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Electron transfer reaction in a polar solvent is modeled by a solute dipole surrounded by dipolar
molecules with simple rotational dynamics posted on the three-dimensional distorted lattice sites.
The interaction energy between the solute and solvent dipoles as a reaction coordinate is adopted
and free energy landscapes are calculated by generating all possible states for a 26 dipolar system
and by employing Wang-Landau sampling algorithm for a 92 dipolar system. For temperatures
higher than the energy scale of dipole-dipole interactions, the free energy landscapes for the small
reaction coordinate region have quadratic shape as predicted by Marcus �Rev. Mod. Phys. 65, 599
�1993�� whereas for the large reaction coordinate region, the landscapes exhibit a nonquadratic
shape. When the temperature drops, small notched structures appear on the free energy profiles
because of the frustrated interactions among dipoles. The formation of notched structure is analyzed
with statistical approach and it is shown that the amplitude of notched structure depend upon the
segment size of the reaction coordinate and is characterized by the interaction energy among the
dipoles. Using simulated free energy landscapes, the authors calculate the reaction rates as a
function of the energy gap for various temperatures. At high temperature, the reactions rates follow
a bell shaped �inverted parabolic� energy gap law in the small energy gap regions, while it becomes
steeper than the parabolic shape in a large energy gap regions due to the nonquadratic shape of the
free energy landscape. The peak position of parabola also changes as the function of temperature.
At low temperature, the profile of the reaction rates is no longer smooth because of the many
local minima of the free energy landscape. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2431172�

I. INTRODUCTION

The free energy landscape of electron transfer �ET� sys-
tem is of fundamental importance to account for ET rates in
solvent as recognized by Marcus.1,2 In this context, the free
energy landscapes of the reactant and product are expressed
in terms of a reaction coordinate consisting of reactant and
product along with their surrounding of solvent. Marcus
evaluated the free energy of a given polarization and calcu-
lated the ET reaction rates as

k � exp�−
�� + �G�2

4kBT�
� , �1.1�

where � and −�G are the reorganization energy and the
energy gap, respectively. From the above expression �the
energy gap law�, Marcus predicted the inverted parabolic
�bell shaped� dependence of ET rates as the function of
energy gap indicating that the ET rates increase in the small
energy gap region �the normal region�, whereas they de-
crease in the large energy gap region �the inverted region�.
His expression was based on a continuum dielectric model of
solvent and thus the molecular aspects of the solvent were
missing.

Although Marcus’s theory explained the energy gap de-
pendence reasonably well,3–5 such macroscopic continuum
model is not sufficient to describe ET processes especially
for dynamics of solvent.6 The free energy landscapes of the

macroscopic dielectric system were given by a functional
form of polarization.2,7 To calculate the free energy land-
scape using models based on the microscopic molecular de-
tails, one has to define relevant reaction coordinate. Taking
statistical mechanics approach, Marcus explored ways of ab-
stracting to small dimensional coordinates from the multidi-
mensional phase space using the technique of equivalent
equilibrium distribution.8 His idea was later developed and
utilized for the calculation of the ET rate by computer
simulations.9 Calef and Wolynes showed that a reaction co-
ordinate could be adequately defined by the microscopic in-
teraction energy,10 and several computer simulations were
carried out using the reaction coordinate which have energy
dimension to confirm the legitimacy of Marcus’s theory.11–14

An expression of the free energy in terms of molecular dis-
tribution function including dipole interactions was also
given by using a density functional theory.15,16

Here, we introduce a function f��Ri	� for configuration
coordinates of solvent �Ri	 as

f��Ri	� 
 ER��Ri	� − EP��Ri	� , �1.2�

where Ei��Ri	�
Ed-s
i ��Ri	�+Es-s

i ��Ri	� is the interaction
energy for reactant �i=R� or product �i= P� consisting the
solvent-solute interaction energy, Ed-s

i ��Ri	�, and solvent
dipole-dipole energy Es-s

i ��Ri	�.
17,18 If we define the free

energy landscapes of reactant and product by
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Gi�x,T� = − kBT ln�� dR1 ¯ dRN��x − f��Ri	��

�exp�− Ei��Ri	�/kBT�� , �1.3�

the free energies of the reactant and product satisfy the
relation,

GR�x,T� = x + GP�x,T� . �1.4�

Suppose if the free energy landscape is expressed in a
quadratic form as

GR�x,T� = ax2 + bx , �1.5�

the ET rates are then evaluated as Eq. �1.1�, in which −�G is
the energy gap between the two surfaces and �=1/4a.

