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Abstract
The quantum dissipative dynamics of a tunneling process through double
barrier structures is investigated on the basis of non-perturbative and non-
Markovian treatment. We employ a Caldeira–Leggett Hamiltonian with an
effective potential calculated self-consistently, accounting for the electron
distribution. With this Hamiltonian, we use the reduced hierarchy equations of
motion in the Wigner space representation to study non-Markovian and non-
perturbative thermal effects at finite temperature in a rigorous manner. We study
current variation in time and the current–voltage (I –V ) relation of the resonant
tunneling diode for several widths of the contact region, which consists of doped
GaAs. Hysteresis and both single and double plateau-like behavior are observed
in the negative differential resistance (NDR) region. While all of the current
oscillations decay in time in the NDR region in the case of a strong system–bath
coupling, there exist self-excited high-frequency current oscillations in some
parts of the plateau in the NDR region in the case of weak coupling. We
find that the effective potential in the oscillating case possesses a basin-like
form on the emitter side (emitter basin) and that the current oscillation results
from tunneling between the emitter basin and the quantum well in the barriers.
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We find two distinct types of current oscillations, with large and small oscillation
amplitudes, respectively. These two types of oscillation appear differently in the
Wigner space, with one exhibiting tornado-like motion and the other exhibiting
a two piston engine-like motion.

1. Introduction

Quantum coherence and its destruction by coupling to a dissipative environment play an
important role in the transport phenomena of a particle moving in a potential [1–3]. Well
known examples include electron transfer in molecular and biological systems [4, 5], many
chemical reactions [6–8], SQUID rings [9, 10], quantum ratchets [11, 12], nonlinear optical
processes [13–17] and tunneling processes in device systems [18, 19]. Such systems are
commonly modeled as one-dimensional or two-dimensional potential systems coupled to heat
bath degrees of freedom, which drive the systems toward the thermal equilibrium state. The heat
bath degrees of freedom are then reduced using such methods as the projection operator method
or the path integral method, for example. Many equations of motion have been derived for the
purpose of understanding the quantum aspects of dissipative dynamics [20–30].

Because a complete picture of quantum dissipative dynamics must treat phenomena that
can only be described in real time, a great deal of effort has been dedicated to the problem
of numerically integrating these equations of motion in real time [25–34]. Although these
equations are analogous to the classical kinetic equations, which have proved to be useful
for classical transport problems, such equations cannot be derived in a quantum mechanical
framework without significant approximations and/or assumptions. For example, the quantum
Boltzmann equation is based on the assumption that the effects of collisions between electrons
can be described by the rates determined from Fermi’s golden rule, and hence it is regarded
as a semi-classical equation [20–22]. Similarly, the quantum Fokker–Planck equation can be
derived from the Caldeira–Leggett Hamiltonian under a Markovian approximation, but in order
for this to be possible, the heat bath must be at a sufficiently high temperature, in which case
most of the important quantum dynamical effects play a minor role [23, 24]. Treatments of these
kinds are therefore not sufficient to construct fully quantum mechanical descriptions of broad
validity.

To circumvent this problem, we present a quantum mechanical approach, which is valid
for arbitrary temperatures. This treatment employs the reduced hierarchy equations of motion
(HEOM), and it can be used in application to systems for which fully quantum mechanical
description is necessary [35, 36]. In particular, the reduced HEOM approach can be used to
numerically treat non-Markovian system–bath coupling in a non-perturbative manner [37–46].
Here, we apply this approach to study the dynamics of a resonant tunneling diode (RTD)
described by the Caldeira–Leggett Hamiltonian.

The RTD system that we consider is modeled by a double barrier structure with an
electrostatic potential representing a region consisting of an undoped layer positioned between
two doped layers (see figure 1). The double barrier structure constitutes a single quantum well
with discretized energy states for electrons which are called resonant levels. The number of
resonant levels depends on the height of the barriers. When a bias is applied to the RTD system,
as long as the energy of electrons which flow in the RTD is lower than the energy of the
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Figure 1. (a) The structure of the RTD. The well consists of undoped GaAs (4.520 nm),
the barriers consist of undoped AlGaAs (2.825 nm), the spacer layers consist of undoped
GaAs (2.825 nm) and the contact regions consist of doped GaAs (with a doping
concentration of 2 × 1018 cm−3). In order to elucidate the dependence of the current
on the width of the contact regions, we carried out computations for three values of this
widths: (i) 16.950 nm, (ii) 33.900 nm and (iii) 42.375 nm. This figure depicts the case of
16.950 nm. (b) The structure of the conduction band edge. The height of the potential
barriers is 0.27 eV.

resonant level, the most of electrons are reflected by the barrier because of the small transmission
coefficient. When the energy of the electrons matches the resonant energy, electrons can go
through the barriers efficiently due to resonant tunneling, and the current acquires the maximum
value. On the other hand, the current decreases after the energy of the electrons exceeds the
resonant energy. As a result, RTD systems exhibit characteristic negative differential resistance
(NDR) in the current–voltage (I –V ) relation [47]. Until now, RTDs have been mostly used as
high-frequency oscillators device using NDR characteristics because the tunneling is the fastest
charge-transport mechanism in semiconductors [48]. RTDs are presently the highest-frequency
active semiconductor devices in existence [49–51] and oscillation frequencies above 1 THz have
recently been realized [52–54].

From a fundamental physics point-of-view, the RTD system provides a simple and
convenient ‘context’ for studying and testing various methods of analysis for nanoscale quantum
devices [18, 19]. Frensley discovered NDR in the I –V curve through a numerical computation
treating a quantum Liouville equation in the Wigner representation that adopted open boundary
condition and ignored phonon-scattering processes [55–57]. Kluksdahl et al [58] incorporated
dissipative and self-consistent effects, employing the Poisson–Boltzmann equation by adopting
a relaxation time approximation, and succeeded in modeling the experimentally observed
hysteresis behavior of the I –V curve. Jensen and Buot developed a numerical scheme to
treat systems of the same kind and found evidence that the current oscillation and plateau-like
behavior arise from intrinsic bistability [59–64].

