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Two-dimensional spectroscopy for a two-dimensional rotator coupled
to a Gaussian—Markovian noise bath
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The dynamics of a system in the condensed phase are more clearly characterized by multitime
correlation functions of physical observables than by two-time ones. We investigate a
two-dimensional motion of a rigid rotator coupled to a Gaussian—Markovian harmonic oscillator
bath to probe this issue. The analytical expression of a four-time correlation function of a dipole that
is the observable of two-dimensional microwave or far-infrared spectroscopy is obtained from a
generating functional approach. The spectra in the absence of damping are discrete and reveal
transitions between eigenstates of the angular momentum quantized due to the cyclic boundary
condition. For a weakly damped case, the two-dimensional spectrum predicts three echolike peaks
corresponding to transition processes between the rotational energy levels, which cannot be
observed in one-dimensionéinear-absorption spectroscopy related to the two-time correlation
function of the dipoldJ. Phys. Soc. Jpi¥1, 2414(2002]. The two-dimensional spectra are more
sensitive to the noise effects than the one-dimensional spectra. It is because the effects of the initial
thermal distribution determine the profile of the continuous line shape in one-dimensional
spectroscopy, while such thermal effects are canceled through the higher-order optical transition
process in two-dimensional spectroscopy. If the rotator system is strongly coupled to the colored
noise bath, the system exhibits one overdamped and other oscillatory motions. We observe peaks
arising from interaction between these two modes in the two-dimensional spectra, which are difficult
to distinguish in one-dimensional spectra. Z003 American Institute of Physics.
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I. INTRODUCTION tally, some of these features have been studied by two-
spectroscopies havdimensional Raman and IR spectroscopies. Fifth-order Ra-

proven to be valuable and versatile tools for investigating thdh@n Spectroscopy has been performed on intermolecular
structural and dynamical properties of a molecular system iffibrations of liquids C$ (Refs. 22—24 by minimizing Cas
the condensed phasdhe properties of the system can be caded third-order (four-wave mixing COht!’IbUtIOhSZ. '
studied by measuring the change of the molecular dipole oFhese experimental results indicate the existence of anhar-
Raman polarizability after exciting the system from an equi_monic vibrational modes. Nodal lines in the spectrum have
librium state by applying external laser pulses. Due to thd>een found in molecular dynamics simulation for liquid,CS
static inhomogeneity and/or dynamical relaxation, the obby Saito and Ohminé that may be explained by some con-
served spectral line shapes are broadened and it is not easyttdutions to the signal from the nonlinearity of the polariz-
analyze the mechanisms of molecular interactions, whiclability in addition to the anharmonicifyExperimental evi-
govern many chemical processes including chemical reagience for this effect has also been repoftbt second-order
tions. Multidimensional laser spectroscopy, which is an anatR signal carries the same information as the fifth-order Ra-
logue to multidimensional nuclear magnetic resonance speenan one, but due to the isotropy of liquids such measure-
troscopy, may overcome this problem by employing complexments are impossible except for anisotropic conditions such
pulse sequences that suppress specific contributions to @ adsorbed molecule on the metallic surfdc&herefore,
spectrum selectivity arising from inter- and/or intra- the most applicable two-dimensional IR process is third or-
molecular couplings. der, which carries the equivalent information as seventh-
Theoretically, it has been shown that an appropriate mulorder Raman process&s3! For either Raman or IR, the
tidimensional representation of the optical signal in Ramarsignal in this order is even weaker than fifth-order Raman if
or IR measurements provides an interpretable depiction ahe vibrational modes are purely harmonic, because the sig-
the structural and dynamical properties in relation to the innal is proportional to the square of the second-order nonlin-
homogeneous d|Str|bUt|6n,the anharmoniCit§;4 intermo- ear po|ar|zab|||ty or d|po|e momeﬁt_ To date, two-
lecular interactions (between atoms of different gimensional(2D) IR measurements have been carried out

—10 H : A Ik H . . . . . .
molecule$®~*°and/or intramolecular mteractl?lt(;se., thein- primarily for intravibrational motions, where the anharmo-

Femtosecond nonlinear optical

: 8-20 : . )
mechanisms?~*° and wave packet dynamiés Experimen- strong. For example, the 2D Fourier plots of the three pulse
vibrational echo technique applied to a dipeptide molecule
3Electronic mail: youko@ims.ac.jp illustrate the coupling between two amid-1 modédhe de-
0021-9606/2003/119(3)/1650/11/$20.00 1650 © 2003 American Institute of Physics
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gree of the correlatiqn among vibra_tiona; ?r’zlodes in the conai andlai commutate with the system operat@randL. The
formational fluctuations of peptid¥s3* and small

. ! coupling constant between the system andithébath oscil-
molecule® have also been investigated by 2D IR spectros- bing y

