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Nonequilibrium initial conditions of a Brownian oscillator system observed
by two-dimensional spectroscopy

Yoko Suzuki and Yoshitaka Tanimura
Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan

~Received 21 February 2001; accepted 26 April 2001!

We study effects of a nonequilibrium initial condition of a Brownian oscillator system upon two-,
three-, and four-time correlation functions of an oscillator coordinate as a subject of
multidimensional spectroscopy. A nonequilibrium initial condition is set by a displacement of a
Gaussian wave packet in an oscillator potential. Such situation may be found in a vibrational motion
of molecules after a sudden bond breaking between a fragmental molecule and a targeting
vibrational system or a movement of wave packet in an electronic excited state potential surface
created by a laser pump pulse. Multitime correlation functions of oscillator coordinates for a
nonequilibrium initial condition are calculated analytically with the use of generating functional
from a path integral approach. Two-, three-, and four-time correlation functions of oscillator
coordinates correspond to the third-, fifth-, and seventh-order Raman signals or the first-, second-,
and third-order infrared signals. We plotted these correlation functions as a signal in
multidimensional spectroscopy. The profile of the signal depends on the initial position and
momentum of the wave packet in the fifth- and seventh-order Raman or the second and third order
infrared measurement, which makes it possible to measure the dynamics of the wave packet directly
in the phase space by optical means. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1379768#
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I. INTRODUCTION

The vibrational mode of molecules in condensed pha
has been studied in many experimental and theore
works. Femtosecond nonlinear optical spectroscopes
powerful tools to obtain information about a variety of d
namic processes, including such important processes as
croscopic dynamics, intermolecular couplings, and ti
scales of solvent evolution that modulate the energy o
transition. However, since vibrational lines from these p
cesses are often broadened and also appear in similar
tions, it is not easy to distinguish them from linear spectr
copy. This difficulty can be overcome by higher-ord
nonlinear optical processes involving many laser inter
tions. Two-dimensional Raman spectroscopy and tw
dimensional infrared spectroscopy are such example1,2

Many experimental efforts along this line of research ha
been made to probe inhomogeneity of liquids and inter-
intramolecular vibrational motion.3–7 The 2D information
content of these time domain experiments can also be
tained from a frequency domain experiment, and also d
onstrated that vibrational interactions in liquids can
observed.8–12 It is obvious that higher-order spectrosco
can contain many time intervals and these can be use
separate the mechanism of dynamical processes from
others. Theories so far developed are to access various
namical information for instance the degree of inhomo
neous broadening,1,13–15the anharmonicity of potentials an
the nonlinearity of polarizability,16–21 the coupling mecha-
nism between different vibrational modes22–26and the struc-
tural information of large molecules.27,28 In this paper, we
aim to demonstrate that multidimensional spectroscopy
2260021-9606/2001/115(5)/2267/15/$18.00
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useful not only to investigate the targeting dynamical p
cesses but also to elucidate information about a differe
for an initial distribution of vibrational modes. For the pu
poses of this work, we consider a Gaussian wave packe
the harmonic vibrational mode, whose center is shifted fr
the equilibrium position, as an initial condition. Such initi
condition may arise from a sudden bond breaking betwee
fragmental molecule and a targeting vibrational system
possible example is the ‘‘reaction driven’’ coherence
MbNO where the pump pulse creates the reactant exc
state (MbNO* ), which rapidly decays to Mb1NO @Fig.
1~a!#.29 One may also find similar situation in a movement
a wave packet created in an electronic excited state by a l
pump pulse@Fig. 1~b!#. Displacement and movement of th
wave packet is usually observed by the time-dependent e
sion or absorption spectrum. For example, in a displa
oscillator case, such effects can be seen by the so ca
dynamical Stokes shift. In some case, however, such m
surements are very difficult, since the emission or absorp
spectrum is often broadened and featureless from a conv
tion of all the dynamical and static information within it.

One-dimensional~1D! spectroscopy does not allow
unique extraction of information for superimposed dynam
cal time scales. Multidimensional spectroscopy, which m
sures the magnitude of a dipole moment or a nonlinear
larization as a function of the two independent cohere
evolution periods, can provide more information about t
molecular structure and dynamics than 1D spectrosco
Here we demonstrate a possibility to use multidimensio
spectroscopy to probe the nature of the initial distributio
For this purpose, we employ a Brownian oscillator model
7 © 2001 American Institute of Physics
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a molecular vibrational mode and incorporate the displa
ment of the initial distribution into the Brownian motio
theory using nonequilibrium generating functional calcula
from a path integral approach. We reformulate optical
sponse functions expressed by time correlation function
the molecular polarizability or the dipole moment and obt
their analytical expressions which are the observable of m
tidimensional Raman or infrared spectroscopy.

In Sec. II, the (2N11)th order Raman andNth order
infrared signals are described to arbitrary order in terms
response functions which are expressed by multitime co
lation functions of polarizability or dipole moment. In Se
III, we show any order of response function can be expres
by a generating functional whose calculational details
shown in Appendix A. We then calculated the response fu
tions analytically with the use of the diagrammatical ru
described in Appendix B. The numerical results are p
sented in Sec. IV and finally conclusions are given in Sec

II. RESPONSE FUNCTIONS FOR HIGHER-ORDER
OPTICAL PROCESSES

We consider a molecular system in the condensed ph
which is subjected to laser pulses. If the system is descr
by a single oscillation mode specified by its coordinateQ̂

and momentumP̂, the total Hamiltonian of the system an
the bath is written as

Ĥ5
P̂2

2M
1

1

2
MV2Q̂2

1(
i

H p̂i
2

2mi
1

miv i
2

2 S q̂i2
ciQ̂

miv i
2D 2J . ~2.1!

Here, V denotes the oscillator frequency. The coordina
conjugated momentum, mass, and frequency of ani th oscil-
lator are given byq̂i , p̂i , mi , and v i , respectively. The
interaction between the system and thei th oscillator is as-
sumed to beĤSB52ci q̂i Q̂. The term( ici

2Q̂2/(2miv i
2) is a

counter term which cancels the unphysical divergence fr

FIG. 1. Schematic view of a creation of nonequilibrim initial condition
t5t I . Example~a! shows the case of a sudden bond breaking betwee
fragmental molecule and a targeting vibrational system att5t I . In this
situation, the reactant excited state rapidly decays to the ground state
then the wave packet is created in the ground state att5t I . Example~b!
shows the situation in which a wave packet is created in an excited sta
a resonant pulse att5t I .
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the coupling to the bath degrees of freedom. The summa
over i goes to infinity in order to describe the dissipation
the molecular system.

We consider optical measurements where the molec
system is interacting with a laser field,E(t). For off-resonant
Raman spectroscopy, in which resonance arises from a
of laser pulses through Raman excitation processes, the
fective Hamiltonian is given by

ĤRaman5Ĥ2E2~ t !a~Q̂!, ~2.2!

wherea(Q̂) is the coordinate dependent Raman polariza
ity. For resonant IR spectroscopy, the Hamiltonian includ
laser interaction is given by

Ĥ IR5Ĥ2E~ t !m~Q̂!, ~2.3!

wherem(Q̂) is the coordinate dependent dipole moment.
both Raman polarizability and dipole moment can be
panded asa(Q̂)5a01a1Q̂1a2Q̂2/21¯ , or m(Q̂)5m0

1m1Q̂1a2Q̂2/2, the optical responses of Raman and re
nant IR are formally identical besides the fact that the (2N
11)th-order Raman spectroscopy corresponds to theNth or-
der IR spectroscopy. Therefore, hereafter we do not dis
guish between theNth-order IR and (2N11)th-order Raman
processes and present only the results for Raman spec
copy. Notice however that the even-order of IR respon
signals vanish for isotropic material.