When plateau-like behavior and hysteresis of the I –V curve in the NDR region, which
were thought to arise from the feedback of the electrostatic field, were experimentally observed
[65, 66], Sollner claimed that they result merely from resonance with the external circuit [67].
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Although theoretical calculations have provided evidence of intrinsic bistability and self-excited
current oscillations in the NDR region, such phenomena have not been justified by experimental
means. In addition, because there exists no well-established methodology that can be applied
rigorously to this type of model and includes the effect of dissipation, which is the origin of
Joule heat, previous theoretical results have not been well justified. The HEOM approach is
ideal to clarify a role of bistability in the NDR region and for detailed analysis of the RTD
system.

This paper is organized as follows. In section 2, we introduce the reduced HEOM
applicable to the resonant tunneling problem. We then present the computational details for the
numerical simulations in section 3. Numerical results for the I –V curves and current oscillations
are presented in section 4. Section 5 is devoted to concluding remarks.

2. Formulation

We consider the following Caldeira–Leggett Hamiltonian [1], which describes the dynamics of
an electron subjected to a thermal environment:

Ĥ =
p̂2

2m
+ U (q̂; t) +

∑
j

[
p̂2

j

2m j
+

m jω
2
j

2

(
x̂ j −

a j V (q̂)

m jω j

)2
]

. (1)

Here, m, p̂ and q̂ are the mass, momentum and position variables of the electron, and m j , p̂ j , x̂ j

and ω j are the mass, momentum, position and frequency variables of the j th phonon oscillator
mode. In equation (1), the electron–phonon interaction is given by

Ĥ I = −V (q̂)
∑

j

a j x̂ j . (2)

Here, V (q̂) is any function of q̂ and the quantities a j are coefficients that depend on the nature
of the electron–phonon coupling.

The heat bath can be characterized by the spectral distribution function, defined by

J (ω) ≡

∑
j

a2
j

2m jω j
δ(ω − ω j) (3)

and the inverse temperature, β ≡ 1/kBT , where kB is the Boltzman constant. We assume the
Drude distribution, given by

J (ω) =
mζ

π

γ 2ω

γ 2 + ω2
, (4)

where the constant γ represents the width of the spectral distribution of the collective phonon
modes and is the reciprocal of the correlation time of the noise induced by phonons. The
parameter ζ is related to the electron–phonon coupling strength. For the collective heat bath
coordinate X̂ =

∑
j a j x̂ j , the canonical and symmetrized correlation functions, respectively

defined by 9(t) ≡ β〈X̂; X̂(t)〉B and C(t) ≡
1
2〈X̂(t)X̂(0) + X̂(0)X̂(t)〉B, where X̂(t) is the
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Heisenberg representation of X̂ , and 〈· · · 〉B represents the thermal average over the bath modes,
are given by [35, 36]

9(t) = mζγ e−γ |t | (5)

and

C(t) = c0e−γ |t | +
∞∑

k=1

cke−νk |t |. (6)

Here, νk ≡ 2πk/βh̄ are the Matsubara frequencies, and we have

c0 =
h̄mζγ 2

2

[
2

βh̄γ
+

∞∑
k=1

4β h̄γ

(β h̄γ )2 − (2πk)2

]
(7)

and

ck = −
h̄mζγ 2

2

8πk

(β h̄γ )2 − (2πk)2
. (8)

The function C(t) is analogous to the classical correlation function of X (t) and corresponds
to the correlation function of the bath-induced noise, whereas 9(t) corresponds to dissipation.
The noise C(t) is related to 9(t) through the quantum version of the fluctuation–dissipation
theorem, C[ω] = h̄ω cot h(β h̄ω/2)/29[ω], which ensures that the system exists in the thermal
equilibrium state for finite temperatures [68]. Note that in the high temperature limit, β h̄γ � 1,
the noise correlation function reduces to C(t) ∝ e−γ |t |. This indicates that the heat bath
oscillators interact with the system in the form of Gaussian–Markovian noise.

To derive the equation of motion for the electron, we use the reduced density operator of
the system by taking the trace over the heat bath degrees of freedom:

ρ̂(t) = TrB ρ̂ tot(t). (9)

In the path integral representation, the reduced density matrix elements are written

ρ(q, q ′
; t) =

∫
D[q(τ )]

∫
D[q ′(τ )]

∫
dqi

∫
dq ′

iρ(qi , q ′

i)ρCS(q, qi , q ′, q ′

i ; t)

×e
i
h̄ SA[q; t] F[q, q ′

; t]e−
i
h̄ SA[q ′

; t], (10)

where SA[q; t] is the action for the Hamiltonian of the system, ĤA = p2/2m + U (q; t),
expressed as

SA[q; t] ≡

∫ t

ti

dτ

[
1

2
mq̇2(τ ) − U (q(τ ); τ)

]
, (11)

ρ(qi , q ′

i) is the initial state of the system at time ti , F[q, q ′
; t] is the influence functional [2]

and ρCS(q, qi , q ′, q ′

i ; t) is the initial correlation function between the system and the heat
bath [3]. The functional integrals for q(τ ) and q ′(τ ) are carried out from q(ti) = qi to
q(t) = q and from q ′(ti) = q ′

i to q ′(t) = q ′, respectively. In the HEOM approach, we can specify
ρCS(q, qi , q ′, q ′

i ; t) by non-zero hierarchy elements. To simplify the derivation of the HEOM,
here we set ρCS(q, qi , q ′, q ′

i ; t) = 1 and regard ρ(qi , q ′

i) as a temporal initial condition. Then,

5
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after deriving the HEOM, we take into account ρCS(q, qi , q ′, q ′

i ; t) through implementation of
a hierarchy of initial conditions that can be evaluated numerically [35]. The influence functional
for the inverse temperature β is given by [2, 3]

F[q, q ′
; t] = exp

{(
−

i

h̄

)2 ∫ t

ti

dτ V ×(q, q ′
; τ)

[∫ τ

ti

dτ ′
ih̄

2
9(τ − τ ′)

∂

∂τ ′
V ◦(q, q ′

; τ ′)

+
∫ τ

ti

dτ ′C(τ − τ ′)V ×(q, q ′
; τ ′)

]}
, (12)

where V ×(q, q ′
; τ) ≡ V (q(τ )) − V (q ′(τ )) and V ◦(q, q ′

; τ) ≡ V (q(τ )) + V (q ′(τ )). If we
choose K so as to satisfy νK = 2πK/(β h̄) � ωc, where ωc is the characteristic frequency of the
system such as the frequency of self-excited current oscillations, the factor e−νk |t | in equation (6)
can be replaced with Dirac’s delta function, using the approximation νk e−νk |t | ' δ(t) (for
k > K + 1). Therefore, C(t) can be expressed as

C(t) = c0e−γ |t | +
K∑

k=1

cke−νk |t | + δ(t)
∞∑

k=K +1

ck

νk
. (13)

By choosing 2πK � βh̄ωc, the above expression allows us to evaluate C(t) for finite K with
negligible error at the desired temperature 1/β.