At the present time, the free energy landscape for ET
processes is fairly understood at least at the high-temperature
case, where the free energy landscape is well approximated
by the parabolic function. At low temperatures, however, it is
difficult to calculate the reaction rates, since the solvent mol-
ecules have enormous degrees of freedom and there are too
many local minima that trap molecular motions to acquire
the reliable free energy landscapes. In order to deal with such
problem, a simple model is often introduced to reduce the
degrees of freedom. For example, if we separate the rota-
tional and translational degrees of freedom of solvent mol-
ecules, we can simplify the statistical analysis and facilitate
the construction of reliable energy landscapes. Since macro-
scopic variables such as free energy may not be sensitive to
the microscopic details of the interactions, we may still gain
valuable information that is necessary to account for a role of
solvation. Several studies based on a simple model approach
were developed to explore the dynamical aspects of solva-
tion at high temperature. For example, a Brownian dipolar
lattice model19,20 and a self-consistent continuum model21

were used to investigate dielectric relaxation; the former
model consists of point dipoles fixed on a simple cubic lat-
tice and the latter describes the rotational motion of a perma-
nent dipole in a spherical cavity. Ionic solvation was also
studied by the Brownian model.22 Several theories for solva-
tion dynamics were developed23,24 and are compared with
computer simulations.25–27 These models were sufficiently
simple for dynamical simulations, but they still contain too
many degrees of freedom to survey the free energy land-
scapes as a function of macroscopic variables, especially at
low temperatures.

In this paper, we take the minimalist model approach
proposed by Onuchic and Wolynes28 to study a possible role
of solvent molecules in glassy phase in influencing the elec-
tron transfer �ET� or charge transfer �CT� reaction rates. In
this approach, the ionic solvation in a polar solvent is mod-
eled by a central charge surrounded by dipolar molecules
with rotational dynamics represented by dipoles pointing
only the inward and outward directions relative to the ion.
The simplicity of this model allows us to thoroughly explore
how the energetics of solvation depend on solute charge,
solvent dipole, and number of solvent molecules with an aid
of random energy model �REM� theory.29,30 The minimalist

model was also applied to investigate the dynamical phase
transition in addition to thermodynamic phase transition by
utilizing the first passage time idea.31,32 The extension of the
minimalist model to multilayer solvent molecules with all
dipole-dipole and charge-dipole interactions were applied to
investigate the multiple glassy transitions associated with the
freezing of the different solvent layers.33 Concerning the en-
ergy landscapes, Suzuki and Tanimura investigated the free
energy landscape of an extended minimalist model consist-
ing of a central charge and surrounding dipoles for the dis-
torted two-dimensional lattice as the function of the
polarization.34 Using the Wang-Landau algorithm they
showed that the energy landscape exhibits a symmetric pro-
file described by parabolic and quartic functions of polariza-
tion, while it exhibits an asymmetric one due to the contri-
butions of linear and cubic terms that arise from the charge-
dipole interactions in the absence and presence of the central
charge, respectively. When the temperature dropped, the
simulated free energy landscapes were no longer smooth due
to the presence of multiple local minima arising from the
frustrated interaction among the dipoles.

What follows in this paper is a survey of the free energy
landscapes for the minimalist model as the function of x
defined by Eqs. �1.2� and �1.3� below and above the freezing
temperature. In Sec. II, we explain the model and the reac-
tion coordinate and the Wang-Landau algorithm is outlined
to calculate the free energy landscape. In Sec. III, the free
energy landscapes for different temperatures are numerically
calculated by generating all possible states for a 26 dipolar
system and by employing Wang-Landau sampling algorithm
for a 92 dipolar system. From the calculated free energy
landscapes, the ET reaction rates are also evaluated. The final
section is devoted to the conclusion.