; . A lator is given byc; . Note that the original rotational symme-
copy. In parallel with these investigations, researchers havgy of the rotator recovers after tracing out the bath degrees

explored two-dimensional spg?(]:troscopy in a broader ngtexsf freedom owing to the properties of the Gaussian integra-
second harmonic _generatidh, DOVE _spectroscopy/ tion. In the classical limit, we can reduce to the classical

combination of IR and optical sourcEs’” etc. Such experi Langevin equation for the rotational motion from Eea.l).52

mental efforts provide further stimulus for theoretical We consider the optical response of the rigid rotator. If

studies®® 43 ) ) : :
. . the system interacts with a laser fiek(t), the effective
The above-mentioned 2D spectroscopies have been utj- .y )

lized to investigate the vibrational motions arising from Hamiltonian including the laser interaction is given Hyg

intra- and intermolecular interactions. In the short time=H —E(t)docos, whered, is the intensity of the dipole
range, typically from femtoseconds to picoseconds, collectnoment. We assume the system first interacts Withulses

tive motions play a central role. In the long time range, typi-for the Nth-order optical process and the last putsgt) is

cally from a few picoseconds to nanoseconds depending o€ Probe to d_etect the rotationgl state. Since the even-order
the molecular size and on the viscosity, the orientational diff€SPonse vanishes due to rotational symmetry of the model,
fusion of a single molecule becomes very important. TheVe study the odd-order responses. The laser pulses are as-
picture of a single molecule librating in the potential well SUmed to be impulsive and are configured for thefirst-
made up by the surrounding molecules is acceptable for @nd (i) third-order processes as

slow solute in a fast solvent. For understanding molecular (i) Ey)=8(t), Er(t)=8(t—T,) 2.2
dynamics, rotational motions are as important as vibrational ! ' T v '
ones?*~48 It has been shown that the rotational relaxation (i) E,(t)=a(t), E(t)=a(t—Ty),

plays a major role in dielectric absorptfSrand dispersion,

the IR, far-IR, or rotational-Raman specfa' of solutions. Es(t)=8(t—T;—T,), (2.3
But, due to the inhomogeneity and damping, experiments

have had difficulty observing some important features such Er(t)=6(t=Ty—T,—Ty).

as quantum effects, e.g., rotational-energy discretization ang e optical signals are expressed by Mia-order response

transition between energy levels where energy gaps depeq nctions as 1M(T,. Ty, ... T)<RM(Ty, ... T».Ty)

on the guantum number, V.Vh'Ch cannot be seen in the hafypicn are the N+ 1)-time correlation functions of the di-
monic oscillator case. In this paper, we demonstrate that we
can extract more information for rotational motions by uti- P
lizing two-dimensional spectroscopy. . RN(Ty, ..., T2, Ty
To obtain an analytical expression for the third-order .

far-IR or microwave response function, we use the generat- [ ! N+1
ing functional for a quan?al two-dimensional rotator c%)upled _(%) do ([T --[cost(to),coso(ty)], . ...
to a heat-bath. This approach has been used previously to
study linear absorption spectra of the damped rotator, taking ~ €0S8(tn-1)],cos8(ty)]), (2.4
into account noise.correlation effectsThe present study is here we sett=T,+To+---+Ty_; (for i=0,1,... N
an extension of this work. In Sec. Il, we present the modeYV B o e
Hamiltonian and the analytical expression of the fourth-order 1) @nd ty=0.  Here, cog()=e""cosge ™ and
correlation function for the dipole moment for the case oft'**) Means the expectation value of " defined by
Gaussian—Markovian noise, as derived from the generatinfy - -)=Tr (e”#""---)/Tr e " in which B is the inverse
functional obtained previousff. The calculational details are temperature. Note that Eq2.4) corresponds to the (2
shown in Appendix A. The numerical results and their dis-* 1)th-order off-resonant Raman response by the replace-
cussions are presented in Sec. |ll. ment ofd with the polarizabilitya.'?

The Nth-order response functions are derived from the
Il. RESPONSE FUNCTION EOR OPTICAL PROCESSES generating functional, as shown in Appendix A. The first-

) o . . order response was studied in Refs. 52 and 53. The third-
We consider the Hamiltonian of the two-dimensional ro-grder response function fofy,T,, T3>0 (i.e., to>t;>t,

ole moment=d, cosé given in terms of

tator system coupled to an environment in the form >t,) derived from Eq(A12) is given by
~ L? E)lz miwiz - (o) 2 R(3)(T T T)
A=t [t —| = —— ]| |. 2.1 3120
AR e S o 24 L
Here, L and ¢ are the angular momentum defined hy :(5) ([[[cost(to),cosb(ty)],cosb(t;)],cosb(ts)])

=(h/i)dl96 and the angular coordinate, respectively. The
angular coordinate is- m<60<w with 6=—7 and ==
identified. The operatorg; andp; and the parameters; and

w; denote the coordinate, conjugated momentum, mass, and
frequency of thath bath oscillator, where the bath operators +REN(T3,T,,Ty), (2.9

1 (3) (3)
:_E(RA (T3, T2, T)+RE (T3, T2, Ty)
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where A =3, e # @M(264%) yith ' ,u+2% ZI(mj?).
Here, the expression of the functioRS®, R ). and R(3)

Y. Suzuki and Y. Tanimura

l(w)=7Z, c?/(Zmiwi)b‘(w—wi) and we regard (o) as a
smooth function ofw. With the aid of the spectral density,

are given in Appendix B. We consider the two- dlmensmnalthe heat bath is characterized by the mass independent damp-

profile of the third-order response by settifig= 0. Then Eq.

