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Two-dimensional spectroscopy for a two-dimensional rotator coupled
to a Gaussian–Markovian noise bath

Yoko Suzukia) and Yoshitaka Tanimura
Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

~Received 22 November 2002; accepted 9 April 2003!

The dynamics of a system in the condensed phase are more clearly characterized by multitime
correlation functions of physical observables than by two-time ones. We investigate a
two-dimensional motion of a rigid rotator coupled to a Gaussian–Markovian harmonic oscillator
bath to probe this issue. The analytical expression of a four-time correlation function of a dipole that
is the observable of two-dimensional microwave or far-infrared spectroscopy is obtained from a
generating functional approach. The spectra in the absence of damping are discrete and reveal
transitions between eigenstates of the angular momentum quantized due to the cyclic boundary
condition. For a weakly damped case, the two-dimensional spectrum predicts three echolike peaks
corresponding to transition processes between the rotational energy levels, which cannot be
observed in one-dimensional~linear-absorption! spectroscopy related to the two-time correlation
function of the dipole@J. Phys. Soc. Jpn.71, 2414~2002!#. The two-dimensional spectra are more
sensitive to the noise effects than the one-dimensional spectra. It is because the effects of the initial
thermal distribution determine the profile of the continuous line shape in one-dimensional
spectroscopy, while such thermal effects are canceled through the higher-order optical transition
process in two-dimensional spectroscopy. If the rotator system is strongly coupled to the colored
noise bath, the system exhibits one overdamped and other oscillatory motions. We observe peaks
arising from interaction between these two modes in the two-dimensional spectra, which are difficult
to distinguish in one-dimensional spectra. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1578630#
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I. INTRODUCTION

Femtosecond nonlinear optical spectroscopies h
proven to be valuable and versatile tools for investigating
structural and dynamical properties of a molecular system
the condensed phase.1 The properties of the system can b
studied by measuring the change of the molecular dipole
Raman polarizability after exciting the system from an eq
librium state by applying external laser pulses. Due to
static inhomogeneity and/or dynamical relaxation, the
served spectral line shapes are broadened and it is not ea
analyze the mechanisms of molecular interactions, wh
govern many chemical processes including chemical re
tions. Multidimensional laser spectroscopy, which is an a
logue to multidimensional nuclear magnetic resonance s
troscopy, may overcome this problem by employing comp
pulse sequences that suppress specific contributions
spectrum selectivity arising from inter- and/or intr
molecular couplings.

Theoretically, it has been shown that an appropriate m
tidimensional representation of the optical signal in Ram
or IR measurements provides an interpretable depiction
the structural and dynamical properties in relation to the
homogeneous distribution,2 the anharmonicity,3,4 intermo-
lecular interactions ~between atoms of differen
molecules!5–10and/or intramolecular interactions~i.e., the in-
teractions between the atoms of a molecule!,11–17 relaxation
mechanisms,18–20 and wave packet dynamics.21 Experimen-

a!Electronic mail: youko@ims.ac.jp
1650021-9606/2003/119(3)/1650/11/$20.00
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tally, some of these features have been studied by t
dimensional Raman and IR spectroscopies. Fifth-order
man spectroscopy has been performed on intermolec
vibrations of liquids CS2 ~Refs. 22–24! by minimizing cas-
caded third-order ~four-wave mixing! contributions.25,26

These experimental results indicate the existence of an
monic vibrational modes. Nodal lines in the spectrum ha
been found in molecular dynamics simulation for liquid C2
by Saito and Ohmine10 that may be explained by some co
tributions to the signal from the nonlinearity of the polari
ability in addition to the anharmonicity.3 Experimental evi-
dence for this effect has also been reported.24 A second-order
IR signal carries the same information as the fifth-order R
man one, but due to the isotropy of liquids such measu
ments are impossible except for anisotropic conditions s
as adsorbed molecule on the metallic surface.27 Therefore,
the most applicable two-dimensional IR process is third
der, which carries the equivalent information as seven
order Raman processes.28–31 For either Raman or IR, the
signal in this order is even weaker than fifth-order Raman
the vibrational modes are purely harmonic, because the
nal is proportional to the square of the second-order non
ear polarizability or dipole moment.2 To date, two-
dimensional~2D! IR measurements have been carried o
primarily for intravibrational motions, where the anharm
nicity of the potential or mode-couplings is reasonab
strong. For example, the 2D Fourier plots of the three pu
vibrational echo technique applied to a dipeptide molec
illustrate the coupling between two amid-I modes.32 The de-
0 © 2003 American Institute of Physics
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gree of the correlation among vibrational modes in the c
formational fluctuations of peptides16,33,34 and small
molecules35 have also been investigated by 2D IR spectr
copy. In parallel with these investigations, researchers h
explored two-dimensional spectroscopy in a broader cont
second harmonic generation,36 DOVE spectroscopy,37,38

combination of IR and optical sources,12,27 etc. Such experi-
mental efforts provide further stimulus for theoretic
studies.39–43

The above-mentioned 2D spectroscopies have been
lized to investigate the vibrational motions arising fro
intra- and intermolecular interactions. In the short tim
range, typically from femtoseconds to picoseconds, col
tive motions play a central role. In the long time range, ty
cally from a few picoseconds to nanoseconds depending
the molecular size and on the viscosity, the orientational
fusion of a single molecule becomes very important. T
picture of a single molecule librating in the potential we
made up by the surrounding molecules is acceptable fo
slow solute in a fast solvent. For understanding molecu
dynamics, rotational motions are as important as vibratio
ones.44–48 It has been shown that the rotational relaxati
plays a major role in dielectric absorption49 and dispersion,
the IR, far-IR, or rotational-Raman spectra50,51 of solutions.
But, due to the inhomogeneity and damping, experime
have had difficulty observing some important features s
as quantum effects, e.g., rotational-energy discretization
transition between energy levels where energy gaps dep
on the quantum number, which cannot be seen in the
monic oscillator case. In this paper, we demonstrate that
can extract more information for rotational motions by u
lizing two-dimensional spectroscopy.