In the 2N11th order off-resonant Raman experimen
the signal contributions are from Raman excitation that
curs while Raman pulse pairs are temporally overlapp
Thus each interaction occurs with a time coincident pu
pair. Also, the polarization detected is temporally overlapp
with the probe pulse. The pulse configurations for~i! third-,
~ii ! fifth-, and ~iii ! seventh-order processes are described
~see Fig. 2!

~ i! E1~ t !5d~ t2t!, ET~ t !5d~ t2T12t!, ~2.4!

a

nd

by

FIG. 2. Pulse configuration for~a! the fifth- and~b! the seventh-order off-
resonant Raman experiments. The nonequilibrium initial condition is cre
at t5t I . Then the movement of the wave packet is detected by a follow
sequence of pulses, i.e., two or three pairs of pulses are applied to
system, which followed by the last probe pulse. Here the first pair of pu
interact with the system att5t. In this paper, the temporal profiles of pulse
E1 , E2 , E3 , andET are assumed to be impulsive, and are given by~a! Eq.
~2.5! and ~b! Eq. ~2.6!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2269J. Chem. Phys., Vol. 115, No. 5, 1 August 2001 Two-dimensional spectroscopy
~ ii ! E1~ t !5d~ t2t!, E2~ t !5d~ t2T12t!,

ET~ t !5d~ t2T12T22t!, ~2.5!

~ iii ! E1~ t !5d~ t2t!, E2~ t !5d~ t2T12t!,

E3~ t !5d~ t2T12T22t!,

ET~ t !5d~ t2T12T22T32t!. ~2.6!

Here we have assumed that laser pulses are impulsive.
pump pulses and the probe pulse have been written asEj (t)
( j 51,2,...,N) and ET(t), respectively. The Raman signa
for the optically heterodyned detection are expressed by
response functions as

I (2N11)~T1 ,T2 ,...,TN ;t!}R(2N11)~TN ,...,T2 ,T1 ;t!,
~2.7!

which are theN time correlation functions of the polarizabi
ity operatora(Q̂) given in terms of

R(2N11)~TN ,...,T2 ,T1 ;t!

5S i

\ D N

^@@@¯@â~T11T21¯1TN1t!,

â~T11T21¯1TN211t!],...],â~T11t!], â~t!] &, ~2.8!

where â(t) represents the Heisenberg operator given

â(t)5e( i /\)Ĥta(Q̂)e2( i /\)Ĥt and^¯& means the expectatio
value of ‘‘¯’’ defined by ^¯&5Tr$r I¯%/Tr$r I% in which
r I implies an initial density matrix. Notice thatr I is chosen
as the nonequilibrium density matrix in the present study
that correlation functions are not stationary, i.e.,^@â(t
1t8),â(t)#&Þ^@â(t8),â(0)#&.

III. GENERATING FUNCTIONAL IN NONEQUILIBRIUM
PROCESS

A generating functional is defined as a functional of t
external force which is obtained from the density matrix
tracing over all degrees of freedom of the total system. I
convenient to calculate the higher-order response funct
which are derived by performing the functional differenti
tion in terms of the external force. To calculate the gene
ing functional, we need to trace out the system and b
degrees of freedom. The path integral method is suitabl
carry out such procedure. In this section, we demonst
how to apply the generating functional formalism to the c
culation of the higher-order response function.

Let us introduce the sourcesJ(t) andK(t) coupled toQ̂

anda(Q̂),

ĤJ,K~ t !5Ĥ2J~ t !Q̂2K~ t !a~Q̂!. ~3.1!

The generating functionalW@J,K# is then defined by
Downloaded 29 Jul 2001 to 133.48.169.49. Redistribution subject to AI
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\
W@J,K# D5Tr~ÛJ1 ,K1

~`,t I !r̂ I ÛJ2 ,K2

† ~`,t I !!

5E dQIE dQI8E dqIE dqI8^QI8qI8u

3 r̂ I uQIqI&^QIqI uÛJ2 ,K2

† ~`,t I !

3ÛJ1 ,K1
~`,t I !uQI8qI8&, ~3.2!

where

ÛJa ,Ka
~`,t I !5T expS 2

i

\ E
t I

`

dtĤJa ,Ka
~ t ! D , ~3.3!

and ÛJ,K
† is the adjoint ofÛJ,K . The symbol T implies the

time ordering operator. The real time paths are represe
by suffix a51,2 and the sourcesJ1 andK1 are for the left-
hand side time evolution kernel, whereasJ2 andK2 are the
right. The matrixr̂ I is an arbitrary density operator at th
initial time t I which does not need to be an equilibrium di
tribution. In the second line of Eq.~3.2!, we have inserted the
completeness relation for the basis$uQI ,qI&%: 1
5*dQI*dqI uQI ,qI&^QI ,qI u. The (2N11)th order response
function is given by the differentiation of the generatin
functionalW@J,K# as follows:

R(2N11)~TN ,...,T2 ,T1 ;t!

5u~T1!u~T2!¯u~TN!S i

\ D N

GR
(N11)~ t0 ,t1 ,t2 ,...,tN!,

~3.4!

GR
(N11)~ t0 ,t1 ,t2 ,...,tN!

[S \

i D
NS dN11W@J,K#

dK2~ t0!dK1~ t1!dK1~ t2!¯dK1~ tN! D
K50,J50

,

~3.5!

where we sett i[t1T11T21¯1TN2 i ~for i 50,1,...,N
21!, tN[t, and

K1~ t !5
K1~ t !1K2~ t !

2
, K2~ t !5K1~ t !2K2~ t ! . ~3.6!

From Eq. ~3.5!, we can systematically derive the highe
order response functions, once we obtain the genera
functional. We assume that the system and the bath are
tially factorized. Consequently the factor^QI8qI8ur̂ I uQIqI& in
Eq. ~3.2! can be expressed as the product of the system
and the bath part,

^QI8qI8ur̂ I uQIqI&5^QI8ur̂ I
(S)uQI&^qI8ur̂ I

(B)uqI&. ~3.7!

We further assume the bath is in the equilibrium state,

r̂ I
(B)5

exp~2bĤB!

TrB exp~2bĤB!
, ~3.8!

where

ĤB5(
i

H p̂i
2

2mi
1

miv i
2

2
q̂i

2J , ~3.9!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and TrB denotes the trace over the bath coordinates. As m
tioned in Sec. I, we consider the case where the initial s
of the system is set by the displaced Gaussian wave pa
given by

^QI8ur̂ I
SuQI&5S 2a

p D 1/2

e2a(QI2Q0)22a(QI82Q0)2
, ~3.10!

whereQ0 is the displacement from the bottom of the ha
monic potential and 1/a is the width of the initial wave
packet. We introduce the contour path for time integration
write various formulas in a compact way.30–32 The contour
time integral *Cdt runs from C1 to C2 defined byC1 :t I

→` andC2 :`→t I ~return path! ~see Fig. 3!. The path inte-
gral method allows us to obtain the analytical expression
the generating functionalW@J,K# of the Brownian motion
model even for the strong system–bath coupling and the
bath with a finite correlation time. The detailed derivation
W@J,K# with the aid of the path integral is shown in Appe
dix A. By using the notation

J1~ t !5
J1~ t !1J2~ t !

2
, J2~ t !5J1~ t !2J2~ t ! , ~3.11!

the generating functional fora(Q̂)5a1Q̂1a2Q̂2/21¯ is
written as

expS i

\
W@J,K# D5expS i

\
W@J5K50# D

3expS i

\
S1@J,K;d/dw# D

3expS i

\
S2@K,w# D U

w50,J50

, ~3.12!

where

S1@J,K;d/dw#

5
i

\ E
t I

`

dtE
t I

`

dt8H S \

i

d

dw1~ t !
1J2~ t !1a1K2~ t ! D

3K (12)~ t2t8!S \

i

d

dw2~ t8!
1 J̃1~ t8!1a1K1~ t8! D

1
1

2 S \

i

d

dw1~ t !
1J2~ t !1a1K2~ t ! DK (11)~ t,t8!

