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Nonequilibrium initial conditions of a Brownian oscillator system observed
by two-dimensional spectroscopy
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We study effects of a nonequilibrium initial condition of a Brownian oscillator system upon two-,
three-, and four-time correlation functions of an oscillator coordinate as a subject of
multidimensional spectroscopy. A nonequilibrium initial condition is set by a displacement of a
Gaussian wave packet in an oscillator potential. Such situation may be found in a vibrational motion
of molecules after a sudden bond breaking between a fragmental molecule and a targeting
vibrational system or a movement of wave packet in an electronic excited state potential surface
created by a laser pump pulse. Multitime correlation functions of oscillator coordinates for a
nonequilibrium initial condition are calculated analytically with the use of generating functional
from a path integral approach. Two-, three-, and four-time correlation functions of oscillator
coordinates correspond to the third-, fifth-, and seventh-order Raman signals or the first-, second-,
and third-order infrared signals. We plotted these correlation functions as a signal in
multidimensional spectroscopy. The profile of the signal depends on the initial position and
momentum of the wave packet in the fifth- and seventh-order Raman or the second and third order
infrared measurement, which makes it possible to measure the dynamics of the wave packet directly
in the phase space by optical means. 2601 American Institute of Physics.
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I. INTRODUCTION useful not only to investigate the targeting dynamical pro-
o . cesses but also to elucidate information about a difference

The vibrational mode of molecules in condensed phasegy; an initial distribution of vibrational modes. For the pur-
has been studied in many experimental and theoreticglges of this work, we consider a Gaussian wave packet in
works. Femtosecond nonlinear optical Spectroscopes ai§e harmonic vibrational mode, whose center is shifted from

powerful tools to obtain information about a variety of dy- y,o equilibrium position, as an initial condition. Such initial
namic p.rocesses,_mcluldmg such important PrOCESSES as Mignyition may arise from a sudden bond breaking between a
croscopic. dynamics, mFermoIecuIar couplings, and tImefragmental molecule and a targeting vibrational system. A

scales of solvent evolution that modulate the energy of %ossible example is the ‘reaction driven” coherence in

transition. However, since vibrational lines from these pro- .
L MbNO where the pump pulse creates the reactant excited
cesses are often broadened and also appear in similar posi- : : .
. o s . State (MbNO), which rapidly decays to MbNO [Fig.
tions, it is not easy to distinguish them from linear spectros- 29 , - RSO
e . 1(a)].©” One may also find similar situation in a movement of
copy. This difficulty can be overcome by higher-order

nonlinear optical processes involving many laser interacd Wave packet created in an electronic excited state by a laser

tions. Two-dimensional Raman spectroscopy and twoPUMP puIse[F_ig. 1(b)]. Displacement anq movement of the_
dimensional infrared spectroscopy are such exantgles. wave packet is usually observed by the time-dependent emis-

Many experimental efforts along this line of research have>on ©OF absorption spectrum. For example, in a displaced

been made to probe inhomogeneity of liquids and inter- an@Scillator case, such effects can be seen by the so called
intramolecular vibrational motiofr.’ The 2D information ~dynamical Stokes shift. In some case, however, such mea-

content of these time domain experiments can also be opurements are very difficult, since the emission or absorption
tained from a frequency domain experiment, and also demSPectrum is often broadened and featureless from a convolu-
onstrated that vibrational interactions in liquids can betion of all the dynamical and static information within it.
observed 2 It is obvious that higher-order spectroscopy ~ One-dimensional(1D) spectroscopy does not allow
can contain many time intervals and these can be used t#nique extraction of information for superimposed dynami-
separate the mechanism of dynamical processes from tif@l time scales. Multidimensional spectroscopy, which mea-
others. Theories so far developed are to access various d§ures the magnitude of a dipole moment or a nonlinear po-
namical information for instance the degree of inhomoge.lal’ization as a function of the two independent coherence
neous broadenint*®*~*the anharmonicity of potentials and evolution periods, can provide more information about the
the nonlinearity of polarizability?=2* the coupling mecha- molecular structure and dynamics than 1D spectroscopy.
nism between different vibrational modés?®and the struc- Here we demonstrate a possibility to use multidimensional
tural information of large moleculéd:?® In this paper, we spectroscopy to probe the nature of the initial distribution.
aim to demonstrate that multidimensional spectroscopy i§or this purpose, we employ a Brownian oscillator model for
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FIG. 1. Schematic view of a creation of nonequilibrim initial condition at I T

t=t,. Example(a) shows the case of a sudden bond breaking between a ) ) )