To obtain an analytical expression for the third-ord
far-IR or microwave response function, we use the gene
ing functional for a quantal two-dimensional rotator coupl
to a heat-bath. This approach has been used previous
study linear absorption spectra of the damped rotator, tak
into account noise correlation effects.52 The present study is
an extension of this work. In Sec. II, we present the mo
Hamiltonian and the analytical expression of the fourth-or
correlation function for the dipole moment for the case
Gaussian–Markovian noise, as derived from the genera
functional obtained previously.52 The calculational details ar
shown in Appendix A. The numerical results and their d
cussions are presented in Sec. III.

II. RESPONSE FUNCTION FOR OPTICAL PROCESSES

We consider the Hamiltonian of the two-dimensional r
tator system coupled to an environment in the form

Ĥ5
L2

2m
1(

i
F p̂i

2

2mi
1

miv i
2

2 S q̂i2
ciu

miv i
2D 2G . ~2.1!

Here, L and u are the angular momentum defined byL
[(\/ i )]/]u and the angular coordinate, respectively. T
angular coordinate is2p<u,p with u52p and u5p

identified. The operatorsq̂i andp̂i and the parametersmi and
v i denote the coordinate, conjugated momentum, mass,
frequency of thei th bath oscillator, where the bath operato
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q̂i andp̂i commutate with the system operatorsu andL. The
coupling constant between the system and thei th bath oscil-
lator is given byci . Note that the original rotational symme
try of the rotator recovers after tracing out the bath degr
of freedom owing to the properties of the Gaussian integ
tion. In the classical limit, we can reduce to the classi
Langevin equation for the rotational motion from Eq.~2.1!.52

We consider the optical response of the rigid rotator
the system interacts with a laser fieldE(t), the effective
Hamiltonian including the laser interaction is given byĤeff

5Ĥ2E(t)d0 cosu, whered0 is the intensity of the dipole
moment. We assume the system first interacts withN pulses
for the Nth-order optical process and the last pulseET(t) is
the probe to detect the rotational state. Since the even-o
response vanishes due to rotational symmetry of the mo
we study the odd-order responses. The laser pulses ar
sumed to be impulsive and are configured for the~i! first-
and ~ii ! third-order processes as

~i! E1~ t !5d~ t !, ET~ t !5d~ t2T1!, ~2.2!

~ii ! E1~ t !5d~ t !, E2~ t !5d~ t2T1!,

E3~ t !5d~ t2T12T2!, ~2.3!

ET~ t !5d~ t2T12T22T3!.

The optical signals are expressed by theNth-order response
functions as I (N)(T1 ,T2 , . . . ,TN)}R(N)(TN , . . . ,T2 ,T1),
which are the (N11)-time correlation functions of the di
pole momentd̂5d0 cosu given in terms of1

R(N)~TN , . . . ,T2 ,T1!

5S i

\ D N

d0
N11^@@@•••@cosu~ t0!,cosu~ t1!#, . . . #,

cosu~ tN21!],cosu~ tN!] &, ~2.4!

where we sett i5T11T21•••1TN2 i ~for i 50,1, . . . ,N
21) and tN50. Here, cosu(t)[eiĤt/\cosu e2iĤt/\ and
^•••& means the expectation value of ‘‘••• ’’ defined by

^•••&5Tr (e2bĤ
•••)/Tr e2bĤ in which b is the inverse

temperature. Note that Eq.~2.4! corresponds to the (2N
11)th-order off-resonant Raman response by the repla
ment of d̂ with the polarizabilitya.1,2

The Nth-order response functions are derived from t
generating functional, as shown in Appendix A. The fir
order response was studied in Refs. 52 and 53. The th
order response function forT1 ,T2 ,T3.0 ~i.e., t0.t1.t2

.t3) derived from Eq.~A12! is given by

R(3)~T3 ,T2 ,T1!

5S i

\ D 3

^@@@cosu~ t0!,cosu~ t1!#,cosu~ t2!#,cosu~ t3!#&

52
1

L\3
~RA

(3)~T3 ,T2 ,T1!1RB
(3)~T3 ,T2 ,T1!

1RC
(3)~T3 ,T2 ,T1!!, ~2.5!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereL5( l e2m8(2p l )2/(2b\2) with m85m1( j cj
2/(mjv j

4).
Here, the expression of the functionsRA

(3) , RB
(3) , and RC

(3)

are given in Appendix B. We consider the two-dimension
profile of the third-order response by settingT250. Then Eq.
~2.5! reduces to

R(3)~T3 ,T250,T1!

52
1

L\3
~RA

(3)~T3 ,T250,T1!1RB
(3)~T3 ,T250,T1!

1RC
(3)~T3 ,T250,T1!!, ~2.6!

where

RA
(3)~T3 ,T250,T1!

5RB
(3)~T3 ,T250,T1!

5(
l

H expS 2
m8(2p l )2

2b\2 D coshS 2p l

b\
~T11T3! D J

3exp@2 i\K̄0
(11)~T11T3!#

3FsinS \

2
K0

(12)~T3! D G2

sinS \

2
K0

(12)~T11T3! D ,

~2.7!

RC
(3)~T3 ,T250,T1!

