the effects
of the system–bath interaction on entropy production using a

spin-boson model for various values of the system–bath coupling
using a factorized and a true (unfactorized) thermal equilibrium
state as the initial state. Although the HEOM have been used to
investigate the production of von Neumann entropy,70 here we study
not only the von Neumann entropy but also the Boltzmann entropy,
as well as various thermodynamic variables, including the changes in
internal energies, heat, and work, by simulating the kinetic response
of the system. We then show that entropy production in the von
Neumann case becomes negative if we calculate it for a correlated
thermal equilibrium state because no entropy is contributed by
the system–bath interaction. In contrast, entropy production in the
Boltzmann case is always positive.

We should emphasize that although our scheme to calculate
thermodynamic variables is based on a desktop experiment to mea-
sure the kinetic response of a system using the real-time HEOM, a
similar scheme could be used in a real experiment to determine the
thermodynamic variables of a quantum system in a thermal envi-
ronment by applying a slowly changing external field. In this regard,
our approach is like the theory developed by Jarzynski.31

This paper is organized as follows: In Sec. II, we introduce
the system–bath Hamiltonian and the HEOM formalism. We then
describe the scheme used to calculate various thermodynamic vari-
ables based on open quantum dynamics theory. In Sec. III, we
present the numerical results of the system entropy and entropy
production as a function of the system–bath coupling strength for
the Boltzmann and von Neumann cases. To analyze the differ-
ence between these two cases, we calculate various thermodynamic
variables. Section IV contains concluding remarks.

II. SYSTEM–BATH MODEL AND THERMODYNAMIC
VARIABLES
A. Hamiltonian

To carry out desktop experiments to verify fundamental aspects
of quantum thermodynamics in a practical manner, we consider
a system A coupled to a heat bath B of harmonic oscillators. The
Hamiltonian of the total system is given by

Ĥ(t) = ĤA(t) + ĤI + ĤB, (1)

where ĤA(t) = Ĥ0
A + ĤE(t), with ĤE(t) = 0 for t ≤ 0. Here, Ĥ0

A is
the system Hamiltonian, whose explicit time dependence originates
from the coupling with the external driving field, ĤE(t). The bath
Hamiltonian ĤB can be expressed as

ĤB =∑
j

⎡
⎢
⎢
⎢
⎣

p̂2
j

2mj
+

1
2
mjω2

j x̂
2
j

⎤
⎥
⎥
⎥
⎦

, (2)

where p̂j, x̂j, mj, and ωj are the momentum, position, mass, and fre-
quency of the jth bath oscillator, respectively, and the system–bath
interaction ĤI is given by ĤI = V̂∑j gjx̂j, where V̂ is the system part
of the interaction and g j is the coupling constant between the system
and the jth bath oscillator. The heat bath can be characterized by the
spectral distribution function (SDF), defined by

J(ω) ≡
N

∑
j=1

πg2
j

2mjωj
δ(ω − ωj), (3)
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and the inverse temperature is β ≡ 1/kBT, where kB is Boltzmann’s
constant. Various environments, for example, those consisting of
nanostructured materials, solvents, or protein molecules, can be
modeled by adjusting the form of the SDF.42 For the heat bath to be
an unlimited heat source with an infinite heat capacity, the number
of heat bath oscillators N can be made infinitely large by replac-
ing J(ω) with a continuous distribution. In the present treatment,
although the number of degrees of freedom for the bath is infinite,
the total energy described by Eq. (1), including the work done by
the external force, is conserved when we rigorously treat not only
the system but also the bath. The full system–bath model can be
regarded as an isolated system.

B. Reduced density matrix and the hierarchical
equations of motion

The reduced density matrix is defined by

ρ̂A(t) = trB{exp+[−
i
h̵ ∫

t

0
dtĤ(t)]ρ̂eqA+B exp−[

i
h̵ ∫

t

0
dtĤ(t)]},

(4)

where exp− and exp+ are the time-ordered exponentials and ρ̂eqA+B
is the thermal equilibrium state of the system. As an initial con-
dition, here we consider the factorized thermal equilibrium state
and the correlated (true) thermal equilibrium state expressed as
ρ̂′eqA+B = e

−βĤ0
A ⊗ e−βĤB/Z0

AZB and ρ̂eqA+B ≡ e
−β(Ĥ0

A+ĤI+ĤB)/Z0
tot , respec-

tively, where Z0
A ≡ trA{e−βĤ

0
A}, ZB ≡ trB{e−βĤB}, and Z0

tot = Ztot

(τ = 0), with Ztot(τ) ≡ trA+B{e−β(ĤA(τ)+ĤI+ĤB)}. In the path integral
representation, ρ̂A(t) can be evaluated from the initial conditions
described by the correlated thermal equilibrium state40,71 and the
factorized thermal state.72