3S \

i

d

dw1~ t8!
1J2~ t8!1a1K2~ t8! D J , ~3.13!

FIG. 3. Contour pathsC1 , C2 .
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S2@K,w#5
i

\ E
t I

`

dtH K1~ t !a2w2~ t !w1~ t !

1K2~ t !
1

2
a2S w1

2 ~ t !1
1

4
w2

2 ~ t ! D1¯J . ~3.14!

Here we introduced the functionJ̃1(t) as

J̃1~ t !5J1~ t !1E
t I

`

dt8D (12)21~ t2t8!Q0

3cosṼ~ t82t I !, ~3.15!

where

D (12)~ t2t8!5u~ t2t8!
sinṼ~ t2t8!

MṼ
, ~3.16!

and the ‘‘renormalized’’ frequencyṼ is defined by

MṼ25MV21(
i

ci
2

miv i
2 . ~3.17!

The propagator for the total Hamiltonian,K (16), is ex-
pressed in the Laplace representation form as

K (12)~z!5E
0

`

d~ t2t8!K (12)~ t2t8!e2z(t2t8)

5H M ~z21V2!1(
i

ci
2

miv i
2

z2

z21v i
2J 21

, ~3.18!

K (11)~z,z8!5E
0

`

d~ t2t I !E
0

`

d~ t82t I !

3e2z(t2t I )e2z8(t82t I )K (11)~ t,t8!

5H S i\a1
iM 2

4a\
zz8D

1(
i

ci
2Gi

(11)~z,z8!J K (12)~z!K (12)~z8!.

~3.19!

The spectral distribution function,I (v), is formally defined
by I (v)5p( i(ci

2/2miv i)d(v2v i), which describes the
character of the heat bath. In the following, we consider
Ohmic dissipation,I (v)5Mgv, where the constantg cor-
responds to the strength of the damping. With the aid of
~3.18!, the propagatorK (12)(t2t8) is written as

K (12)~ t2t8!5u~ t2t8!
1

Mz

3expS 2
g~ t2t8!

2 D sin~z~ t2t8!!,

~3.20!

wherez[AV22g2/4.
SettingJ5K50, the time evolution of the expectatio

value ofQ̂ in the Ohmic dissipation case is calculated fro
Eqs.~3.12!, ~3.15!, and~3.20! as
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Q1
(0)~ t ![^Q̂1& tuJ5K505

dW

dJ2~ t !U
J5K50

5E
t I

`

dt8~K (12)~ t,t8!J̃1~ t8!

1K (12)~ t,t8!J2~ t8!!U
J5K50

5Q0u~ t2t I !e
2~g/2!(t2t I )S V

z D cosf~ t !, ~3.21!

where

cosf05
z

V
, ~3.22!

sinf05
g

2V
, ~3.23!

f~ t !5z~ t2t I !1f0 . ~3.24!

The above equation describes a damped oscillator of
wave packet in the harmonic potential started from the p
tion Q1

(0)(t I)5Q0 .
The higher-order response functions are derived by us

the Feynman rule given in Appendix B that is derived fro
the generating functionalW@J,K#. The Feynman role pro
vides the way of generalizing Brownian dynamics, for e
ample, to take into account the anharmonicity of potential
accordance with Eqs.~3.4!, ~B2!, and~B3!, thea1

2a2
N21- and

a1a2
N-terms of the (2N11)th-order response functions (N

51,2), i.e., the third- and fifth-order response functions,
Ti.0 (i 51,...,N) andt2t I.0 are given by

R(3)~T1 ;t!5~a11a2Q1
(0)~t1T1!!K (12)~T1!

3~a11a2Q1
(0)~t2!!, ~3.25!
o
r
n

th
c

n

a
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R(5)~T1 ,T2 ;t!5a2~a11a2Q1
(0)~T11T21t!!

3K (12)~T2!K (12)~T1!~a11a2Q1
(0)~t!!

1a2~a11a2Q1
(0)~T11t!!K (12)~T2!

3K (12)~T11T2!~a11a2Q1
(0)~t!!. ~3.26!

Using Eq.~3.21!, the response functions are expressed by
initial displacementQ0 which corresponds to the amplitud
of oscillation and the phase of the wave packet oscillato
the timet, f~t!. Note that if Q0 is replaced by2Q0 , the
phasef~t! in Eqs.~3.25! and ~3.26! becomes byf(t)1p,
i.e., the negative displacement leads to the phase shift o
signal. Physically one can more easily understand the eff
of nonequilibrium initial condition by introducing the pos
tion and momentum at the timet5t instead ofQ0 andf(t).
We also introduceQt[Q1

(0)(t) and Pt[M (dQ1
(0)(t)/dt),

wheret implies the time when the first pump pulses intera
with the system. From Eq.~3.21!, we have

Q1
(0)~ t1T!5QtS e2 ~g/2! T cos~zT!1

Mg

2
K (12)~T! D

1Pt K (12)~T!, ~3.27!

for T.0 andt2t I.0. With the use of Eq.~3.27!, we have

R(3)~T1 ;t!5a1
2K (12)~T1!

1a1a2FQtS e2 ~g/2! T1 cos~zT1!

1
Mg

2
K (12)~T1!11D

1Pt K (12)~T1!GK (12)~T1!, ~3.28!
R(5)~T2 ,T1 ;t!5a1
2a2~K (12)~T1!K (12)~T2!1K (12)~T11T2!K (12)~T2!!

1a1a2
2$Qt@MgK (12)~T11T2!K (12)~T1!K (12)~T2!1~11e2 ~g/2!(T11T2) cos@z~T11T2!# !

3K (12)~T1!K (12)~T2!1~11e2 ~g/2! T1 cos~zT1!!

3K (12)~T11T2!K (12)~T2!#12Pt K (12)~T11T2!K (12)~T1!K (12)~T2!%. ~3.29!
In the same manner, we express the seventh-order resp
as a function ofQt and Pt as follows. The seventh-orde
Raman response function is temporally three-dimensio
but up to now only temporally two-dimensional seven
order experiments have been performed. In the Raman e
the second propagation timeT2 is zero whereas in Rama
pump–probe experiment the time variableT1 is zero. When
we setT1 to be zero, the response function is expressed

R(7)~T3 ,T2,0;t!

52a2
2~a11a2Qt!

2K (12)~T2!K (12)

3~T3!K (12)~T21T3!, ~3.30!
nse

al
-
ho

s

with the use of Eqs.~3.4! and ~B4!. This indicates that the
signal in terms ofT2 andT3 does not depend onPt . If we
set T2 to zero, K (12)(T2) vanishes in Eq.~B4! and the
seventh-order response function is reduced to

R(7)~T3,0,T1 ;t!

52a1
2a2

2K (12)~T1!~K (12)~T3!!2

12a1a2
3FQtS e2 ~g/2! T1 cos~zT1!

1
Mg

2
K (12)~T1!11D1Pt K (12)~T1!G

3K (12)~T1!~K (12)~T3!!2. ~3.31!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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From Eqs.~3.28! and ~3.31!, we find thatR(7)(T3,0,T1 ;t)
52a2

2R(3)(T1 ;t)(K (12)(T3))2. The a1
2a2

N21-terms in
R(2N11) are independent of the wave packet motion and
the contribution for the equilibrium initial condition, i.e.,r̂ I

5e2bĤ/Tr e2bĤ. On the other hand, thea1a2
N-terms in

R(2N11) are contribution of the wave packet motion at timet
and are functions ofQt and Pt . In Eqs.~3.28!, ~3.29!, and
~3.31!, the response functions do not depend on the ini
width of the wave packet and the temperature. As we sh
in Eqs.~B2!, ~B3!, and~B4!, signals depend on these high
than the terms proportional toa2

N11.

