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ABSTRACT: To investigate the role of quantum effects in vibrational
spectroscopies, we have carried out numerically exact calculations of
linear and nonlinear response functions for an anharmonic potential
system nonlinearly coupled to a harmonic oscillator bath. Although one
cannot carry out the quantum calculations of the response functions
with full molecular dynamics (MD) simulations for a realistic system
which consists of many molecules, it is possible to grasp the essence of
the quantum effects on the vibrational spectra by employing a model
Hamiltonian that describes an intra- or intermolecular vibrational

motion in a condensed phase. The present model fully includes

vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the
reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative,
non-Markovian, and nonsecular system—bath interactions. Taking the classical limit of the hierarchy equations of motion, we
have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the
quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found
that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical
and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared
with the classical one if the potential is anharmonic. The prominent quantum effect is the 1—2 transition peak, which appears
only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the
system—bath coupling. While the contribution of the 1—2 transition is negligible in the fast modulation case, it becomes
important in the slow modulation case as long as the amplitude of the frequency fluctuation is small. Thus, we observed a
distinct difference between the classical and quantum mechanically calculated multidimensional spectra in the slow modulation
case where spectral diffusion plays a role. This fact indicates that one may not reproduce the experimentally obtained
multidimensional spectrum for high-frequency vibrational modes based on classical molecular dynamics simulations if the
modulation that arises from surrounding molecules is weak and slow. A practical way to overcome the difference between the

classical and quantum simulations was discussed.

1. INTRODUCTION

Spectral line shapes contain important information about
inter- and intramolecular dynamics in the condensed phase."
Since molecular vibrational motions are extremely fast, femtose-
cond laser spectroscopy is necessary to investigate the dynamics
of vibrational motion. Energy and phase relaxation, as well as
thermal excitations, take place whenever a system is affected by
coupling to other degrees of freedom. The resultant line shape
from molecules in the condensed phase is broadened, and several
peaks often overlap. Multidimensional spectroscopy is a power-
ful means of analyzing the complex molecular dynamics.” Mo-
lecular dynamics (MD) simulations are useful for analyzing the
experimental results, since they can access the details of molec-
ular interactions that change dynamically through molecular
configurations.”” '* It is essential to calculate the optical response
functions quantum mechanically for a case where the thermal
energy is small compared to the relevant splitting energy. Due to
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the complexity of the system, the calculations of the linear
and nonlinear response functions with full MD simulations
are limited to classical dynamics. Quantum dynamical treat-
ments such as centroid dynamics'® and mixed quantum-classical
dynamics'*'® are computationally expensive and cannot easily be
applied to calculate the linear and nonlinear spectra. Alternatively,
the linear and nonlinear spectra can be calculated by adapting the
response function formalism usmg parameters obtained from
classical MD simulations.' >® These methods mostly neglect
vibrational relaxation beyond the initial ground state. Inclusion of
many optical modes with complex mode coupling is not so easy. All
approaches developed so far are based on some approximations,
and justification for the calculated results is necessary. Although we
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can compare the calculated spectra with experimentally obtained
spectra, the quantum effects cannot be isolated from classical
effects, since they are experimentally inseparable. In addition,
we should be aware of the possibility that vibrational spectros-
copy may not be sensitive for quantum effects. The well-known
quantum effect for vibrational motion is the zero-point oscilla-
tion; however, the contribution from the zero-point energy may
not be important in vibrational spectroscopy. This can be seen
from the linear absorption signal of a harmonic oscillator system.
The quantum and classical expressions of the signal are given by

RU(1) = [u(t),ul)/h
and
RV () = (ult), u))

respectively. If we calculate both signals for a harmonic oscillator
system with the frequency w, and the molecular coordinate g, we
have the same result as uj sin(wt), where u(q) = tq is the
molecular dipole. The zero-point energy does not play any role in
vibrational spectroscopy if the potential is harmonic. This is
because the resonant frequency in the quantum case is deter-
mined by the difference between the energy eigenvalues rather
than the eigenvalue itself and the contributions from the zero-
point energy are canceled. This indicates that even if we carry out
the exact quantum calculations, quantum effects may not appear
in vibrational spectra. Identification of the quantum effects is thus
difficult even when we have accurate simulation and experimen-
tal results on hand.

The best way to identify quantum effects in vibrational spectra
is to compare the signals calculated from exact classical simula-
tions with those from exact quantum simulations. While the
comparisons of the quantum and classical simulation results are
easily made for an isolated molecular system where the regular
Schrodinger and Newtonian formalisms are applied, they are
difficult for a system in a condensed phase, since quantum
equations of motion to meet the physical conditions necessary
to calculate the vibrational spectra have not been fully developed.
Several attempts have been made to justify using classical or
semiclassical simulations to interpret experimental results.”” '
Although one cannot carry out fully quantum mechanical cal-
culations for a realistic system which consists of many molecules,
it is possible to grasp the essence of the quantum effects on the
vibrational spectra by employing a model Hamiltonian that
describes an intra- or intermolecular vibrational motion in the
condensed phase.

For this purpose, we consider a single anharmonic oscillator
system nonlinearly coupled to a harmonic heat bath.>* This
model contains the essence of condensed dissipative dynamics
for vibrational spectroscopy; after a long time evolution period,
the system approaches to the quantum thermal equilibrium state
as a result of the fluctuations and dissipation with vibrational
dephasing arising from the heat bath. Thus, the present model
fully includes vibrational relaxation, while the stochastic model
often used to simulate infrared spectra does not. Markovian,
perturbative, and secular approximations are avoided, since the
vibrational spectrum is very sensitive to such ag)proximations. So
far, only the hierarchy equation approach® ™ * and the real-time
path integral approach*' can handle the quantum dissipative dyn-
amics for multidimensional spectroscopy to the desired accuracy.
In this paper, we employ the quantum and classical hierarchy
equations of motion in the Wigner space representation to

investigate the role of quantum dynamics and to explore the
validity of classical molecular dynamics simulations for linear and
nonlinear vibrational spectroscopies.