II. SIMULATION MODEL AND REACTION
COORDINATE

The minimalist model proposed by Onuchic and
Wolynes consisted of a charged cavity and a single shell of
dipoles that were allowed to point only two directions, to-
ward and opposite to the charged cavity.28 To adapt this
model for ET reaction process, we replace the central
charged cavity by a solute dipole moment. Then we config-
ure the solvent dipoles around the solute dipole on the three-
dimensional distorted lattice with lattice constant L. Here, we
treat all solute-solvent and solvent-solvent interactions ex-
plicitly, whereas they were assumed to be random Gaussian
interactions in the minimalist model with the REM analysis.
The schematic view of our model is depicted in Fig. 1. The
solute dipole moment is represented by z�d

i , where z is the
unit vector in the z direction and �d

i denotes the magnitude
of the solute dipole for the reactant �i=R� and the product
�i= P�, respectively. We denote the position of each solvent
dipole as r j =a j +�a j, where a j is the jth lattice point vector
and �a j is the random displacement from the lattice point.
The magnitude and the direction of the jth solvent dipole are
denoted by �solv and the unit vector S j, respectively, where
S j =r j / �r j�. If we introduce the sign operator � j = ±1, where
the sign depends on whether the dipoles are pointing toward
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or away from the solute dipole, the dipole moment is ex-
pressed as −�solv� jS j. Thus all the interactions among solute
and solvent dipoles are expressed as

Ei��d
i ,�� = Ed-s

i ��d
i ,�� + Es-s��� . �2.1�

Here, the energy of the solute-solvent and the solvent-solvent
dipoles are defined by

Ed-s
i ��d

i ,�� = 

j=1

N

gj��d
i �� j , �2.2�

and

Es-s��� = 

j=2

N



k=1

j−1

hjk� j�k, �2.3�

respectively, where

gj��d
i � = − �solv�d

i S j · z�r j�2 − 3�S j · r j��z · r j�
�r j�5

, �2.4�

and

hjk = �solv
2 S j · Sk�r jk�2 − 3�S j · r jk��Sk · r jk�

�r jk�5
, �2.5�

with r jk=r j −rk and N is the total number of solvent dipole.
This system exhibits a glassy behavior at low temperatures
because of the complex interactions among the solvent di-
poles with the structural disorder. We chose values typical of
ET or CT systems in polar solvents as �solv=1.85 and L=1 in
the unit of Debye and the unit of 2.1 Å, respectively.
The characteristic energy is then evaluated as �U=1.08
�10−20 J, which is about 2.5�kBT� at room temperature. We
employ two types of system: one is 3�3�3 lattice sites and

the other is 5�5�5 lattice, but we omit four dipoles on
each corner of the lattice for later system due to the limita-
tion of our CPU power. Thus, we used a total of 26 and 92
dipoles for each calculation. We utilize the open boundary
condition to avoid undesired effects arise from a treatment of
boundary. The displacements from the lattice points obey a
Gaussian distribution with average ��a j�=0 and standard
deviation ���a j

2�=0.1.
For our model we rewrite Eq. �1.2� as

f��� = ER��d
R,�� − EP��d

P,�� . �2.6�

The free energy landscapes of the reactant �i=R� and the
product �i= P� are calculated from

Gi�x,T� = − kBT ln
1

C



�f���−x���x

exp�−
Ei��d

i ,��
kBT

� . �2.7�

Here, the summation is taken over all configurations for
which f��� takes a value between x−�x /2 and x+�x /2,
where �x is the segment �mesh� size of the reaction coordi-
nate. We introduce the dimensionless constant C to adjust the
position of Gi�x ,T�. When we set C to be proportional to �x,
the position of the energy landscape of different segment size
can be fixed if the assigned temperatures are the same. In
the following calculations, we set C=�x /�U, where �U
=1.08�10−20 J is the characteristic energy of the system. In
Eq. �2.7�, we adopt �d

R=0 and �d
P=2 for a situation: a neutral

solute is surrounded by the solvent in the reactant state and
the ET reaction occurs then polarized.

For the 26 dipolar case, we evaluate Eq. �2.7� by gener-
ating all configurations of � and classifying f��� in the
range xi−�x /2� f����xi+�x /2 for ith segment xi, which
satisfies �x=xi+1−xi. Although we can obtain the exact free
energy landscape for any �x in such small system, we cannot
generate all configurations by any means for a large system.
For example, a system with 92 dipoles involves enormous
degrees of freedom even with directional restrictions of the
dipoles ��292�. Thus, it is essential to sample relevant states
for constructing the free energy landscape. If we can extract
a representative subset for states described by energy E and a
reaction coordinate x from the all configurations, the free
energy landscape can be obtained from the ensemble of the
subset. The Monte Carlo method with Metropolis algorithm
has been used to generate such representative subsets. How-
ever, this algorithm is time consuming for a glassy system at
low temperature because the trajectories of the sampled
states generated by the algorithm are easily trapped in the
local energy minima. To overcome this difficulty, Berg and
Neuhaus proposed the multicanonical algorithm,35,36 which
has been applied to many problems such as spin glasses,
proteins, and polymers.37–40 Okumura and Okamoto sug-
gested the multidimensional extensions of the multicanonical
algorithm.41,42 In our previous paper,34 we demonstrated that
the two-dimensional Wang-Landau algorithm43,44 for energy
and polarization states was a reliable and efficient method to
have a density of states. Here, we employ the reaction coor-
dinate x defined in Eqs. �2.6� and �2.7� instead of the polar-
ization and adopt the two-dimensional Wang-Landau algo-
rithm to calculate the free energy landscape. The essence of