fragmental molecule and a targeting vibrational systent=at, . In this FIG. 2. Pulse configuration faie) the fifth- and(b) the seventh-order off-
situation, the reactant excited state rapidly decays to the ground state af@Sonant Raman experiments. The nonequilibrium initial condition is created
then the wave packet is created in the ground state=af. Example(b) att=t, . Then the movement of the wave packet is detected by a following

shows the situation in which a wave packet is created in an excited state bjeduence of pulses, i.e., two or three pairs of pulses are applied to the
a resonant pulse att, . System, which followed by the last probe pulse. Here the first pair of pulses

interact with the system at= 7. In this paper, the temporal profiles of pulses
E., E,, E3, andE; are assumed to be impulsive, and are giveridyEq.
. . . . (2.5 and(b) Eq. (2.6).
a molecular vibrational mode and incorporate the displace-

ment of the initial distribution into the Brownian motion
theory using nonequilibrium generating functional calculated
from a path integral approach. We reformulate optical rethe coupling to the bath degrees of freedom. The summation
sponse functions expressed by time correlation functions odveri goes to infinity in order to describe the dissipation on
the molecular polarizability or the dipole moment and obtainthe molecular system.
their analytical expressions which are the observable of mul- We consider optical measurements where the molecular
tidimensional Raman or infrared spectroscopy. system is interacting with a laser field(t). For off-resonant

In Sec. Il, the (N+1)th order Raman andlth order = Raman spectroscopy, in which resonance arises from a pair
infrared signals are described to arbitrary order in terms obf laser pulses through Raman excitation processes, the ef-
response functions which are expressed by multitime correfective Hamiltonian is given by
lation functions of polarizability or dipole moment. In Sec. N . ) N
I1l, we show any order of response function can be expressed HRramai=H — E“(1) 2(Q), 22

by a ggnerating .functional whose calculational details a“?/vherea(Q) is the coordinate dependent Raman polarizabil-
s_hown n Ap_pend|x A We then calculateq the response func|'ty. For resonant IR spectroscopy, the Hamiltonian including
tions analytically with the use of the diagrammatical rule | qor interaction is given by

described in Appendix B. The numerical results are pre-
sented in Sec. IV and finally conclusions are givenin Sec. V.  Hz=H—E(t)x(Q), (2.3

wherex(Q) is the coordinate dependent dipole moment. As
both Raman polarizability and dipole moment can be ex-
panded asw(Q)=ag+ a;Q+ ay,Q%2+-++, or w(Q)=pu,

_We_ Cons?der a molecular system in the condt_ansed phanglQ+ a,0%2, the optical responses of Raman and reso-
which is subjected to laser pulses. If the system is describelant |R are formally identical besides the fact that thél (2
by a single oscillation mode specified by its coordin@e  +1)th-order Raman spectroscopy corresponds to\theor-
and momentunP, the total Hamiltonian of the system and der IR spectroscopy. Therefore, hereafter we do not distin-

Il. RESPONSE FUNCTIONS FOR HIGHER-ORDER
OPTICAL PROCESSES

the bath is written as guish between thilth-order IR and (& + 1)th-order Raman

. processes and present only the results for Raman spectros-
Pz 1 :

A=——+-MQ20? copy. Notice however that the even-order of IR response
2M 2 signals vanish for isotropic material.

.2 5 A\ 2 In the 2N+ 1th order off-resonant Raman experiment,
+> p_‘+ Mo (qi_ ¢Q ) ] (2.1)  the signal contributions are from Raman excitation that oc-
T 2m, 2 m; w; curs while Raman pulse pairs are temporally overlapped.

Here, O denotes the oscillator frequency. The coordinate,Th“S each interaction occurs with a time coincident pulse

conjugated momentum, mass, and frequency oftarscil- pair. Also, the polarization detected is temporally overlapped
lator are given byd,, p;, m;, and ;, respectively. The vy_ith_the probe__pulse. The pulse configurations(ﬁ()rthirq-,
interaction between the system and flie oscillator is as- (i) fifth-, and (iii) seventh-order processes are described as

sumed to béHgg=—¢;8;Q. The term=;c’Q%(2m;w?) is a (see Fig. 2
counter term which cancels the unphysical divergence from (i) Eq(t)=48(t—7), Ef(t)=56(t—T;—17), (2.9
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i) Eq(t)y=6(t—7), Ex(1)=6(t—T1—17), i N N
(i) Ex()=8(t—7), Ex()=3(t—Ty—7) ex%%W[JIK]):Tr(UJyKl(OO,tl)ﬁ,ugszz(m,t,))