The effects of the bath on the system are characterized by the
noise correlation function C(t) = ⟨X̂(t)X̂(0)⟩B, where the opera-
tor X̂ is the collective bath coordinate defined by X̂ = ∑j gjx̂j. Here,
the notation ⟨⋯⟩B represents the average taken with the canonical
distribution of the bath. The noise correlation function is expressed
through J(ω) as

C(t) = h̵∫
∞

0

dω
π
J(ω)[coth(

1
2
βh̵ω) cos(ωt) − i sin(ωt)]. (5)

We assume that the SDF is given by the Drude distribution,
J(ω) = ηγ2ω/(ω2 + γ2), where η is the system–bath coupling strength
and γ is the cutoff frequency. Then, C(t) is expressed in terms
of exponential functions and a delta function as C(t) = ∑L

k=0(c
′
k

+ ic′′k )γke
−γkt + 2ΔLδ(t), where c′k, c′′k , γk, and ΔL are constants.

This form of C(t) allows us to derive the HEOM, which consists of
the following sets of equations of motion with the auxiliary density
operators (ADOs),39–42,52–54

∂

∂t
ρ̂(n0 ,...,nL)(t)

= −[
i
h̵
L̂A(t) + ΔLΦ̂2 +

L

∑
k=0

nkγk]ρ̂(n0 ,...,nL)(t)

+
L

∑
k=0

nkΘ̂kρ̂(...,nk−ek ,...)(t) + Φ̂k

L

∑
k=0

ρ̂(...,nk+ek ,...)(t). (6)

Here, ek is the unit vector along the kth direction, and we have
defined the superoperators L̂A(t)Ô ≡ [ĤA(t), Ô], Φ̂Ô ≡ i[V̂ , Ô]/h̵,
and Θ̂ ≡ c′kΦ̂ − c

′′
k Ψ̂, with Ψ̂Ô ≡ {V̂ , Ô}/h̵ for any operator Ô. Each

ADO is specified by the index n = (n0, . . ., nL), where each element
takes a non-negative integer value. The ADO for n = 0 corresponds
to the actual reduced density operator. In the HEOM approach, the
factorized initial state is set as ρ̂n=0 (0) = exp[−βĤ0

A]/Z0
A, and all

the other hierarchical elements are set to zero. The correlated ther-
mal equilibrium state can be set by running the HEOM program
for fixed ĤA(t) = Ĥ0

A until all of the hierarchical elements reach
a steady state ρ̂eqn = ρ̂n(t → ∞). Then, we use these elements as the
initial state ρ̂n(0) = ρ̂eqn . The steady-state solution of the first hierar-
chical element agrees with the correlated thermal equilibrium state
defined by ρ̂eqA = trB{exp(−βĤ(0))}/Z0

tot , whereas the other ele-
ments describe bath entanglement states.40–42 We compute various
thermodynamic variables as the change in the equilibrium distri-
butions by numerically integrating the HEOM with respect to time
using the fourth-order low-storage Runge–Kutta method.73,74

C. Quasi-static Helmholtz energy and Boltzmann
entropy

We consider the partition function of the reduced system at
the fixed snapshot time τ, defined as ZA(τ) ≡ trA+B{e−βĤ(τ)/Zτ

B ,
where Zτ

B is the bath part of the partition function which is reduced
from the total Hamiltonian. In practice, however, we may set Zτ

B =

ZB, because we only need the ratio ZA(τ)/ZA(0) that is evaluated
from the real-time HEOM, as we will show below. In the functional
integral form, this is expressed as40,41,75,76

ZA(τ) ≡ ∫ dσ ∫
σ(βh̵)=σ

σ(0)=σ
D[σ(u)] exp[−

1
h̵
SA[σ(u); τ]], (7)

where σ(u) is the functional form of the spin operators, which are
described using Grassmann variables at the inverse temperature u,
and

SA[σ(u); τ] = ∫
βh̵

0
du′HA(u′; τ)

−
1
h̵ ∫

βh̵

0
du′′ ∫

u′′

0
du′V(u′′)V(u′)L̄(u′′ − u′),

(8)

and

L̄(u′) = h̵∫
+∞

0

dω
π
J(ω)

cosh(βh̵ω/2 − ωu′)
sinh(βh̵ω/2)

. (9)

Here, HA(u; τ) and V(u) are the functional representations of ĤA(τ)
and V̂ .

As we will demonstrate numerically below, when ĤE(t)
changes much more slowly than the relaxation time of the sys-
tem, the reduced density operator ρ̂A(t), evaluated with Eq. (6),
approaches the quasi–thermal equilibrium state of the system at time
t = τ as ρ̂qeqA (τ) ≈ trB{e−β(ĤA(τ)+ĤI+ĤB)}/Ztot(τ).