5(
l

H expS 2
m8(2p l )2

2b\2 D coshS 2p l

b\
~2T11T3! D J

3exp@ i\~22K̄0
(11)~T1!22K̄0

(11)~T3!

1K̄0
(11)~T11T3!!#FsinS \

2
K0

(12)~T3! D G2

3sinF\2 ~K0
(12)~T11T3!22K0

(12)~T1!!G . ~2.8!

The functionK0
(12)(t) is denoted in the Laplace represen

tion as

K0
(12)@z#5

1

mz21mĝ@z#z
, ~2.9!

whereĝ@z# is the Laplace transform of the mass independ
damping kernel described asĝ@z#[( i ci

2z/@mmiv i
2(z2

1v i
2)#. The functionK̄0

(11)(t) is expressed as

K̄0
(11)~ t ![K0

(11)~ t !2K0
(11)~0!, ~2.10!

where the Laplace representation ofK0
(11)(t) is given by

K0
(11)@z#5 (

n52`

`

e2 inn01F i

2 S K0
(12)@nn#

z1nn

1
K0

(12)@2nn#

z2nn
D 2

izK0
(12)@z#

z22nn
2 G , ~2.11!

with nn[2pn/(b\). In order to deal with dissipation, w
introduce the spectral density of the environmental coup
Downloaded 09 Sep 2003 to 130.54.50.201. Redistribution subject to A
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I (v)[p( i ci
2/(2miv i)d(v2v i) and we regardI (v) as a

smooth function ofv. With the aid of the spectral density
the heat bath is characterized by the mass independent d
ing kernelg(t)[*0

` dv 2I (v)cos(vt)/(pmv), which implies
the noise correlation function. In this paper, we assu
Gaussian–Markovian noise,g(t)5gvDe2vDt with I (v)
5mvgvD

2 /(vD
2 1v2), whereg and vD correspond to the

damping strength and the inverse correlation time of
fluctuations.54 We note that such a dissipation reduces
Gaussian-white noise in the limitvD→`. For Gaussian–
Markovian noise, the third-order response function Eq.~2.6!
is expressed in terms of the functions

K̄0
(11)~ t !5

i

b\m (
l 51

`
e2n l t21

n l

2gvD
2

~n l
21gvD!22n l

2vD
2

2
i t

b\mg
1

i

4mzgvD
F S vD

2
1z D 2

3~12e2(vD/22z)t!cotFb\~vD22z!

4 G
2S vD

2
2z D 2

~12e2(vD/21z)t!

3cotFb\~vD12z!

4 G G , ~2.12!

K0
(12)~ t !5

1

mg
1

e2 ~vD/2! t

mz S 12
vD

2g D sinh~zt !

2
e2 ~vD/2! t

mg
cosh~zt !, ~2.13!

where

z5
vD

2
A12

4g

vD
. ~2.14!

Putting g50 into Eq. ~2.6!, we obtain the third-order re
sponse of the rotator without damping,

R(3)~T3 ,T250,T1 ;g50!

52
1

L0\3
~RA0

(3)~T3 ,T250,T1!1RB0
(3)~T3 ,T250,T1!

1RC0
(3)~T3 ,T250,T1!!, ~2.15!

where L0 is defined asL05( l e2bEl and RA0 , RB0 , and
RC0 are derived from the substitutiong50 into RA , RB ,
andRC , and are expressed as

RA0
(3)~T3 ,T250,T1!5RB0

(3)~T3 ,T250,T1!

5(
l

S e2bEl2ebEl 11

8 D S 2 sinF \

2m
[ ~2l 11!~T11T3!] G

2sinF \

2m
@~2l 11!T11~2l 13!T3#G

2sinF \

2m
@~2l 11!T11~2l 21!T3#G D , ~2.16!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



i-
o

t
rm

s
ne
53
r
t

nc
at
ve

yl

on
ia

e

om
f t

tim

to
on
o

i-

for
-

tion

for

1653J. Chem. Phys., Vol. 119, No. 3, 15 July 2003 Two-dimensional spectroscopy for a two-dimensional rotor
RC0
(3)~T3 ,T250,T1!

52(
l

S e2bEl2ebEl 11

8 D S 2sinF \

2m
[ ~2l 11!~T12T3!] G

2sinF \

2m
@~2l 11!T12~2l 13!T3#G

2sinF \

2m
@~2l 11!T12~2l 21!T3#G D . ~2.17!

III. NUMERICAL RESULT

In this section, we calculate the third-order far-IR or m
crowave response functions for the rigid rotator coupled t
bath with Gaussian–Markovian noise using Eqs.~2.5!–~2.8!.
We study a frequency-domain two-dimensional signal tha
the absolute value of the two-dimensional Fourier transfo
of the third-order response atT250 @i.e., I (3)(v3 ,v1)
5u Ī (3)(v3 ,v1)u],

Ī (3)~v3 ,v1!5E
0

`

dT1E
0

`

dT3eiv1T11 iv3T3

3R(3)~T3 ,T250,T1!. ~3.1!

As will be shown in the following, 2D spectroscopy give
more information on the system dynamics than the o
dimensional~1D! spectroscopy presented in Refs. 52 and
In 1D absorption spectra, a spectral line for the damped
tator exhibits a continuous band whose width depends on
temperature, the damping strength and the cutoff freque
whereas, in 2D spectroscopy, a signal for the damped rot
shows the transition between discrete rotational energy le
that cannot be observed in 1D spectra.

For a demonstration purpose, we choosem52310247

kg m2, which is the value for the rotation motion of meth
group ~–CH3). Hereafter, we employed the parametera
[\/(2m)52.6 THz. The heat bath corresponds to the n
polar solvent whose effects are characterized by a Gauss
Markovian damping kernel.