ET(t): 5(t_T1_T2_T), (25)
- | da, [ dor [ aa, [ dorcara
(iii) Ey(t)=8(t—7), Ep(t)=d(t—T,— ),
Xp Ul (oot
Ea(t) = 8(t— T~ To— 7). pilQian(Qiail 3, k(% 1)
XOJl,Kl(OO’tI)|QI’qI,>' 3.2
ET(t)=5(t—T1—T2—T3—T) (26)
where
Here we have assumed that laser pulses are impulsive. The i o
pump pulses and the probe pulse have been writtet @3 0, K (oc,tl):TeXF< — %f dtH, X (t)), (3.3
(j=1,2,..,N) and E{(t), respectively. The Raman signals o 4 o

for the optically heterodyned detection are expressed by thgnd 0} . is the adjoint ofUJ «. The symbol T implies the
response functions as ' ‘

time ordering operator. The real time paths are represented
by suffix a=1,2 and the source¥;, andK; are for the left-
HENDTL T, T ) REVD(Ty L T, Tas ), hand side time evolution kernel, wherehsandK, are the

27 right. The matrixp, is an arbitrary density operator at the
initial time t, which does not need to be an equilibrium dis-
tribution. In the second line of E¢3.2), we have inserted the
completeness relation for the basi|Q,,q)}: 1
=[dQ,fdq,|Q,,q,){Q,,q|. The (2N+1)th order response
function is given by the differentiation of the generating
functional W[ J,K] as follows:

R(2N+l)(TN R 1T2 le ; T)

which are theN time correlation functions of the polarizabil-
ity operatora(Q) given in terms of

R(2N+1)(TN=---1T21T1;T)

Y
fli_) ([0 [a(Ty+Tot -+ Tyt 1),

i \N
a(Ty+ T+ Tyt D] ] a(Ti+ 1] a(n]), (2.8 =0(T1)0(T2)~~0(TN)<;,1—) G Dty ty,to,.. ty),

where a(t) represents the Heisenberg operator given by (3.4
a(t) =€elMHtg(Q)e (MHt and(---) means the expectation

(N+1)
value of “--” defined by (---)=Tr{p,---}/Tr{p,} in which Gr' "oty 2 )

p, implies an initial density matrix. Notice that is chosen (h) N( SNTIWI, K]

as the nonequilibrium density matrix in the present study, so =+ ,

that correla?ion functions ;/re not stationpary, i.é[,&(ty 1L OK(to) K (1) 0K (t) = 0K () [y Lg5-0

+t),a(t) ) #([a(t’),a(0)]). (3.9
where we settj=7+T;+Ty+---+Ty_; (for i=0,1,..,N
—1), ty=7, and

I1l. GENERATING FUNCTIONAL IN NONEQUILIBRIUM K, (1) +Ky(t)

PROCESS Ki()=——F——, K_()=Ky()=Ky(1). (3.6

A generating functional is defined as a functional of the

o ; ; : From Eg. (3.5, we can systematically derive the higher-
external force which is obtained from the density matrix bYorder reqspgonss)e functionsy once we %btain the gengerating

. . ' Sunctional. We assume that the system and the bath are ini-
convenient to calculate the higher-order response functions

which are derived by performing the functional differentia- fially factorized. Consequently the fact(Q; q;|,/Qia;) in

S Eqg. (3.2) can be expressed as the product of the system part
tion in terms of the external force. To calculate the generat-
) . and the bath part,
ing functional, we need to trace out the system and bath
degrees of freedom. The path integral method is suitable to  (Q/q;|5,|Q,a,)=(Q;15{|Q\)a/p®|q). (3.7
carry out such procedure. In this section, we demonstrate furth h his in th iibri

how to apply the generating functional formalism to the cal-We urther assume the bath is in the equilibrium state,

culation of the higher-order response function.

. A ~(B) qu_BHB)
Let us introduce the sourcd$t) andK(t) coupled toQ p =, (3.8
and a(Q), Trgexp(— BHpg)
R R R R where
Hyk()=H-=J(1)Q—K(t)a(Q). 3. 2 2
Ag=> [p_iJqu?] (3.9
The generating functionaM[ J,K] is then defined by B4 lam - 2 ) '
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Imz? , i *®
Sz[K,QD]=gJ dt[K+(t)az¢(t)¢>+(t)
C f
p' l | y
tI ItF I{et l 1
C +K_(t)§a2(<pi(t)+ Z(,oz_(t) +-o1. (319
Here we introduced the functiah, (t) as
FIG. 3. Contour path€;, C,. j+(t)=~]+(t)+ft dt'D I (t—t")Q,
|
x cos)(t' —t,), (3.15
and Tg denotes the trace over the bath coordinates. As menRghere
tioned in Sec. |, we consider the case where the initial state
of the system is set by the displaced Gaussian wave packet sinﬁ(t—t’)
given by DU I(t—t)=f(t—t') ——, (3.16
MQ
s 221" _o(@1-00-a(@} a0 . 5 e daf
(QilprlQy={—| e *™ %o 7= (310 and the “renormalized” frequenc§) is defined by
2
. . : 5 c:

