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Abstract

When dynamics of a system strongly coupled to a white-noise environment is overdamped, in linear spectroscopy,

the spectrum is observed as one peak near zero vibrational frequency. We found, however, that if the noise induced by

the environment is colored and its correlation time is long, there is an additional peak at a frequency different from the

system. We study the multi-dimensional spectrum, to observe the interplay between the overdamped motion and

the weakly damped motion induced by the colored noise. Finally, we discuss the connection between the peak due to the

colored noise and the Boson peak found in glass materials and supercooled liquids. � 2002 Elsevier Science B.V. All

rights reserved.

Dissipations play a central role in dynamics of a
system in the condensed phases. This problem is
most commonly studied by the Brownian oscilla-
tor Hamiltonian given by [1–3]

H ¼ P 2

2M
þMX2Q2

2
þ
X
i

p2i
2mi

�
þ mix2

i

2
ðxi � QÞ2

�
:

ð1Þ
Here, Q; P ;M , and xi; pi;mi denote the coordinate,
conjugate momentum, mass of the system and the
ith bath oscillator, respectively. The interaction
between the system and the bath oscillators is ex-
pressed as �

P
i mix2

i xiQ. The character of the heat

bath is described by the spectral distribution
function defined by IðxÞ � p

P
i ðmix3

i =2Þ
dðx � xiÞ. The counter term

P
i mix2

i Q
2=2 is in-

troduced in Eq. (1) to keep the translational
symmetry of the Hamiltonian for X ! 0. If we
neglect this term, the minimum of the potential
surface of the whole system given by Hamiltonian
(1) for Q is at xi ¼ Q for all i. The ‘effective’ po-
tential renormalized by the system–bath coupling
is then given by MX2Q2=2�

P
i c

2
i Q

2=ð2mix2
i Þ,

which causes a negative shift ðDxÞ2 ¼ �
P

i c
2
i =

ðMmix2
i Þ in the squared frequency X2. Since such

coupling-induced renormalization effects can be
very large, they strongly deform the potential. The
counter term compensates such deformation.

The molecular vibration in solvated molecules is
described by Hamiltonian (1), in which the system
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corresponds to the inter- and intra-molecular vi-
brations interacting with a bath of the inter-mo-
lecular one. In vibrational Raman spectroscopy,
dynamics of the system is probed by a correlation
function of the Raman polarizability aðQÞ. The
third-order Raman response is defined by the two-
body correlation function as Rð3Þ

RamanðtÞ ¼
h½aðQðtÞÞ; aðQð0ÞÞ
i � a2

1h½QðtÞ;Qð0Þ
i for the po-
larizability approximated by aðQÞ ¼ a1Q þ
a2Q2=2þ   . As for the spectral distribution
function, we consider the Ohmic dissipation with
Lorentzian cutoff, IðxÞ ¼ Mxcx2

D=ðx2 þ x2
DÞ,

which induces the colored noise in the exponen-
tially decaying form of the dissipation kernel
gðtÞ ¼ McxD � expð�xDtÞ, where c and xD are the
damping strength and the cutoff frequency [4]. The
third-order Raman response is then expressed as [5]

Rð3Þ
RamanðtÞ ¼ a2

1CðtÞ; ð2Þ
where the function CðtÞ � ði=�hÞTrðe�bH

½QðtÞ;Qð0Þ
Þ=Tre�bH is expressed in terms of the
inverse Laplace transform as [1,2]

CðtÞ ¼
I
Cz

dz
2pi

ezt

M ½z2 þ zcxD=ðxD þ zÞ þ X2

: ð3Þ

The above result has been well-known. However
we found interesting effects for strong system–bath
coupling, in which the system usually does not
show any characteristic motion, if the noise cor-
relation time is much longer than the time scale of
the system’s motion. To demonstrate this point, in
Fig. 1 we plot the imaginary part of the Fourier
transformed response function Rð3ÞðxÞ ¼

R1
0

dT
expðixT ÞRð3ÞðT Þ for very large system–bath cou-
pling c=X ¼ 100 for different cutoff frequencies;
xD=X ¼ 1, i.e., Gaussian-white limit (solid line),
xD=X ¼ 0:6 (dashed line), and xD=X ¼ 0:1 (dotted
line). Here, we set the system oscillator frequency
to X ¼ 100 cm�1 which is the typical value for
inter-molecular vibrational motion. Since we
choose strong system–bath coupling, it is expected
that the system motion is overdamped. Fig. 1
shows that, in the Gaussian-white case (solid line),
such a motion is observed in the spectrum as a
featureless peak near zero frequency. In the case of
the colored noise, dashed line and dotted one,
however, an additional peak appears which is
different from the resonant frequency position X.