IV. NUMERICAL RESULT

In this paper, we consider the Raman experiment fo
nonequilibrium initial condition set att5t I by the Gaussian
wave packet with the displacementQ0 , and the observation
is started att5t by the irradiation of the pair of pump pulse
to the system. From a different point of view, this situati
can be regarded as the third-, fifth-, and seventh-order
man experiments that provide the observation of the w
packet whose ‘‘initial’’ coordinate and ‘‘initial’’ momentum
are given byQt andPt at t5t.

In this section the third-, fifth-, and seventh-order r
sponse functions of off-resonant Raman process are num
cally calculated for the Ohmic dissipation model for differe
coordinateQt and momentumPt .

We setV51000@cm21# which is the typical value for
molecular vibrational motion andg/V50.1 ~underdamped
case!. Taking t→`, Qt andPt vanish as can be seen fro
Eq. ~3.21! and Pt5dQt /dt. Then the (2N11)th-order re-
sponse functions approach to the equilibrium ones wh
leading contribution is given by thea1

2a2
N21-order term of

R(2N11), as seen from Eqs.~3.28!, ~3.29!, and ~3.31!. In
order to see the roles ofQt andPt that characterize the stat
at t5t, we plot

RNE
(2N11)~TN ,...,T2 ,T1 ;Qt ,Pt!

[R(2N11)~TN ,...,T2 ,T1 ;t!

2R(2N11)~TN ,...,T2 ,T1 ;`!. ~4.1!

Hereafter, we employ the dimensionless coordinate and
mentum defined by Q̄t[a2Qt /a1 and P̄t[a2Pt /
(a1MV).

We first plot the imaginary part of the Fourier transfor
of the third-order Raman response function,

R(3)~v;t![E
0

`

dT1eivT1R(3)~T1 ;t!. ~4.2!

As a reference, in Fig. 4, we present the signal ImR(3)(v;`).
Figure 5 shows the imaginary part ofRNE

(3)(v;Qt ,Pt) for
g/V50.1 for ~a! 20.01,Q̄t,0.01 with P̄t50 and ~b!

20.01, P̄t,0.01 with Q̄t50.
To understand the position of the resonant peak, i

helpful to use energy level diagrams. For the third ord
Raman spectroscopy, we show some representative diag
in Fig. 6. In these diagrams, time runs horizontally from t
left to the right. The vibrational states are denoted asuv&
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with v50,1,... . FromQ̂}â1â†, whereâ and â† are anni-
hilation and creation operators (â†uv&5Av11uv11&, âuv&
5Avuv21&), we have 2j32k diagrams fora jak^@Q̂j (t
1T1),Q̂k(t)#&, which consist ofj arrows at the timet5t
1T1 and k arrows att5t. The upward and downward ar
rows stand for the transitionuv&→uv11& created byâ† and
uv&→uv21& by â, respectively. First, we should notice th
the displaced Gaussian wave packet that we observet
5t involves the off-diagonal elements in the energy lev
representation, i.e.,r̂t5(v,wrvwuv&^wu with rvwÞ0 for v
Þw. Herer̂t is a density matrix at the timet5t defined as

r̂t5e2 iĤ (t2t I )/\r̂ Ie
iĤ (t2t I )/\. The existence of the off-

diagonal elements can be understood in the following w
Any state att5t in the present study can be expressed in
phase space as

rt}e2a$(Q2Q0 cosf)21[ P/(MV)1Q0 sin f] 2%, ~4.3!

wheref is the phase determined by the ratio ofQt andPt .
This state can be generated from the Gaussian wave pa
r0}e2a[Q21(P/MV)2] by the unitary transformationD̂

5e2 iQ0(MV sin f Q̂1cosf P̂) as r̂t5D̂ r̂0D̂†, since D̂†Q̂D̂5Q̂

1Q0 cosf and D̂†P̂D̂5 P̂2MVQ0 sinf. Thus in the en-
ergy level representation, we have

r̂t5(
n,m

e2 if(n2m)(
l

r l ,l
0 Dm,l

(0)~Dn,l
(0)!* un&^mu, ~4.4!

where Dm,l
(0)5^muD̂u l &uf50 , because

D̂5eAMV/2\(e2 ifâ†2eifâ) and r̂05( lr l ,l
0 u l &^ l u. The above

equation clearly indicates the existence of the off-diago
elements.

Figure 6~a! shows the diagram for the terma1
2^@Q̂(t

1T1),Q̂(t)#&. The laser interaction with the linear polariz
ability, a1Q̂}a1(â1â†), changes the vibrational state of th
system fromuv& to uv61&. Note that@Q̂(t1T1),Q̂(t)# is
the c-number corresponding to the functionK (12)(T1). Fig-
ures 6~b! and 6~c! show the diagrams fora1a2^@Q̂(t
1T1),Q̂2(t)#& anda1a2^@Q̂2(t1T1),Q̂(t)#&, respectively.
The laser interaction with the nonlinear polarizabilitya2Q̂2

}a2(â1â†)2 changes the vibrational state fromuv& to uv
62&, whereasa1Q̂ changes the state fromuv& to uv61&.

 

FIG. 4. Plot of the spectral density of the third-order Raman respo
Im R(3)(v;t→`), for g50.1V.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. Three-dimensional profile o
the spectral density of the third-orde
Raman response, ImRNE

(3)(v;t), in the
underdamped case (g50.1V) for ~a!

20.01,Q̄t,0.01, P̄t50 and ~b! Q̄t

50, 20.01, P̄t,0.01. The graph in
the right is the spectral density for~a!

(Q̄t ,P̄t)5(20.01,0) ~dotted line!,

(Q̄t ,P̄t)5(0.005,0) ~dashed line!,

and (Q̄t ,P̄t)5(0.01,0) ~solid line!,

and ~b! (Q̄t ,P̄t)5(0,20.01) ~dotted

line!, (Q̄t ,P̄t)5(0,0.005) ~dashed

line!, and (Q̄t ,P̄t)5(0,0.01) ~solid
line!.
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Because of the off-diagonal elements of wave packett
5t, the diagrams with the different initial vibrational sta
and the final vibrational state can contribute to the signa
increases linearly withQ̄t or P̄t due to the contribution of
the off-diagonal element of the state,rv,v61 . For negative
Q̄t and P̄t , the signal has the opposite sign, which can
seen from Eq.~4.4! by settingf→f1p. For fixedPt50 in
Fig. 5~a!, the spectrum shows the two peaks atv5z.V and
v52z.2V with width g/2 andg, while for fixedQt50 in
Fig. 5~b!, the spectrum does not show the clear peak and
spectral line changes the sign atv50 andv.2V. These
features can be explained clearly by using the diagram F
6~b! and 6~c!. With the aid of the relation ^@Q̂(t
1 T1),Q̂2(t)# & 5 ^Q̂(t)@Q̂(t 1 T1), Q̂(t)# &1^@Q̂(t 1 T1),
Q̂(t)#Q̂(t)&, the diagram Fig. 6~b! can be divided into two
parts denoted by the dashed circle and dotted one. The
tribution of the dashed part that represents@Q̂(t
1T1),Q̂(t)# is the same as Fig. 6~a!. The contribution of the
dotted part gives the factor^Q̂(t)&5Qt which is related to
rv,v61 . Then Fig. 6~b! leads theQt dependence and contrib
utes to Fig. 5~a!. The frequency of the signal oscillation de
rived from Fig. 6~b! is v5V due to the transitionuv12&
→uv11& at the timet5t1T1 . The signal dependence o
the displacementQt and the momentumPt can be under-
stood from the diagram Fig. 6~c! as follows. In Fig. 6~c!,
the process can be divided into the two parts due to
relation ^@Q̂2(t1T1),Q̂(t)#&52^Q̂(t1T1)&@Q̂(t1T1),
Q̂(t)#. The contribution encircled by dashed line is t
same as Fig. 6~a!, whereas the contribution encircled by do
ted line is the same asQt1T1

. By using Q̂(t1T)

5eiĤ T/\Q̂(t)e2 iĤ T/\;cos(Vt)Q̂(t)1MV sin(Vt)P̂(t), we
find that this contribution depends on bothQt and Pt .
Therefore Fig. 6~c! leads to the signal in Fig. 5. Figures 5~a!
and 5~b! correspond to the imaginary and real parts
Downloaded 29 Jul 2001 to 133.48.169.49. Redistribution subject to AI
It

e

e

s.

n-

e

f

R(3)(v), respectively. This is because the matrix eleme
involved in Fig. 6~c! arerv,v11 and, from Eq.~4.4!, we have
the relationrv,v61

(a) 5e6 ip/2rv,v61
(b) for the element in the cas

~a! and~b! that correspond tof50 andf52p/2. The sig-
nals in Fig. 5 show the oscillation with the frequency 2V due
to the transition uv&→uv12& at the time t1T1 @using
â†(t);eiVtâ†#. Their line shapes are expressed by the sup
position of the two signals whose line shapes are given
the replacement ofV, g in R(3)(v;`) by 0, 2g and 2V, 2g,
respectively.