where Qg is the displacement from the bottom of the har MO 2= MQZ+E i . (3.17

monic potential and & is the width of the initial wave T Mo;
packet. We introduce the contour path for time integration to ()
write various formulas in a compact w&.>2 The contour The propagator for the total Hamiltoniak®™ =, is ex-
time integral f<dt runs fromC; to C, defined byC; t, pressed in the Laplace representation form as

—oo andC,:x—t, (return path (see Fig. 3. The path inte-

gral method allows us to obtain the analytical expression oK(+_)(Z):J
the generating functionalV[J,K] of the Brownian motion
model even for the strong system—bath coupling and the heat
bath with a finite correlation time. The detailed derivation of
W[ J,K] with the aid of the path integral is shown in Appen-

d(t—t")KE I (t—t")e 4t
0

2 > -1
= M(Z2+0)+ D —zci —;Z (3.18
T M;w; 22+wi ' ’

dix A. By using the notation

Jy (1) +J,(1)

Ji ()= > v J-(D)=3()=Jx(t), (31D

the generating functional fow(Q)=a;Q+ a,Q%2+-- is
written as

exp(fii—W[J,K]) =exp(;i—W[J= K=O])
xexp{iii—sl[J,K;élécp])

, (312

¢=0J=0

xext 1 SAK 1)

where

Si[J.K; 61 8¢]

—i—J’wd’[jmdt’[(é o +J (1) +auK t)
ok t) t) i Sp(t) -+ ek

B oS
a0 F 5

+j+(t,)+a1K+(tl)>

14 ¢
+ E(I— m+\](t)+alK(t)) K(++)(t,t )

+J_(t’)+a1K_(t’))], (3.13

( 5
“\T 5o, (1)

KT (z,z)= f:d(t—t,)f:d(t’ —-t,)

X e At=t)g= 2 (' ~t) K (+ +)(t,tr)

=|

+> c?Gi(**)(z,z')]K(*>(z)K<+>(z').

4ah zz

_ iM? )
ihat+ -—z7

(3.19

The spectral distribution function(w), is formally defined

by I(w)= wEi(ciZIZmiwi)é(w—wi), which describes the
character of the heat bath. In the following, we consider the
Ohmic dissipation] (w) =M yw, where the constany cor-
responds to the strength of the damping. With the aid of Eq.
(3.18), the propagatoK (* )(t—t') is written as

1
K“*)(t—t’)za(t—t')M—g

Xexp(— 7“; ))sin@(t—t’»,

(3.20
where/=\Q?—y?/4.
SettingJ=K =0, the time evolution of the expectation

value ofQ in the Ohmic dissipation case is calculated from
Egs.(3.12, (3.195, and(3.20 as
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RONT,, Ty 7) = a( @y + a,QO(Ty+To+ 7))

Q(f)(t)E<@+>t|J=K:o:ﬂ
53-l-k-o XK (TKE (T (ag+ Q7))

- fmdt’(K(+‘)(t,t’)j+(t’) +ag(ar+ a, QT+ 1)K (T
4
XK T+ Ty) (e + a,Q0(7)). (3.26

Using Eq.(3.21), the response functions are expressed by the
initial displacemenQ, which corresponds to the amplitude
of oscillation and the phase of the wave packet oscillator at
the time 7, ¢(7). Note that if Qg is replaced by—Q,, the
phaseg(7) in Egs.(3.25 and(3.26 becomes byp(7) + ,

+KED(t,t)I_(t)

J=K=0

:Qoa(t—t,)e”’z)(‘"’(%)co&;&(t), (3.21)

where i.e., the negative displacement leads to the phase shift of the
cos¢o=£ (3.22 signal. Physically one can more easily understand the effects
Q’ of nonequilibrium initial condition by introducing the posi-

) % tion and momentum at the tinte= 7 instead 0fQ, and ¢( 7).

singo=54 823 we also introduced,=Q(7) and P,=M(dQ\(7)/d7),
wherer implies the time when the first pump pulses interact

$(1)=L(t=1))+ o, (3.24 7imp pume p

with the system. From Ed3.21), we have
The above equation describes a damped oscillator of the

wave packet in the harmonic potential started from the posi- QV(t+T)=Q (e‘ (2T cog ¢T) + M_7K<+—>(T)
tion Q(t;) = Q. ’ ’ 2