In Fig. 1, we plot the 2D signalI (3)(v3 ,v1) for a free
rotator at~a! T51 K and~b! T5100 K by using Eqs.~2.15!
and ~3.1!. The peaks rise at (v1 ,v3)5((2l 11)a,6(2l
11)a), ((2l 11)a,6(2l 13)a), and ((2l 11)a,6(2l
21)a) ( l 50,61,62, . . . ). Thepeak width is zero and the
area of the circle at each peak in Fig. 1 represents the p
intensity.

The position of the peaks can be understood fr
double-sided Feynman diagrams. Figure 2 shows some o
double-sided Feynman diagrams forR(3)(T3 ,T2 ,T1). In
these diagrams, the upper horizontal line presents the
evolution of the left-hand side wave function~ket! whereas
the lower represents the right-hand side~bra!. We assume the
system is initially in the ground state denoted byu l &^ l u,
whereu l & is an eigenstates ofL denoted byLu l &5\ l u l &. The
arrows at the timet2t I50, T1 , and T11T2 stand for the
interactions with the radiation field and the arrow atT1

1T21T3 stands for the last probe field. An arrow pointing
~starting from! an upper horizontal line leads to the transiti
from u l & to u l 11& (u l 21&), whereas an arrow pointing t
Downloaded 09 Sep 2003 to 130.54.50.201. Redistribution subject to A
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~starting from! a lower horizontal line assigned to the trans
tion from u l & to u l 21& (u l 11&). By putting each arrow to the
upper or lower horizontal line, we have 96 diagrams
R(3)(T3 ,T2 ,T1), where two arrows point to the ladder dia
gram and two arrows start from it. In the present caseT2 is
set to be zero.

If the state during the periodT1 and the state duringT3

are denoted byu l 1&^ l 18u and u l 3&^ l 38u, we obtain the factor
e2 iaw13(T1 ,T3)[e2 i [(El 1

2El 18
)T11(El 3

2El 38
)T3]/\ with El5\a l 2,

where the stateu l I&^ l i8u ( i 51,3) for l IÞ l i8 and that for l I

5 l i8 refer to the coherence between states and the popula
state, respectively. By calculatingw13 from Fig. 2, we can
assign the peak positions at~a! (2(2l 11)a,2(2l 11)a),

FIG. 1. Two-dimensional signalI (3)(v3 ,v1) for a free rotator at~a! T51 K
and ~b! T5100 K.

FIG. 2. Examples of the double-sided Feynman diagram
R(7)(T3 ,T2 ,T1).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~b! (2(2l 11)a,2(2l 13)a), ~c! (2(2l 13)a,2(2l
11)a), ~d! ((2l 11)a,2(2l 11)a), ~e! ((2l 13)a,2(2l
11)a), and ~f! ((2l 11)a,2(2l 13)a) ( l 50,61, . . . ) to
the diagrams~a!–~f! in Fig. 2, respectively.

From Eqs.~2.15!–~2.17!, we see that the peak intensitie
depend on the initial thermal distribution. Since the init
thermal distribution for the initial stateu l &^ l u is given by
e2b\a l 2, the distribution of the peaks spread to the high f
quency region with the increase in temperature, as show
Figs. 1~a! and 1~b!.

Let us consider the case of the weakly damped rota
(g,a). Figure 3 shows the absorption spectra at the te
perature~a! T51 K and ~b! T5100 K for the damping
strength and the cutoff frequency set as~i! g51.33106 Hz,
vD5` ~solid line!, ~ii ! g51.331011 Hz, vD5` ~dashed
line!, and~iii ! g51.331011 Hz, vD50.1g ~dotted line!. As
can be seen from Fig. 3, the absorption spectra are not
sensitive to the noise effect represented byg and vD : the
solid line agrees with the dotted one in Fig. 3~a!, and the
three lines~solid, dashed and dotted lines! in Fig. 3~b! cannot
be distinguished.

Figure 4 shows the 2D signalI (3)(v3 ,v1) for same set
of parameters in Figs. 3~i!–3~iii ! at different temperatures~a!
T51 K and~b! T5100 K. The noise effect is clearer in th
2D signal than in the 1D signal. In Fig. 4, the signals ha
peaks alongv152v3 andv152v36a except Fig. 4~b-ii!,
where the peaks are broadened and appear as a line of p
alongv152v3 . Hereafter we will use the term ‘‘an antidi
agonal peak line’’ to refer to the peaks alongv1

52v31(constant).
The peaks in Fig. 4 are explained from the diagra

given in Figs. 2~d!–2~f!. For the damped rotator, the diagra
in Figs. 2~a!–2~c! and Figs. 2~d!–2~f! give rise to the factors
( l r l 11ei\ l (T11T3)/m and( l r l 11ei\ l (2T11T3)/m, respectively,
where l implies the angular momentum andr l

[e2b\2l 2/(2m). Since the linear coupling between the he
bath and the system changes the moment of inertiam to m8

FIG. 3. Absorption spectra for the damped rotator at the temperature~a! T
51 K and~b! T5100 K. The damping strength and the cutoff frequency
set as~i! g51.33106 Hz, vD5` ~solid line!, ~ii ! g51.331011 Hz, vD

5` ~dashed line!, and~iii ! g51.331011 Hz, vD50.1g ~dotted line!.
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being infinity in the Gaussian–Markovian noise, thel depen-
dence of the initial distribution functionr l becomes infini-
tesimal. After summing overl for T1 ,T3.0, the diagrams
~d!–~f! in Fig. 2 lead the echolike tails along the diagon
T15T3 in the 2D time-domain signal which give rise to th
three ‘‘antidiagonal peak lines’’ in frequency domain
shown in Fig. 4, whereas the contributions of the diagram
Figs. 2~a!–2~c! are small due to the cancellation between t
termsei\ l (T11T3)/m ( l 50,61, . . . ).