The reduced HEOM can be obtained by considering the time derivative of the reduced
density matrix with the kernel given in equations (5) and (13). The HEOM have been used to
study chemical reactions [37, 38, 69, 70], linear and nonlinear spectroscopy [39–45, 71–73],
exciton transfer [74–79], electron transfer [80–83], quantum dots [73, 84], quantum ratchet [46]
and quantum information [85–87]. A variety of numerical techniques have been developed for
the HEOM approach in order to accelerate numerical calculations [88–95]. The accuracy of
the HEOM approach has been justified for a Brownian oscillator system [41–45], a displaced
Brownian oscillators system [40] and a spin-boson system [39, 71, 86] via linear and nonlinear
response functions by comparing the analytical solutions of the response functions [15–17]. The
validity of the HEOM are also confirmed with other numerically methods such as the iterative
quasi-adiabatic propagator path-integral scheme and a time-convolution less master equation in
the relevant crossover regime from weak to strong system–bath coupling [96–98].

The HEOM are ideal for studying quantum transport systems, in conjunction with the
Wigner representation, characterized by the Wigner distribution function

W (p, q; t) ≡

∫
∞

−∞

dr e−
ipr
h̄ ρ

(
q +

r

2
, q −

r

2
; t

)
, (14)

because they allow us to treat continuous systems utilizing open boundary conditions
and periodic boundary conditions [57, 99]. Although the Wigner distribution function is
not positive definite, it is the quantum analogue of the classical distribution function in the
phase space [55–64, 99–101]. Its classical limit can be computed readily. This is helpful,
because knowing the classical limit allows us to identify the purely quantum mechanical
effects [37, 38, 45, 46, 64].

6
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While we can handle any form of V (q) [41–45], here we consider the linear–linear
system–bath coupling case defined by V (q) = q . In the Wigner representation, the equations
of motion are expressed in hierarchical form as follows [35, 45]:

∂

∂t
W (n)

j1,..., jK
(t) = −

[
L̂qm + 4̂′ + nγ +

K∑
k=1

jkνk

]
W (n)

j1,..., jK
(t) + 8̂

[
W (n+1)

j1,..., jK
(t)

+
K∑

k=1

W (n)

j1,...,( jk+1),... jK
(t)

]
+ nγ 2̂0W (n−1)

j1,..., jK
(t) +

K∑
k=1

jkνk2̂k W (n)

j1,...,( jk−1),..., jK
(t)

(15)

for non-negative integers n, j1, . . . , jK , where we have chosen K such that νK � ωc. In
equation (15), −L̂qm is the quantum Liouvillian in the Wigner representation, given by

−L̂qmW (p, q) ≡ −
p

m

∂

∂q
W (p, q) −

1

h̄

∫
∞

−∞

dp′

2π h̄
UW(p − p′, q; t)W (p′, q) (16)

with

UW(p, q; t) ≡ 2
∫

∞

0
dr sin

(
pr

h̄

) [
U

(
q +

r

2
; t

)
− U

(
q −

r

2
; t

)]
. (17)

The other operators appearing in equation (15) are the bath-induced relaxation operators,
defined as

8̂ ≡
∂

∂p
, (18)

2̂0 ≡ ζ

[
p +

mh̄γ

2
cot

(
β h̄γ

2

)
∂

∂p

]
, (19)

2̂k ≡
ck

νk

∂

∂p
(20)

and

4̂′
≡

{
−

mζ

β

[
1 −

βh̄γ

2
cot

(
βh̄γ

2

)]
+

K∑
k=1

ck

νk

}
∂2

∂p2
. (21)

In the case that the quantity N ≡ n +
∑K

k=1 jk satisfies the relation N � ωc/min(γ, 1/βh̄), this
infinite hierarchy can be truncated with negligible error at the desired temperature 1/β by the
terminator [45]

∂

∂t
W (n)

j1,..., jK
(t) = −(L̂qm + 4̂′)W (n)

j1,..., jK
(t). (22)

The validity of the above truncation scheme and its extension for efficient numerical
calculations have been discussed for the spin-Boson system [88–90]. Note that only
W (0)

0,...,0(p, q; t) ≡ W (p, q; t) has physical meaning, and the other elements W (n)

j1,..., jK
(p, q; t)

with (n; j1, . . . , jK ) 6= (0; 0, . . . , 0) are auxiliary operators introduced to avoid the explicit

7
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treatment of the inherent memory effects that arise in the time evolution of the reduced density
matrix. If the noise correlation is very short (γ → ∞) and the temperature is high (i.e. the
noise is white), the quantum Fokker–Planck equation can be derived in a form similar to that
of Kramers equation [23–25]. In the present case, however, we cannot employ the white noise
approximation, because quantum effects play a dominant role in the low temperature regime
(βh̄ωc � 1) [39, 46].

In equation (17), U (q̂; t) is the effective potential for the electron, which can be
written [58–63]

U (q̂; t) = Ustatic(q̂) + Uself(q̂; t), (23)

where Ustatic(q̂) and Uself(q̂; t) are the static and self-consistent parts, respectively. As the static
potential, we employ the double-barrier structure depicted in figure 1(b). The self-consistent
part, Uself(q; t) = −eφ(q; t), is calculated from the electron distribution at each time step in the
integration of equation (15) using the Poisson equation

−
∂

∂q
[εφ(q; t)] = e

[
n+(q) − P(q, t)

]
, (24)

where ε is the dielectric constant, n+(q) is the doping density and P(q; t) =∫
∞

−∞
dp W (0)

0,...,0(p, q; t)/(2π h̄) is the electron density calculated from the Wigner distribution.
Coupling the HEOM to the Poisson equation, we obtain a fully self-consistent model of quantum
electron transport. This allows us to examine charge redistribution effects.