This paper is organized as follows: In section 2, we introduce
the quantum and classical hierarchy equations of motion applic-
able to high-frequency intramolecular vibrational mode. We then
give a brief review of methodology to calculate linear and
nonlinear optical responses in section 3. In section 4, some of
the details for numerical simulations are described. Numerical
results are presented as linear absorption and 2D-IR spectra in
sections S and 6, respectively, and the difference between the
classical and quantum results is discussed. Section 7 is devoted to
concluding remarks.

2.REDUCED HIERARCHY EQUATIONS OF MOTION IN A
PHASE SPACE REPRESENTATION

We consider a model that describes a classical or quantum
vibration in a condensed phase environment, represented by the

Hamiltonian®* ™ **
~2 ~2 N
2 p . b 1 o . 6V(@)
Hiyw = — +U(q) + E — +—mw; j— —
ot 2m (q) 7 Zm} 2 m] J x] m}a)]Z

where m, g, p, and U(q) denote the reduced mass, coordinate,
momentum, and the potential of the optically active oscillator
mode, respectively. An ensemble of optically inactive modes is
assumed as a heat bath. The mass, coordinate, momentum, and
frequency of the jth bath oscillator are given by m;, &;, p;, and w,
respectively. In eq 1, the system—bath interaction is expressed as

J

where ¢; denotes the coupling strength between the system and
the jth bath mode and V(§) is a function of the system coordinate
whose dimension is the same as g. We consider only the linear
dependence on the bath mode x;; however, couplin% up to the
second order in the vibrational mode § is included as*> ™ ***7°

R L1 R
V(q) = Vg ‘FEVSLQ2 (2)

We refer to the term proportional to Vi as the linear—linear
(LL) coupling term and the term ?roportional to Vg as the
square—linear (SL) coupling term.” As shown in Figure 1, the
LL coupling swings and deforms the potential, whereas SL
coupling alters the curvature of the potential. Hence, the LL
coupling causes energy relaxation with some frequency fluctua-
tions, while the SL coupling induces frequency fluctuations with
some energy relaxation. Note that we introduced the counter
term > _c;'V(g)*/2m;w;* to maintain the translation symmetry
of the Hamiltonian for U(g) = 0.7~ **

The bath dynamics can be characterized by the spectral
distribution function defined by

J(@) = 3 ¢*0(w — w)/2mw,

We consider the Ohmic form with the Lorentzian cutoff>>!

_mt Yo
](('U) - T ,}/2+w2

(3)
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() LL

(ii) SL

Figure 1. Schematic illustrations of effects of (i) the linear—linear (LL),
(ii) the square—linear (SL), (iii) the linear—linear + square—linear
(LL4SL), and (iv) the —linear—linear + square—linear (—LL+SL),
system—bath couplings on an anharmonic potential. The black lines
represent the unperturbed potential, while the colored lines the per-
turbed ones. The LL coupling interaction swings and deforms the
potential, whereas the SL coupling interaction alters the curvature of
the potential. In the anharmonic case, the LL coupling interaction causes
energy relaxation and some frequency fluctuations, while the SL inter-
action causes frequency fluctuations and some energy relaxation. Since
the Morse potential is not symmetric and spread to the positive
direction, the potential becomes wide for additive deformation and
the frequency fluctuation case (LL+SL), whereas the potential becomes
narrow for the negative case (—LL+SL). Note that the LL and SL
couplirglgs mainly cause the one- and two-quantum transitions, respec-
tively™.

Here, v represents the width of the spectral distribution of the
bath modes and is related to the correlation time of the noise
induced by the bath 7. = 1/y, f = 1/kgT is the inverse
temperature, and { is the system—bath coupling strength. The
symmetrized correlation function of the collective bath coordi-
nate X = >_jc; in the high temperature case (fAy < 1) is then
given by

SR(X(0) + KO ()

_ MY (4)
where () represents the thermal average over the bath
modes. Since  can be included in Vi, and Vg in eq 2, the
effect of the system—bath interaction can be characterized by a
set of four parameters, namely, 3, ¥, Vi1, and V. While the
linear—linear interaction (LL) mainly contributes to energy
relaxation for the fast modulation case, the square—linear (SL)
system—bath interaction leads to the vibrational dephasing for
the slow modulation case due to the frequency fluctuation of
system vibrations.>> ***™* The LL and SL couplings also
cause the one- and two-quantum transitions, respectively, as
can be seen from the system—bath coupling expressed by the
one-quantum creation and annihilation operators.

The bath effects consist of the fluctuation and dissipation
parts, both of which ensure the thermal equilibrium state of
the entire system through the fluctuation—dissipation theorem.
Note that a stochastic treatment of vibrational dephasing
neglects the dissipation part of the bath effects, so that the
system does not reach the thermal equilibrium state as the
steady state. The validity of the stochastic treatments are
assessed by comparing the nonlinear spectra calculated from
the total Hamiltonian with those from the effective stochastic
Hamiltonian,*>>*

As was shown by Tanimura et al., such a dissipative system
can be treated by utilizing a tridiagonal hierarchy of equa-
tions.”> >®'7>% At a low temperature, the structure of the
hierarchy becomes complicated because of the quantum nature
of the heat bath characterized by Matsubara frequencies.”
However, there is a rigorous but simple way to terminate the
hierarchy with including low-temperature correction terms.>>~>*
The key to calculating linear and nonlinear response functions is
quantum coherence between the system and the bath, which
plays an essential role for the strong system—bath coupling.>