The diagrams in Figs. 2~d!–2~f! give the additional
phases that are independent of the angular momentuml; ~d!
e2ia(2T11T3), ~e! e2ia(23T11T3), and~f! e2ia(2T113T3). They
induce thev3-axis intercepts in the contour plot of the 2
signal. Figures 2~d!, 2~e!, and 2~f! correspond to the peak
along v352v1 , v352v112a and v352v122a. The
three ‘‘antidiagonal peak lines’’ in the 2D spectrum are
characteristic feature of the quantum rotator system.

We note that, for the damped Brownian rotator, inform
tion about the energy gap between the rotational level can
be obtained in the 1D spectra. The 1D spectrum revea
continuous broad peak that reflects the initial thermal dis
bution, because the system-bath coupling suppresses th
fect of the energy discretization arising from the period
boundary condition.52,53 In the 2D case, however, since suc
system-bath coupling effects are canceled out by superpo
the coherences duringT1 andT3 with respect to each energ
level, we observe the discretization of energy levels as th
distinct peaks parallel to thev35v1 direction ~diagonal di-

FIG. 4. Two-dimensional signalI (3)(v3 ,v1) for a weakly damped rotator a
~a! T51 K ~left column! and ~b! T5100 K ~right column!. The damping
parameters are set as~i! g51.33106 Hz, vD5`, ~ii ! g51.331011 Hz,
vD5`, and~iii ! g51.331011 Hz, vD50.1g.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rection!, which reflect the transition processes shown in Fi
2~d!–2~f!.

Notice that such three antidiagonal peaks are cause
the quantization of the angular momentum and they will v
ish in the classical limit where the angular momentum
continuous.

By comparing Figs. 4~a-i!, 4~a-ii!, and 4~a-iii! with Figs.
4~b-i!, 4~b-ii!, and 4~b-iii !, respectively, we find that the
peaks parallel to the linev152v3 shift to the high fre-
quency as temperature increases because the effects o
initial thermal distribution remain in the spectral line alon
the v352v1 direction ~antidiagonal direction!. Such tem-
perature dependence of the peak shift was also observe
the 1D absorption spectra.53

For smallg satisfyingg!a @Figs. 4~a-i! and 4~b-i!#, the
approximated expression of the third-order response,
~2.6!,

R(3)~T3 ,T250,T1!

.2
1

\3
sin2~aT3!@2e2(T11T3)2/(2mb)sin$a~T11T3!%

1e2(2T11T3)2/(2mb)sin$a~2T11T3!%#, ~3.2!

indicates the continuous broad band along the antidiag
direction, which has been mentioned earlier. The tempera
dependence of the linewidth along the antidiagonal direc
is provided by the factore2(2T11T3)2/(2mb) in Eq. ~3.2!, be-
cause the contribution of the second term in square brac
is more dominant than the first term forT1 ,T3.0 due to the
factor e2(6T11T3)2/(2mb).

Comparing Figs. 4~a-ii! and 4~b-ii! with Figs. 4~a-i! and
4~b-i!, respectively, we find that the linewidths along t
v35v1 direction ~diagonal direction! become broader with
increasing damping, because, in this direction, the effect
the initial thermal distribution are canceled out through
higher-order optical process and the damping effects bec
apparent. It should be emphasized again that the sensit
of the 2D spectral line along the diagonal direction to t
damping effect cannot be observed in 1D spectra~Fig. 3! in
which the initial thermal distribution contributes mo
strongly than the damping effect.

Figures 4~a-iii! and 4~b-iii ! show the colored noise cas
In this case, the effective damping strength becomes we
than in Figs. 4~a-ii! and 4~b-ii!, because it is expressed a
ug(v)u with g(v)5g/(12 iv/vD). Hence the linewidth
along the diagonal direction in Fig. 4~a-iii! @Fig. 4~b-iii !# is
narrower than that in Fig. 4~a-ii! @Fig. 4~b-ii!#.

Next, we study the strongly damped case, where
damping effects are larger than quantum and thermal effe
i.e., g@a and g@(b\)21. Figure 5 shows the 2D spectr
for the strongly damped case for~a! vD5`, i.e., the Ohmic
dissipation, and~b! vD50.1g for fixed g51.331014 Hz and
T550 K. In order to study the signals in detail, we consid
them in section as in the right@Figs. 5~a8! and 5~b8!# and the
above contour plot@Figs. 5~a9! and 5~b9!#, which are the
signals atv1 /a516 and atv3 /a532, respectively. For the
Ohmic case@Fig. 5~a!#, the peak at (v1 ,v3)5(0,0) corre-
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sponds to the strongly damped rotational motion as state
Ref. 52.

For the case of the small cutoff frequency in the color
noise, satisfyingvD,g @Fig. 5~b!#, we observe peaks a
(v1 ,v3)56(V̄,n3V̄) (n350,61,62,63) and (v1 ,v3)
5(0,n38V̄) (n3850,61,62), whereV̄515.8a, in addition
to the peak at the origin. The shape of the 2D spectrum
different from that for the weakly damped rotator and simi
to that for the vibrational motion.