The higher-order response functions are derived by using +P, KT, (3.27
the Feynman rule given in Appendix B that is derived from ,
the generating functionalV[ J,K]. The Feynman role pro- for T>0 and7—t,>0. With the use of Eq(3.27), we have
vides the way of generalizing Brownian dynamics, for ex-  RG)(Ty;7)=aiK()(Ty)
ample, to take into account the anharmonicity of potential. In
accordance with Eq$3.4), (B2), and(B3), the a3y ~*- and +aja,
alag‘—terms of the (A + 1)th-order response function® (
=1,2), i.e., the third- and fifth-order response functions, for My
T,>0 (i=1,...N) and7—t,>0 are given by + TK(+_)(T1)+1

QT( e " Ticog(Ty)

REO(Ty;7) = (a;+ a,Q0(7+ T1)KF(T))
X (ay+ a;,Q0(ry)), (3.29

+P_ KE(T) [KE(T)Y), (3.28

RON(T,,Ty;7)=adap(KE(TYKE (T +KE (T 1+ T KE)(Ty))
+aa5{Q IM YK T+ TH)KE NTYKE (T +(1+e 2T T cod ¢(T1+T,)])
XKEDN(TKE (T +(1+e” P Ticog(Ty))
XKE T 4+ T)KE (T ]+ 2P, KED(T+To)KE)(THKE(TH)L. (3.29

In the same manner, we express the seventh-order responséh the use of Eqs(3.4) and (B4). This indicates that the
as a function ofQ, and P, as follows. The seventh-order signal in terms ofT, and T; does not depend oR,. If we
Raman response function is temporally three-dimensionadet T, to zero, K{* 7)(T,) vanishes in Eq(B4) and the
but up to now only temporally two-dimensional seventh-seventh-order response function is reduced to

order experiments have been performed. In the Raman ecri__gm T.0T.-

the second propagation timk, is zero whereas in Raman (T3,0,T4;7)
pump—probe experiment the time variaflgis zero. When =2a2a5KI)(T)(KT)(Ty))?
we setT, to be zero, the response function is expressed as

+2aa3 QT( e (" Ticog(Ty)
RO(T3,T,,0;7)
Y _ _
= 203+ a,Q,) K NTHKE) tg KMy rL] P Kb )(Tl)}
X (T KT+ Ty), (3.30 XK N(T (KT (T2 (3.31)
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From Egs.(3.28 and (3.31), we find thatR(")(T;3,0,T;;7)
=2a2RON(T; (K )(Ty))2  The ala) terms in
RN*1) are independent of the wave packet motion and are
the contribution for the equilibrium initial condition, i.ep,

=e PM/Tre PH. On the other hand, the;a)-terms in
RN*1) are contribution of the wave packet motion at time
and are functions o, andP . In Egs.(3.28), (3.29, and

(3.31), the response functions do not depend on the initial

width of the wave packet and the temperature. As we show

in Egs.(B2), (B3), and(B4), signals depend on these higher 0 1 5 3 4

than the terms proportional i@y " *. ®(10°em™)

Im { R® (0)}

FIG. 4. Plot of the spectral density of the third-order Raman response
IV. NUMERICAL RESULT Im R¥(w;7—), for y=0.10.

In this paper, we consider the Raman experiment for a
nonequilibrium initial condition set at=t, by the Gaussian R
wave packet with the displaceme@t, and the observation with v=0,1,.... FromQxa+ a', wherea anda' are anni-
is started at= 7 by the irradiation of the pair of pump pulses hilation and creation operatoré(v)= v +1|v+1), &lv)
to the system. From a different point of view, this situation = \y|v — 1)), we have 2x2* diagrams fora;ja([Q!(7
can be regarded as the third-, fifth-, and seventh-order Raz T ) Gk(7)7), which consist ofj arrows at the time=r
man experiments that provide the observation of the wave. T, andk arrows att=r. The upward and downward ar-
packet whose “initial” coordinate and “initial” momentum s stand for the transitiojy)— |v + 1) created bya' and
are given byQ. andP, att=r. lv)—|v—1) by &, respectively. First, we should notice that

In this section the third-, fifth-, and seventh-order re-the displaced Gaussian wave packet that we obserte at
sponse functions of off-resonant Raman process are numeti . inyolves the off-diagonal elements in the energy level

cally calculated for the Ohmic dissipation model for different rgpresentation, i.ep, =3, ,p wlo X w| with p,,,#0 for v
B I T v, v v
coordinateQ, and momentun® . #w. Herep, is a density matrix at the time= 7 defined as