3. Computational details

The equations of motion given in (15) were numerically evaluated using finite mesh
representations of the Wigner distribution functions. The spatial derivative of the kinetic term
in the Liouville operator, −(p/m)∂W (p, q)/∂q, was approximated by using a third-order left-
handed or right-handed difference scheme. Note that the first-order difference scheme is not
sufficiently accurate for the present problem, because this scheme introduces false diffusion for
the wavepacket dynamics, which suppresses the self-excited current oscillations. Depending on
the sign of the momentum, the expressions are given by

∂W (pk, q j)

∂q
=

1

61q
(2W (pk, q j+1) + 3W (pk, q j) − 6W (pk, q j−1) + W (pk, q j−2)) (25)

for pk > 0, and

∂W (pk, q j)

∂q
=

1

61q
(−W (pk, q j+2) + 6W (pk, q j+1) − 3W (pk, q j)−2W (pk, q j−1)) (26)

for pk < 0, in order to treat continuous systems utilizing the inflow and outflow boundary
conditions with use of the first-order difference scheme at q = L (p > 0) and q = 0 (p < 0)
[55–57].

The inflow boundary conditions were set by stipulating that W (n)

j1,..., jK
(p < 0, q = L) and

W (n)

j1,..., jK
(p > 0, q = 0) are given by the equilibrium distribution of a free particle calculated

from the HEOM with periodic boundary conditions. Due to fluctuations and dissipation, the
flow of a wavepacket reaches a steady state even when there exists a non-zero bias voltage. The
validity of the boundary conditions was verified by considering several system sizes.

8
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Other derivatives with respect to p were approximated using the fourth-order centered
difference scheme given by

∂W (pk, q j)

∂p
=

1

121p
(−W (pk+2, q j) + 8W (pk+1, q j) − 8W (pk−1, q j) + W (pk−2, q j)) (27)

and

∂2W (pk, q j)

∂p2
=

1

121p2
(−W (pk+2, q j) + 16W (pk+1, q j) − 30W (pk, q j)

+16W (pk−1, q j) − W (pk−2, q j)). (28)

The mesh size for the position, 1q, and momentum, 1p/(2πh̄), are respectively 0.2825 nm and
3.540 nm−1.

We set the parameters used in the HEOM as γ = 24.2 THz (γ −1
= 4.13 fs), ζ = 72.5 GHz

(ζ−1
= 13.8 ps) and T = 300 K in order to create conditions close to those used in previous

theoretical studies. In appendix B, we also report the results of calculations for the strong
coupling case, with ζ = 120.8 GHz (ζ−1

= 8.28 ps), to elucidate the role of dissipation. The
depth of the hierarchy and the number of Matsubara frequencies were chosen as N ∈ {2 − 6}

and K ∈ {1 − 3}, respectively. To model GaAs, the effective mass of the electron was assumed
to be constant across the device and equal to 0.067m0, where m0 is the electron mass in vacuum.
The dielectric constant in equation (24) was set as ε = 12.85.

As the static double-barrier potential, which models the hetero-structure of GaAs
sandwiched between two thin AlGaAs layers, we set the widths of quantum well (undoped
GaAs), barrier (undoped AlGaAs) and spacer layer (undoped GaAs) to be 4.520, 2.825 and
2.825 nm, respectively. The height of the potential barriers was 0.27 eV. The conduction band
edge consists of a single quantum well bounded by tunneling barriers (figure 1(b)). The widths
of the contact regions (the yellow parts in figure 1(a), where GaAs is doped with a concentration
of 2 × 1018 cm−3) were chosen as 16.950, 33.900 and 42.375 nm. Note that, to adapt the one
dimensional model, we rescaled the concentration by multiplying the doping density by unit
area.

In a previous study [102], we chose a smaller value of γ , γ = 12.1 THz (γ −1
= 8.26 fs),

and fixed the width of the contact region as 42.375 nm. Note that, since the effective system–bath
coupling strength is estimated as ∝ ζγ 2ωc/(γ

2 + ω2
c), where ωc is the characteristic frequency

of the system [38], the damping strength in the present case is slightly larger than the previous
case. In that case, we found hysteresis, double plateau-like behavior, and self-excited current
oscillation in the NDR region of the current–voltage curve. We found that while most of the
current oscillations decay in time in the NDR region, there exists a non-transient oscillation
characterized by a tornado-like rotation in the Wigner space in the upper plateau of the
NDR region. In this paper, we explore the cause of such current oscillations by considering
several values of the width of the contact regions in cases of both weak and strong coupling,
characterized by different values of ζ .

4. Results

We determined the characteristics of the current–voltage (I –V ) according to the following
procedure. First, we integrated equation (15) at zero bias voltage without the self-consistent
part of the effective potential under the inflow boundary conditions specified above.
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When we obtained the temporal steady state, the obtained distribution was then used as the
initial distribution for the self-consistent calculation, and we then integrated equation (15)
again, with the effective potential U (q̂; t) evaluated iteratively using the Poisson equation
given in (24). Under this procedure, when the distributions reached the genuine steady state
W (n)

j1,..., jK
(p, q; t → ∞), the current was calculated by I (t) =

∫
dp pW (0)

0,...,0(p, q; t)/2π h̄m and
then the genuine state was used as the initial distributions for the next bias step. While the
temporal steady states were obtained for the static potential, Ustatic(q̂), the genuine steady
states were calculated from the effective potential, Ustatic(q̂) + Uself(q̂; t). Since the value of the
effective potential depended on the hysteresis of a physical process and since we wanted to use
a uniquely determined steady state, we chose the temporal steady state as a temporal initial state
to have the genuine steady state.