In contrast to the Gaussian-white case, this peak
remains as long as the coupling strength is strong
and xD is very small. The peak shifts to the blue
for larger xD (the dashed and dotted lines of Fig.
1) or c (not shown).

The origin of this peak can be understood as
follows: in the slow modulation case (xD � 0), the
frequency xi is distributed in the narrow range
around xi � 0 (xi 6¼ 0), so that xi and pi are rep-
resented as a typical oscillator coordinate and
momentum which we denote as x0 and p0. By using
the relation,

R1
0

dxIðxÞ=ðpxÞ ¼
P

i mix2
i =2 ¼

McxD=2, the Hamiltonian (1) is approximated by
the two coupled oscillators:

H � P 2

2M
þM

2
ðX2 þ cxDÞQ2 þ p20

2 �mm
þ �mm �xx2x20

2

�McxDx0Q; ð4Þ

where �mm ¼ 1=½
P

i ð1=miÞ
 and �xx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
McxD= �mm

p
.

The Hamiltonian (4) is then diagonalized as

H �
X
i¼�

p2i
4A �mmM

	
þ ðA �mmMÞk2

i y
2
i



; ð5Þ

 
 

 
 

Fig. 1. The absorption spectrum of the damped harmonic os-

cillator for the different cutoff frequency; xD=X ¼ 1, i.e., the

Gaussian-white (GW) limit (solid line), xD=X ¼ 0:6 (dashed

line), and xD=X ¼ 0:1 (dotted line). The harmonic oscillator

frequency and the damping constant are set as X ¼ 100 cm�1

and c=X ¼ 100, respectively. The inset depicts the spectrum

around zero frequency.
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where y� and p� are the normal coordinates and
the conjugate momentum for the eigenfrequencies

ðk�Þ2 ¼
1

2
ð�XX2

�
þ �xx2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�XX2 � �xx2Þ2 þ 4cxD �xx2

q �
;

ð6Þ
and we set �XX2 ¼ X2 þ cxD and A2 ¼ ð�XX2 � �xx2Þ2þ
4cxD �xx2. The correlation function CðtÞ is then
approximated by

CðtÞ � 1

2AM
Aþ B

kþ
sinðkþtÞ

�
þ A� B

k�
sinðk�tÞ

�
;

ð7Þ
where we set B ¼ �XX2 � �xx2.

For �xx=�XX � 1, the normal mode frequencies are
given by kþ � �XX and k� � 0. If we consider the
strong coupling case cxD � X2, then we have the
peaks of ‘þ’ and ‘�’ modes at x � ffiffiffiffiffiffiffiffiffi

cxD
p

and 0,
respectively. From the above derivation, the origin
of the additional peak is attributed to a single
mode of the heat-bath, which is induced by the
narrow band spectral distribution. The dynamics
of the system play a minor role. Indeed, as indi-
cated by Eq. (6), we observe this additional peak
even in a free particle case (X ! 0). To explore the
origin of the peak in more detail, we consider the
classical Langevin equation for an exponentially
decaying noise given by

M
d2QðtÞ
dt2

þ
Z t

tI

dt0gðt � t0Þ dQðt
0Þ

dt0
þ oUðQðtÞÞ

oQðtÞ ¼ RðtÞ:

ð8Þ
Here, RðtÞ is the random fluctuation, which relates
to the dissipation kernel as gðtÞ ¼ hRðtÞRð0Þi ¼
McxD expð�xDtÞ. After integrated in part, the
second term in the LHS of Eq. (8) leads to the
equation of motion in the form

M
d2QðtÞ
dt2

þMðX2 þ cxDÞQðtÞ

�McxD e�xDðt�tI ÞQðtIÞ ¼ RðtÞ; ð9Þ
where we neglected the term proportional to x2

D by
assuming xD is small. The second term of the LHS
in Eq. (9) includes the additional potential term
McxDQ2=2, which agrees with the counter term
(
R1
0

dxIðxÞQ2=ðpxÞ ¼ McxDQ2=2) in the Hamil-
tonian (1). This additional term leads to a peak at

the position
ffiffiffiffiffiffiffiffiffi
cxD

p
for cxD � X2, and can be re-

garded as the origin of the additional peak. Note
that Eq. (8) has translational symmetry form for
X ! 0, whereas Eq. (9) does not. This is due to
neglecting the term proportional to x2

D. This
means that if the motion of the system decays
much faster than the characteristic time scale of
the bath oscillation (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
McxD= �mm

p
), the system can-

not recover the translational symmetry. In such a
case, the mechanism of the counter term to
maintain the translational symmetry of the system
is broken down and the counter term acts as the
additional potential. The appearance of this ad-
ditional peak is, therefore, an indication of the
counter term. As can be seen from the form of Eq.
(9), the peak position, which is determined by the
second term in the LHS, shifts to the blue for
larger xD. Thus, this peak vanishes in the Gauss-
ian-white case with xD ! 1.