Although ZA(τ) can be evaluated from the imaginary-time
HEOM by calculating the system partition function,40,41 the numer-
ical integration is not easy, especially for lower temperatures, due
to the oscillatory nature of the noise correlation function in imagi-
nary time. Moreover, to calculate the change in the thermodynamic
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variables, including entropy production by an isothermal process,
we need only the ratio ZA(t)/ZA(0). Thus, we use the quasi-static
solution ρ̂qeqA (t), calculated from the real-time HEOM, to evaluate
the derivative of ln(ZA(t)) with respect to time t,

∂

∂t
(−

1
β

lnZA(t)) = trA{ρ̂qeqA (t)
∂

∂t
ĤA(t)}, (10)

where the right-hand side (RHS) of the above equation corresponds
to the power in the quasi-static isothermal process. A derivation
of Eq. (10) is presented in Appendix A. From the definition of the
Helmholtz energy, F ≡ −lnZ/β, the change in the “quasi-static”
Helmholtz energy at time τ is expressed as

ΔFA(τ) ≡ ∫
τ

0
trA{ρ̂qeqA (t)

∂

∂t
ĤA(t)}dt. (11)

Here, the RHS of the above equation is the quasi-static work done on
the system during the isothermal operation, which agrees with the
work for the quasi-static equilibrium process as ΔFA(τ) = Wqeq(τ).
From the above, the change in the “quasi-static” Boltzmann entropy
ΔSA(τ) is obtained as

ΔSA(τ) = kBβ2 ∂

∂β
ΔFA(τ). (12)

Note that this definition of the system entropy includes a contribu-
tion from the system part of the system–bath interaction. Accord-
ingly, the change in the internal energy is evaluated as

ΔUA(τ) =
∂

∂β
(βΔFA(τ)). (13)

The work W(τ) is expressed as

W(τ) = ∫
τ

0
P(t)dt, (14)

with the power defined as

P(t) ≡ trA{ρ̂A(t)
∂

∂t
ĤA(t)}. (15)

The work described by Eq. (14) is equivalent to the change in
the total system energy during the isothermal operation from
t = 0 to t = τ because the power can also be expressed as P(t)
= ∂U tot(t)/∂t, where the total energy is defined as59,60,77

Utot(t) ≡ trA+B{ρ̂tot(t)(ĤA(t) + ĤI + ĤB)}. (16)

For the system described above, the first law of thermodynamics
states that

ΔQ(τ) = ΔUA(τ) −W(τ), (17)

where ΔQ(τ) is the heat released from the bath. The total entropy
production is then expressed as

ΣB
tot(τ) = k

−1
B ΔSA(τ) − βΔQ(τ). (18)

To analyze ΔQ(τ) more precisely, we further introduce the
change in the bath energy (the bath–heat current) at time τ
expressed as Δ⟨ĤB(τ)⟩. In the HEOM formalism, this is evaluated
from the first-order hierarchical elements,59,60

Δ⟨ĤB(τ)⟩ ≡ ∫
τ

0

d
dt
⟨ĤB(t)⟩dt, (19)

where

d
dt
⟨ĤB(t)⟩ = −

2
h̵

Im[C(0)]trA{V̂2ρ̂A(t)}

− (
i
h̵
)

2
ΔLtrA{[[ĤA(t), V̂], V̂]ρ̂A(t)}

−
L

∑
k=0

γktrA{V̂ ρ̂ek(t)}. (20)

Accordingly, the interaction energy ⟨ĤI(t)⟩ ≡ trA+B{ĤI ρ̂tot(t)} is
evaluated in the HEOM formalism as40,59,60

⟨ĤI(t)⟩ = −
L

∑
k=0

trA{V̂ ρ̂ek(t)}. (21)

Then, the change in the interaction energy is evaluated as
Δ⟨ĤI(τ)⟩ = ⟨ĤI(τ)⟩ − ⟨ĤI(0)⟩. The change in the system
energy without the system–bath interaction is given by Δ⟨ĤA(τ)⟩
= trA{ĤA(τ)ρ̂qeqA (τ) − ĤA(0)ρ̂qeqA (0)}. Using the above results with
Eqs. (14)–(16), we can also evaluate the work from the HEOM,

W(τ) = Δ⟨ĤA(τ)⟩ + Δ⟨ĤI(τ)⟩ + Δ⟨ĤB(τ)⟩. (22)

Thus, the total entropy production in the Boltzmann case, as pre-
sented in Eq. (18), can be rewritten as

ΣB
tot(τ) = k

−1
B ΔSA(τ) + βΔ⟨ĤB(τ)⟩ + β(Δ⟨ĤI(τ)⟩ − δU′A(τ)), (23)

where δU′A(τ) ≡ ΔUA(τ) − Δ⟨ĤA(τ)⟩ represents the energy of the
system part of the system–bath interaction.