FIG. 1. Schematic view of a solute and solvent model. A solute molecule is
represented by a dipole on the center of three-dimensional square lattice.
Solvent molecules are expressed by dipoles located on the disordered lattice
sites surrounding the central dipoles. Each solvent dipole is allowed to direct
only two directions, toward and opposite to the central dipole.
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the algorithm is the uniform sampling in the energy and re-
action coordinate spaces by using an artificial sampling
weight g�E ,x� instead of Boltzmann weight. When the his-
togram H�E ,x� defined by the number of sampled states
�E ,x� attains larger than 70% of the average value, �H�E ,x��
for all possible ranges, we regard the sampling as having
been done uniformly in the energy and reaction coordinate
space. In order to generate the sampling weight, we divide
the regions of energy −2000�E /�U�2000 and reaction co-
ordinate −100�x /�U�100 into 4001 and �200�U /�x�+1
segments, respectively. We generate the density of states af-
ter obtaining the artificial weight factors by recursive updates
which enables us to get a flat histogram of a uniform
sampling data in the energy and reaction coordinate spaces.
We then calculate the free energy landscape as the function
of x by reweighting probabilities to conform to the Gibbs
ensemble.

III. RESULTS AND DISCUSSION

A. Free energy landscapes of a 26 dipolar system

Figure 2 illustrates the free energy landscapes of a
distorted 3�3�3 square lattice system with 26 dipoles
for different temperatures and segment sizes: �a� T=10,
�x=10−1; �b� T=1, �x=10−1; �c� T=10, �x=10−3; and �d�
T=1, �x=10−3 in the unit of �U=1.08�10−20 J. Here and
hereafter we set kB=1. We analyzed the temperature depen-
dence of the heat capacity and found a sharp peak at Tc�2
that corresponded to the freezing temperature of dipolar ro-
tational motions. Thus the cases for �b� and �d� are in a
glassy state. These landscapes are directly calculated from
Eq. �2.7� by generating all possible dipolar states numeri-
cally and are not obtained from the Wang-Landau approach.
Such exact calculations can be carried out only for a small
system with 226 dipolar configurations. We should notice that
this system is too small to extract reasonable free energy

profiles and we have observed a change of curvature around
�x /N�=0.2 as an artifact of the small system. Here, we use
these results to analyze a role of the segment size of the
reaction coordinate, which has to be introduced to calculate
the free energy of larger system.

While the free energy landscape becomes smooth at high
temperature illustrated in Fig. 2�a�, it exhibits small notched
structure �roughness� on the profile at low temperature as in
Fig. 2�b�. This feature can be explained from the distribution
of states as a function of reaction coordinate x and energy E
as schematically depicted by dots in Fig. 3. At high tempera-
ture, all states in the segment between xi−�x /2 and xi

+�x /2 contributes to GR�xi ,T�, while only the lower energy
part of states in the segment indicated with solid line in
Fig. 3 contribute to GR�xi ,T� at low temperature due to the
Boltzmann factor in Eq. �2.7�. Since the number of states is

FIG. 2. ; The free energy landscapes
of a distorted 3�3�3 square lattice
system with 26 dipoles for different
temperatures and segment sizes: �a� T
=10, �x=10−1; �b� T=1, �x=10−1;
�c� T=10, �x=10−3; and �d� T=1,
�x=10−3, respectively. Here, T and
�x are measured in the unit of �U
=1.08�10−20 J and we set kB=1.