Figures 7 and 8 illustrate the fifth-order Raman sign

FIG. 6. Examples of the energy level diagrams associated with the th
order response function are shown. The vibrational states are denoted auv&,

uv11&, and uv12&. ~a! represents thea1
2^@Q̂(t1T1),Q̂(t)#&. ~b! and ~c!

correspond toa1a2^@Q̂(t1T1),Q̂2(t)#& and a1a2^@Q̂2(t1T1),Q̂(t)#&.

The contribution of the dashed part that represents@Q̂(t1T1),Q̂(t)# is the
same as the diagram~a!. The contribution of the dotted part gives the fact

^Q̂(t)&5Qt .
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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I (5)(T1 ,T2 ;t)5R(5)(T2 ,T1 ;t) calculated from Eq.~3.29!
for the damping constantg/V50.1. Figure 7 is the equilib-
rium partR(5)(T2 ,T1 ;`), whereas Figs. 8~a!, 8~b!, and 8~c!
depict the nonequilibrium partRNE

(5)(T2 ,T1 ;Qt ,Pt) for ~a!

Q̄t50, P̄t50.01, ~b! Q̄t50.01, P̄t50, and ~c! Q̄t55
31023, P̄t528.6631023. Their phasef(t) correspond to
~a! f(t)52p/2, ~b! f(t)50, and~c! f(t)5p/3, respec-
tively. The signalR(5)(T2 ,T1 ,t) vanishes atT250 in all the
cases Figs. 7 and 8~a!–8~c! as can be seen from the defin

FIG. 7. Contour plot of the equilibrium part of the fifth-order Raman
sponse,I (5)(T1 ,T2 ;`)5R(5)(T2 ,T1 ;t→`), in the underdamped case (g
50.1V). Dashed contours are negative.

FIG. 8. Contour plot of the fifth-order Raman responseRNE
(5)(T2 ,T1) in the

underdamped case (g50.1V) for ~a! (Q̄t ,P̄t)5(0,0.01), ~b! (Q̄t ,P̄t)

5(0.01,0), and~c! (Q̄t ,P̄t)5(531023,28.6631023). Dashed contours
are negative.
Downloaded 29 Jul 2001 to 133.48.169.49. Redistribution subject to AI
tion, Eq.~2.8!. The fifth-order response function is diagram
matically expressed in Fig. 9. In the diagrams f
a jaka l^@@Q̂j (t1T11T2),Q̂k(t1T1)#,Q̂l(t)#&, j , k, andl ,
arrows are depicted at the timet5t1T11T2 , t1T1 , andt,
respectively. Thea1

3-terms are canceled out by each oth
because of the commutation relation in@@Q̂,Q̂#,Q̂#. The
leading order terms are thereforea1

2a2^@@Q̂2,Q̂#,Q̂#& and
a1

2a2^@@Q̂,Q̂2#,Q̂#& and are shown in Figs. 9~a! and 9~b!,
respectively. These diagrams lead the signal in Fig. 7.
cording to the commutation relation@@Q̂2(t1T11T2),
Q̂(t 1T1)#,Q̂(t)# 52@Q̂(t1T11T2),Q̂(t1T1)#@Q̂(t1T1

1T2),Q̂(t)#, Fig. 9~a! is represented by the product of tw
parts, a-1 and a-2, which are associated with the third o
response function@Q̂(t1T11T2),Q̂(t1T1)#;K (12)(T2)
and @Q̂(t1T11T2),Q̂(t)#;K (12)(T11T2), respectively;
it shows the oscillation with the frequency 2V alongT2 di-
rection. In the same manner, Fig. 9~b! is represented by the
product of two processes b-1 and b-2 that are associated
K (12)(T1) andK (12)(T2), respectively; it shows the oscil
lation with the frequencyV in both theT1 andT2 direction.
Therefore we have the signals with the frequencyV in theT1

direction and the frequencyV and 2V in theT2 direction in
thea1

2a2-order. The frequencies in thea1a2
2-order terms can

be understood with the use of the diagrams Figs. 9~c! and
9~d! which correspond to a1a2

2^@@Q̂2,Q̂#,Q̂2#& and
a1a2

2^@@Q̂,Q̂2#,Q̂2#&, respectively. These diagrams have t
same frequencies as Figs. 9~a! and 9~b! and are independen
of the momentumPt , since they can be divided into th
dashed circle of Fig. 9~c!, that of Fig. 9~d!, and the dotted
circles of Figs. 9~c! and 9~d!, which correspond to the dia
grams Figs. 9~a!, 9~b!, andQt , respectively. The dependenc
of Pt is derived from the remaining term
a1a2

2^@@Q̂2,Q̂2#,Q̂#&. Using the commutation relation, th

FIG. 9. Examples of the energy level diagrams associated with the fi
order response function are shown. The vibrational states are denoted auv&,

uv11&, uv12&, anduv13&. ~a! and~b! correspond toa1
2a2^@@Q̂2,Q̂#,Q̂#&

and a1
2a2^@@Q̂,Q̂2#,Q̂#&. ~c! and ~d! are a1a2

2^@@Q̂2,Q̂#,Q̂2#&,

a1a2
2^@@Q̂,Q̂2#,Q̂2#&, respectively. The contribution of the dashed parts

~c! and~d! are the same as the diagrams~a! and~b!, whereas the dotted part

in ~c! and ~d! give the factor^Q̂(t)&5Qt . Using Eq. ~4.5!, the term

a1a2
2^@@Q̂2,Q̂2#,Q̂#& is divided in the two parts expressed by~e! and ~f!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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term a1a2
2^@@Q̂2,Q̂2#,Q̂#& is rewritten in two terms as fol-

lows,

a1a2
2^@@Q̂2~t1T11T2!,Q̂2~t1T1!#,Q̂~t!#&

52a1a2
2^Q̂~t1T11T2!@Q̂~t1T11T2!,Q̂~t1T1!#

3@Q̂~t1T1!,Q̂~t!#&12a1a2
2^@Q̂~t1T11T2!,

Q̂~t!#@Q̂~t1T11T2!,Q̂~t1T1!#Q̂~t1T1!&. ~4.5!