For very weak system–bath interactions, Δ⟨ĤI(τ)⟩ can be
ignored and δU′A(τ) approaches zero. This assumption is often
employed in quantum thermodynamics. In reality, however, a sys-
tem cannot reach thermal equilibrium state on its own without the
system–bath interaction because the microscopic nature of the main
system is described by quantized states and the dynamics of the sys-
tem itself is reversible in time. Thus, a careful treatment of Δ⟨ĤI(τ)⟩
and δU′A(τ) is necessary.

D. von Neumann entropy
The von Neumann entropy is commonly used in quantum

thermodynamics. It is defined as

SvNA (t) = −trA{ρ̂A(t) ln ρ̂A(t)}, (24)

where ρ̂A(t) is the reduced density matrix. Then, the change in the
system entropy is given by ΔSvNA (τ) = SvNA (τ) − SvNA (0). Note that
this entropy is consistent with the Boltzmann entropy in thermal
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equilibrium when the system–bath interaction is very weak. For the
von Neumann entropy, entropy production is defined as

ΣvN
tot (τ) = ΔS

vN
A,qeq(τ) + βΔ⟨ĤB(τ)⟩, (25)

where the second term on the RHS is the contribution of the entropy
from the bath and where

ΔSvNA,qeq(τ) = −trA{ρ̂qeqA (τ) ln ρ̂qeqA (τ)} + trA{ρ̂qeqA (0) ln ρ̂qeqA (0)}

(26)

is the change in the von Neumann entropy of a system in a quasi-
static equilibrium state. Note that although the contribution of the
entropy from the bath in the von Neumann case is defined as being
from the bath itself, in the Boltzmann case, it includes the con-
tribution from the system–bath interaction described by the third
term of the RHS of Eq. (23). Although the definition of Eq. (26)
has been extensively used under various conditions,43–51 as we will
show in Sec. III, the positivity of entropy production in the von
Neumann case breaks due to the contribution from the system–bath
interaction if the initial equilibrium state is correlated.

III. NUMERICAL RESULTS
A. Real-time responses

Our scheme for calculating thermodynamic variables, which we
described in Sec. II, is based on a simulation of the kinetic response
under an external perturbation using the HEOM. Although the
HEOM are applicable for a range of systems,42 including chemical
reactions,55,56 quantum ratchets,57 spin glass,80,81 and photosynthe-
sis,82–85 here we employ a simple spin-boson system for demonstra-
tion. For a system of this kind, special attention has to be paid to the
role of the system–bath interaction because the main system cannot
reach thermal equilibrium by itself without the system–bath inter-
action, even if the interaction is very weak. Here, we set the system
Hamiltonian,

Ĥ0
A =

1
2
h̵ω0(∣e⟩⟨e∣ − ∣g⟩⟨g∣)

and ĤE(t) = f (t)h̵ω0(∣e⟩⟨e∣ − ∣g⟩⟨g∣), where |e⟩ and |g⟩ are the
excited state and ground state, respectively. The system–bath inter-
action is defined as V̂ = ∣g⟩⟨e∣ + ∣e⟩⟨g∣. In the simulation, we set η
= 1 and βh̵ω0 = 1. Throughout this paper, we fix the cutoff frequency
γ = ω0, which corresponds to a moderate non-Markovian case. Note
that even if γ is very large, the noise is non-Markovian in the very
low temperature regime due to quantum thermal fluctuations, as
demonstrated for the simulation of muon spin spectroscopy (μSR).86

The system is driven by the external field,

f (t) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0, t ≤ 0
1

4T
t, 0 < t ≤ T

1
4

, T < t,

(27)

where T is the time duration of the driving force. We first investi-
gate the response of the thermodynamic variables under an exter-
nal field with different growth rates over time. We evaluated the
von Neumann entropy at time τ from Eq. (25) by numerically

integrating the HEOM until time t = τ, starting from the correlated
equilibrium state at t = 0 and then using the zeroth element of the
solution, ρ̂n=0(τ).

In Fig. 1, we depict the results calculated for (a) the work W(τ)
and (b) the change in the von Neumann entropy ΔSvNA (τ) at time τ.
The black dots are the values calculated from the quasi-static distri-
bution ρ̂qeqA (τ). First, note that the von Neumann entropy becomes
large when the ground state and excited states are equally populated,
whereas it becomes small if the population is localized in the ground
state. In the present case, because the external field enhances the
excitation energy, the population of the excited state decreases as τ
increases. Because ΔSvNA (τ) is zero at τ = 0, the change in the entropy
is negative.