FIG. 3. The dots illustrate the schematic view of the distribution of states as
a function of reaction coordinate x and energy E. Solid line represents the
lower energy part of states in a segment. The profile of the lower energy part
is essential to determine the free energy landscape especially at low
temperature.
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sparse in the lower energy region, GR�x ,T� changes rapidly
as the function of x depending on the position of the low
energy states. This feature becomes prominent especially for
small �x, where only a few states can take part for calcula-
tions of GR�xi ,T�. In this case, as shown in Fig. 2�c�, we also
observed the notched profiles of the landscape even at high
temperature.

Using the exact distribution of states, we analyzed the
statistics of notched structure. First, we extrapolate the
profiles of the free energy landscape up to sixth order using
the fitting function Gfit

R �x�=
k=0
3 a2k�x /N�2k for the range

�x /N��0.2. Due to the conditions f���=−f�−�� and
ER��d

R ,��=ER��d
R ,−��, GR�x ,T� is symmetric with respect

to x=0 and the polynomial function does not contain the
odd-order terms. Then we subtract Gfit

R �x� from GR�x ,T� /N
and obtain the notched part of free energy as �G�xi�
=GR�xi ,T� /N−Gfit

R �xi�, where xi is the value of reaction
coordinate at ith segment which satisfies �x=xi+1−xi.

Figure 4 illustrates GR�x ,T� /N �solid line� for T=1, �x
=10−2 and the fitted line �dashed line� with the fitting param-
eters a6=6731.75, a4=−307, a2=3.9, and a0=−2.26. The
histogram of �G�xi�, which is also fitted by the normal dis-
tribution �dashed line� with the average �G=0.0 and the
standard deviation ��G2=0.098, is presented in the inset of
Fig. 4. In the small region of x, where the Gaussian fitting
works well, we also found that the sequence of �G�xi� is
uncorrelated at the different xi� and thus �G�xi� can be
regarded as the white noise with respect to xi.

Calculated ��G2 as the function of temperature for dif-
ferent �x is plotted in Fig. 5. The amplitude ��G2 tends to
be large for small �x, since the number of the states involved
in the free energy calculations becomes small and the statis-
tical deviation becomes large. For T�10, the amplitude be-
comes large for small T, since only lower energy states in the
segment can contribute to the free energy calculations due to
the Boltzmann factor in Eq. �2.7�. At very low T, the lowest
energy state in the segment dominate the free energy and
thus we have GR�xi ,T��Ei

min, where Ei
min is the lowest en-

ergy in the ith segment and therefore the free energy land-
scapes become temperature independent. For T	10, ��G2

increases as the temperature increases. At such high tempera-
ture, the Boltzmann factors play a less role and thus the total
number of states in the segment �we denote n�xi� for the ith
segment� determines the value of the free energy as
−kBT ln n�xi�. Since n�xi� may change rapidly for small �x,
the amplitude will also change.

In Fig. 6, we plot ��G2 /�U as the function of �x /�U
for different temperatures, where �U is the characteristic en-
ergy scale of the system. The calculated results can be well
fitted by the linear functions in the logarithmic scales. This
indicates that we can always extrapolate their amplitudes
��G2 from the values in large �x.

Since the lowest energy Ei
min determines the free energy

in the segment especially in the low temperature case, the
differences of the lowest energy among the different seg-
ments give rise to the notched structure. To see this point
more clearly, we consider the change of total energy and the
reaction coordinate for flipping one dipole with others being
fixed. The change of the total energy for flipping kth dipole is
evaluated as

FIG. 4. The free energy landscape �solid line� and fitted curve �dashed line�
of a distorted 3�3�3 lattice model for T=1, �x=10−2. The fitting function
is Gfit

R �x�=
k=0
3 ai�x /N�2k with parameters a6=6731.75, a4=−307, a2=3.9,

and a0=−2.26. The inset of the figure shows the histogram of �G�xi�, which
is fitted by the normal distribution �dashed line� with the average �G=0.0
and the standard deviation ��G2=0.098.

FIG. 5. The standard deviation ��G2 for the 26 dipolar system as the func-
tion of the temperature for various segment sizes.

FIG. 6. The standard deviation ��G2 /�U for the 26 dipolar system as the
function of the segment size �x /�U, where �U is the characteristic energy
scale of the system. The calculated results can be well fitted by the linear
functions in the logarithmic scales.