(2.5 reduces to
REX(T3,T,=0Ty)

=— —(R(3>(T3 T,=0T,)+RE(T3,T,=0Ty)

A#S
B)(T5,T,=0.Ty)), (2.6
where
R(T5,T,=0,Ty)
=RY)(T;,T,=0,T,)
’ 2
=E| {exp(—ﬂz(;—;:)%o ’{Z; (T +Ty) ]
Xexg —ihKS P (Ti+Tg)]
N 2 (b
X | sin EK((;’ )(T3)) SIH(EK(()+ (T1+Ta) |,
(2.7)

R (T;,T,=0Ty)

'(2)? 2
-3 {exp(—“z(ﬁ—;)>co r{[;( Ti+Ty)

X exgifi(—2K§ (Ty) — 2KE )(T,)

ﬁ 2
sin(§K§,+_)(T3)”

)

+KETN(T+Tg)]

(2.9

B -
XSIr{E(Kg+ (Ti+Ty)—2KE (T |

ing kernely(t)= [ dw 2| (w)cost)/(muw), which implies

the noise correlation function. In this paper, we assume
Gaussian—Markovian noisey(t) = ywpe “d' with |(w)

= pwyosl(03+w?), wherey and wp correspond to the
damping strength and the inverse correlation time of the
fluctuations’* We note that such a dissipation reduces to
Gaussian-white noise in the limibp—. For Gaussian—
Markovian noise, the third-order response function %)

is expressed in terms of the functions

e -1 ZwaD

_ [
KGOt =
o () Bl IZI 4] (v|2+ 'wa)Z—VFw%

2
wp
7+’5)

Bli(wp—2¢)
4

it i
— +
Bhuy 4ulywp

X (1—e(“’D’25)t)cot{

2
_(@_ ) (1_6—(wo/2+é)t)

2
) 2
XCO{WH, (2.12
1 e (opl2) t wp
KT ()= Py, (1— Z) sinh(¢t)
e (wp/2)t
— Tcosf{gt), (2.13
where
4
(=204/1- 2%, (2.14
2 wp

Putting y=0 into Eq. (2.6), we obtain the third-order re-

The functlonK(Jr )(t) is denoted in the Laplace representa-sponse of the rotator without damping,

tion as

K$[z]= (2.9

nz’+py[z]z

RC)(T;,T,=0,T,;y=0)

= A hg(RAO(Tg T2—0T1)+R (T3 T2—0T1)
0

where?{ z] is the Laplace transform of the mass independent

damping kernel described as{z]=Z;c/z/[ umwf(Z?
+w?)]. The functionK{" *)(t) is expressed as

K () =K§ ) -K§(0), (2.10
where the Laplace representationldf*”(t) is given by
S ol 1 [KE vl
(H4)[ 57— —ivgot| L[ 20 t¥n]
Ko™ 1zl n;oo € 2 z+v,
KT [ —w izk{ [z
+ 0 [ n])_ 0 [ ] , (2.1])
Z— vy Zz—vﬁ

with v,=2mn/(Bh).

In order to deal with dissipation, we
introduce the spectral density of the environmental coupling

+RE(T3.T,=0.Ty)), (2.19

where A, is defined asA\y==,e P5 and Ry, Rgg, and
Rco are derived from the substitutiopn=0 into R,, Rg,
andRc, and are expressed as

RT3, T,=0,T)=R$)(T3,T,=0Ty)

(eBE| — eBEi+1
|

h
8 )(ZSir{z[(Zl+l)(Tl+T3)]}

—sin

h
ﬂ[(2|+1)T1+(2|+3)T3]}

—sin

(2.19

h
ﬂ[(ZI +1)T+ (21— 1)T3]D,
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RE(T5, T,=0Ty) (a)
e BEI_eBfEI+1 | & 10
=2 (T)(25”‘{%[(2'4‘1)(1—1_1—3)]}
S s ¥
—SIin — + - + ~ °
ZM[( )T1—( 3) - 0 .:
h S .
—si ﬂ[(2|+1)T1—(2|—1)T3] . (2.17) -5
-10
I1l. NUMERICAL RESULT
In this section, we calculate the third-order far-IR or mi- (b)
crowave response functions for the rigid rotator coupled to a 10 .- ..
bath with Gaussian—Markovian noise using E@s5—(2.8). y . : '
We study a frequency-domain two-dimensional signal that is 5 o o0 -
the absolute value of the two-dimensional Fourier transform 3 c0 e e @e
of the third-order response af,=0 [i.e., (w3, w;) ~ so00
_ _(3) [ap] 0 ® 00 o
=15 w3, 01)]], 3 e@cceo -
o o0 o0 _5 LI N ¢ O
|(3)(w3,w1)=f dTlf dTae'@1TitiesTs co e ..
0 0 -10 - s e o e
xRC)(T;,T,=0,T). (3.1
As will be shown in the following, 2D spectroscopy gives 10 5 0 5 10
more information on the system dynamics than the one- /
dimensional1D) spectroscopy presented in Refs. 52 and 53. ® 1 o

In 1D absorption spectra, a spectral line for the damped ro- _ _ o -
tator exhibits a continuous band whose width depends on th?n%'(;)' TT‘ivci'gc')m}f"S'ona' signal(ws ;) for a free rotator ata) T=1 K
temperature, the damping strength and the cutoff frequency; - '

whereas, in 2D spectroscopy, a signal for the damped rotator

shows the transition between discrete rotational energy leve
that cannot be observed in 1D spectra.