To derive the equation of motion for the relevant system, we
use the reduced density operator of the system by tracing over

the bath degrees of freedom
p(t) = Tra{py(t)}

We write the reduced den51ty matrix p(q,q’;t) in the Wigner
representation defined as®

1 - ior r r
W(p, q;t) ;%[ dre® /hp<q—2,q+2;t> (3)

The Wigner distribution function is the quantum analogue of
the classical distribution function in phase space. If we take the
classical limit A — 0, the Wigner distribution function corresponds
to the classical distribution function. If the noise correlation is very
short (y — o0) and the temperature is high (i.e., white noise,
Markovian approximation), one can derive the quantum
Fokker—Planck equation in a similar form as the Kramers
equation. 4261763 I the present case, however, we cannot
employ the white noise approximation since the quantum effects
play a dominant role in the low temperature regime (Shwg > 1)
and the bath modulations are non-Markovian on the femtose-
cond time scale relevant to ultrafast nonlinear spectroscopy. As
shown in ref 39, the dynamics of the reduced density operator for
the system eq 1 is described by the quantum Fokker—Planck
equation with low-temperature correction terms. In the Wigner
representation, the equations of motion are expressed in the
hierarchy form as

) (n)
&VVJ'UJ'Z;‘--;J'K = [Lqm+ +11)/+ Z]kvk JisJay -y jx

k=1

1)
]+I’l® M/]Uh: JK

(n+1)
+(I)[ Jisjay s +Z jir- ;(}Hrl

+ ZJk@ 1)y (6)

for non-negative integers n,ji, ...,jx, where we chose K such that
Vi > o, for Bosonic Matsubara frequencies v = 27tk/(h). To
obtain eq 6, we employed the influence functional in the partial
time derivative form to remove the counter term. Note that, for a
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strong SL interaction at low temperature case, eq 6 associates
with additional higher order hierarchy members such as W ;, . g
Ineq6, Lqm is the quantum Liouvillian of the system defined b

—LpwW(p,q) = *WO@; q)

h/m v UW(P_PIr‘J)W(P/)Q) (7)

27h
with
Uw(p, ) = Z/d(’%) [U(‘ﬁg) ‘U<q_§>}
(8)

The operators CI), @k, and =’ are the bath-induced relaxation
operators defined by

O, = Ly (Vi + Varq)

mh h
r+ 2)/ cot (ﬁTV) %‘| (10)

o — _mt_ 2Aphy)

and

d
(VL + Vsrg)—

7B (k) - (Bay)’ op
for k > 0 and
g _m | By (B 2(phy)*
TP 7 t( 2 > ,;(ZJrk)z—(ﬁhy)z
x (VL + VSLq)Za?Z2 (12)

Here, N satisfies N =n + Z r=1jt > @./min(y,v,). Note that only
Wo,..0' (IIJ/V?(t = W(p,q;t) has a physical meaning, and the other
elements (e K(p,q,t) for (13j1,mjx) 7 (0;0,..,0) are the auxiliary
operators being introduced to avoid the explicit treatment of the
inherent memory effects during the time evolution of the reduced
density matrix.** The hierarchical given by eq 6 continues indefi-

nitely. However, for large N, we can terminate the equations as™
9 ) o)
Evviljbm;h( = ( qm +Z ) jijzg -y jK (13)

This formalism is suitable for a low-temperature system (SAw, > 1
and Sy > 1) strongly coupled to the heat bath without employing
the rotating wave approximation (RWA) for the system—bath
interaction. The energy eigenstate representation of the above
equations is given in ref 39, and briefly summarized in Appendix A.

The classical equations of motion can be deduced by taking
the classical limit A — 0 of eq 6 and are given by**™ 7>

0

— W = — (Len+ny)W

™) L GWr) 4 @D
ot

(14)

where the quantum Liouvillian eq 7 and hierarchy operator eq 10
become

R __gﬁ 8U(q)i

—Len = 15
m 0q dqg Op (15)

and
6 = Ly(v+ V) P+ 5 5 (16)
= L 1 VsL i
9)\p B ap
respectively. Instead of eq 13, we employ the following terminator
9 . RPN .
&W“\’> = —(Lem +Ny)w® 5 oew™ NOWN Y

(17)
which reduces to the Kramers equation for N — 0 with Vg = 0.55%¢

3. LINEAR AND NONLINEAR OPTICAL RESPONSE
FUNCTIONS

‘We consider a molecular system is interacting with a laser field,
E(t). For resonant IR spectroscopy, the Hamiltonian including
the laser interaction is given by Hig = Hyo — 1(q)E(t), where
1(q) is the dipole moment. In the first-order IR experiment, the
system interacts with one pulse, whereas in the third-order IR
experiments, the system interacts with three pulses. The re-
sponse functions are expressed in terms of the dipole operator as*

RO(0) = £ Telilo), 1 (0))6% (18)
and
RO tt) = (i) Tellate) lae) Gt o)t
(19

where

[a(t) = e<i/h)Htott‘u(?1)e_ (i/ﬁ)Hmtt

is the Heisenberg representation of /i and
Aeq - jIiIo - Hot
B = ¢ it Tl

with 8 = 1/kgT. Note that the O-pulse approximation is only valid
if the rotating wave approximation is made for the response
function. The spectrum calculated here contains nonrotating
wave beams. Using the hyperoperator notations,

Of= 0f—f0 (20)

for any operators O and f , and writing ¢(g) = £, we can simply
recast eq 18 and eq 19 as®” o7