When the external perturbation is applied very slowly, the
work and the changes in the von Neumann entropy approach their

FIG. 1. (a) The work W (τ) calculated from Eq. (14) and (b) the change in the
von Neumann entropy of the main system ΔSvN

A (τ) calculated from Eq. (24).
Both are plotted as functions of time τ/T for fixed η = 1 and β̵hω0 = 1. The black
dots represent the results from the quasi-static distribution ρ̂qeq

A (τ) that satisfy
W qeq(τ) = ΔFA(τ). The colored curves represent different time durations:
T = 0.1/ω0 (blue curve), T = 1/ω0 (green curve), and T = 10/ω0 (red curve).
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quasi-static equilibrium values, which are represented by the black
dots. Note that if we increase the system–bath coupling η, instead
of T, the von Neumann entropy is suppressed to the quasi-static
value more rapidly (not shown). These results imply that the reduced
density operator, defined in Eq. (4), coincides with ρ̂qeqA (τ) at each
time τ if the perturbations are sufficiently slow or if the system–
bath coupling is strong. A slower external perturbation or stronger
system–bath coupling results in smaller work W(τ). The lower limit
of the work is identical to the change in the quasi-static Helmholtz
energy, i.e., Wqeq(τ) = ΔFA(τ). We, thus, have ΔFA(τ) ≤W(τ), which
corresponds to the second law of thermodynamics.

B. System entropy and entropy production calculated
from the correlated equilibrium state

Based on the above results, here we calculate both the Boltz-
mann entropy and the von Neumann entropy using ρ̂qeqA (τ), which
was obtained as the steady-state solution of the HEOM by integrat-
ing them from t = 0 to sufficiently long time t ≫ 1/ω0 for Ĥ(τ)

with the fixed time τ. We calculated the change in the quasi-static
Helmholtz energy ΔFA(τ) from Eq. (11). Then, the change in the
system entropy ΔSA was calculated from Eq. (12) by numerically
differentiating ΔFA(τ) with respect to τ using a seven-point finite
difference method with grid spacing Δβ = 0.01/h̵ω0. Using the first
law of thermodynamics [Eq. (17)] with Eqs. (13) and (14), we eval-
uated the total entropy production ΣB

tot from Eq. (18). In the von
Neumann case, the change in the system entropy ΔSvNA and total
entropy production ΣvN

tot were calculated from Eqs. (26) and (25),
respectively. The quasi-static Helmholtz energy, as well as various
thermodynamic variables, was obtained by numerically simulating
the time evolution of the system from the true (correlated) thermal
equilibrium state, ρ̂A(0) = trB{e−β(Ĥ

0
A+ĤI+ĤB)}/Z0

tot , to the final state
ρ̂A(+∞) = ρ̂qeqA (T). Here, we consider the slow perturbation case,
T = 10/ω0.

In Fig. 2, we illustrate (a) the change in the system entropy ΔSA
and (b) the total entropy production Σtot in the Boltzmann (blue)
and von Neumann (red) cases as functions of the system–bath cou-
pling strength η for different temperatures. We first discuss ΔSA, as

FIG. 2. (a) Change in the system entropy and (b) the total entropy production in the Boltzmann case (red curves) and the von Neumann case (blue curves) as functions of
the system–bath coupling strength η for the inverse temperatures: (i) β̵hω0 = 0.5, (ii) β̵hω0 = 1, and (iii) β̵hω0 = 3.
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shown in Figs. 2(a-i)–2(a-iii). As explained for Fig. 1, ΔSA becomes
negative because the external force enhances the excitation energy,
and thus, the population is localized in the ground state. This ten-
dency becomes prominent at lower temperatures due to the small
thermalization that arises from the fluctuations of the bath. The dif-
ferences between the Boltzmann and von Neumann cases become
larger as the system–bath coupling strengthens, in particular, at low
temperatures (see also Ref. 78), but the overall profiles for the two
results are similar. This is because we calculated both entropies using
the reduced density matrix of the main system obtained from the
HEOM, and thus, the effects of the non-perturbative system–bath
interaction were indirectly taken into account in the von Neumann
case.

In all cases in Figs. 2(a-i)–2(a-iii), the changes in the system
entropy increase as the system–bath coupling strength increases
because the excited state is populated in the strong system–bath
coupling region. At low temperatures [Fig. 2(a–iii)], however, the
increase in the entropy change is suppressed in the region 0.05 ≤ η ≤
0.5. This is due to the relaxation of the excited state arising from the
dissipation, whereas the thermal excitation arising from the fluctua-
tions is suppressed in this low-temperature regime. Thus, the ground
state population is more localized, and, as a result, the entropy
becomes small in this parameter region. For very large η, however,
the system and the bath are strongly coupled and the energy eigen-
states of the system become continuous. Thus, the change in the
system entropy becomes large for large η.