For a demonstration purpose, we chogse 2x 104’

I(Sé,tarting from a lower horizontal line assigned to the transi-
tion from|l) to |l —1) (|I+1)). By putting each arrow to the

ka 2. which is th lue for th tati i t methvl upper or lower horizontal line, we have 96 diagrams for
gnm, which 1S the value for the rotation motion of methyl p)r, 1, 1) where two arrows point to the ladder dia-

group (-CH;). Hereafter, we employed the parameter gram and two arrows start from it. In the present casas

=h/(2u)=2.6 THz. The heat bath corresponds to the NON-<ot 1o be zero.

Ip3/|0Ia|: sqlver;t thse ﬁﬁectls are characterized by a Gaussian— If the state during the periof; and the state durings
arkovian damping xerne. - 3) are denoted byl,)(I;| and [I3){l5], we obtain the factor

In Fig. 1, we plot the 2D signal (w3,c_ol) for a free e lee1dTL.Ta) = o~ 1B ~EDTI+EL BT with E, = al?

rotator at(g) T=1 K and(b) T=100 K by using Eqs(2.19 where the statel,){l/| (i=1,3) for |, #1{ and that forl,

inf) (?;'1)'((2?3 1p)ealis(2r||sJ(re3';1t ‘)‘(1‘“;?]); ((((22: i Bafg: =1/ refer to the coherence between states and the population
@) @ = @) @ = state, respectively. By calculating;s from Fig. 2, we can

—1)a) (1=0,£1,%+2,...). Thepeak width is zero and the : B o =
area of the circle at each peak in Fig. 1 represents the peziakSSIgn the peak positions @) (— (21 +1)e,~(2I+1)a),

intensity.

The position of the peaks can be understood from b ©
double-sided Feynman diagrams. Figure 2 shows some of th‘(a) ®)
double-sided Feynman diagrams f&®)(T;,T,,T,). In Al /1 /1‘& I 1+1/1\ 11 1+1\ B2 Bl /1 I
these diagrams, the upper horizontal line presents the time (T Ty R s R !
evolution of the left-hand side wave functigket) whereas HL KL R ’“/ ro R EL \”'2 m2 ’*1\“2 “2/ “V 1
the lower represents the right-hand si{tea). We assume the
system is initially in the ground state denoted By(l|, ) @) ®
where|l) is an eigenstates &f denoted byL|I)=#l|l). The M Rl /1 I 1+1\ 2 /m /1\ Kl KL M1 Al 1+1\ B2
arrows at the time—t,=0, T,, andT,+T, stand for the T« B> T, T« > v, PERIERIPN,
interactions with the radiation field and the arrow B¢ 1+'/‘ 1o Kﬂ/‘l KL Bl RL RL B 1+7 1 \:+7‘ w2 K2
+T,+ T3 stands for the last probe field. An arrow pointing to

(starting from) an upper horizontal line leads to the transition g, 2. Examples of the double-sided Feynman diagram for
from |I) to || +1) (]I —1)), whereas an arrow pointing to R™(T;,T,,Ty).
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(a) (@ (b)
(i)(Gii) —®
\ -—- (i)
- /AN -
§/ / (ii)\\ (iii)
b "I \\
// N
0 1 2 3
(b)
— @
-== (i)
g ....... (i)
©
(i) (i) i)
0 5 10
/o
4 (111) 10 (iii)
FIG. 3. Absorption spectra for the damped rotator at the temperédbiie \
=1 Kand(b) T=100 K. The damping strength and the cutoff frequency are 2 5
set as(i) y=1.3x10° Hz, wp=2 (solid line), (i) y=1.3x10" Hz, wp o 0
=o (dashed ling and(iii) y=1.3x 10! Hz, wp=0.1y (dotted ling.
-2 -5
LY
-4 -10
by (—(2I+1Da,—(21+3)a), () (—(21+3)a,—(2I 4 2 0 2 4 005 0 5 10
+1)ea), (d) ((21+1)a,— (21 +1)a), (e ((21+3)a,— (2] o,/o o,/a
+1)a), and(f) ((21+1)a,— (21 +3)a) (1=0,+1,...) to .
the diagramsa)—(f) in Fig. 2, respectivel FIG. 4. Two-dimensional sign&l®(w;,w,) for a weakly damped rotator at
g g. 4 p Y. (8 T=1 K (left column and (b) T=100 K (right column. The damping

From Eqgs(2.15-(2.17), we see that the peak intensities parameters are set @ y=1.3x10° Hz, wp==, (i) y=1.3x 10" Hz,
depend on the initial thermal distribution. Since the initial wp=%, and(iii) y=1.3x 10" Hz, v, =0.1y.
thermal distribution for the initial stat@l){l| is given by
e Fha? the distribution of the peaks spread to the high fre-
guency region with the increase in temperature, as shown in
Figs. 1@ and 1b). being infinity in the Gaussian—Markovian noise, thiepen-