The diagrams Fig. 9~e! and 9~f! correspond to the first an
the second term of Eq.~4.5!. From Eq.~3.27!, Qt1T11T2

and
Qt1T1

are expressed in terms ofQt and Pt , which means
that the signals depend on both the position and the mom
tum at the timet. The product of e-1, e-2, and e-3 in Fi
9~e! or that of f-1, f-2, and f-3 in Fig. 9~f! shows the oscil-
lation with frequency 2V alongT1 andT2 . From the above
discussion, we can understand the profile of the signals
different parameters. In Fig. 7, the signal oscillates with
frequencyV in the T1 direction andV and 2V in the T2

direction as discussed in Figs. 9~a! and 9~b!. In Fig. 8~a!, the
signal oscillates with the frequency 2V in the T1 and theT2

direction, which is attributed to the zero quantum transitio
uv&→uv& at the timet5t1T1 and the two quantum trans
tion uv&→uv12& at the timet5t1T11T2 shown in Figs.
9~e! and 9~f!. In Fig. 8~a!, the signal is symmetric with re
spect toT1 andT2 axis since the diagrams Figs. 9~e! and 9~f!
cast into the formPt K (12)(T11T2)K (12)(T1)K (12)(T2)
with the use of the relationsQt1T11T2

5Pt K (12)(T1

1T2) and Qt1T1
5Pt K (12)(T1) for Qt50, which is de-

rived from Eq.~3.27!. The signal in Fig. 8~b! includes vari-
ous components corresponding to the diagrams in Figs. 9~c!,
9~d!, 9~e!, and 9~f! that lead the oscillations with the fre
quencyV and 2V in theT1 andT2 direction with the differ-
ent weight depending on a condition att5t and as a conse
quence, the signal is asymmetric. In Fig. 8~c!, the signal
consists of theP̄t andQ̄t contribution which are depicted in
Figs. 8~a! and 8~b! with the ratio2sinf(t) to cosf(t). A
profile of any signal in the present model can be charac
ized by the phasef(t). Thus, by obtaining a properf(t) to
simulate experimental data, we can trace the motion of
wave packet att5t moved from the initial state att5t I .
The main advantage of the present method is that, by m
suring the signal for differentt, we can directly trace the
time evolution of the wave packet in the phase space, i.e.
can obtain the momentum and the coordinate of the w
packet at once. Note that, although the same argument ca
applied to the third-order response, the higher-order respo
that leads the two-dimensional profile reveals the more c
cal information.

Finally, we plot the seventh-order signal,I (7)(T1 ,T3 ;t)
5R(7)(T3 ,T250,T1 ;t) calculated from Eq.~3.31! for g/V
50.1. The equilibrium partI (7)(T1 ,T3 ;`) is given in Fig.
10. The nonequilibrium parts, I NE

(7)(T1 ,T3 ;Qt ,Pt)
5RNE

(7)(T3,0,T1 ;Qt ,Pt), for ~a! Q̄t50, P̄t50.01, ~b! Q̄t

50.01, P̄t50, and ~c! Q̄t5531023, P̄t528.6631023

which correspond to the phase~a! f(t)52p/2, ~b! f(t)
50, and~c! f(t)5p/3 are given in Figs. 11~a!, 11~b!, and
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11~c!, respectively. Figures 12~a!–12~e! represent the dia-
grams corresponding to a1

2a2
2^@@@Q̂2,Q̂2#,Q̂#,Q̂#&,

a1
2a2

2^@@@Q̂2,Q̂#,Q̂2#,Q̂#&, a1a2
3^@@@Q̂2,Q̂2#,Q̂#,Q̂2#&,

a1a2
3^@@@Q̂2,Q̂#,Q̂2#,Q̂2#&, anda1a2

3^@@@Q̂2,Q̂2#,Q̂2#,Q̂#&,
respectively. Each of them is expressed by the produc
circled parts, which lead to the third-order correlation fun
tion K (12) andQt and Pt . Using the similar manipulation
as in the fifth-order case, the diagrams in Figs. 12~a!–12~d!
lead to the oscillation with frequencyV in the T1 direction

FIG. 10. Contour plot of the equilibrium part of the seventh-order Ram
response,I (7)(T1 ,T3 ;`)5R(7)(T3 ,T1 ;t→`), in the underdamped cas
(g50.1V). Dashed contours are negative.

FIG. 11. Contour plot of the seventh-order Raman responseRNE
(7)(T3 ,T1) in

the underdamped case (g50.1V) for ~a! (Q̄t ,P̄t)5(0,0.01), ~b! (Q̄t ,P̄t)

5(0.01,0), and~c! (Q̄t ,P̄t)5(531023,28.6631023). Dashed contours
are negative.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and 2V in the T3 direction, and the diagram in Fig. 12~e!
leads to the oscillation with the frequency 2V both in theT1

andT3 direction. Then we observe the oscillationV in theT1

direction and 2V in theT2 direction in Fig. 10, since only the
diagrams in Figs. 12~a! and 12~b! contribute to the equilib-
rium signal. In the case Fig. 11~a!, we observe the oscillation
2V both T1 andT3 direction, since the process correspon
ing to Fig. 12~e! contributes to the signal. In the case F
11~b!, the diagram Figs. 12~c!–12~e! contribute to the signal
Hence the oscillation in theT1 direction and that in theT3

direction becomes by the superposition of the oscillatio
with the frequenciesV and 2V. The signal in Fig. 11~c! is
given by the linear combination of the signals in Figs. 11~a!
and 11~b! with the ratio2sinf(t) to cosf(t). This situation
is same as the fifth-order case and we can use the sev
order experiment to see the dynamics of the wave packe
the phase space, as well.

V. CONCLUSION

In this paper, we derived the generating functional fo
Brownian oscillator system whose initial state is describ
by displaced Gaussian wave packet from the path inte
approach. The generating functional allows for the calcu
tion of the third-, fifth-, seventh-order Raman response o
harmonic oscillator with coordinate dependence of the po
izability. To demonstrate effects of the nonequilibrium initi
condition, we plot the Raman response for the different d
placement and momentum of the wave packet at the timt
5t when the first pump pulses interact with the system. A
state at timet can be expressed by a Gaussian wave pa
centered atPt /(MV)52A sinf andQt5A cosf, whereA
andf are the amplitude and the phase in the phase space
are given byA5Q0 and f5Vt for an oscillator with fre-
quencyV. Due to the off-diagonal elements of the state
t5t, the signals depend on the wave packet motion

FIG. 12. Examples of the energy level diagrams associated with
seventh-order response function atT250 are shown. The vibrational state
are denoted asuv&, uv11&, uv12&, uv13&, and uv14&. ~a! and ~b!

correspond toa1
2a2

2^@@@Q̂2,Q̂2#,Q̂#,Q̂#& and a1
2a2

2^@@@Q̂2,Q̂#,Q̂2#,Q̂#&.

~c!, ~d!, and ~e! correspond toa1a2
3^@@@Q̂2,Q̂2#,Q̂#,Q̂2#&, a1a2

3^@@@Q̂2,

Q̂#,Q̂2#,Q̂2#&, and a1a2
3^@@@Q̂2,Q̂2#,Q̂2#,Q̂#&, respectively. The contribu-

tion of the dashed parts in~c! and~d! are the equivalent to the diagrams~a!
and ~b!, whereas the dotted parts in~c! and ~d! give the factorQt .
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show the mode with the frequency 2V which does not appea
in the equilibrium case. In the third order response, the sig
decays with decreasing the displacementQt for the positive
displacement (f50) and it increases with decreasinguQtu
for the negative displacement (f5p). Consequently, the
time evolution of the signal implies whether the wave pac
is displaced initially toward decreasing or increasing bo
length. In the fifth-~seventh-! order response, the compone
of the signal which is proportional toPt is symmetry with
respect toT1 and T2 ~T1 and T3!. On the other hand, the
component which is proportional toQt is asymmetric. These
properties can be explained with the help of the energy le
diagrams. In the signal, the ratio of aQt contribution to a
Pt /(MV) contribution is cosf to 2sinf. Thus, by looking
for the phasef to simulate experimental data, we can tra
the motion of the wave packet at timet5t moved from the
initial state at timet50. The main advantage of the prese
method is that we can obtain the information about not o
the position but also the momentum of the wave packet.