RO (1) = Tr{ﬂ )i ﬁ::a} (1)
and

RO(ty, 1, 11) = Tr{ﬂé’(ts)hﬂ (tz)ﬁﬂ f(tl)hﬂxbfi}

where ¢ ( ) is the Liouville space propagator defined by

S(OF = & It

for any operator f .
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The above expressions allow us to employ the equations
of motion to calculate the response functions and give us an
intuitive picture of higher-order optical processes. Here, we
illustrate this point for the third-order IR response. The right-
hand side of eq 22 can be read from right to left as follows. The
total system is initially in the equilibrium state p¢%. The initial
state is then modified by the first laser pulse via the dipole ope-
rator as i(i “ps%/R at t = 0 and is propagated for time #; by
'(t1). In the third-order IR measurements, the system is excited
by the second and third dipole interactions, expressed as in > /h
separated by the time propagator &'(t,). After these excitations,
the system is further propagated for the time period t; by .¢'(t3)
and, finally, the expectation value of the dipole momentat t=1¢; +
t, + t3 is obtained by calculating the trace of /. We express the
time propagator by Green’s function for the total system;
however, in practice we can trace over the heat—bath part from
eq 1 and can replace it with the propagator for the reduced
equations of motion.*® The sequence of modifying and propa-
gating the density matrix can be translated conveniently in the
Wigner representation, as illustrated in refs 67 and 33. In this
way, the hierarchy of the equations of motion, eqs 6—13, eq A.6,
eq A1, or eqs 14— 17, were used to investigate the roles of
LL+SL interactions on the first- and third-order IR signals for
arbitrary potentials.*>” *

The linear absorption and two-dimensional spectra are then
given by

S(w) = Im / dtie” R (1) (23)
0

and

I(CU3, b, a)l) E/ dtl/ dt3eiwltl+iw3t3R(3) <t3, t, tl) (24)
0 0

respectively. In this paper, we have limited our analysis to the
third-order IR spectrum for fixed t, = 0.

4. NUMERICAL CALCULATIONS

From here on, we use the dimensionless coordinate and
momentum defined by §/(A/mw.)"> — § and p/(mhw.)"> —
D, respectively, where @, is the characteristic frequency of the
system. The SL coupling strength is then replaced by Vg /
(mwJ/h)"*— VgL Although we can deal with any form of potential,
here we consider the Morse potential system, as has been studied
from a variety of approaches.”” % For the dissociation energy D,
and the curvature @, the Morse potential is expressed as

U(g) = De(1—e¢ ) (25)

The vth eigenenergy of the Morse oscillator systems is given by

R DI L +12
") T ame. U2

where w, = (2D.0.%/ m)l/ % Then the anharmonicity A, = @
— W, and the fundamental frequency @, of Morse potential are
given by A, = Ao®/m and ;o = @, — A, respectively. We set
W10 =1600 cm ™' (271/w 1o = 20.8 fs) and Ay, = 16 cm ™ (Ap/
1o = 0.01), both of which are the typical values for intramole-
cular vibrational motion in the condensed phase such as Amide-I

hw, = hw,

(26)

mode in peptides. The heat bath temperature is set to be T'= 300 K,
which means that the system is in a quantum regime (SfAw,o =
7.67). The system parameters are the same as those used
previously to compare numerically exact calculations with sto-
chastic theory.* In the following, we consider the eight cases of
the LL and/or SL interactions set by the dimensionless LL and
SL parameters Vi = &1 /@10 and Vg = Cg1/@ 0. The first four
cases are for weak coupling, namely, (i) LL (;1. = 0.05w,0 and
Cs.=0), (ii) SL (&rp = 0 and Lgp, = 0.05w), (iii) LL+SL (&r1, =
EsL = 0.05w1), and (iv) —LL+SL (—&rL = CsL = 0.05w1o),
while the last four cases are for strong coupling, namely,
(v) strong LL (§11 = w0 and Ggp = 0), (vi) strong SL (Grp, =
0 and Esi. = wyo), (vii) strong LL+SL (G = sL = 1), and
(viii) strong —LL+SL (— Gy = s = w10). For each calculation
of (i—iv), the inverse noise correlation times are chosen to be the
fast, intermediate, and slow cases set by v = 0.5w ¢, 0.1w10, and
0.02m,,, respectively, while for (v—viii), the inverse noise
correlation is fixed to be the slow case by y = 0.02w,4. The
equations of motion were integrated numerically using the
fourth-order Runge—Kutta method for the time development.
The quantum calculations were examined both by Wigner space
representation eqs 6—13 and the energy eigenstate representa-
tion eqs A.1—A.6. In the present high-frequency case, we found
that the latter equations were more efficient in carrying out the
calculations, and so we used them for most of quantum calcula-
tions, while the Wigner representation eqs 14—17 was used for
all of the classical calculations.

In the energy eigenstate case, we utilized the lowest four to
seven energy eigenstates for the description of the quantum
system. The time step for the finite difference expression for
8[);:2)”"}-K/8twas chosen between 0t = (271/w o) X 1/16 and Ot =
(2/w1y) X 1/80. We selected the depth of the hierarchy and
the number of Matsubara frequencies as N =3—20 and K= 1—-9,
respectively. The accuracy of the calculations was examined
by changing the number of eigenstates and the values of 0t, N,
and K.

The classical calculations and some of the quantum calcula-
tions were carried out using a discrete mesh in the Wigner space
representation. The mesh size was varied from N; x N, =90 X
90 to 360 x 360 with mesh ranges from —4 <g<4and —4<p<4
to —6 < g < 6, and —6 < p < 6. Depending on the position in
phase space, we implemented either the left-hand difference
scheme or the right-hand difference scheme for 9W/dp or 9W/dgq
in Liouvillian operator.®’ Here, we employ the difference scheme
with the third-order accuracy. The time step for the finite
difference expression dW/0t was between Ot = (271/w,y) X
1/400 and Ot = (271/w o) X 1/6800. The depth of the hierarchy
was selected from N = 1—3. The accuracy of the calculations was
checked by the same way as the quantum case.