Although the changes in the system entropy in the Boltzmann
and von Neumann cases are mostly determined by the ground- and
excited-state populations and are not sensitive to the definition of
the entropy, the total entropy production in these two cases exhibits
completely different behavior, as illustrated in Figs. 2(b-i)–2(b-iii).
The total entropy production in the Boltzmann case is always
positive, whereas that in the von Neumann case becomes negative,
even in a weak coupling region. This difference is due to the third
term on the RHS of Eq. (23), β(Δ⟨ĤI⟩ − δU′A), in the Boltzmann

expression. Note that in quantum information theory, the difference
in the von Neumann entropy is the quantum mutual information.
It is defined by I(A : B) ≡ SvNA + SvNB − SvNtot and is employed
as a measure of the correlation between the quantum states of the
system and the bath.79 In the present case, although we cannot eval-
uate the bath part of the von Neumann entropy directly, from the
difference between Eqs. (23) and (25), it should be reasonable to
estimate the change in the bath von Neumann entropy as ΔSvNB
≈ βΔ⟨ĤB⟩ + β(Δ⟨ĤI⟩ − δU′A). Accordingly, we estimate the change
in the total von Neumann entropy as ΔSvNtot ≈ ΣvN

tot +β(Δ⟨ĤI⟩−δU′A),
which leads to ΔI(A:B) ≈ 0.

To analyze this more closely, we depict ΔQ, −Δ⟨ĤB⟩, Δ⟨ĤI⟩,
and δU′A ≡ ΔUA − Δ⟨ĤA⟩ as functions of η for various temperatures
calculated from Eqs. (17), (19), and (21) under the same physical
conditions as in Fig. 2. As Figs. 3(a)–3(c) indicate, the total entropy
production in the von Neumann case becomes negative due to the
negative contribution of the bath entropy in the strong coupling
region. In the low-temperature case, ΔQ and −Δ⟨ĤB⟩ decrease after
a maximum around η = 2 because the strong dissipation suppresses
heat transfer from the system to the bath.58 As a result, the entropy
production in the von Neumann case slightly increases for η > 2.

In the Boltzmann case, ΣB
tot is always positive because the large

positive contribution of the entropy from the system–bath interac-
tion, β(Δ⟨ĤI⟩− δU′A), compensates for the negative contribution of
the bath entropy. This indicates that the total entropy production
in the von Neumann case becomes negative because the contribu-
tion from the system–bath interaction has not been treated prop-
erly. Moreover, we find that δU′A ≈ Δ⟨ĤI⟩/2, which indicates that
the system–bath interaction energy is evenly distributed to the sys-
tem and the bath. The difference in the bath entropy between the
Boltzmann case and the von Neumann case is then evaluated as
ΔQ − (−Δ⟨ĤB⟩) ≈ −Δ⟨ĤI⟩/2. Although the negativity of entropy
production in the von Neumann case was found by Goyal, He, and
Kawai,70 here we identify the origin of this negativity using the
Boltzmann entropy.

FIG. 3. Change in the heat ΔQ (green curve), the decrease in the bath energy −Δ⟨ĤB⟩ (red curve), the change in the interaction energy Δ⟨ĤI⟩ (blue curve), and the change
in the system part of the system–bath interaction energy δU′A ≡ ΔUA − Δ⟨ĤA⟩ (black dashed curve), plotted as functions of η for (a) β̵hω0 = 0.5, (b) β̵hω0 = 1, and (c)
β̵hω0 = 3.
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Finally, we discuss the characteristic features of the total
entropy production in the Boltzmann case, depicted as the blue
curves in Figs. 2(b-i)–2(b-iii). When η is very weak, the system state
ρ̂A(t) at time T is not quasi-static ρ̂qeqA (T) because T = 10/ω0 is
much shorter than the thermal relaxation time of the system in this
parameter region, as with small T in Fig. 1. Thus, the total entropy
production ΣB

tot becomes large for small η. The heat produced ΔQ
= ΔUA −W reflects the nonequilibrium state of the system because
although the work W defined by Eq. (14) was evaluated without
assuming a quasi-static state, we evaluated ΔUA and ΔSA using
ρ̂qeqA (t) through ΔFA defined by Eq. (11). When the bath tempera-
ture becomes lower, the entropy production becomes larger because
thermal fluctuations, which help the relaxation to the equilibrium
states, are suppressed. As η increases, ΣB

tot decreases because ρ̂A(t)
approaches ρ̂qeqA (t). If there is very strong system–bath coupling,
the system and the bath are almost merged and behave like a sin-
gle isolated system. Thus, we have k−1

B ΔSA = βΔQ, and ΣB
tot becomes

zero, which indicates that the dynamics of the total system is time
reversible.