_ 71 . . . . )
We set()=1000 cm™ *] which is the typical value for . —e MWty dR(—U/ The existence of the off-

molecular vibrational motion ang/Q=0.1 (underdamped Pr . .
. . diagonal elements can be understood in the following way.
casg. Taking 7—«, Q, and P, vanish as can be seen from

Eq. (3.21) andP,=dQ./dr. Then the (N-+ 1)th-order re- Arr:y state at= 7 in the present study can be expressed in the
. Lo ase space as

sponse functions approach to the equilibrium ones whosB

leading contribution is given by the?ah~'-order term of poceal(Q=Qocosd)?+[PI(MQ) + Qg sin ¢} 4.3

RCN*1) as seen from Eq¥3.28, (3.29, and (3.31). In

order to see the roles @, andP, that characterize the state

att=r, we plot

RN (Ty,....T2.T1;Q,.P,)

where ¢ is the phase determined by the ratio@f andP.,.
This state can be generated from the Gaussian wave packet

pooce‘a[Q2+(P’Mf”2] by the unitary transformationD
— a—iQp(MQ sin ¢ Q+cos¢ P) as i)T:DﬁoﬁT’ since [")TQ@ZQ
=RENF(T,...T5, Ty 7) +Qqcos¢ and DTPD=P—-MQQ,sin¢. Thus in the en-
ergy level representation, we have

—RENFD(T .. T, Ty ). (4.2)
Hereafter, we employ the dimensionless coordinate and mo- .=, e *""™ > 0 DO(DQ)* |n)(m, (4.4)
mentum defined by Q.=a,Q,/a; and P.=a,P,/ nm '
(1M Q). where ~ DO=(m[D]1)| 40, because
We first plot the imaginary part of the_ Fourier transform § _ o/MO72i(e”'%a'-d%a) 5nq ﬁo=2|PP|||><||- The above
of the third-order Raman response function, equation clearly indicates the existence of the off-diagonal
o . elements.
R(s)(“’;T)EfO dT, RO (Ty; 7). (4.2) Figure Ga) shows the diagram for the term([Q(7

+Tl),Q(r)]>. The laser interaction with the linear polariz-

ability, «;Q=a;(a+4a"), changes the vibrational state of the
_ - = system from|v) to v +1). Note that{ Q(7+T4),Q(7)] is

y/1=0.1 for (8 —0.01<Q,<0.01 with P.=0 and (b) /0 " per corresponding to the functiéh® ~)(T,). Fig-

~0.01<P,<0.01 withQ,=0. , A
To understand the position of the resonant peak, it iglres §b) and Gc) show the diagrams forr ep{[Q(7

helpful to use energy level diagrams. For the third ordert T1).Q%(1)1) anda1ax([Q*(7+T1).Q(7)1), respectively.
Raman spectroscopy, we show some representative diagrarhe laser interaction with the nonlinear polarizabilityQ?
in Fig. 6. In these diagrams, time runs horizontally from the* a2(a+a")? changes the vibrational state frojn) to |v
left to the right. The vibrational states are denotedjids  *+2), whereasa;Q changes the state frofa) to |v+1).

As a reference, in Fig. 4, we present the signaRif{(w;).
Figure 5 shows the imaginary part & (w;Q,,P,) for
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FIG. 5. Three-dimensional profile of
the spectral density of the third-order
Raman response, IR (w;7), in the
underdamped casey & 0.1Q)) for (a)
—~0.01<Q,<0.01,P.=0 and(b) Q.
=0, —0.01<P,<0.01. The graph in
the right is the spectral density féa)
(Q,,P,)=(—0.01,0) (dotted ling,
(Q,.,P,)=(0.005,0) (dashed ling
and @,,P,)=(0.01,0) (solid line),
and (b) (Q,,P,)=(0,—0.01) (dotted
line), (Q,,P,)=(0,0.005) (dashed
line), and Q,,P,)=(0,0.01) (solid
line).

Because of the off-diagonal elements of wave packet at R®)(w), respectively. This is because the matrix elements
=, the diagrams with the different initial vibrational state involved in Fig. c) arep, , .1 and, from Eq(4.4), we have

and the final vibrational state can contribute to the signal. Ithe relationp(?) .