Let us consider the case of the weakly damped rotatogence of the initial distribution functiop, becomes infini-
(y<a). Figure 3 shows the absorption spectra at the temtesimal. After summing over for T;,T;>0, the diagrams
perature(@ T=1 K and (b) T=100 K for the damping (d)—(f) in Fig. 2 lead the echolike tails along the diagonal
strength and the cutoff frequency set(8sy=1.3<10° Hz,  T,=T, in the 2D time-domain signal which give rise to the
wp= (solid line), (i) y=1.3x10" Hz, wp= (dashed three “antidiagonal peak lines” in frequency domain as
line), and(iii) y=1.3x 10" Hz, wp=0.1y (dotted lind. As  shown in Fig. 4, whereas the contributions of the diagrams in
can be seen from Fig. 3, the absorption spectra are not veryigs. 2a)—2(c) are small due to the cancellation between the
sensitive to the noise effect representedjband wp: the  termse™ (Tt Tk (1=0,+1, .. .).
solid line agrees with the dotted one in Figag@ and the The diagrams in Figs. (8)-2(f) give the additional
three linegsolid, dashed and dotted linega Fig. 3(b) cannot  phases that are independent of the angular momeht
be distinguished. e e(=T1tTa) (@) @2 (=8T1tTa) gnd(f) e?'*(~T1+3T3) They

Figure 4 shows the 2D sign&f®)(w3,w,) for same set  induce thews-axis intercepts in the contour plot of the 2D
of parameters in Figs.(B—3(iii) at different temperature®)  signal. Figures @), 2(e), and Zf) correspond to the peaks
T=1 Kand(b) T=100 K. The noise effect is clearer in the along ws;=—w;, w3=—w;+2e and ws=—w;—2a. The
2D signal than in the 1D signal. In Fig. 4, the signals havethree “antidiagonal peak lines” in the 2D spectrum are a
peaks alongy; = — w3 andw; = — w3+ a except Fig. 4b-ii),  characteristic feature of the quantum rotator system.
where the peaks are broadened and appear as a line of peaks We note that, for the damped Brownian rotator, informa-
alongw; = — w3. Hereafter we will use the term “an antidi- tion about the energy gap between the rotational level cannot
agonal peak line” to refer to the peaks along; be obtained in the 1D spectra. The 1D spectrum reveals a
= —wz+(constant). continuous broad peak that reflects the initial thermal distri-

The peaks in Fig. 4 are explained from the diagramspution, because the system-bath coupling suppresses the ef-
given in Figs. 2d)—-2(f). For the damped rotator, the diagram fect of the energy discretization arising from the periodic
in Figs. 4a)-2(c) and Figs. 2d)-2(f) give rise to the factors houndary conditiori?>3In the 2D case, however, since such
Sy pry €M T T and s py, €M T1* Tk respectively,  system-bath coupling effects are canceled out by superposing

where 2|2 implies the angular momentum andp;  the coherences durinfy and T with respect to each energy
=e A1) since the linear coupling between the heatlevel, we observe the discretization of energy levels as three
bath and the system changes the moment of ingrtia x’ distinct peaks parallel to the;= w, direction (diagonal di-
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rection, which reflect the transition processes shown in Figs. ) . /o =32
2(d)-2(f). g @ >
Notice that such three antidiagonal peaks are caused by ®
the quantization of the angular momentum and they will van- 60
ish in the classical limit where the angular momentum is (a) @)
continuous. 40
By comparing Figs. @-i), 4(a-ii), and 4a-iii) with Figs. 20
4(b-i), 4(b-ii), and 4b-iii), respectively, we find that the E l
peaks parallel to the line,;=— w5 shift to the high fre- ® 0 >
guency as temperature increases because the effects of the S 20 T 8
initial thermal distribution remain in the spectral line along ) N
the w3= — w, direction (antidiagonal direction Such tem- -40 n
perature dependence of the peak shift was also observed in >
the 1D absorption spectra. -60
For smally satisfyingy<a [Figs. 4a-i) and 4b-i)], the m )
approximated expression of the third-order response, Eg. D (b") ® 1 0=
(2.6), ®
60
RG)(T,,T,=0,T,) (b")
40
1 _ 2 _
= — ﬁsmz(aB)[Ze (T#TTCrASIN (T, + T3)} s 20
T 0
™
+e  CTH T @uBgin o (— T, + Ty}, (3.2 s .
-20 .
indicates the continuous broad band along the antidiagonal -40 f
direction, which has been mentioned earlier. The temperature >
dependence of the linewidth along the antidiagonal direction -6960 40 20 0 20 40 60