Such features are interpreted as follows: Suppose
the frequency of the bath oscillatorsv i are distributed in the
narrow range around some frequencyv0;0 (v0Þ0) due to
the small cutoff, the Hamiltonian~2.1! is approximated with
a typical coordinate and conjugated momentum of the b
oscillator, x̂0 and p̂0 , by

Ĥ5
L2

2m
1

1

2
mV̄2u21

p̂0
2

2m̄
1

1

2
m̄v̄2q̂0

22 c̄q̂0u1Ĥ8,

~3.3!

where V̄5AgvD, 1/m̄5( i(1/mi), v̄25(mi v i
2/m̄, c̄

5( i ci , and Ĥ8 is the higher-order terms of (q̂i2q̂0) or
( p̂i2 p̂0) given by

FIG. 5. Two-dimensional signalI (3)(v3 ,v1) for a strongly damped rotator
for ~a! vD5` and ~b! vD50.1g, and for fixedg51.331014 Hz and T
550 K. The right and the above of the contour plot,~b!-1 and~b!-2, are the
signals atv1 /a516 andv3 /a532, respectively.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Ĥ85(
i

F ~ p̂i2 p̂0! p̂0

mi
1miv i

2~ q̂i2q̂0!S q̂02
ciu

miv i
2D G

1(
i

F ~ p̂i2 p̂0!2

2mi
1

miv i
2

2
~ q̂i2q̂0!2G . ~3.4!

In Eq. ~3.3!, we have used the relation,*0
` dvI (v)dv

5( i ci
2/(2miv i

2)5mgvD/2. The lowest order of (q̂i2q̂0)
or (p̂i2 p̂0) can be diagonalized,

Ĥ; (
j 5I,II

F py
j
2

2Am̄m
1Am̄ml j

2yj
2G , ~3.5!

where A5A(V̄22v̄2)214c̄2/(mm̄) and l I,II

5A(V̄21v̄27A)/2. In Eq.~3.5!, the normal modes I and I
have been introduced as

yI5 f 11u1 f 12q̂0 , ~3.6!

yII5 f 21u1 f 22q̂0 , ~3.7!

andpyj
is the conjugated momentum ofyj , where the coef-

ficients f jk ( j ,k51,2) are given in Appendix C. Forv̄/V̄
!1, the normal mode frequencies are approximately gi
by l I;0 (l IÞ0) andl II;V̄. The coupling betweenq̂0 , p̂0 ,
u and oscillators denoted by the coordinate (q̂i2q̂0) and the
momentum (p̂i2 p̂0) in the higher-order termĤ8 causes the
damping of the normal modesyI andyII . Modes I and II can
be assigned to the overdamped motion and the dampe
brational motion, respectively.

Since the angular coordinate is expressed asu

52Am̄( f 11yI1 f 12yII), the laser excitation with the dipol
moment d0 cosu5d0 cos@2Am̄(f11yI1 f 12yII)# causes multi-
quanta excitation–de-excitation processes for mode I
mode II described by (yI)

n1(yII)
n2 (n1 ,n250,61,

62, . . . ). Thepeak positions can be understood in terms
diagrams similar to Fig. 2. We consider the stateunI ,nII&
wherenI andnII are the quantum number for modes I and
respectively. The interaction between the laser and the
tem (}d0 cos@2Am̄(f11yI1 f 12yII)#) induces the transition
unI ,nII& to unI1DnI ,nII1DnII& (DnI ,DnII50,61,
62, . . . ). Such diagrams can lead to the peak posit
(v1 ,v3)5(n1V̄,n2V̄), wheren1 and n2 are integers. For
example, the peak at the origin corresponds to
excitation–de-excitation process for mode I and the peak
6(V̄,n8V̄) (n50,62) reveal the transition processes f
mode II, which are originated from the coherence with t
frequencyV̄ in the time periodT1 and that with 2V̄ in the
time period T3 . The peaks at (0,nV̄) (n561,62) arise
from the cross termsū Iū II , ū I

2ū II , and ū Iū II
2 that are in-

cluded in the dipole moment.
Notice that the two normal modes are observed in

absorption spectra; the dashed and dotted lines in Fig.
Ref. 52. However, the 2D spectra give more detailed inf
mation on these peaks. In addition to the information for
overdamped mode and the vibrational mode, their coup
mechanism through the nonlinear dipole moment is revea
Downloaded 09 Sep 2003 to 130.54.50.201. Redistribution subject to A
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It should also be noted that we can observe two such nor
modes in the strongly damped Brownian oscillator syst
for the small cutoff frequency.55

IV. CONCLUSION

In this paper, we calculated the four-time correlati
function for a damped two-dimensional rotator described
the Hamiltonian~2.1! from the generating functional ob
tained in Ref. 52. The result is fully quantum, however, a
offers a clear physical insight into the relation between
classical and quantum regimes. Using this expression@Eqs.
~2.5!–~2.8!#, we plot 2D spectra corresponding to the fa
infrared or microwave photon echo experiment in the case
Gaussian–Markovian noise for various coupling strengt
noise correlation times, and temperatures.

For a free rotator case, 2D spectra reveal three line
discrete peaks which are parallel to the echo linev3

52v1 ; each peak corresponds to a rotational level tran
tion for a specific Liouville pathway. If we include the hea
bath, these discrete peaks are merged into three line
peaks. This is because, for this linear–linear system-b
coupling model, the effective mass of the rotator becom
essentially infinity due to the masses of bath oscillators. T
effect reduces the energy differences between the peak
infinitely small separations as discussed in the o
dimensional case.53 Although the discrete peaks along th
lines vanish, even for the weak damping case, we can
extract the quantum effects as the separation of three line
peaks in the present two-dimensional measurement. T
separation is possible because the linewidths along thev3

52v1 direction depend on the temperature through the
tial distribution, while the linewidths along thev35v1 di-
rection are not sensitive to the temperature but the damp
because the effects of the initial thermal distribution involv
in the Liouville paths are canceled out in this higher-ord
optical process. When the damping becomes strong, the t
lines of peaks are broadened and merge to a featureless
If the noise correlation time is very long for the strong
damped case, however, the signals exhibit a very differ
behavior. We observe an overdamped peak and an oscilla
peak and their cross peaks. These peaks can be related t
normal modes, an overdamped mode and vibrational o
arising from the collective motion of the free rotator and ba
oscillators, in which the bath oscillators behave like a sin
mode oscillator due to the narrow spectral width. Such f
tures can be seen in the 1D case, but 2D spectra more cle
indicate the origin of these two peaks.