Following the above steps, we increased the bias from 0.000 to 0.500 V, and then decreased
it to 0.000 V with bias steps of 0.01 V in the normal region and 0.002 V in the NDR region. The
corresponding sweeping rates were 5 × 109 V s−1 in the normal region and 5 × 107 V s−1 in the
NDR region. We found that the profiles of the I –V curves did not change for slower sweeping
rate than the present values, whereas the width of plateau observed in the NDR region often
became smaller for a faster sweeping rate. At each step, we integrated the equation of motion
until the system exhibited the steady current. However, in some cases, in the NDR region, steady
current oscillation arose. In such cases, the value of current in figure 2(a) was evaluated as a time
average after stable oscillations were realized (between 30 and 40 ps in most cases).

In figure 2, we present (a) current–voltage (I –V ) relations and (b) the time evolution of
the self-excited current oscillation in the weak coupling case (ζ = 72.5 GHz) for three values of
the width of the contact regions (the yellow parts in figure 1(a)). In these plots, the sizes of the
contact regions are (i) 16.950 nm, (ii) 33.900 nm and (iii) 42.375 nm, respectively, with a fixed
doping concentration of GaAs. These graphs reveal NDR behavior, hysteresis and plateaus in
the I –V curve. Moreover, self-excited current oscillation appears in some regions of the plateau.
While Jensen and Buot [59] observed only a single plateau similar to that in figure 2(i-a) with
current oscillation, our results in figures 2(ii-a) and (iii-a) exhibit a double plateau structure.
While the experimental result shown by Goldman et al [65] is similar to figure 2(i-a), those
shown by Slight et al [49], Asada et al [52] and Suzuki et al [53] are similar to figures 2(ii-a)
and (iii-a). For the sake of comparison, we present a graph corresponding to figure 2
calculated from the Boltzmann equation in appendix C. In the case of a single plateau structure
(figure 2(i-a)), the width of the plateau is large, while in the case of a double plateau structure
(figures 2(ii-a) and (iii-a)), the width is small. The I –V curves obtained in the strong coupling
case (ζ = 120.8 GHz) are presented in appendix B. In that case, NDR behavior, hysteresis and
a single plateau in the I –V curve are observed, but steady current oscillation does not appear,
even in the plateau.

As in the case considered in the previous paper [102], we find that most of the current
oscillations decay in time in the NDR region, but there also exist non-decaying oscillations in
some regions of the plateau, as seen in figures 2(i-b) to (iii-b). The Fourier components of each
persistent oscillation are plotted in figures 3(i-a) to (iii′-a). We can classify these oscillations into
two types, according to the current amplitude. The first type is observed in the single plateau
(figure 2(i)) and the lower part of the double-plateau (figure 2(iii)) with large amplitude (red).
The plateau in this case is located in the middle of the NDR region. The second type is observed
in the upper part of the double-plateau (figures 2(ii) and (iii)) with small amplitude (green). The
plateau in this case is located at a current approximately three-quarters of the peak current. The

10



New J. Phys. 16 (2014) 015002 A Sakurai and Y Tanimura

6004002000

1.2

1.0

0.8

0.6

0.4

0.2

0.0
1.2

1.0

0.8

0.6

0.4

0.2

0.0
1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.50.40.30.20.10.0

Bias Voltage (V) Time (fs)

C
u
rr

e
n
t 
D

e
n
si

ty
 (

1
0
  
A

 c
m

  
)

6
-2

0.332 V

0.280 V

0.292 V

Increase

Decrease

0.302 V

(i-a) 16.950 nm

(ii-a) 33.900 nm

(iii-a) 42.375 nm

(i-b)

(ii-b)

(iii-b)

0.88

0.84

0.80

3002001000

Figure 2. (a) The I –V characteristics for three sizes of the contact regions:
(i) 16.950 nm, (ii) 33.900 nm and (iii) 42.375 nm. The black curve with circles
represents the case in which the bias is increasing, and the blue curve with the
×s represents the case in which the bias is decreasing. (b) Time evolution of
the current for the value of the bias voltage at which current oscillation occurs.
The red curves represent the current oscillation with large amplitude, and the
green curves represent the current oscillation with small amplitude. The inset in
(ii-b) contains a close-up view of one portion of the current. The snapshots of the Wigner
distribution at the time points marked with purple circles are presented in figures 4 and 5.

second type of oscillation contains two Fourier components (figures 3(ii-a) and (iii-a)), whereas
the first type contains just a single component (figures 3(i-a) and (iii′-a)). We find that as the
size of the contact regions increases, the frequency of each peak decreases.

As mentioned by Kluksdahl et al [58] and Zhao et al [62], the quantum well formed on the
emitter side of the effective potential plays an important role in the realization of hysteresis and
plateau-like structure in the NDR region. The time averaged electron densities (black dashed
curves) and the effective potentials (black solid curves) calculated from the Wigner distribution
function in the case of increasing bias are plotted in figures 3(i-b) to (iii′-b). For reference, in
appendix A, we present a graph corresponding to figure 3(iii′-b) depicting the situation in the
case of decreasing bias. A basin-like potential on the emitter side (emitter basin) is observed
in the case of increasing bias, while the emitter basin does not exist in the case of decreasing
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Figure 3. (a) The frequency distribution of the current oscillation that arises in
the plateau region in the case of increasing bias. The size of contact region
and the bias voltage are as follows: (i) 16.950 nm and 0.332 V (red curve in
figure 2(i-b)); (ii) 33.900 nm and 0.280 V (green curve in figure 2(ii-b)); (iii) 42.375 nm
and 0.292 V (green curve in figure 2(iii-b)); (iii′) 42.375 nm and 0.302 V (red curve
in figure 2(iii-b)). The insets depict the corresponding transitions. The colored lines
represent the eigenstates in the emitter basin given in the right graph, while the thick gray
line represents the continuous energy band. (b) The time-averaged effective potential
(black solid curve) and time averaged electron density (black dashed curve) for (i)–(iii′).
The red, green, blue, orange and purple curves represent the eigenstates in order of
increasing eigenenergy calculated using the averaged effective potential without the heat
bath. Basin-like structures denoted in the red squares are formed on the emitter side of
the potential (emitter basin).

bias. In the case of increasing bias, when the bias exceeds the peak point of the I –V curve, the
kinetic energy of the inflowing electron becomes larger than the eigenenergy of the resonant
tunneling state. As a result, the reflection of the current from the emitter side of the barrier
becomes large, and the electron distribution function becomes concentrated near the barrier, as
depicted in figures 3(i-b) to (iii′-b). When the electron density increases, the effective potential
decreases. As a result, the emitter basin appears. When the emitter basin becomes sufficiently
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deeper, there appear resonant tunneling states between the emitter basin and the double-barrier
well. In such a case, we find current oscillation and a plateau of the I –V curve in the NDR
region. In the case of decreasing bias, however, because there is no resonant tunneling state
between the emitter basin and double-barrier well, the current is much smaller than in the case
of the increasing bias. This difference causes the hysteresis behavior.