054504-5 Electron transfer in dipolar environments J. Chem. Phys. 126, 054504 �2007�

Downloaded 01 Feb 2007 to 130.54.50.111. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



�E��k → − �k� = − 2

j�k

hkj�k� j � − 2h̄�k

j�k

� j , �3.1�

where the interaction parameter hkj is approximated by their

mean value h̄ defined by

h̄ 

1

N


k=1

N � 1

N − 1 

j�k

hkj� . �3.2�

Similarly, the change of reaction coordinate for flipping one
dipole is given by

�x��k → − �k� = 2gk��d
P��k � 2ḡ�k, �3.3�

where the solute-solvent interaction parameter gk��d
P� is

approximated by their mean value

ḡ =
1

N


k=1

N

gk��d
P� . �3.4�

If all configurations of ��1 , . . . ,�k−1 ,�k+1 , . . . ,�N	 occur with
the same probability, 1 /2N−1, the fluctuation �standard devia-
tion� of total energy and reaction coordinate for flipping one
dipole are given by

�Eflip = 2�h̄���N − 1� , �3.5�

and

�xflip = 2�ḡ� . �3.6�

For 26 dipolar system, they are evaluated as h̄=0.9 and ḡ
=0.05, respectively, and we have �xflip=0.1 and �Eflip /N
=0.3. These values are roughly in accordance with the rela-
tion in Fig. 6 indicating that the amplitude of the notched
structure relates to the flipping energy and the corresponding
change of reaction coordinate. We should also notice that
although the true free energy landscapes have the notched
structures whose scale is much smaller than �xflip, a real
transition may occur only through the flipping of dipoles.
Therefore the structure smaller than �xflip on the free energy
landscapes may not affect on reaction processes.

B. Free energy landscapes of 92 dipolar system

Since the number of states is too large to generate for the
92 dipolar system, we sample the states using the Wang-
Landau algorithm. We calculate a density of states for the
finite segment size �x and �E. In Fig. 7, we present the
contour plot of the logarithms of density of state
ln D�x ,E��x�E for �x=10−1 and �E=1 obtained by the
Wang-Landau approach. From the density of states, the free
energy landscapes are calculated as

GR�x,T� = − kBT ln
1

C
�

−





dE�
x−�x/2

x+�x/2

dxD�x,E�

�exp�−
E

kBT
� . �3.7�

Figure 8 depicts the calculated free energy landscapes of the
reactant state GR�x ,T� /N with �x=10−1 for different tem-
peratures �a� T=10 and �b� T=1, respectively. In the same
manner as the 26 dipolar system, we estimated the freezing

temperature at Tc�4. The solid lines in Figs. 8�a� and 8�b�
are the calculated results, while the dotted lines represent
fitting curves with the parabolic function G�x�=�+��x /N�2

for the range �x /N��0.2; the parameters are chosen to be �a�
�=−7.7 and �=5.2, and �b� �=−4.6 and �=5.1. Note that
the presented results are for the specific set of the position

FIG. 7. The contour plot of the logarithms of the density of state
ln D�x ,E��x�E for the 92 dipolar system. The segment sizes of the reaction
coordinate and energy are chosen to be �x=10−1 and �E=1, respectively.
The density of states is obtained by the Wang-Landau approach.

FIG. 8. The calculated free energy landscapes for the 92 dipolar system
GR�x ,T� /N with �x=10−1 for different temperatures �a� T=10 and �b� T
=1, respectively.
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for dipoles and we found that the quadratic region of the free
energy landscape may change slightly depending on the
distribution of dipoles.

The calculated free energy landscape for the 92 dipolar
system at high temperature is depicted in Fig. 8�a�. As dis-
cussed in the 26 dipole case, the profile of the free energy
landscape is governed by the number of states n�xi� at high
temperature. If we assume the energy distribution of states in

Gaussian form with the central energy Ēi and the standard
deviation �Ei, the free energy is evaluated as

GR�xi,T� � − kBT ln
1

�2
�Ei
� n�xi�

�exp�−
�E − Ēi�2

2�Ei
2 �exp�−

E

kBT
�dE

= − kBT ln n�xi� + Ēi −
�Ei

2

2kBT
, �3.8�

where xi is the ith segment with the region xi−�x /2 and xi

+�x /2. Near the minimum of free energy surfaces �x /N�
�0.2, a number of states are involved in n�x� and, based on
the central limiting theorem, we can assume Gaussian form
for n�x�. For high temperature case, the contribution from
−kBT ln n�xi� is large and therefore we have the parabolic
energy landscapes for �x /N��0.2. For large �x /N�, however,
n�x� contains only a small number of states and n�x� deviates
from Gaussian due to the failure of the central limiting theo-
rem. �See also Fig. 7�. Consequently, GR�x ,E� shows para-
bolic and nonparabolic profiles for small and large �x /N�,
respectively. We should notice that although such feature
exists for any system, the deviation from the parabola may
be too small to observe in a real system, since it contains
tremendous degrees of freedom that make the deviation very
small.