In Appendix B, we show that the total entropy production in
the von Neumann case becomes positive if we start from a factor-
ized initial state. This is because the change in the bath entropy is
enhanced, and it restores the loss of the entropy due to the factorized
initial state.

C. Heat and the Jarzynski equality
Although the equality ZA(τ)/ZA(0) = Ztot(τ)/Ztot(0) is com-

monly assumed when investigating entropy production,5,6,31,36,37 it
is obvious that this relation does not hold for an open quantum
dynamics system in which fluctuations and dissipation play an
essential role. This is because although the first law of thermody-
namics states that ΔQ(τ) = ΔUA(τ) − W(τ), the above equality is
equivalent to assuming that ΔUA(τ) −W(τ) = 0 because

ΔUA(τ) ≡ −
∂

∂β
ln(

ZA(τ)
ZA(0)

), (28)

and W(τ) = ΔU tot(τ), with

ΔUtot(τ) ≡ −
∂

∂β
ln(

Ztot(τ)
Ztot(0)

). (29)

In the present case, we have Ztot(τ)/Ztot(0) = (ZA(τ)/ZA(0))
(ZB(τ)/ZB(0)) andZtot(τ)/Ztot(0) ≠ZA(τ)/ZA(0), where (ZB(τ)/ZB(0))
is evaluated from ΔQ(τ) = ∂In (ZB(τ)/ZB(0))/∂β. As a result, the
Jarzynski equality does not hold. This is natural because the situa-
tion we consider here is not adiabatic [i.e., ΔQ(τ) ≠ 0] and not time
reversible, although the total energy of the system plus bath is still
conserved, as described by Eq. (22).

IV. CONCLUDING REMARKS
In this paper, we present a quantitative scheme to evaluate ther-

modynamic variables, such as the change in the Boltzmann entropy,
for isothermal processes in an open quantum dynamics system. The
scheme is based on evaluating the quasi-static Helmholtz energy
using a reduced equation of motion for any system coupled to a
heat bath under a slowly changing external force. Any open quan-
tum dynamics formalism that can accurately describe the thermal

equilibrium state as a steady-state solution can be employed for the
calculations. Because the present approach is based on the kinetic
response of a thermal system, it may be possible to apply a sim-
ilar scheme in a real experiment with a small quantum system
in a thermal environment by applying a time-dependent external
perturbation.

As a demonstration, we calculated various thermodynamics
valuables for a spin-boson system. We find that although the pro-
files of the system entropy in the Boltzmann and von Neumann
cases as functions of the system–bath coupling strength are similar,
those for the total entropy production are completely different. The
total entropy production in the Boltzmann case is always positive,
whereas that in the von Neumann case becomes negative if we chose
a thermal equilibrium state of the full system (a correlated ther-
mal state) as the initial condition. This is because the total entropy
production in the von Neumann case does not properly take into
account the contribution of the entropy from the system–bath inter-
action. Finally, the applicability of the Jarzynski equality is briefly
discussed based on partition functions.

Although the differences between the results for the Boltz-
mann case and the von Neumann case are small in a region with
weak system–bath coupling, a formalism based on the Boltzmann
entropy must be used to investigate the philosophical foundations
of quantum thermodynamics, and there should be no inconsisten-
cies. Moreover, ignoring the effect of the system–bath interaction is
unrealistic because a tiny quantum system can never reach thermal
equilibrium on its own without the system–bath interaction.

In the present paper, although we limited our analysis to a
simple spin-boson system, we can use the same approach for the
variety of systems that the HEOM formalism has been applied to.42

Moreover, if we employ the quantum hierarchical Fokker–Planck
equations (QHFPEs) for a system described by a configuration space
and Wigner distribution functions,39,41,55–57 we can investigate not
only quantum cases but also classical cases by taking the classical
limit of the QHFPEs. Because the QHFPE formalism treats quan-
tum and classical systems in the same way, regardless of the form
of the potential, it can be used to identify purely quantum mechan-
ical effects by comparing the classical and quantum results for the
Wigner distribution.56,57 In conclusion, the present paper provides
a rigorous and quantitative framework for investigating quantum
thermodynamics.
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APPENDIX A: DERIVATION OF EQ. (10)
In this appendix, we derive Eq. (10) for the system–bath Hamil-

tonian expressed as Ĥ(τ) = Ĥ0 + ĤE(τ), where Ĥ0 ≡ Ĥ
0
A + ĤI + ĤB

and ĤE(τ) is the time-dependent part of the system Hamiltonian.
Using Kubo’s identity,87 we can rewrite the partition function of the
Hamiltonian Ĥ(τ + Δτ), expressed in real time, as

e−βĤ(τ+Δτ)
= e−βĤ(τ)[1 − ∫

β

0
dλeλĤ(τ)ΔĤE(τ)e−λ(Ĥ(τ)+ΔĤE(τ))],

(A1)
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where ΔĤE(τ) ≡ ĤE(τ + Δτ) − ĤE(τ). For small ΔĤE(τ), which
is realized when ĤE(τ) changes in time slowly or Δτ is small,
we can ignore the higher-order contribution of ΔĤE(τ). For the
reduced density operator in imaginary time, defined as ˆ̃ρA(βh̵; τ)
≡ trB{e−βĤ(τ)/Zτ