To elucidate this point more clearly, we solve the steady-state Schrödinger equation for
the regions of emitter basin and the double-barrier well, to obtain approximate eigenstates and
eigenenergies of an electron whose energy is lower than the continuous energy band on the
emitter side. Since bound states are not formed in the collector side of the potential, we exclude
this region from the calculations. It should be noted that we employ the time-averaged potential
for the purpose of the graph, but the effective potential and the corresponding eigenstates
actually vary in time, because they depend on the electron distribution function, and it varies
in time. Thus, for example, the identifications of the first (red) and second (green) eigenstates
and the third (blue) and fourth (orange) eigenstates change in time, often becoming degenerate
and interchanging. In addition, we ignore the continuous band on the collector side and the
influence of the heat bath when calculating the eigenstates and eigenenergies. For this reason,
the calculated eigenenergies are not precise, but we find that they are sufficient for determining
the cause of the current oscillation, because each resonant frequency is rather isolated when
estimating the oscillation frequency.

We find that each oscillation peak in both the large and small oscillation cases can be
attributed to transitions between eigenstates in the emitter basin, as depicted in the insets of
figures 3(i-a) to (iii′-a). As shown in figures 3(i-b) and (iii′-b), the first and second eigenstates
are the tunneling states in the large oscillation case, while the third eigenstate in figures 3(ii-b)
and (iii-b) is the tunneling state in the small oscillation case. When we compare the profiles
of each eigenstate and the electron density distributions, we find that the tunneling state and
the higher energy eigenstate close to the tunneling state are populated in both cases. Thus, we
conclude that the current oscillation results from transitions between these two states, with the
frequency of the oscillation determined by the frequency of these transitions. Since both the
first and second eigenstates change in time, the amplitude of current becomes large in the large
oscillation case. When the structure of the emitter basin becomes stable with respect to change
of the bias voltage, a plateau forms. As the size of the contact regions increases, the transition
frequencies decrease, because the size of the emitter basin increases, while the depth of the
basin does not change. This accounts for the peak shift seen in figures 3(i-a), (iii′-a) and 3(ii-a),
(iii-a). For a small size of contact regions, the emitter basin becomes more stable with respect
to change in the bias voltage and as the result the plateau becomes larger.

Both figures 2(ii) and (iii) exhibit double plateau-like features in the NDR region, but we
find current oscillation only in the upper plateau in the case of figure 2(ii). This is because
the dissipation in the large oscillation case of figure 2(ii) is not sufficiently strong to create
significant population of the tunneling states in the case of a small basin, for which the
resonant frequencies between the tunneling states and adjacent states are large. In our previous
study [102], we considered the same condition as in figure 2(iii), with a value of γ half as large
(=12.1 THz). In that case, however, there was only upper plateau oscillation, while we observed
the bistability and the double plateau-like feature. This is because the effective system–bath
coupling strength in the previous case is weaker than in the present case [38]. Thus, in that case,
the ground tunneling states are not populated from the conduction band through dissipation.
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Note, however, that if the system–bath coupling is too strong, dissipation suppresses the current
oscillation, as explained in appendix B.

One important aspect of the present methodology is that it allows elucidation of the
dynamical behavior of the system through the time evolution of the Wigner distribution function.
We have been able to characterize the patterns of the time evolution of the Wigner distribution
for two types of current oscillations, with large and small oscillation amplitude. Here, we
describe these two types in detail, using as one reference, the large oscillation case in figure 2(iii-
a) and the small oscillation case in figure 2(ii-a). In figure 4, we display snapshots of the Wigner
distribution function for the case of large oscillation at the times marked on the red curve in
figure 2(iii-b). As illustrated in figures 3(i-b) and (iii′-b), the characteristic feature of this type
of oscillation is the large electron density near the emitter side of the barrier, which is observed
as a distinct peak separated from the conduction band (at q = 18 nm in figure 3(i-b) and at
q = 43 nm in figure 3(iii′-b)). As a result of this feature, the effective potential possesses a
deep emitter basin next to the barrier. The profiles of the eigenstates depicted in figure 3(iii′-b)
indicate that this peak consists of the first (red) to fourth (orange) eigenstates. We find that a
small peak near the edge of the conduction state (at q = 35 nm in figure 3(iii′-b)), which arises
from the third (blue) and fourth (orange) eigenstates in figure 3(iii′-b), also plays an important
role in the current oscillation. In the Wigner distribution plotted in figure 4(a), these two peaks
are denoted by A and B, respectively. In the situation depicted in figure 4(a), the current flows
into the system from the emitter side of the boundary, and then it is scattered by the emitter
side of the barrier almost elastically, because the kinetic energy of the current electron is much
higher than that of the tunneling state. The scattered current is trapped by the emitter basin and
rotates clockwise around the peaks A and B, but, due to dissipation, some of it flows into peak
B while losing energy. In the eigenstate representation given in figure 3(iii′-b), this behavior
corresponds to population transfer from the fourth (orange) to the third (blue) eigenstate. In
figure 4(b), when the third (blue) state decays further to the first (red) and second (green)
tunneling states, the height of A increases. As a result, peak A becomes higher, while peak
B becomes lower. In figure 4(c), because peak A is related to the tunneling state, the outflow
current becomes larger whenever peak A becomes higher. Throughout this process, the peaks A
and B become higher and lower by turns, in a manner reminiscent of the piston in a two-piston
engine. As a result of this motion, the current exhibits oscillation. This behavior is typical for
this large oscillation case. Because there is no current in the case of figure 4(a), the oscillation
amplitude is large compared to that in the small oscillation case. If the dissipation is too strong,
however, the piston-like motion is suppressed, and there is only steady current, as described in
appendix B.