In the present studies, we restricted our analysis to
order of a1

2a2
N21 and a1a2

N , so the response functions d
not depend on the initial width of the wave packet and
temperature as stated in Sec. III; the dependence of the
perature and the width of the wave packet appear in the o
of a2

N11. Such effects as well as the effects of the anharm
nicity of an oscillation mode may be studied from the equ
tion of motion approach.17,33,34
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APPENDIX A: DERIVATION OF THE GENERATING
FUNCTIONAL

In this Appendix, we derive the generating function
W@J,K# defined by Eq.~3.2! for the initial state Eqs.~3.7!–
~3.10!. By integrating over the bath coordinateqI and qI8 ,
W@J,K# is given by

expS i

\
W@J,K# D5F)i

1

2 sinh
b\v i

2
G

3expF i

\

1

2 (
i
E

C11C2

dtdt8

3S \

i

d

dCJ~ t ! D ci
2GC

(mi ,v i )~ t,t8!

3S \

i

d

dCJ~ t8! D GexpS i

\
WS@J,K# D ,

~A1!

where

e
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expS i

\
WS@J,K# D

5E dQIE dQI8^QI8ur I
(S)uQI&

3^QI uÛS2
† ~ tF ,t I !ÛS1~ tF ,t I !uQI8&, ~A2!

ÛSa~ t,t8!5T expH i

\ E
t8

t

dsS P̂2

2M
1

1

2
MṼ2Q̂2

2Ja~s!Q̂2Ka~s!a~Q̂! D J ~a51,2!, ~A3!

GC
(m,v)~ t,t8!5

i

2mv

1

sinh
\bv

2

3H uC~ t2t8!cosFvS t2t81
ib\

2 D G
1uC~ t82t !cosFvS t82t1

ib\

2 D G J . ~A4!

Here Ṽ is given in Eq.~3.17!. Notice that we take the fina
time tF to be set infinity in the end of this Appendix. Th
functional differentiation d/dCJ(t) means d/dJ1(t) and
2d/dJ2(t) for tPC1 and tPC2 , respectively.

The factor^QI8uÛS2
† (tF ,t I)ÛS1(tF ,t I)uQI& is calculated

as follows. Inserting the completeness relation
5*dQFuQF&^QFu at the final timetF , we have

^QI8uÛS2
† ~ tF ,t I !ÛS1~ tF ,t I !uQI&

5E dQF^QI8uÛS2
† ~ tF ,t I !uQF&^QFuÛS1~ tF ,t I !uQI&.

~A5!

The time evolution kernel with the sourcesJ1 ,K1 ,

^QFuÛS1(tF ,t I)uQI& is given by~see, for example, Ref. 35!

^QFuÛS1~ tF ,t I !uQI&

5S MṼ

2p i\ sinṼT
D 1/2

3expH 2
i

\
E

t I

tF
dsVS \

i

d

dJ1~s!
;K1~s!D J

3expF i

\
H 1

2
E

t I

tF
dtE

t I

tF
dt8J1~ t !D~ t,t8!J1~ t8!

1QIE
t I

tF
dt

sinṼ~ tF2t !

sinṼT
J1~ t !

1QFE
t I

tF
dt

sinṼ~ t2t I !

sinṼT
J1~ t !2

MṼ

sinṼT
QIQF

1
MṼ

2

cosṼT

sinṼT
~QF

21QI
2!J G , ~A6!
Downloaded 29 Jul 2001 to 133.48.169.49. Redistribution subject to AI
where

V~Q;K~s!!52K~s!a~Q!, ~A7!

D~ t,t8!52
1

MṼ
F u~ t2t8!

sinṼ~ t82t I !sinṼ~ tF2t !

sinṼT

1u~ t82t !
sinṼ~ t2t I !sinṼ~ tF2t8!

sinṼT
G . ~A8!

The kernel of the return path with the sourceJ2 and K2 ,
denoted by^QI uÛS2(t I ,tF)uQF&, is given by replacingJ1

and K1 with J2 and K2 for the complex conjugate of Eq
~A6!. By integrating overQF , Eq. ~A8! is expressed as

E dQF^QI8uÛJ2

† ~ tF ,t I !uQF&^QFuÛJ1
~ tF ,t I !uQI& ~A9!

5expF2
i

\ E
t I

tF
dsH VS \

i

d

dJ1~s!
;K1~s! D

2VS 2\

i

d

dJ2~s!
;K2~s! D J G

3dS ~QI2QI8!2E
t I

tF
dtD(12)~ t2t I ! D

3expH i

\ S QI1QI8

2 E
t I

tF
dt cosV~ t2t I !J2~ t !

1E
t I

tF
dtE

t I

tF
dt8J2~ t !D (12)~ t2t8!J1~ t8! D J , ~A10!

whereJ6 is defined by Eq.~3.11!. Choosing the displaced
Gaussian wave packet~3.10! as the initial state,WS@J,K# is
calculated by integrating over (QI2QI8) and (QI1QI8)/2 as

expS i

\
WS@J,K# D

5expF2
i

\ E
t I

tF
dsH VS \

i

d

dJ1~s!
;K1~s! D

2VS 2\

i

d

dJ2~s!
;K2~s! D J G

3expH i

\ E
t I

tF
dtE

t I

tF
dt8J2~ t !~D (12)~ t2t8!J1~ t8!

1Q0 cosV~ t2t I !d~ t2t8!!

1
i

2\ E
t I

tF
dtE

t I

tF
dt8J2~ t !D (11)~ t,t8!J2~ t8!J . ~A11!

HereD (12) andD (11) are the propagators without couplin
to the bath and are given by Eq.~3.16! and

D (11)~ t,t8!5
\

i S 2aD(12)~ t2t I !D
(12)~ t82t I !

2
1

4a\2 cosṼ~ t2t I !cosṼ~ t82t I ! D ,

~A12!
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15expS i

\ E
C11C2

dtJ~ t !w~ t ! DU
w50

5expS i

\ E
t I

tF
dt~J1~ t !w2~ t !1J2~ t !w1~ t !! DU

w50

~A13!

from the right-hand side of Eq.~A1!, and using the relation eF1[d/dJ]eF2[J]e*dsJ(s)w(s)uw505eF2[J1d/dw]eF1[w] uw50 , we obtain
the following result:

expS i

\
W@J,K# D5F)i

1

2 sinh
b\v i

2
GexpF i

\ E
t I

tF
dtE

t I

tF
dt8S \

i

d

dw1~ t !
1J2~ t ! D

3H D (12)~ t2t8!S \

i

d

dw2~ t !
1J1~ t ! D1Q0 cosṼ~ t2t I !d~ t2t8!J

1
i

2\ E
t I

tF
dtE

t I

tF
dt8S \

i

d

dw1~ t !
1J2~ t ! DD (11)~ t,t8!S \

i

d

dw1~ t8!
1J2~ t8! D G

3expF i

2\ (
i
E

t I

tF
dtE

t I

tF
dt8$w2~ t !~ci

2Gi
(11)~ t,t8!!w2~ t8!1w2~ t !~ci

2Gi
(12)~ t2t8!!w1~ t8!%G

3expF2
i

\ E
t I

tF
ds$V~w1~s!;K1~s!!2V~w2~s!;K2~s!!%GU

w50

, ~A14!

where

Gi
(12)~ t2t8![G11

(mi ,v i )~ t,t8!2G12
(mi ,v i )~ t,t8!5u~ t2t8!

1

miv i
sinv i~ t2t8!, ~A15!

Gi
(11)~ t,t8![

1

4
~G11

(mi ,v i )~ t,t8!1G12
(mi ,v i )~ t,t8!1G21

(mi ,v i )~ t,t8!1G22
(mi ,v i )~ t,t8!!5

i

2miv i
cothS b\v i

2 D cosv i~ t2t8!.

~A16!

Equation~A14! leads to the Feynman rule described in Fig. 13. Using this rule,W@J,K# can be cast into the following form

expS i

\
W@J,K# D5F)i

1

2 sinh
b\v i

2
GexpF i

\ E
t I

tF
dtE

t I

tF
dt8H S \

i

d

dw1~ t !
1J2~ t ! DK (12)~ t2t8!S \

i

d

dw2~ t8!
1 J̃1~ t8! D

1
1

2 S \

i

d

dw1~ t !
1J2~ t ! DK (11)~ t,t8!S \

i

d

dw1~ t8!
1J2~ t8! D J G

3expF2
i

\ E
t I

tF
ds$V~w1~s!;K1~s!!2V~w2~s!;K2~s!!%GU

w50

. ~A17!