is provided by the factoe™ (- T1*T9%(2#8) in Eq. (3.2), be-
cause the contribution of the second term in square brackets
IS more dom'nanzt than the first term o5, T;>0 due to the £ 5 Two-dimensional signaf®(ws, ;) for a strongly damped rotator
factore™ (xT1+Ta)(2up) for (8) wp= and (b) wp=0.1y, and for fixedy=1.3x 10" Hz and T
Comparing Figs. @-ii) and 4b-ii) with Figs. 4a-i) and :_50 K. The right and the above of the cont_our pld®-1 and(b)-2, are the
4(b-i), respectively, we find that the linewidths along the S'9"a!S awi/a=16 andws/a=32, respectively.
w3= w4 direction (diagonal directiop become broader with
increasing damping, because, in this direction, the effects of _ _ _
the initial thermal distribution are canceled out through theSPONds to the strongly damped rotational motion as stated in
higher-order optical process and the damping effects beconfgef- 52. )
apparent. It should be emphasized again that the sensitivity FOr the case of the small cutoff frequency in the colored
of the 2D spectral line along the diagonal direction to theN0ise, satisfyingwp<y [Fig. Sb)], we observe peaks at
damping effect cannot be observed in 1D spe(fig. 3) in  (@1,03)==(2,n3Q) (nN3=0,£1,+2,£3) and (@;,w3)
which the initial thermal distribution contributes more =(0,n}Q) (n;=0,=1,=2), whereQ)=15.8, in addition
strongly than the damping effect. to the peak at the origin. The shape of the 2D spectrum is
Figures 4a-iii) and 4b-iii) show the colored noise case. different from that for the weakly damped rotator and similar
In this case, the effective damping strength becomes weakéo that for the vibrational motion.
than in Figs. 4a-ii) and 4b-ii), because it is expressed as Such features are interpreted as follows: Suppose that
[v(w)| with y(w)=vy/(1-iw/wp). Hence the linewidth the frequency of the bath oscillatoss are distributed in the
along the diagonal direction in Fig(akiii) [Fig. 4(b-iii)] is  narrow range around some frequengy~0 (wy#0) due to
narrower than that in Fig.(d-ii) [Fig. 4(b-ii)]. the small cutoff, the Hamiltoniaf2.1) is approximated with
Next, we study the strongly damped case, where the typical coordinate and conjugated momentum of the bath
_damping effects are Iarger than quantum and thermal EﬁeCt%cillatorS(O and E’o' by
i.e., y>a and y>(B#) 1. Figure 5 shows the 2D spectra

co1/oc

. . 2 "2
for the strongly damped case @ wp=, i.e., the Ohmic N~ L0l P l— ~,
dissipation, andb) wp= 0.1y for fixed y=1.3x 10 Hz and H= 2u T zﬁ+ oM@ Go” —Chof+H",
T=50 K. In order to study the signals in detail, we consider (3.3

them in section as in the righFigs. 5a') and §b’)] and the — _ — ,— —
above contour plofFigs. 5&") and 5b")], which are the Where Q=\ywp, 1m=2;(1/m), w’=3m of/m, ¢

signals atw; /=16 and atwz/a=32, respectively. For the =2;C;, and H' is the higher-order terms ofg(—qo) or
Ohmic casdFig. 5a)], the peak at @1,w3)=(0,0) corre- (p;—Ppo) given by
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It should also be noted that we can observe two such normal
modes in the strongly damped Brownian oscillator system
for the small cutoff frequency’

~ Ai_A )A ~ A ~ Ci 6
A= {—(p e p°+miw?(qi—qo)(qo— 2)
: | i 0

(Pi—Po)® Mol . .
+§i: { I2m- " '2 L (Gi—00)2. (3.4) V. CONCLUSION
' In this paper, we calculated the four-time correlation

In Eq. (3.3, we have used the relatior,; dwl(w)dw  function for a damped two-dimensional rotator described by
=3, c?/(2mw?) = uwywp/2. The lowest order of d;—qq) thfe Ha_miltonian(2.1) from th_e generating functional ob-
or (p—Pg) can be diagonalized, tained in Ref. 52. The rQSL_lIt |s_fuIIy quantum, however, and
offers a clear physical insight into the relation between the

pij — L, classical and quantum regimes. Using this expresgims.
oA +AMUNTYY |, (3.9  (2.9-(2.9], we plot 2D spectra corresponding to the far-

H infrared or microwave photon echo experiment in the case of
where A= \/(52_;2)2+4€2/(#a) and Ay Ggussian—Mgrkov_ian noise for various coupling strengths,
_ \/m In Eq.(3.5), the normal modes | ar{d | "oise correlation times, and temperatures. _

. ) e For a free rotator case, 2D spectra reveal three lines of
have been introduced as discrete peaks which are parallel to the echo ling
=—wq; each peak corresponds to a rotational level transi-
tion for a specific Liouville pathway. If we include the heat-
Y= "f210+ f 2500, (3.7 Dbath, these discrete peaks are merged into three lines of

peaks. This is because, for this linear—linear system-bath
and Py, is the conjugated momentum gf, where the coef- coupling model, the effective mass of the rotator becomes
ficients f;, (j,k=1,2) are given in Appendix C. Fop/Q  €ssentially infinity due to the masses of bath oscillators. This

<1, the normal mode frequencies are approximately giver¢ffect reduces the energy differences between the peaks to
by \;~0 (\,#0) and\, ~ Q. The coupling betweedy, po, infinitely small separations as discussed in the one-

d il d d by th dinate & dth dimensional cas& Although the discrete peaks along the
6 and oscillators denoted by the coordinate{do) and the lines vanish, even for the weak damping case, we can still