In the present study, we focused on the analysis of
single rotator system linearly coupled with the heat-bath.
though this model reduces to the Langevin equation in
classical limit, this is by no means the only model as
damped rotator system. An alternative model will be to co
sider different system-bath couplings, which satisfies the
clic boundary condition of the rotator coordinate witho
tracing over the heat-bath degrees of freedom. Generaliza
to a three-dimensional rotator system is also important
some molecules at low temperatures where the quantum
fects play a role.56 To account for experiment results, such
the infrared optical response of dielectric molecular liqu
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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or peptides, one may need to consider many rotators in
acting with each other through dipole–dipole interactio
Comparison between the results from a model calcula
and molecular dynamics simulation are also important to
tify the validity of the model. Critical checks for the validit
of the model may be done by comparing calculated tw
dimensional signals with experimental studies. Such co
parison would help quite the proper description of the c
pling to the bath and the dipolar interaction.
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APPENDIX A: MULTITIME CORRELATION
FUNCTIONS AND THEIR GENERATING FUNCTIONAL

In this Appendix, we present the higher-order respo
function in the two-dimensional rotator system coupled t
heat bath. Consider the generating functionalZ@K# defined
as

Z@K#5Tr~ r̂ I
K3ÛK2

† ~`,t I !ÛK1
~`,t I !!, ~A1!

where

ÛKa
~`,t I !5TtS expS 2

i

\ E
t I

`

dt(Ĥ2Ka(t)cosu) D D ~A2!

and

r̂ I
K35TtS expS 2

1

\ E
0

b\

dt(Ĥ2
i

\
K3(t)cosu) D D . ~A3!

Here, r̂ I
K350 gives an equilibrium distribution at the initia

time t I and t is the imaginary time variable with 0<t
<b\ in which b is the inverse temperature. The symb
Tt(t) stands for the real~imaginary! time ordering operator
We represent the function in the two real time path by
suffix a51,2 and the imaginary one bya53, respectively.

From Ref. 52, the functionalZ@K# is rewritten in terms
of the new functionalZ̄@J#:

Z@K#5Z̄@J50#1 (
N51

`

(
a1561

••• (
aN561

E
C
dt1•••E

C
dtN

3
K~ t1!•••K~ tN!

N! 2N
~ Z̄@J# !J(s)/\5(

i 51
N aidC(s2t i )

. ~A4!

Here Z̄@J# is given by

Z̄@J#5
Z̄@J50#

L
d0,RJ

eJ[J](
l

expS 2
1

b\2F22p l

3E ds(t I2 ib\2s)J(s)1
m8

(2p l )2G D , ~A5!

C 2
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whereRJ5*C dt J(t)/\, L5( le
2m8(2p l )2/(2b\2), and the in-

dexC in the integral,*C dt, implies the integration along the
contour time path that starts fromt I to ` along the real path
(C1), returns tot I (C2) and goes tot I2 ib\ parallel to the
imaginary axis (C3).57,58 The conditionRJ50 in Eq. ~A5!
selects energy level transitions induced by irradiated pul
The functionJ@J# is given by

J@J#[
i

2\Et I

`

dtE
t I

`

dt8~2J2~ t !K0
(12)~ t2t8!J1~ t8!

1J2~ t !K0
(11)~ t2t8!J2~ t8!!

1
1

\Et I

`

dtE
0

b\

dt J2~ t !K0
(13)~ t,t!J3~t!

2
i

2\E0

b\

dtE
0

b\

dt8 J3~t!K0
(33)~t2t8!J3~t8!,

~A6!

where J1[(J11J2)/2, J2[J12J2 . The functions
K0

(12)(t) andK0
(11)(t) are represented as in Eqs.~2.9! and

~2.11!, respectively. The Fourier–Laplace transform
K0

(13)(t,t) and the Fourier transform ofK0
(33)(t) are denoted

as

K0
(13)@z,nn#5

i

z1nn
~K0

(12)@nn#2K0
(12)@z# !. ~A7!

K0
(33)@nn#5 iK 0

(12)@2nn#. ~A8!

TheN11-time correlation function of cosu is evaluated
from the generating functional as

^TC cosû~ t0!cosû~ t1!•••cosû~ tN!&

5
1

Z@K50# S \

i D
N11 dN11Z@K#

dCK~ t0!dCK~ t1!•••dCK~ tN!
U

K50

.

~A9!

Here, the indexC implies the contour time path. The oper
tor TC and the functiondC(t) are the time-ordering operato
and thed function on the contour time path, respective
The functional differentiationd/dCK(t) meansd/dK1(t),
2d/dK2(t), and (\/ i )d/dK3(t) for tPC1 , tPC2 , and t
PC3 . From Eqs.~A4! and ~A9!, the (N11)-time correla-
tion function is expressed as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



^TC cosu~ t0!cosu~ t1!•••cosu~ tN!&5 (
a0561

••• (
aN561

Z̄@J#

2N11Z̄@J50#
U

J(s)5\(a0dC(s2t0)1a1dC(s2t1)1•••1aNdC(s2tN))

.