B},
40,41 we then have

ˆ̃ρA(βh̵; τ + Δτ) ≈ ˆ̃ρA(βh̵; τ) − ∫
β

0
dλtrB

× {
1
Zτ
B
e−βĤ(τ)eλĤ(τ)ΔĤE(τ)e−λĤ(τ)}. (A2)

The reduced partition function of the system is given by ZA(τ)
= trA{ˆ̃ρA(βh̵; τ)}. Thus, for a slowly changing time-dependent
Hamiltonian with Δτ → 0, we have the relation

∂

∂τ
ZA(τ) = −∫

β

0
dλ trA[trB{e−βĤ(τ)

1
Zτ
B
eλĤ(τ)

∂ĤE(τ)
∂τ

e−λĤ(τ)}].

(A3)

By dividing both sides of the equation by ZA(τ), we can write Eq. (10)
as

∂

∂τ
(−

1
β

lnZA(τ))

=
1
β ∫

β

0
dλtrA+B{

1
ZA(τ)Zτ

B
e−βĤ(τ)eλĤ(τ)

∂ĤE(τ)
∂τ

e−λĤ(τ)}

= trA+B[
1

ZA(τ)Zτ
B
e−βĤ(τ)

∂ĤE(τ)
∂τ

]

= trA{ρ̂qeqA (τ)
∂ĤE(τ)

∂τ
}, (A4)

where the quasi–thermal equilibrium state of the system at time τ is
defined as ρ̂qeqA (τ) ≡ ˆ̃ρA(βh̵; τ)/ZA(τ).40,41

FIG. 4. (a) Total entropy production (blue curve) and the change in the system entropy (red curve). (b) Change in the system energy (green curve), interaction energy (blue
curve), and bath energy (red curve). These were calculated from the factorized initial condition in the von Neumann case as functions of the system–bath coupling for (i)
β̵hω0 = 0.5, (ii) β̵hω0 = 1.0, and (iii) β̵hω0 = 3.0 under the same physical conditions as in Figs. 2 and 3.
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APPENDIX B: TOTAL ENTROPY PRODUCTION
FROM THE FACTORIZED INITIAL STATE

To illustrate the contribution of the entropy from the system–
bath interaction, here we present the results in the von Neumann
case calculated from the factorized thermal initial state, ρ̂tot(0)
= ρ̂(eq)A ⊗ ρ̂eqB , using Eq. (24). Note that although the factorized initial
state has been intensively used to investigate entropy production, it
is valid only for a Markovian heat bath as the noise correction of
the bath is short (γ ≫ ω0) and the temperature is very high (βh̵ω
≪ 1) or the system–bath interaction is very weak (η ≪ ω0).39–41

At low temperatures, where quantum effects play a dominant role,
non-Markovian effects arise, even for γ ≫ ω0, due to the quantum
thermal fluctuations, as observed in the simulation of muon spin
spectroscopy (μSR).86

In Fig. 4, we present the results of (a) the change in the sys-
tem entropy and total entropy production and (b) the change in
the system energy, interaction energy, and bath energy in the von
Neumann case calculated from the factorized initial state under the
same physical conditions as in Figs. 2 and 3. Unlike the correlated
case in Fig. 2(b), ΣvN

tot , as shown in Fig. 4(a), is always positive for
any strength of the system–bath coupling. Although this result is
consistent with former investigations,44,45 it is due to the contribu-
tion of the entropy from the system–bath interaction, which has not
been considered before. Although the system energy Δ⟨ĤA⟩ does
not change significantly, regardless of η, the change in the interac-
tion energy Δ⟨ĤI⟩ dramatically decreases to restore the system–bath
correlation that is lost from the factorized initial state, as illustrated
in Fig. 4(b). Then, the bath energy Δ⟨ĤB⟩, which contributes to
ΣvN
tot through the second term on the RHS of Eq. (25), increases and

supplies energy to the system–bath interaction.
As explained in Sec. III B, the total entropy production in the

von Neumann case is underestimated by about Δ⟨ĤI⟩/2. In the
present factorized case, because Δ⟨ĤI⟩ is negative, the modified total
entropy production ΣvN

tot
′
= ΣvN

tot + βΔ⟨ĤI⟩/2 becomes smaller than
the original value, whereas ΣvN

tot
′ is still positive.
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