momentum p; —Po) in the higher-order termh’ causes the exract the quantum effects as the separation of three lines of
damping of the normal modgs andy, . Modes | and Il can  peaks in the present two-dimensional measurement. This
be assigned to the overdamped motion and the damped Végparation is possible because the linewidths alonguthe
brational motion, respectively. _ = — w, direction depend on the temperature through the ini-
Since the angular coordinate is expressed @s tja| distribution, while the linewidths along thes= w; di-
=2Am(fy,+fq5yy), the laser excitation with the dipole rection are not sensitive to the temperature but the damping
moment d, cosé=d,co§2Am(f,,y,+ f1,y,)] causes multi- because the effects of the initial thermal distribution involved
guanta excitation—de-excitation processes for mode | anth the Liouville paths are canceled out in this higher-order
mode Il described by y)"*(y,)" (n,,n,=0,=1, optical process. When the damping becomes strong, the three
+2,...). Thepeak positions can be understood in terms oflines of peaks are broadened and merge to a featureless peak.
diagrams similar to Fig. 2. We consider the sthte,n;) If the noise correlation time is very long for the strongly
wheren, andn,, are the quantum number for modes | and I, damped case, however, the signals exhibit a very different
respectively. The interaction between the laser and the sydehavior. We observe an overdamped peak and an oscillatory
tem (xdycog2Am(fy,+f1oy,)]) induces the transition Peak and their cross peaks. These peaks can be related to two
In,ny)  to  |ny+An;,n,+An,)  (An;,An;=0,*+1, normal modes, an overdamped mode and vibrational one,
+2,...). Such diagrams can lead to the peak positionaris_ing from_the c_ollective motion_of the free rotator and _bath
(wl,w3)=(n15,nzf_l), wheren, andn, are integers. For oscnlators_, in which the bath oscillators beha\_/e like a single
example, the peak at the origin corresponds to thé“Ode oscillator du_e to the narrow spectral width. Such fea-
excitation—de-excitation process for mode | and the peaks at€S can be seen in the 1D case, but 2D spectra more clearly

+(Q,n'Q) (n=0,+2) reveal the transition processes for Indicate the origin of these two peaks.

mode II, which are originated from the coherence with the_. In the present stqdy, we focused on the analysis of the
single rotator system linearly coupled with the heat-bath. Al-

frequency() in the time periodT, and that with 2 in the  {hgh this model reduces to the Langevin equation in the
time periodT3. The peaks at (6(}) (n=*1,%+2) arise classical limit, this is by no means the only model as a
from the cross term#®,6,, 6,%6,, and 6,6, that are in- damped rotator system. An alternative model will be to con-
cluded in the dipole moment. sider different system-bath couplings, which satisfies the cy-
Notice that the two normal modes are observed in theclic boundary condition of the rotator coordinate without
absorption spectra; the dashed and dotted lines in Fig. 2 dfacing over the heat-bath degrees of freedom. Generalization
Ref. 52. However, the 2D spectra give more detailed inforto a three-dimensional rotator system is also important for
mation on these peaks. In addition to the information for thesome molecules at low temperatures where the quantum ef-
overdamped mode and the vibrational mode, their couplindects play a rol€® To account for experiment results, such as
mechanism through the nonlinear dipole moment is revealedhe infrared optical response of dielectric molecular liquids

HN';u

y1="F1260+ 100, (3.6
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or peptides, one may need to consider many rotators intefyhereR;= [ dt J(t)/7, A:glew’(Zwl)zl(whz), and the in-
acting with each other through dipole—dipole interactionsdexC in the integral f c dt, implies the integration along the
Comparison between the results from a model calculatiogontour time path that starts frotnto « along the real path
and molecular dynamics simulation are also important to jus¢C,), returns tot, (C,) and goes td,—iB% parallel to the

tify the validity of the model. Critical checks for the validity imaginary axis C3).°”*® The conditionR;=0 in Eq. (A5)

of the model may be done by comparing calculated twoselects energy level transitions induced by irradiated pulses.
dimensional signals with experimental studies. Such comThe functionZ[J] is given by

parison would help quite the proper description of the cou-

pling to the bath and the dipolar interaction.
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APPENDIX A: MULTITIME CORRELATION L b dTJB dr' Ja(NKEI (7= 7/)35(r"),
FUNCTIONS AND THEIR GENERATING FUNCTIONAL 2h Jo 0

In this Appendix, we present the higher-order response (AB)
function in the two-dimensional rotator system coupled to a
heat bath. Consider the generating functiodpK] defined oo J,=(3,+3)2, J.=J3,—J,. The functions
as KSF (1) andK{ F)(t) are represented as in Eq&.9) and

Kyt - (2.11), respectively. The Fourier—Laplace transform of
Z[K]=Tr(p, Uy, (=, t) Uy, (0.1))), (A1) Kk{"3)(t,7) and the Fourier transform &f$**(7) are denoted
as

where
- i .
Uk (00,t|)=Tt<exr{ - %J' dt(H—Ka(t)cosa))) (A2)

“« t) .

I —_ —

and KE 2 vl = S (KG™ il =K lzh). (A7)

K 1 (e

p, *=T, exp — —f dr(H— —-Ks(7)cos) | |. (A3)

fil)o h

Here, p,X3=° gives an equilibrium distribution at the initial KEIvn]=iK§ [ wp]. (A8)

time t, and = is the imaginary time variable with 97
< pBh in which B is the inverse temperature. The symbol
Ty(» stands for the realimaginary time ordering operator. . . . .
We represent the function in the two real time path by thef T?;N+1-t|n:_e C(;rrelit_nonlfunctlon of casis evaluated
suffix «=1,2 and the imaginary one hy=3, respectively. rom the generating functional as

From Ref. 52, the function&l[ K] is rewritten in terms

of the new functional[ J]:
(Tc cosB(tg)cosb(ty)- - -cosh(ty))