Although the additional peak presented here is
the prominent feature of the present study, in a real
experimental situation, it is not so easy to observe
the difference between such a peak and other peaks
with different origins. It is because the additional
peak can be observed only in the condensed pha-
ses, where many molecular vibrational motions
associated with large inhomogeneity play a role. In
such a case, multi-dimensional spectroscopy,
which measures the multi-body correlation func-
tions of the polarizability or the dipole moment,
can give an additional insight. Examples of the
multi-dimensional vibrational techniques are the
fifth- [6,7] and seventh-order Raman spectroscop-
ies [8] and the second-order [9] and third-order
infrared spectroscopies [10]. The seventh-order
Raman and the third-order IR spectroscopies
correspond to the Raman echo and the IR photon
echo, respectively. We calculated the fifth-order 2D
Raman and third-order 2D IR signals defined by

Rð5Þ
RamanðT2; T1Þ ¼ h½½aðQðT1 þ T2ÞÞ; aðQðT1ÞÞ
; aðQÞ
i

and

Rð3Þ
IR ðT3; T2; T1Þ ¼ h½½½lðQðT1 þ T2 þ T3ÞÞ;
lðQðT1 þ T2ÞÞ
; lðQðT1ÞÞ
; lðQÞ
i;

respectively, where lðQÞ ¼ l1Qþ l2Q
2=2þ    is

the dipole moment. Since the two results are
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qualitatively similar, we present the third-order IR
signal. Note that since we express aðQÞ and lðQÞ in
the power of Q, Nth-order IR spectroscopy is
formally identical with the ð2N þ 1Þth-order Ra-
man spectroscopy [11]. The present results there-
fore agree with the seventh-order 2D Raman
results.

The third-order IR response function for the
Brownian oscillator system is expressed as [11]

Rð3Þ
IR ðT3; T2 ¼ 0; T1Þ ¼ 2l2

1l
2
2CðT1ÞðCðT3ÞÞ

2
; ð10Þ

where Ti is the time interval between the ith and
iþ 1th pairs of impulsive laser pulses, and we set
T2 ¼ 0 to consider the situation of the IR photon
echo experiments (see Fig. 2). The anti-symmetric
correlation function CðtÞ is defined by Eq. (7).

Fig. 3 shows the third-order IR response func-
tion in the frequency domain, which is defined by

I ð3ÞIR ðx3;x1Þ

¼
Z 1

0

dT1

Z 1

0

dT3 eix1T1þix3T3Rð3Þ
IR ðT3; 0; T1Þ


:
ð11Þ

Since the results are symmetrical with respect to
the x and y axes, we depict the first quadrant of the
2D spectra, I ð3ÞIR ðx3;x1Þ. The harmonic oscillator
frequency and the damping constant are chosen as
X ¼ 100 cm�1 and c=X ¼ 100, respectively. We set
the cutoff frequency as xD=X ¼ 1 in Fig. 3a i.e.,
Gaussian-white limit whereas xD=X ¼ 0:1 in
Fig. 3b.

The peak at ðx1;x3Þ ¼ ð0; 0Þ in Figs. 3a and b
arises from the overdamped motion of the system
oscillators. We find the additional peaks in the
Gaussian–Markovian case in Fig. 3b.

Although here we consider a single mode
system, the appearance of these peaks can be
understood from the argument developed for a
two-mode system [12]. It is because, as discussed in

Fig. 2. Time sequence of the third-order IR experiments. The

pulses labeled 1, 2, and 3 incident on the sample at time inter-

vals T1 between 1 and 2 and T2 ¼ 0 between 2 and 3. They create

a third-order polarization illustrated by the dashed line in the

sample for time T3 after the third pulse. The third-order po-

larization is evaluated by the third-order response function.