In figure 5, we display snapshots of the Wigner distribution for the case of small oscillation
at the times marked in figure 2(ii-b). In figure 5(a), while current flows into the system from
the emitter side of the boundary, that part of it with energy larger than that of the tunneling
state is scattered by the emitter side of the barrier. The remaining current, i.e. that whose
energy is closer to the energy of the tunneling state, flows to the collector side in the form
of steady current, through tunneling. In figure 5(b), it is seen how the scattered electron moves
back and forth in the emitter basin, while losing energy due to dissipation. As a result, the
electron flows into peak C, exhibiting tornado-like motion. Figure 5(c) depicts shaking motion
of the effective potential that periodically accelerates the electron distribution in peak C to
the tunneling state. Through this effect, current flows to the collector side through the barrier.
Due to synchronization with this shaking motion, the current is enhanced periodically. This
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Figure 4. Current oscillation with a large amplitude observed in the lower part of the
double-plateau structure at the times marked on the red curve in figure 2(iii-b) depicted
as snapshots of the Wigner distribution. (a) Current flows into the system from the
emitter side of the boundary, and then it is scattered (pin → −pin, where pin is the
momentum of the inflow current) by the emitter side of the barrier almost elastically.
The scattered electron flows into peak B. (b) Peaks A and B become higher and lower in
turn, exhibiting motion similar to that of pistons in a two-piston engine. (c) The current
becomes large whenever peak A becomes large due to the tunneling.

tornado-like motion is typical for the small oscillation case. Because there is a large contribution
from steady current, the oscillation amplitude here is smaller than in the large oscillation
case.

5. Conclusions

In summary, we investigated current oscillations in the plateau structures of the NDR region
for three sizes of the contact regions with a model that includes damping, employing the
Caldeira–Leggett Hamiltonian. We found two distinct types of current oscillations. The first
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Figure 5. Current oscillation with small amplitude observed in the upper part of the
double-plateau structure at the times marked on the green curve in figure 2(ii) depicted as
snapshots of the Wigner distribution. (a) Current flows into the system from the emitter
side of the boundary. Then, a part of the current is scattered (pin → −pin, where pin is
the momentum of the inflow current) by the emitter side of the barrier. The other part of
the current flows to the collector side in the form of steady current through tunneling. (b)
The scattered electron flows in a tornado-like manner to peak C in the emitter basin due
to dissipation. (c) The shaking motion of the effective potential periodically accelerates
the component at C to the tunneling state, and the current is thus enhanced.

type is observed in the single plateau and in the lower part of the double-plateau structure. It
is characterized by a large oscillation amplitude and a single Fourier component. The other
type is observed in the upper part of double-plateau structure. It is characterized by a small
oscillation amplitude and two Fourier components. An emitter basin that forms on the emitter
side of the effective potential plays a key role in creating the current oscillation. Eigenstate
analysis indicates that the first type is caused by transitions between the ground tunneling state
and the adjacent excited state in the emitter basin, while the second type is caused by transitions
between the intermediate tunneling state and higher states. Because the transition frequencies
are large in the case of narrow emitter basin, there is high frequency oscillation in the case of
small contact regions for a fixed basin depth. In Wigner space, these two types of oscillation
are characterized by the two types of motion: two-piston engine-like motion and tornado-like
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motion. Dissipation plays an important role in the realization of current oscillation. In order for
the ground tunneling state to be populated in the case of large oscillation, there must be fairly
strong dissipation, whose strength is determined by the system–bath coupling and the noise
correlation time. If the dissipation is too strong, however, the current oscillation vanishes due
to damping. The key to have non-trivial behaviors such as hysteresis, single/double plateaus
and self-excited current oscillations is on the existence of the resonant tunneling states, the
charge redistribution effects and the dissipation. The present results may be helpful to design
nano-devices including a molecular junction system [107].

Although many efforts have been made to improve Wigner transportation theory
[100, 101], the quantum Boltzmann equation [103, 104] and other formalisms [105, 106] to
study quantum dissipative dynamics in nano-devices, there are still a number of limitations
and many subtle problems on such formalisms, which deserve further attention. On the basis
of the reduced HEOM approach, our investigation was carried out through highly accurate
numerical calculations applied to a tunneling device system in a non-Markovian environment
at finite temperature. We have provided evidence of intrinsic bistability and self-excited current
oscillations in the NDR region rigorously. While the current oscillation experimentally observed
in the RTD induced by the resonance with external circuit [52, 53], however, these effects
are not accounted for in our approach like many other theories based on the Boltzmann
approach. To investigate the relation between the experimentally observed current oscillations
and the existence of intrinsic current oscillation, further investigation is necessary. Although the
validity of the Caldeira–Leggett Hamiltonian in the description of electron motion is not yet
well established, we believe that the present results provide insight into the role of quantum
mechanical phenomena in the type of system studied here.

The present approach can be used to treat a strong system–bath coupling non-
perturbatively. In addition, any time-dependent external field can be added while taking into
account the system–bath quantum coherence through the hierarchy elements. Such features are
ideal for studying SQUID rings [9, 10] and quantum ratchet systems [11, 12, 46].
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Appendix A. Effective potential and Wigner distribution in the case of decreasing bias

To understand the origin of hysteresis in the NDR region, we plot the effective potential,
electron density and energy eigenstates of the emitter basin and double-barrier well in the
case of decreasing bias in figure A.1(a). In this case, the emitter basin is so shallow that there
is no tunneling state between the emitter basin and the double-barrier well. The existence of
the peak near the barrier indicates that the second excited state is significantly populated. The
current arises through the transition from the second excited state to the ground quantum state
through dissipation. The Wigner distribution is plotted in figure A.1(b). Due to dissipation, the
distribution is in a steady state. The peak near the barrier arises because the barrier impedes the
flow. The electron density then leaks to the collector side without oscillation through tunneling
in the form of steady current.
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Figure A.1. (a) The effective potential (black solid curve) and electron density (black
dashed curve) in the steady-state in the case of decreasing bias. Here, the width of the
contact region is 42.375 nm, and the bias voltage is 0.302 V. In contrast to the cases
considered in figures 3(i-b) to (iii′-b), in the case considered here, the emitter basin is
very small. The red and green curves represent the first and second eigenstates. (b) The
steady-state Wigner distribution. The arrow indicates the direction of the steady current.