=€) for the element in the case

increases linearly witlQ, or P, due to the contribution of (a) and(b) that correspond tgp=0 and¢ = — /2. The sig-
the off-diagonal element of the state, ,.,. For negative nals in Fig. 5 show the oscillation with the frequendy due

Q. andP.., the signal has the opposite sign, which can bel® the transition|v)—|v+2) at the time r+T, [using

seen from Eq(4.4) by setting¢p— ¢+ 7r. For fixedP,=0 in
Fig. 5(a), the spectrum shows the two peaksvat (=) and

a'(t)~€a’]. Their line shapes are expressed by the super-
position of the two signals whose line shapes are given by

©=27=20 with width y/2 andy, while for fixedQ,=0 in  the replacement o, y in R®)(w;=) by 0, 2y and 2, 2y,
Fig. 5(b), the spectrum does not show the clear peak and thESPectively.

spectral line changes the sigh @at=0 and w=2(). These
features can be explained clearly by using the diagram Figs.
6(b) and Gc). With the aid of the reIation([Q(r
+T1),Q%(N]) =(QNIQ(7+ T1), QN 1) +([Q(7+ Ty),
Q(1)10(7)), the diagram Fig. @) can be divided into two
parts denoted by the dashed circle and dotted one. The con-
tribution of the dashed part that represenf€(r
+7T,),0(7)] is the same as Fig(#&. The contribution of the
dotted part gives the factdiQ(7))=Q, which is related to
pPuv=1- Then Fig. b) leads theQ . dependence and contrib-
utes to Fig. Ba). The frequency of the signal oscillation de-
rived from Fig. &b) is = due to the transitiorv + 2)
—|v+1) at the timet=7+T,. The signal dependence on
the displacemen@, and the momentuni, can be under-
stood from the diagram Fig.(6 as follows. In Fig. €c),

the process can be divided into the two parts due to the

relation  ([Q*(7+T1),Q(7N])=2(Q(r+T1)[Q(r+Ty),
Q(7)]. The contribution encircled by dashed line is the

(a)

(c)

Figures 7 and 8 illustrate the fifth-order Raman signal

[ v+1 >
A v 0

T 'C+T1

T T+7;

RN
7 lv+2>
,3._\_/’ | v+1 >
v >

T T+7]

E—\— | v+2 >
]
Y v+l >

v >

same as Fig.®), whereas the contribution encircled by dot- FIG. 6. Examples of the energy level diagrams associated with the third-

ted line is the same a1, By using Q(7+T)

order response function are shown. The vibrational states are dendted as
lv+1), and|v+2). (a) represents therX([Q(7+T,),Q(7)1). (b) and(c)

=eNTQ(n)e M ~cosQnQ(n)+MASINQIP(7),  We  corespond toayan([Q(r+T1).047)]) and aran[ Q7+ T2, A(7)]).
find that this contribution depends on bo@, and P,. The contribution of the dashed part that represp@sr+ T,),Q(7)] is the
Therefore Fig. &) leads to the signal in Fig. 5. Figuresab  same as the diagrafa). The contribution of the dotted part gives the factor
and 8b) correspond to the imaginary and real parts of(Q())=Q..
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400 § 750

300

T,(fs)

200 |\

100

0
0 100 200 300 400
T,(fs)

FIG. 7. Contour plot of the equilibrium part of the fifth-order Raman re-
sponse,| ®(T;,T,;2)=RO(T,,T;;7—=), in the underdamped case (
=0.1Q). Dashed contours are negative.

1) (T,,T,;7)=RO)(T,,T,;7) calculated from Eq.3.29
for the damping constant/()=0.1. Figure 7 is the equilib-
rium partR®)(T,,T;;%), whereas Figs. @), 8(b), and &c)
depict the nonequilibrium paR(T,,T,;Q,,P,) for (a)
Q,=0, P,=0.01, (b) Q,=0.01, P,=0, and (c) Q,=5
X103, P,=—8.66x10 3. Their phasep(r) correspond to
@ @(7)=—7/2, (b) ¢(7)=0, and(c) ¢(7)=n/3, respec-
tively. The signaR®)(T,,T,,7) vanishes aT,=0 in all the
cases Figs. 7 and@®—8(c) as can be seen from the defini-

(b)

T,(fs)

()

T, (fs)

FIG. 8. Contour plot of the fifth-order Raman responﬁé%(Tz,Tl) in the
underdamped casey£0.10) for (a) (Q,,P,)=(0,0.01), (b) (Q,.P,)

=(0.01,0), and(c) (Q,,P,)=(5x10"3,—8.66x 10 3). Dashed contours
are negative.