5. QUANTUM AND CLASSICAL SIMULATIONS FOR
LINEAR ABSORPTION SPECTROSCOPY

In this section, we present linear absorption spectra calcu-
lated from the quantum and classical hierarchy of equations of
motion approaches for the weak (i) LL, (ii) SL, (iii) LL+SL, and
(iv) —LL+-SL cases, and the strong (v) LL, (vi) SL, (vii) LL+SL,
and (viii) —LL+SL cases for a Morse potential. The linear
absorption spectra of a harmonic and Morse oscillator system
with LL and/or SL system—bath interactions have been studied
both analytically*”%”" and numerically,** *° but the role of
quantum effects has not been explored.
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Figure 2. Linear absorption spectra S(w) of the Morse oscillator (@ o=
1600 em ™!, Ay = 16 em ™ ") calculated from the quantum (red) and
classical (blue) hierarchy equations of motion for weak coupling cases
with ¥ = 0.5w, (dashed lines), 0.1w(solid lines), and 0.02w, (dotted
lines). The panels from the top to bottom show the spectra for (i) LL,
(ii) SL, (iii) +LL+SL, and (iv) —LL+SL system—bath coupling cases.
We set the bath temperature T = 300 K and the system—bath coupling
strength § = 0.0Sw, for the bath. Insets in (i), (ii), and (iv) depict the
1—2 transition peak in the quantum case.

In Figure 2, the linear absorption spectra calculated from the
quantum (red) and classical (blue) hierarchy of equations of
motion are compared for various conventions of the weak LL and
SL couplings with different inverse noise correlation times y =
0.5w1o (dashed lines), 0.1, (solid lines), and 0.02w, (dotted
lines). Note that there is also a 0—2 transition peak (quantum

(v) LL
0.8 -
— QM

0.6 cL 1

041 s

-0
=X

08 1

—o
=1

0.8

Linear Absorption
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04
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04| s
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Wavenumber / cm

Figure 3. Linear absorption spectra S(w) of the Morse oscillator
(w19 = 1600 cm™ ', A,op = 16 cm ™ ") calculated from the quantum
(red) and classical (blue) hierarchy equations of motion for strong
coupling cases with ¥ = 0.02w, (dotted lines). The panels from the
top to bottom show the spectra for (v) LL, (vi) SL, (vii) +LL+SL,
and (viii) —LL+SL system bath coupling cases. We set the bath
temperature T = 300 K and the system—bath coupling strength { =
0.05w 1 for the bath.

cases) or overtone peak (classical cases) at @ = 3190 cm ™ " in all
spectra including the strong coupling case in Figure 3 (not
shown), but due to the damping, the peak intensity is negligibly
small compared with the 0—1 and 1—2 peaks. For reference, we
present the linear absorption spectra for the harmonic potential
U(q) = mwy"q*/2 with the fundamental frequency w, = 1600
em” ' in Figure 8 in Appendix B.
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Figure 2(i) depicts the weak LL case.”~”" In both the quan-
tum and classical cases, the peak position shifts to the low
frequency (red) side as y decreases. This is because, in the
present system—bath model, the coupling between the bath
modes and the system oscillator enhances the effective frequency
of the system, which becomes large for a large effective coupling
strength &' = §y*/(y” + w.”).> Since ' becomes small for small
y, the peak shifts to the red. The peak width becomes narrow for
small ¥ in both quantum and classical cases due to the weak
damping constant proportional to {’. This feature can be clearly
seen in the harmonic LL case, where compact analytical expres-
sions of the linear absorption and 2D spectra are available.” (See
also in Figure 8(i) in Appendix B.) In contrast to the harmonic
case, the peak position of the quantum result is lower than the
classical one for a fixed y in the Morse oscillator case. This is
because, while the classical motion was governed by the curva-
ture at the bottom of potential (3°U(q)/dq” with g = gmin), the
quantum one was affected by the upper part of the potential
curvatures due to the nonlocal manner of potential interactions
expressed as the second term of the right-hand side in eq 7. This
difference may not be called the effect of the zero-point energy,
since, in the harmonic case, the classical and quantum results are
exactly the same as illustrated in Figure 8(i) even though there is
the zero-point energy in the quantum case. A difference appears if
the potential is anharmonic, but one may also find such eftect by
modifying the potential curvature in classical simulations and it
may not be easy to identify the frequency shift as a pure quantum
effect. In the fast modulation case (y = 0.5w,), the profiles of
quantum and classical mechanically calculated peaks are similar,
since the quantum coherence of the system is destroyed by the
fast bath modulation then the quantum effects play a minor role.
In the intermediate and the slow modulation cases (y = 0.1 and
0.02w1), however, the bath modulation is slow compared with
the optical detection and we can observe the discretized quantum
energy transition as the small 1—2 transition peak about at w =
1590 cm ™' in the quantum case. This is a prominent quantum
effect that appears only in quantum mechanically calculated
spectra and arises from the anharmonicity of the potential or
nonlinearity of the system—bath coupling.