Z[K]=Z[3=0]+ > > - X dt1~-~fdtN 1 (N MNT1Z[K]
e A ae ‘ TZIK=0]\T)  8cK(to) 5K (ty)- - ocK(t) | o
K(ty) - K(ty) =
XW(Z[J])J@)M:;’L ase(s—t) - (Ad) (A9)
HereZ[J] is given by Here, the indexC implies the contour time path. The opera-

tor T and the functiord:(t) are the time-ordering operator
and the$ function on the contour time path, respectively.
— 2l The functional differentiations/ 5cK(t) means s/ 5K 4(t),
— 8l 5K,(t), and @/i) ol SK,4(t) for te Cq, teC,, andt
e C5. From Egs.(A4) and (A9), the (N+ 1)-time correla-
, (A5) tion function is expressed as

Z[3=0]

Z[J]=

= 1
E[J] —
5ORJe EI , exp( 2

xfcds(t,—iﬁﬁ—s)J(s)+ %(mﬂ)?
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7[3]
(T cos(tg)cosH(ty)- - -cosh(ty))=

a==1 ay==1 2N*17[3=0]

J(s)=h(apda(s—tg) +aydc(s—ty)+ - +aydc(s—ty))

(A10)
Notice that the correlation functioA10) vanishes whem R(N)(TN, T, Ty
is even due to the Kronecker delmRJ, which implies the

rotational symmetry of the rotator. From E@8.4) and(A9), i\N/ N
the Nth-order response function is given by the differentia-  =60(T1) (T,)- - - G(TN)(%) H Z )sitt
tion of the generating functiona[ K] as follows: '=0a=

RM(Ty, ... T2, T, T2, Ty) N (—1)%*1Z[J]
=0(T1)0(T2)- - 0(Ty) . 11:[0 j==1 ) 2N*27[3=0] A=Az aoc (S*ti),
N SNTIZ[K] 5
i Z[K=0]| 0K _(to) K, (ty)- - - K (ty) ), _ ' (A12)

(A11)

where K, (t)=(Ki(t)+Ky(1))/2 and K_(t)=Ky(t)
—Ky(t) and we settj=T;+Ty+---+Ty_; (for i
=0,1,...N—1) andty=0 as in Sec. II. With the use of Path sat|sfy|ng the conditioty e C. . Equation(A12) gives

Eqs.(A9) and(Al10), Eq. (All) is expressed as the analytical expression of thdth order response function.

where 5c (s—t-) is the delta function on the counter time

APPENDIX B: THE EXPRESSION OF THE FUNCTIONS R,, Rz, AND R IN EQ. (2.5)

The functionsR,, Rg, andR¢ in Eq. (2.5 are expressed as follows:

w' (2m7l)? 27l
Rg\a)(TS'TZ'Tl):ZI (exp(_W Ccos Bﬁ (t0+tl t2 3)
Xexif(KE ) (tg—ty) —KE (to—t) —KE to—ta) —KE (1, —t) —KE (1~ ty)

+KET ) (t— t3>>]sm(hr<‘+ )(to— m)s'r{ (KS N (to—t) +KE (11 —1,)

. g g
xsir{E(KEﬁ ((to—ta) +KE ) (ti—tg) —KE' )(tz_t3))}y (8D)

'(21)? 27l
RT3 {onp| 2 cost 2 oty -4 |

xexgif( _ﬂ; (te—ty) +E§)++)(to_t2) _ﬂ;fﬂ(to_ts) _@)Jrﬂ(tl_tz) +K§J++)(t1_t3)
K(++) h (+-) (+-) (+- )
—Kp T(ty—t3))]sin| 5 K (to—ty) |si (K (to—tx) —Kg" (11— 13))

: h +— +— +—
><sw{§(r<g Nto—tg) — K (ty—ty) +K§ )(tz—t3))}, (B2)
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p'(2ml)

2
RQ)(Ts.Tz,T1)=Z [ex W)cosr{ ,87;

xexgif(—K§ I (tg—ty) —K§ D (to—t) +KE P (to—ta) +KE (1~ 1) —KE ) (t,—t)

h h
—KE (- t3>>]sm( K§" (to— m)slr{E(KEﬁ’(to—t2>—KEﬁ’<t1—t2>>

h
xsir{zméﬁ’(to—t3>—K£ﬁ’<t1—t3>—

whereK(* ) is given by Eq.(2.9 andK(**) is defined by
Egs.(2.10 and(2.17).

Note that the function®, R, andRE) correspond
to the terms in the third-order response:

([[[€4t0) gl #(t)] g=i6(t)] = i0(t2)])

+ (complex conjugatéc.c)), (B4)
<[[[ei 0(10),e*i e(tl)],ei H(tz)] ,e*iﬁ(ta)p +(c.c), (B5)
([[[€/"'0), e 171 e~1%12],6119)]) 1 (c.c), (B6)

respectively, so that the Feynman diagrams, Figa),Zc),
Fig. 2(b), and Figs. &d)—2(f) can be associated with the
functionsRY, RY), andRY) .

APPENDIX C: COEFFICIENTS IN DEFINITION OF TWO
NORMAL MODES

In Egs.(3.6) and(3.7), the coefficientd (j,k=1,2) are

given by
1 [A+Q2—w?

f11=— 22N 5 (Cy
1 JA-Q%+w?

leZﬁ Ty (Cz)
1 [A-0%+ w?

lezﬂ T, (Cy
1 [A+0%—0?

fzzzﬂ Y (CH

where A is defined by A=(Q2%— w2)2+4c?/(um), as
stated in Sec. Ill.
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