Fig. 3. Contour plot of the third-order IR response of the

strongly damped harmonic oscillator in the frequency domain

for the different cutoff frequency: (a) xD=X ¼ 1, i.e., the

Gaussian-white (GW) limit and (b) xD=X ¼ 0:1. The harmonic

oscillator frequency and the damping constant are set as

X ¼ 100 cm�1 and c=X ¼ 100, respectively. Since the results are

symmetrical with respect to the x and y axes, we depict the first

quadrant of the 2D spectra. In (b), the intensities of the peaks

are �0.8 at ðx1;x3Þ ¼ ð�XX; 2�XXÞ, �0.05 at ðx1;x3Þ ¼ ð0; �XXÞ, �0.2

at ðx1;x3Þ ¼ ð�XX; �XXÞ and ð0; 2�XXÞ, �1.6 at ðx1;x3Þ ¼ ðX; 0Þ, and
�0.3 at ðx1;x3Þ ¼ ð0; 0Þ.
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the third-order case, an overdamped single-mode
oscillator system coupled to the slow noise bath
can be expressed by two uncoupled modes: one
mode related to the system oscillator described by
y�, and the other mode related to the motion of the
bath oscillators with the narrow frequency distri-
bution described by yþ. Since the system coordi-
nate is then expressed as Q ¼ cþyþ þ c�y�, where
c� and cþ are constants, laser excitation with the
dipole element lðQÞ ¼ l1Qþ l2Q

2=2 causes the
one- and two-vibrational excitation or deexcita-
tion processes for the ‘þ’ and ‘�’ mode, in addi-
tion to the cross excitation-deexcitation process
between the two modes described by y�yþ.

The third-order 2D IR experiment consists of a
single excitation laser pulse at time t ¼ 0 followed
by two coincident pulses (mixing pulses) at time
t ¼ T1. These pulses create various coherences in
the ‘þ’ and ‘�’ modes, which can be observed by
the detection pulse at t ¼ T1 þ T3. The spectrum in
the double Fourier space therefore depicts the
coherence involved in the third-order IR process.
For example, the peak at ðx1;x3Þ ¼ ð�XX; 2�XXÞ,
where �XX ¼ 3:6, corresponds to the coherent pro-
cess of mode ‘þ’ that involves the coherence with
�XX in the time period T1 and 2�XX in the time period
T3. The pronounced feature of this result is peaks
at ð�XX; �XXÞ, ð0; �XXÞ, and ð0; 2�XXÞ: they appear since the
dipole moment has the cross terms y�yþ indicating
the coupling between two modes through the di-
pole moment. Since a system with two independent
modes cannot show such cross peaks, one may
distinguish the additional peak from the others
caused by two independent modes.

In this Letter we show that, if the correlation
time of a noise resource is much longer than the
time scale of the system’s motion, a Brownian
system with a strong system–bath interaction cau-
ses a prominent peak in the third-order Raman
spectrum in addition to featureless peak near the
zero frequency, which originates from the over-
dampedmotion of the system. This prominent peak
arises if the motion of the system decays faster than
the characteristic time scale of the bath oscillators,
which is determined by the highly localized spectral
distribution induced by the long-time noise corre-
lation. The character of this prominent peak and
the near zero frequency peak can be understood by

employing the approximated Hamiltonian ex-
pressed by the two uncoupled harmonic modes: one
mode related to the bath oscillators with narrow
band spectral distribution and the other mode re-
lated to the overdamped system motion. By plot-
ting the third-order 2D IR signal, we can see that
these two modes are coupling through the dipole
moment. We note that, if the system potential in-
cludes the anharmonicity, the two modes couple
through such an anharmonic part.

In this study, we limit our analysis to the
Brownian harmonic oscillator system with the
Gaussian–Markovian noise bath, but similar be-
havior is seen for such a damped two-dimensional
rotator system [13] and a Brownian system with
non-linear system–bath coupling [14]. The similar
peak may be seen in any damped system if the
noise has a narrow band spectral distribution, e.g.,
that defined by the spectral distribution function
with a power law form, IðxÞ / xs.

Finally, we discuss the connection between the
present study and the Boson peak, which was found
in the low energy region (2–10 meV) of inelastic
neutron or Raman scattering spectra in many
glassy materials and some supercooled liquids,
which are assumed to be the strongly damped en-
vironment [15–17]. The feature of the Boson peak is
universal and does not depend on the investigated
samples: its temperature dependence can be scaled
by the Bose factor for vibrational excitation. Many
attempts have been made to account for the
mechanism of the Boson peak. Some researchers
believe its origin is related to some kind of localized
vibrations, but the physical explanation is still un-
clear. It may be possible to relate our study to the
origin of the Boson peak, since the peakwe found in
this study may find in a wide class of systems with
the strong and long-time correlated noise. While
the Boson peak was observed in one-dimensional
spectroscopy, multi-dimensional spectra presented
in this study may give an additional insight into
determining the mechanism [11,18,19].
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