Figure 2(ii) shows the results for the SL case.** 3% While the
peak position does not change for y in the classical case, the peak
shifts to the red for small y in the quantum anharmonic case.
Similar to the LL interaction, the most prominent difference
between the quantum and classical results is the existence of the
1—2 transition peak at 1585 cm ™' for small y. The tendency of
peak shift in the present case is opposite to the harmonic case,
where the analytical expression of the absorption spectrum is
obtained.* As shown in Appendix B, when the system is harmonic,
the 1—2 transition peaks does not appear and the only quantum
effect is the blue shift. This indicates that the SL interaction
enhances the contribution from the anharmonicity of potential
through the 1—2 transition. Thus as the effective SL coupling
strength &’ decreases for small 7, the peak shifts to the red as the LL
case. The width of the peak becomes narrower in the quantum case

Spectra (iii) and (iv) of Figure 2 show the spectra for the weak
LL~+SL and —LL+SL cases, respectively. When the LL and SL
interactions are combined, there are two patterns of the potential
deformation and the modulation depends on the relative phase
between the LL and SL interactions.>**” Since the Morse
potential is asymmetric and is spread to the positive direction,
the effect that arises from the LL and SL interactions is also
asymmetric. Thus, the amplitude of frequency fluctuation

becomes large for the LL+SL case, but small for the —LL+-SL
case as illustrated in Figures 1(iii,iv). As a result, the peak width
becomes larger in the LL+SL case than in the —LL~+SL case,
while the peak shift in the —LL+SL case is larger than in the
LL+-SL case, reflecting the magnitude of the anharmonicity. The
1—2 transition peak cannot be observed in the LL+SL case due
to large frequency fluctuations.

In Figure 3, the linear absorption spectra are compared for
conventions of strong LL and SL couplings with the fixed y =
0.02w1o. As illustrated in Figure 1, the LL interaction mainly
contributes to energy relaxation, whereas the SL interaction
mainly leads to the vibrational dephasing for the slow modulation
case due to the frequency fluctuations. With the exception of the
LL case in Figure 3(v), in this strong coupling with slow
modulation case, the profiles of the spectra become Gaussian,
while all of the spectra in Figure 2 are more or less Lorentzian. In
each figure, the quantum spectrum exhibits a similar profile to the
classical one beside the small frequency shift because the
quantum coherence created by the laser excitation is destroyed
by the strong bath modulation. Although the absence of the 1—2
peak may be caused by the large broadening of the 0—1 and 1—2
transition peaks, this is not the case in the present study as will be
illustrated in the next section by multidimensional spectra.

6. QUANTUM AND CLASSICAL SIMULATIONS FOR
TWO-DIMENSIONAL SPECTROSCOPY

The difference in the relaxation mechanism between quantum
and classical dynamics becomes prominent in the third-order IR
response. In the LL model the third-order response function for
the harmonic system vanishes when the dipole operator depends
only linearly on the coordinate because the different Liouville
space pathways interfere destructively with each other.”® Thus,
the anharmonicity of the system is essential to have a third-order
signal.”® If the SL interaction is present, the signal appears even in
the harmonic system, since the interference between the different
Liouville paths is disturbed due to the frequency fluctuation
nature of the SL interaction and the interference is partly
canceled.***

‘While 2DIR spectroscopy often utilizes correlation spectra,
we display the response function for fixed ¢, = 0 calculated
from eq 24 with eq 22 as the 2D signal, since, in the classical
case, it is not easy to select the Liouville Bathways that
contribute to a given phase-matched signal.”>~"’

First we illustrate the weak coupling case for the various
conventions of the LL and SL interactions. In Figures 4, 5, and 6,
we plot (a) the absolute values and (b) the imaginary parts of the
quantum and classical response functions in the weak (i) LL,
(ii) SL, (iii) LL+SL, and (iv) —LL~+SL cases for y = 0.5, 0.1, and
0.02w ¢, respectively. Each figure is normalized by the absolute
value of the maximum peak intensity, and the spacing between
the contour is set to 0.2.

Figure 4 illustrates the quantum and classical third-order
response functions for the fast modulation case y = 0.5w1o.
Compared with those in the classical results, the peaks in
quantum results shift to low frequency (red) direction, while
the classical and quantum signal profiles are similar. This is
because the fast bath modulation arising from the heat-bath
eliminates the quantum coherence of the system and thereby the
quantum results approach to the classical ones. Note that 2D
correlation spectrum is often utilized instead of the imaginary
and real part of 2D spectrum obtained from eq 24 in order to

72—74
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Figure 4. Quantum and classical mechanically calculated 2DIR spectra I (w3, t, = 0, @, ) of the Morse potential system for a weak coupling case in the
motional narrowing regime y = 0.5wo. The panels from the top to bottom show the signals for (i) LL, (ii) SL, (iii) +LL+SL, and (iv) —LL+SL
system—bath coupling cases. In each case, we plot the (a) quantum and (2") classical absolute and (b) quantum and (b’) classical imaginary parts of
spectra separately. The red contours are positive, whereas the blue contours are negative. Each figure is normalized by the absolute value of the maximum

peak intensity. The spacing between the counter is set to be 0.2.

investigate a role of dephasing in the 0 —~1—0and 0 —1—2
transitions in the spectrum contour plot.””””* The negative and
the positive peaks in the imaginary part in Figure 4 approximately
correspond, respectively, to the 0— 1—0and 0 — 1 — 2 transi-
tions peak positions in the correlation spectrum;>* however, such
an interpretation is misleading in the classical case as well as in the
quantum case if the bath modulation is fast, where the discretized
quantum energy states are smeared, as depicted in Figure 2. The
positive and negative parts of the correlation spectra in the
classical case should be interpreted, respectively, as the high-
frequency emission and low-frequency absorption of light from
the anharmonic potential. Although the classical and quantum
profiles of the 2D signals are similar, there are some differences
due to the sensitivity of the 2D spectrum. In the quantum SL and
—LL+SL cases shown in panels (ii-a) and (iv-a) of Figure 4, the
peaks elongate to the low frequency direction of w;. As we will

see in Figure 5, this elongation arises from the 0 — 1 — 2 transi-
tion. While it is hard to observe the 1 — 2 transition in linear
spectra, we can catch it as the elongation of the peak in w;
direction in 2D spectroscopy.