Figure 8�b� shows the free energy landscape for T=1. In
the low temperature case, the free energy landscapes are de-
termined by the lower energy part of distribution D�x ,E�,
because the Boltzmann weight in Eq. �3.7� suppresses the
higher energy contributions. Since the lower energy part of
D�x ,E� is not a smooth function of x as illustrated in Fig. 7,
the calculated free energy landscapes at low temperature ex-
hibit notched structure as presented in Fig. 8�b�. Following
the same procedure as the 26 dipole case, we have extracted
the notched part �G�x� for all range of x and analyzed their
statistics. The amplitude of the notched part of profiles ��G2

changes depending on the size of �x. Due to the limitation of
CPU power; however, we can calculate the values of ��G2

for low temperature T=1 only for relatively large segment,
i.e., �x=0.1, 0.5, and 1. Thus, by assuming the relation be-
tween �x and ��G2 found in Sec. III A, here we have ex-
trapolated the value of ��G2 for small �x and found
ln��G2 /�U=−0.15 log �x /�U−2.87. This relation is in ac-
cordance with the change of total energy and reaction coor-
dinate for flipping one dipole represented by �Eflip /N and
�xflip. In the 92 dipolar system, we estimate the average

solvent-solvent and solute-solvent interaction energies as h̄
=0.27 and ḡ=−0.01, and therefore we have �xflip=0.02 and

�Eflip /N=0.06, respectively. From the extrapolated function,
we have ��G2=0.07 if we regard �xflip as the segment size.
This value is roughly in accordance with �Eflip /N, which
indicates the changes of energy for flipping dipoles are re-
flecting the amplitude ��G2.

For a system with large degrees of freedom, the minimal
values of �x can be very small, but, as mentioned in
Sec. III A, the energy landscape with the segment size �x
��xflip is of practical importance for reaction process.

C. Energy gap low for ET reaction rates

The free energy landscapes for GP�x ,T� is obtained from
GR�x ,T� by using Eq. �1.4�. Using the energy landscapes for
the 92 dipolar system, we calculate the activation energy
�G� as the function of energy gap −�G. If we denote the
minimum values of the reactant and product states as Gmin

R

and Gmin
P , and express the crossing point of the two surfaces

as x�, we have

GR�x�,T� − Gmin
R = GP�x�,T� − Gmin

P + �G , �3.9�

which allows us to calculate x� for fixed �G. Since the
activation energy �G� is given by

�G� = �GR�x�,T� − Gmin
R 	 , �3.10�

we can depict the energy gap law by plotting −�G� as the
function of −�G.

Figure 9 shows the energy gap dependence of the acti-
vation energy at the temperatures T=10 �dashed line� and
T=1 �solid line� calculated from the energy landscapes with
the segment size �x=0.1, which is slightly larger than �xflip.
All curves of the activation energy are symmetric with re-
spect to the minimum point, since the free energy landscape
of the reactant states is the even function. In the low tem-
perature case, T=1, the energy gap law exhibits a roughness
reflected on the notched structure of the energy landscape.
Although the profiles of the roughness may change depend-
ing on �x, the segment size smaller than �xflip is not neces-
sary to employ for studying the reaction processes. Because
the states can only change through the dipolar flipping in the
order of �xflip. Notice that the microscopic profiles of rough-

FIG. 9. The energy gap dependence of the activation energy at the tempera-
tures T=10 �dashed line� and T=1 �solid line� calculated from the energy
landscapes with �x=0.1.
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ness depend on the distribution of the dipolar positions and
if we take an ensemble average for different distributions,
such small roughness on the activation energy may not be
observed.

Due to the nonparabolic shape of energy landscapes, the
energy landscapes are not quadratic besides small �x�. The
calculated energy gap decreases faster than the quadratic
function besides the range about ��G��0.2. This deviation
becomes large for high temperature case, since the free en-
ergy landscape becomes steep as explained by Eq. �3.8�.