~A10!
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Notice that the correlation function~A10! vanishes whenN
is even due to the Kronecker deltad0,RJ

, which implies the
rotational symmetry of the rotator. From Eqs.~2.4! and~A9!,
the Nth-order response function is given by the different
tion of the generating functionalZ@K# as follows:

R(N)~TN , . . . ,T2 ,T1 ,T2 ,T1!

5u~T1!u~T2!•••u~TN!

3
\

i
•

1

Z@K50# S dN11Z@K#

dK2~ t0!dK1~ t1!•••dK1~ tN! D
K50

,

~A11!

where K1(t)[(K1(t)1K2(t))/2 and K2(t)[K1(t)
2K2(t) and we set t i5T11T21•••1TN2 i ~for i
50,1, . . . ,N21) and tN50 as in Sec. II. With the use o
Eqs.~A9! and ~A10!, Eq. ~A11! is expressed as
Downloaded 09 Sep 2003 to 130.54.50.201. Redistribution subject to A
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R(N)~TN , . . . ,T2 ,T1!

5u~T1!u~T2!•••u~TN!S i

\ D NS )
i 50

N

(
ci51,2

~21!ci11D
3S )

j 50

N

(
aj 561

D ~21!c011Z̄@J#

2N12Z̄@J50#
U

J(s)5\(
i 50
N aidCci

(s2t i )

,

~A12!

wheredCci
(s2t i) is the delta function on the counter tim

path satisfying the conditiont iPCci
. Equation~A12! gives

the analytical expression of theNth order response function
APPENDIX B: THE EXPRESSION OF THE FUNCTIONS RA , RB , AND RC IN EQ. „2.5…

The functionsRA , RB , andRC in Eq. ~2.5! are expressed as follows:

RA
~3!~T3 ,T2 ,T1!5(

l
H expS 2

m8(2p l )2

2b\2 D coshF2p l

b\
~ t01t12t22t3!G J

3exp@ i\~K̄0
(11)~ t02t1!2K̄0

(11)~ t02t2!2K̄0
(11)~ t02t3!2K̄0

(11)~ t12t2!2K̄0
(11)~ t12t3!

1K̄0
(11)~ t22t3!!#sinS \

2
K0

(12)~ t02t1! D sinF\2 ~K0
(12)~ t02t2!1K0

(12)~ t12t2!!G
3sinF\2 ~K0

(12)~ t02t3!1K0
(12)~ t12t3!2K0

(12)~ t22t3!!G , ~B1!

RB
(3)~T3 ,T2 ,T1!5(

l
H expS 2

m8(2p l )2

2b\2 D coshF2p l

b\
~ t02t11t22t3!G J

3exp@ i\~2K̄0
(11)~ t02t1!1K̄0

(11)~ t02t2!2K̄0
(11)~ t02t3!2K̄0

(11)~ t12t2!1K̄0
(11)~ t12t3!

2K̄0
(11)~ t22t3!!#sinS \

2
K0

(12)~ t02t1! D sinF\2 ~K0
(12)~ t02t2!2K0

(12)~ t12t2!!G
3sinF\2 ~K0

(12)~ t02t3!2K0
(12)~ t12t3!1K0

(12)~ t22t3!!G , ~B2!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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RC
(3)~T3 ,T2 ,T1!5(

l
H expS 2

m8(2p l )2

2b\2 D coshF2p l

b\
~ t02t12t21t3!G J

3exp@ i\~2K̄0
(11)~ t02t1!2K̄0

(11)~ t02t2!1K̄0
(11)~ t02t3!1K̄0

(11)~ t12t2!2K̄0
(11)~ t12t3!

2K̄0
(11)~ t22t3!!#sinS \

2
K0

(12)~ t02t1! D sinF\2 ~K0
(12)~ t02t2!2K0

(12)~ t12t2!!G
3sinF\2 ~K0

(12)~ t02t3!2K0
(12)~ t12t3!2K0

(12)~ t22t3!!G , ~B3!
e

py

J.

.

.

ett.
.

n,

, J.

.

whereK (12) is given by Eq.~2.9! and K̄ (11) is defined by
Eqs.~2.10! and ~2.11!.

Note that the functionsRA
(3) , RB

(3) , andRC
(3) correspond

to the terms in the third-order response:

^@@@eiu(t0),eiu(t1)#,e2 iu(t2)#,e2 iu(t3)#&

1~complex conjugate~c.c.!!, ~B4!

^@@@eiu(t0),e2 iu(t1)#,eiu(t2)#,e2 iu(t3)#&1~c.c.!, ~B5!

^@@@eiu(t0),e2 iu(t1)#,e2 iu(t2)#,eiu(t3)#&1~c.c.!, ~B6!

respectively, so that the Feynman diagrams, Figs. 2~a!,2~c!,
Fig. 2~b!, and Figs. 2~d!–2~f! can be associated with th
functionsRA

(3) , RB
(3) , andRC

(3) .

APPENDIX C: COEFFICIENTS IN DEFINITION OF TWO
NORMAL MODES

In Eqs.~3.6! and~3.7!, the coefficientsf jk ( j ,k51,2) are
given by

f 1152
1

2A
AA1V̄22v̄2

m̄
, ~C1!

f 125
1

2A
AA2V̄21v̄2

m
, ~C2!

f 215
1

2A
AA2V̄21v̄2

m̄
, ~C3!

f 225
1

2A
AA1V̄22v̄2

m
, ~C4!

where A is defined by A5A(V̄22v̄2)214c̄2/(mm̄), as
stated in Sec. III.
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