Figure 5 shows our results for the intermediate modulation case
¥ =0.1w . In the quantum case depicted in parts a and b of Figure 5,
we can clearly see the twin peaks arising from 0 — 1 — 0 and 0 —
1— 2 transitions at (@y,w;) = (1600,1600)— (1605,1605) cm ™' and
(wy,05) = (1600,1585)—(1605,1590)cm ', respectively. In the
classical case depicted in parts a’ and b’ of Figure S, on the other
hand, the profiles of the peaks are more or less similar to those in
parts a’ and b’ of Figure 4, although each peak becomes narrower
and the position of the peak shifts to the red for the present small
y case, as was observed in Figure 2. The difference between the
classical and quantum results indicates that one cannot reproduce
the 2D spectrum from classical calculations if the system temperature
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Figure S. Quantum and classical mechanically calculated 2DIR spectra I(ws, £, = 0, @) of the Morse potential system for a weak coupling case in the
intermediate modulation regime y = 0.1wo. We plot the (a) quantum and (") classical absolute and (b) quantum and (b’) classical imaginary parts of
spectra separately in the (i) LL, (ii) SL, (iii) LL4SL, and (iv) —LL+SL cases.

isin the quantum regime ($Aiw,o>> 1) and the bath modulations
are weak (§ = 0.05w ) and slow (y << @ ;). The anharmonicity
of the potential A, is also important to predict the quantum
effects. If the system is close to harmonic, we may neglect the
quantum contribution, since the classical and quantum Liouvil-
lian in eq 7 and eq 1S, respectively, become identical for the
harmonic potential.

Figure 6 illustrates the slow modulation case y = 0.02w,.
Since the contribution of the LL interaction is mainly the
frequency fluctuation rather than the energy relaxation in the
present case and the amplitude of frequency fluctuations is small
compared to the SL case, the spectral peaks in Figure 6(i-a) and
Figure 6(i-b) are very sharp. While the profiles of 2D peaks in
Figures 4 and $ are star shaped, reflecting the Lorentzian nature
of bath modulation, the center of the peaks in Figure 6 ap-
proaches a circular shape, reflecting the vibrational echo nature of
slow bath modulation.”>””* This is because, in the quantum case,

the characteristic time scale of bath becomes too slow compared
with the time scale of the Morse system, as determined by the
difference between the discretized energy states (y << w,), and
so the dissipative contribution of LL and/or SL interactions can
be neglected. Thus, the peaks corresponding to the 0 —~ 1 — 0
and 0 — 1 — 2 transitions are clearly observed, although they are
spread because of the pure dephasing induced by the frequency
fluctuation. In the classical case in Figure 62" and Figure 6b’, on
the other hand, the energy of the system is continuous and the
system energy can always dissipate to the bath, resulting in the
dispersed single resonant peak.

Figure 7 illustrates the strong (v) LL, (vi) SL, (vii) LL+SL,
and (viii) —LL+SL coupling cases for the slow modulation (y =
0.02m1). Cases vi—viii induced by SL interactions are known as
the pure dephasing regime. The 2D spectra become circular in
shape due to the strong vibrational dephasing. This is the case
where IR photon echo peaks are observed in 2D correlation
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Figure 6. Quantum and classical mechanically calculated 2DIR spectra I(w3, £, = 0, @) of the Morse potential system for a weak coupling case in the
weak spectral diffusion regime y = 0.02w,. The panels from the top to bottom show the signals for (i) LL, (ii) SL, (iii) +LL+SL, and (iv) —LL+SL
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separately in the (i) LL, (ii) SL, (iii) LL+SL, and (iv) —LL+SL cases.

spectrum and, as shown by correlation spectra for a case y =
0.005w ¢ in ref 39, the multistate stochastic three-state model used
to analyze 2D IR echo experiments'® >® works very well in
reproducing the spectrum from a quantum mechanically treated
Morse potential model with the LL and/or SL interaction. As ob-
served in Figure 3 with the absence of the 1—2 transition peak, the
quantum effect plays a minor role in the strong and slow modulation
case due to the destruction of a quantum coherence by the strong
bath modulation. The negative peak positions in Figure 7(v-b)—
(viii-b) clearly indicate that the negative peaks are of classical
anharmonicity origin instead of the 0—1—2 transition origin.

7. CONCLUSION

A Morse potential system nonlinearly coupled to a heat-
bath was employed to analyze the roles of thermal excitation,

relaxation, and spectral diffusion in a high-frequency intramole-
cular vibrational motion. Numerically accurate linear absorption
and two-dimensional infrared spectra were calculated from the
reduced hierarchy equations of motion approach in the non-
perturbative, non-Markovian, and nonsecular regime of system—
bath interactions that is necessary to account for the effect of
spectral diffusion at finite temperature. The quantum and
classical results calculated under the same physical conditions
were compared in the quantum regime (Shw, > 1) to identify
the role of quantum mechanics in linear and two-dimensional
spectra.

We summarize the differences between the quantum and
classical simulation results for an anharmonic potential with
the following four remarks. (1) In the fast bath modulation with
weak LL and/or SL coupling (or motional narrowing) case
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Figure 7. Quantum and classical mechanically calculated 2DIR spectra I(ws,t, = 0,0;) of the Morse potential system for a strong coupling case in the
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(Figure 4), the profiles of linear and 2D spectra calculated from
the classical and quantum equations are similar besides the
frequency shifts which arise from the nonlocal nature of quantum
potential interactions. (2) For the intermediate modulation with
weak LL and/or SL coupling case (Figure S), while linear and 2D
spectra are similar to the fast modulation case in the classical
results, the peak profile becomes very different especially for
quantum 2D spectra. Two separate peaks appear corresponding
to the 0 — 1— 0and 0 — 1 — 2 transitions; the peak splitting
corresponds to the anharmonicity in the potential. (3) In the
slow modulation with weak LL and/or SL coupling case
(Figure 6),% classical results exhibit a single resonant peak. In
contrast, the two 0 — 1 — 0 and 0 — 1 — 2 transition peaks
become prominent in the quantum results. (4) In the slow
modulation with strong LL and/or SL coupling case (Figure 7),
where the quantum results are well reproduced by the multilevel