The energy gap low, Eq. �1.1�, indicates that the maxi-
mum reaction rate depends on the reorganization energy �.
When a temperature rises, the profile of activation energy
also shifts to the left for T�10 as illustrated in Fig. 10. For
high temperature case, the free energy landscape can be writ-
ten as GR�x ,T��−kBT ln n�x�. Since n�x� is approximated by
a temperature-independent Gaussian function for small x, we
can express the free energy as

GP�x,T� = aT�x −
1

2aT
�2

+ Gmin
P , �3.11�

where a is some constant and Gmin
P satisfies Gmin

P =Gmin
R

−1/4aT. Since the crossing point and the activation energy
are expressed as x�=�G+1/4aT and

− �G� = −
��− �G� − ��T��2

4��T�
, �3.12�

respectively, the peak position of the activation energy is
equal to the reorganization energy ��T�=1/4aT. The
peak positions of the calculated results are plotted in
Fig. 10. These results are well fitted by ��T�=1/4aT with
a=4.9�10−3 as illustrated by the solid line in the figure.
For studying the solvation saturation effect, Milischuk and
Matyushov utilized the relation that the reorganization en-
ergy is proportional to 1/T for a dipolar solvation system at
constant volume.45 The present results are consistent with
their analysis.

IV. CONCLUSION

We calculated the free energy landscape by generating
all possible states for a 26 dipolar system and by using the
Wang-Landau sampling algorithm for a 92 dipolar system.
Using the results from the 26 dipolar system, we analyzed
the notched structure of the free energy profiles for different
segment sizes of reaction coordinate �x. The notched part
arose due to the difference of the lowest energy state be-
tween the segments. The amplitude �the standard deviation�
of the notched part ��G2 increased as the segment size de-
creased especially for low temperature. The relation between
the segment size and the amplitude was in accordance with
the relation between the change of reaction coordinate �xflip

and the total energy �Eflip for flipping a dipole of the system.
Although the true free energy landscapes had notched struc-
tures whose scale is smaller than �xflip, a real transition may
occur only through the flipping of dipoles and therefore the
scale of �x smaller than that of �xflip may not affect on the
reaction processes.

We analyzed the profiles of energy landscapes in the 92
dipolar system and found that the free energy landscape
showed a parabolic shape for the small reaction coordinate
region at high temperature as the Marcus theory predicted. In
the large reaction coordinate region, the profiles exhibited a
nonquadratic shape, since the number of states for such seg-
ment region was very few and the distribution of states be-
comes non-Gaussian. At low temperature, we estimated the
amplitude of notched part and compared with �xflip and
�Eflip for the 92 dipolar system. These values were also in
accordance with the relation between �x and ��G2. Al-
though we could not calculate ��G2 for very small �x, we
could evaluate ��G2 for any �x with the relation found in
the 26 dipolar system. We should mention that the solvent
dipoles used in this model are restricted to point toward and
opposite to the central solute dipole. This makes a system
extremely frustrated and the energy of the solvent dipoles in
the equilibrium state becomes much higher than that of a
crystal with dipolar orientational relaxation. The free energy
landscapes below the freezing temperature may be smoother
for a realistic system due to the continuity of rotational mo-
tion of a solvent dipole.

Finally, the activation energy as the function of the en-
ergy gap was calculated by using the free energy landscape
for the 92 dipolar system. At high temperature, the bell
shaped reaction rate was observed. Due to the nonquadratic
free energy landscape, the nonquadratic dependency ap-
peared as the energy gap increased. Thus the profile of the
calculated reaction rate became steeper than that derived
from the quadratic free energy landscape. When the tempera-
ture decreased, the parabolic profile of activation energy
�G� also shifted to the lower energy part of −�G, since the
value of the free energy was proportional to the temperature
at the high temperature regime. At low temperature, the pro-
file of the reaction rate became rough due to the notched
structure of the free energy landscape. The appearance of
roughness depended on the distribution of dipolar positions
and if we take an ensemble average for different distribution
of dipoles, this roughness may not be observed. In such case,

FIG. 10. The reorganization energy, ��T�, which gives the minimum acti-
vation energy is plotted for different temperatures for T�10 �dots�. The
solid line represents the fitting curve, ��T�=1/4aT, with a=4.9�10−3.
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one should explore dynamical as well as thermal aspects of a
system by means of nonlinear response function to separate
inhomogeneous and homogeneous contribution of reaction
processes.46 We leave these for future studies.
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