HereK (12) andK (11) are the propagators for the system including the effects of the bath. By using the fact thatK (12)(t
2t8) is causal, we can find the graphical expression Fig. 14 from the Feynman rule Fig. 13. The algebraic expressio
14 is represented as

K (12)~ t2t8!5D (12)~ t2t8!1E
t I

tF
dsE

t I

tF
ds8D (12)~ t2s!S (

i
ci

2Gi
(12)~s2s8! DD (12)~s82t8!

1E
t I

tF
dsE

t I

tF
ds8E

t I

tF
ds9E

t I

tF
ds-D (12)~ t2s!S (

i
ci

2Gi
(12)~s2s8! DD (12)~s82s9!

3S (
i

ci
2Gi

(12)~s92s-! DD (12)~s-2t8!¯ . ~A18!
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Summing up the right-hand side of Fig. 14, we have
following relation:

K (12)~ t2t8!5D (12)~ t2t8!

1E
t I

tF
dsE

t I

tF
ds8D (12)~ t2s!

3S (
i

ci
2Gi

(12)~s2s8! DK (12)~s82t8!.

~A19!

Using the Laplace transformation,K (12) in tF→` is repre-
sented as

K (12)~z!5D (12)~z!1D (12)~z!

3S (
i

ci
2Gi

(12)~z! DK (12)~z!, ~A20!

whereD (12)(z) andGi
(12)(z) are given by

D (12)~z!5
1

M

1

z21Ṽ2
, ~A21!

Gi
(12)~z!5

1

mi

1

z21v i
2 . ~A22!

This leads the expression in Eq.~3.18!.
Next, K (11)(t,t8) can be obtained in the same mann

The algebraic expression ofK (11) is

K (11)~ t,t8!5D (11)~ t,t8!1E
t I

tF
dsE

t I

tF
ds8D (11)~ t,s!

3S (
i

ci
2Gi

(21)~s2s8! DK (21)~s82t8!

1E
t I

tF
dsE

t I

tF
ds8D (12)~ t2s!

3S (
i

ci
2Gi

(12)~s2s8! DK (11)~s8,t8!

1E
t I

tF
dsE

t I

tF
ds8D (12)~ t2s!

3S (
i

ci
2Gi

(11)~s,s8! DK (21)~s82t8!,

~A23!

FIG. 13. Feynman rule.
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where Gi
(21)(t2t8)[Gi

(12)(t82t), K (21)(t2t8)
[K (12)(t82t) and another propagatorsD (11)(t,t8) and
Gi

(11)(t,t8) are given by Eqs.~A12! and ~A16!, respec-
tively. Now, we take the final timetF→`. Using the first
line of Eq.~3.18! and substituting Eqs.~A12! and~A16! into
Eq. ~A23!, we obtain the propagatorK (11) as in Eq.~3.19!.

Applying the relation,

eF[d/dw]e*dsK(s)w(s)5e*dsK(s)w(s)eF[(d/dw)1K] , ~A24!

to Eq. ~A17!, we arrive at the result given in Eq.~3.12!.

APPENDIX B: DERIVATION OF N TIME
CORRELATION FUNCTION BY USE OF FEYNMAN
RULES

In this Appendix, we present the Feynman rules that le
the N time correlation functions,GR

(N11) , defined by Eq.
~3.5!. From Eqs.~3.5! and ~3.14!, we have following rules:

~1! PrepareN11 white circles corresponding toak0
,ak1

,...,
andakN

(ki51,2...; i 50,1,...,N). The white circle cor-
responding toaki

from which ki lines emerge shall be
called the external point;

~2! Prepare black circles corresponding to sourcesJ̃1
(0) that

are treated as one-point vertices. A line emerges fr
this black circle;

~3! Attach a time valuablet0 to the external point corre
sponding toak0

. We call it an external point labeledt0 ;
~4! Attach a time valuablet i to the external point corre

sponding toaki
. We call it an external point labeledt i ;

~5! Attach a time valuablet to a black circle corresponding
to J̃1

(0) ;
~6! Prepare lines corresponding to propagators,K (16);
~7! Attach the index ‘‘1 ’’ or ‘‘ 2 ’’ to each line from an

external point or a black circle as in Fig. 15.
The factors on the right of the graphs imply attachme
to the graphs.

~8! Using the propagators, external points, and one-po
vertices, draw all connected diagrams which are to
logically distinct. Note here that the diagram which co
tains the propagators connecting the indices ‘‘2 ’’ and ‘‘
2 ’’ are excluded;

~9! Carry out the integration over all internal time fromt I

to `;
~10! Multiply the contribution of each diagram b

(\/ i )N11/S, whereS is the symmetry factor. The sym
metry factorS is defined as the order of the permutatio
group of the internal lines and vertices leaving the d
gram unchanged when the external lines are fixed.

FIG. 14. Diagrammatical expression of a propagatorK (12).
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As an example, let us consider the second-order corr
tion function, GR

(2)(t0 ,t1). In accordance with the abov
rules, GR

(2)(t0 ,t1) is diagrammatically given by Fig. 16~a!
after introducing the expression

5
i

\ S a11a2E
t I

`

dsK(12)~ t2s!J̃1
(0)~s! D

5
i

\
~a11a2Q1

(0)~ t !!, ~B1!

where the last equation is obtained with the use of the sec
line of Eq.~3.21!. Following to the rules, we can write dow
the analytical expression in the form

FIG. 15. Feynman rule for response functions.
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a-

nd

i

\
GR

(2)~ t0 ,t1!5~a11a2Q1
(0)~ t0!!K (12)~ t02t1!~a1

1a2Q1
(0)~ t1!!

1a2
2 i

\
K (11)~ t0 ,t1!K (12)~ t02t1!

1¯ . ~B2!

In the same way, the third-order correlation functio
GR

(3)(t0 ,t1 ,t2), and the fourth order correlation function
GR

(4)(t0 ,t1 ,t2 ,t3), are diagrammatically expressed as in Fig
16~b! and 16~c!, respectively. Then the analytical expressi
for these diagrams are given by

FIG. 16. Diagrammatical representation of~a! second-,~b! third-, and~c!
fifth-order response functions expressed by the terms Eq.~B1! and Fig. 15.
S i

\ D 2

GR
(3)~ t0 ,t1 ,t2!5~a11a2Q1

(0)~ t0!!a2K (12)~ t02t1!K (12)~ t12t2!~a11a2Q1
(0)~ t2!!1~ t1↔t2!1~a1

1a2Q1
(0)~ t1!!a2K (21)~ t12t0!K (12)~ t02t2!~a11a2Q1

(0)~ t2!!1
i

\
a2

3~K (11)~ t0 ,t1!

3K (12)~ t02t2!K (12)~ t22t1!1K (11)~ t0 ,t2!K (12)~ t02t1!K (12)~ t12t2!!1¯ , ~B3!

S i

\ D 3

GR
(4)~ t0 ,t1 ,t2 ,t3!5~a11a2Q1

(0)~ t0!!a2
2K (12)~ t02t1!K (12)~ t12t2!K (12)~ t22t3!~a11a2Q1

(0)~ t3!!

1~5 terms that are all permutation of~ t1 ,t2 ,t3!!1~a11a2Q1
(0)~ t1!!

3a2
2K (21)~ t12t0!K (12)~ t02t2!K (12)~ t22t3!~a11a2Q1

(0)~ t3!!

1~five terms that are all permutation of~ t1 ,t2 ,t3!!1
i

\
a2

4~K (12)~ t02t1!K (12)~ t12t2!

3K (12)~ t22t3!K (11)~ t3 ,t0!!1~5 terms that are all permutation of~ t1 ,t2 ,t3!!1¯ . ~B4!
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