stochastic theory,® the quantum and classical results are very
similar due to the strong destruction of quantum coherence
because of strong modulation and both results exhibit a single
resonant peak. Due to the spectral diffusion, all quantum and
classical peaks approach a circular shape, contrary to the star
shape in the fast or intermediate modulation cases. We should
also notice that when a vibrational mode is close to harmonic, the
quantum effects are rather minor. In the harmonic case, a 2D
signal arises due to the nonlinearlity of the dipole operator or
vibrational dephasing as a result of the SL interaction.** >’
Although we restricted our analysis to a single Morse oscillator
mode, a similar conclusion is likely to be obtained for a multi-
mode system with any anharmonicity and anharmonic couplings.
We may expect the statements above to be valid under general
conditions. Since accurate quantum MD simulations of linear
and 2D vibrational spectra for a complex molecular system are
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not at hand, we are restricted to classical MD simulations to
analyze experimental results. However, our results clearly indi-
cate that the spectra obtained by a classical simulation cannot
account for the quantum anharmonic effects arising from the 1 — 2
transition.

To compensate for the difference between the classical
and quantum results, we therefore have to employ a single or
multianharmonic oscillator model for targeting vibrational
modes like a model shown in the present paper based on the
classical simulation. We then chose the LL and SL interac-
tions parameters to fit the linear and multidimensional spec-
tra obtained from the classical MD simulation by solving the
classical hierarchy equations of motion eqs 14—17. For a
multimode system, we may need to employ multiple bath modes
with different bath operators.** The quantum linear and multi-
dimensional spectra can be obtained by solving the quantum
hierarchy equations of motion eqs A.1—A.6 using the same
potential and bath parameters for the classical hierarchy equa-
tions of motion. The calculated peak position should be different
if the classical MD simulation employed a phenomenological
potential to fit experimental data instead of using a potential
calculated from molecular orbital (MO) theories. Although
indirect, this is the only practical way to calculate multidimen-
sional vibrational spectra based on MD simulation for a complex
molecular system in a condensed environment.

B APPENDIX A: REDUCED QUANTUM HIERARCHY
EQUATIONS OF MOTION IN DENSITY MATRIX
REPRESENTATION

In terms of the Liouville space operators, the quantum
Fokker—Planck eguation with low-temperature correction term

. 39,5
is expressed as””’
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eq 13 is now expressed as
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P = (700 (a6)
The quantum Fokker—Planck equations can be deduced from
the influence functional method of Feynman and Vernon.”
While the Fokker—Planck equations in the energy eigenstate
representation eq A.1—A.6 utilize the regular influence func-
tional, the Fokker—Planck equations in the Wigner space
representation eq 6—13, employ the expression of influence
functional with time-integration by parts.33 Because of this
difference, the Fokker—Planck equations in the energy eigen-
state representation explicitly include the counterterm, whereas
those in the Wigner representation involves the terms propor-
tional to p in eq 10 instead of the counterterm.

B APPENDIX B: LINEAR ABSORPTION SPECTRA FOR
HARMONIC OSCILLATOR SYSTEM

In this Appendix, we present the numerical results for a
harmonic potential system Up,m(§) = mwo’q>/2. In this case,
the quantum and classical Liouville operators, respectively
expressed as eqs 7 and 15, become identical and are given by

p 2

L + 0 (B.1)
— Lharm = T — T TmW,q— .
" m 0q o op

This indicates that the difference between quantum and classical
dynamics in the harmonic case arises from the heat-bath opera-
tors which make the system in the corresponding equilibrium
state. Here, we chose wo = 1600 cm ™ '. The other parameters are
the same as those described for the weak coupling case in sections
Sand 6. In the LL case, the quantum and classical linear absorp-
tion spectrum for the Brownian system is expressed as’’

_© Erlo(y’ +o?)
S(w) = EXP Y — (B2)
(0> — ) (y*+w?)” + Eyt?

Spectra in Figure 8 (i) are calculated from the classical and
quantum hierarchy equations of motion approaches and agree
with the those calculated from the above expression. While the
quantum and classical results become identical in the LL case,
frequency shifts appear if the SL interaction is presented. This is
because the harmonic system coupled to the harmonic bath with
the LL interaction is, in principle, the harmonic system and the
quantum and classical dynamics of the harmonic system are the
same, as is indicated by eq B.1. The peak in the SL case in
Figure 8(ii) shifts to the blue in the quantum case, because the
SL interaction changes the effective frequency of the poten-

tial.***>*° The spectra for £LL+SL cases in parts (iii) and (iv) of
Figure 8 can be explained by adding the LL and SL spectra. Since
harmonic potential is symmetric, the calculated linear spectra
for £LL+SL cases are the identical***” Multidimensional
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Figure 8. Linear absorption spectra S(w) of the harmonic oscillator
(wo = 1600 cm ") calculated from the quantum and classical hierarchy
equations of motion (red lines), respectively. The panels from the top to
bottom show spectra for (i) LL, (ii) SL, (iii) +LL+SL, and (iv)
—LL+SL system bath coupling cases, respectively. We set the bath
temperature T = 300 K and the system—bath coupling strength { =
0.05w, for the bath.

spectrum of the harmonic system for various LL and/or SL
couplings are already reported and we do not present them
here.** *”7° In the harmonic case, a multidimensional signal
arises due to the nonlinearity of dipole operator’® or vibrational
dephasing arises from the SL interaction.”**” Thus, the signal
profiles as well as the role of LL and/or SL interactions are very
different from those for the anharmonic case.
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