Appendix B. Strong coupling case

To see the effect of dissipation, we determined the I –V characteristics for the case of a stronger
system–bath coupling, ζ = 120.8 GHz (ζ−1

= 8.28 ps) (figure B.1). The values of the other
parameters are the same as in figure 2. In contrast to the case considered in figure 2, in the present
case current oscillation is not observed even in the plateau region. Also, the upper plateau does
not exist. This is because the current oscillation decays quickly through the damping. Because
the heat bath is strongly coupled to the system, the eigenstate picture of the electron system
itself, as depicted in figure 3(b), is of questionable validity. As a result, the plateau is lost.

Appendix C. Comparison of Boltzmann results

For the sake of comparison, we present the I –V characteristics calculated from the Boltzmann
equation and the Poisson equation [58–63] for the same physical conditions as in figure 2. The
Boltzmann equation commonly used in the RTD problem is expressed as [59, 60]

∂

∂t
W (p, q; t) = −L̂qmW (p, q; t) +

(
∂W (p, q; t)

∂t

)
coll

, (C.1)

where L̂qm is the quantum Liouvillian defined by equations (16) and (17) and(
∂W (p, q; t)

∂t

)
coll

= −
1

τ

(
W (p, q; t) −

P(q; t)

Peq(q)
Weq(p, q)

)
(C.2)

is the modified collision operator under the relaxation time approximation. Here, τ is
the relaxation time, Weq(p, q) is the equilibrium Wigner distribution function, P(q; t) =∫

dpW (p, q; t)/(2π h̄) is the density of the electron and Peq(q) is that of the equilibrium
distribution, respectively. Because the collision term is determined by the Wigner distribution
at time t , W (p, q; t), and does not depend upon the previous history of distribution, this
equation describes Markovian dynamics. Because the Boltzmann equation does not have
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Figure B.1. The I –V characteristics for the case of strong system–bath coupling,
ζ = 120.8 GHz (ζ−1

= 8.28 ps). The values of the other parameters are the same as
in figure 2. The black curve with the circles represents the case in which the bias is
increasing, and the blue curve with the ×s represents the case in which the bias is
decreasing. Comparing this figure with figure 2(a), it is seen that the size of the NDR
region is smaller and the plateau structure is less pronounced here than in the weak-
coupling case. Current oscillation is not observed even in the plateau region.

a fluctuation term that is related to a dissipation term through the quantum version of
the fluctuation–dissipation theorem, the equilibrium distribution is not an intrinsic state of
the Boltzmann equation. Moreover, we have to determine what the equilibrium distribution
Weq(p, q) is in an ad hoc manner.

We solve the Boltzmann equation for the effective potential calculated from equation (23)
and the Poisson equation (24) following the same procedure as in section 4 with the same set of
system parameters as in figure 2. Here, the equilibrium distribution, Weq(p, q), is obtained from
the quantum Liouville equation for the effective potential with the bias voltage zero [60, 62].
The boundary conditions is given by [56, 101]

W (p, q = 0 or L) =
m

πh̄2β
ln

[
1 + exp

(
−

βp2

2m

)]
. (C.3)

In the Boltzmann equation approach, the time constant τ was estimated from other theory and
Buot et al set it to be τ = 525 fs at T = 77 K [60]. To compare with the HEOM result, here
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Figure C.1. The I –V characteristics calculated from the Boltzmann equation and
Poisson equation with τ = 200 ps. The values of the other parameters are the same
as in figure 2. The black curve with circles represents the case in which the
bias is increasing, and the blue curve with the × represents the case in which the bias is
decreasing. The Wigner distributions at the voltage marked by the red circles in (i) are
given in figure C.2(a).

we solve the Boltzmann equation at T = 300 K for various τ to find the case that exhibits
similar I –V profiles as in figures 2(i)–(iii). Note that the difference between the Fermi–Dirac
and Bose–Einstein distributions is minor at this temperature. The obtained results for τ = 200 fs
are presented in figure C.1. In figures C.1(i)–(iii), while we observed hysteresis, we could not
find any plateau-like behavior and current oscillation in the NDR region as was shown in the
HEOM calculations in figures 2(i)–(iii). The present results are also different from the result
obtained from the Boltzmann equation at T = 77 K for τ = 525 fs, in which a single plateau
behavior and current oscillations in the NDR region were observed [59, 62].

To analyze the difference between the Boltzmann and HEOM results, we display snapshots
of the steady-state Wigner distribution near the maximum and minimum of the I –V curves in
figures C.2(i) and (ii). We find that the Wigner distribution in the collector region is smooth
in the HEOM case, while there are many small peaks disturbing the flow in the Boltzmann
case. This difference arises because the equilibrium state in the Boltzmann approach is fixed
even when the effective potential is changed from the original one due to the self-consistent
calculations. As the result, the difference between the imposed equilibrium state and the true
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Figure C.2. The steady-state Wigner distribution for (i) the increasing bias case and
(ii) the decreasing bias case calculated from (a) the Boltzmann equation and (b) the
HEOM depicted in figures C.1(i) and C.2, respectively. The bias voltage of (i-a) and
(ii-a) is 0.32 V (marked by the red circles in figure C.1(i)), while that in (a-ii) and (b-ii)
is 0.30 V.

equilibrium state becomes large especially in the collector region, where the distribution is far
from the assumed equilibrium distribution, Weq(p, q), due to the scattering from the potential
barriers.

As indicated in this appendix, dynamics described by the Boltzmann equation approach
is different from the HEOM approach. This difference arises because the thermal equilibrium
state of the Boltzmann equation is introduced as an assumption, while the thermal equilibrium
state of the HEOM approach is an intrinsic state of the equation that is determined through the
balance between the fluctuation term and dissipation term. This difference becomes significant
for a system that exhibits hysteresis, since the equilibrium state of the system depends upon
the pathway of process. This difference may also be significant if the system is driven by a
time-dependent external field, in which the equilibrium state is not well-defined.
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