Y. Suzuki and Y. Tanimura

a-l, - - - =~ _b-1
(@) —= — lv42> (b)/B_% [v+2 >
Y \ y
,Er\ [v+1 > = = [v+1 >
N Y- |y> *{‘m|v>
a- —
T 141 t+T+T T 14T, 1+ +1,
(©) /—¢—L\— 43> (d) 72— 143>
L Y o lvi2> L 1 v+2 >
N Y s d v /
.~ [v+1 > By o X~ [v+1 >
————— |V > Y L gy
T 14T, t1+1T1+T, T 141, t+1+T,

(e /,\——‘E3 [v42> @ :‘% | [v42 >
R I YT I T ME
7 €2y > g _—J'—_ lv>

- N CetN —
T t+1, T+ +T, T t+T, T+T+Th

FIG. 9. Examples of the energy level diagrams associated with the fifth-
order response function are shown. The vibrational states are dendted as

l[v+1), [v+2), and|v+3). (a) and(b) correspond tavZa,([[ @2 Q1,07

and afep([[Q.Q%,Q)). (¢ and (d) are a;a,%([[Q%Q1.Q%),
a,0,%[[©,0?1,0?]), respectively. The contribution of the dashed parts in
(c) and(d) are the same as the diagratasand(b), whereas the dotted parts

in (c) and (d) give the factor(Q(7))=Q,. Using Eq.(4.5), the term
a,0,%[[§%,0?%],Q)) is divided in the two parts expressed & and (f).

tion, Eq.(2.8). The fifth-order response function is diagram-
matically expressed in Fig. 9. In the diagrams for
ajoa{([[Q(7+ T +T,),Q%7+T1)1.Q'(7)]). j, k, andl,
arrows are depicted at the timhe 7+ T,+T,, 7+ T4, andr,
respectively. Theaf—terms are canceled out by each other

because of the commutation relation [ipQ,Q],Q]. The
leading order terms are therefomg?a,([[®?,01,Q]) and

a?ax([[Q,8%],Q]) and are shown in Figs.(8 and 9b),
respectively. These diagrams lead the signal in Fig. 7. Ac-
cording to the commutation relationj[Qz(rJr T,+Ty),
Q(r+T1)].Q(N]=2[Q(7+T1+T,),Q(r+ T I[Q(7+T;
+T,),Q(7)], Fig. 9a) is represented by the product of two
parts, a-1 and a-2, which are associated with the third order
response functiof Q(7+ T, +T,),Q(7+T,)]1~K*7)(T,)

and [Q(7+T1+T,),0(7)]~KF)(T,+T,), respectively;

it shows the oscillation with the frequency)2along T, di-
rection. In the same manner, Figb®is represented by the
product of two processes b-1 and b-2 that are associated with
KO =)(T,) andK{)(T,), respectively; it shows the oscil-
lation with the frequency in both theT,; andT, direction.
Therefore we have the signals with the frequeficin the T,
direction and the frequendg and 2} in the T, direction in

the afaz-order. The frequencies in thelag-order terms can

be understood with the use of the diagrams Fids) @nd
9(d) which correspond to a;a3([[0%Q],0%]) and
aa5([[Q,0%],0?]), respectively. These diagrams have the
same frequencies as FiggaPand 9b) and are independent
of the momentumP ., since they can be divided into the
dashed circle of Fig. @), that of Fig. 9d), and the dotted
circles of Figs. &) and 9d), which correspond to the dia-
grams Figs. @), 9(b), andQ ., respectively. The dependence
of P, is derived from the remaining term
a,a5([[Q?%,Q%],Q]). Using the commutation relation, the
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term a,a5([[Q?,Q%],Q]) is rewritten in two terms as fol-
lows, 4001
araj([[Q%(7+T1+T2), Q%7+ T)1.Q(1)]) @ 300]
=2a;a3(Q(T+ T+ T[ QU7+ T+ T, Qr+Ty)] = 200
X[Q(7+T1),Q(M]) +2a1a5([Q(7+T1+T), 1001
QNIQ(r+T1+T,),Q(r+TIQ(7+Ty)). (4.5 0
0 100 200 300 400
The diagrams Fig. @) and 9f) correspond to the first and T ] (fs)

the second term of E¢4.5). From Eq.(3.27), Q17 +1, and

QT+T are expressed in terms Q and P., WhICh means FIG. 10. Cc73)ntour plot of the equilibrium part of the seventh-order Raman

that the signals depend on both the position and the momer?es’)gn]if)' D(;lhgg ;)moirs(;z }eg;v? in the underdamped case

tum at the timer. The product of e-1, e-2, and e-3 in Fig.

9(e) or that of f-1, f-2, and -3 in Fig. @) shows the oscil-

lation with frequency 2 alongT; andT,. From the above 11(c), respectively. Figures 18-12¢e) represent the dia-

discussion, we can understand the profile of the signals fo§rams corresponding to ala§<[[[Q2 Q?, Q] Q]>

different parameters. In Fig. 7, the signal oscillates with the a2<[[[Q2 Q] QZ] Q]) o 2 A2
1ax([[[Q%.Q%1.Q1.Q%)),

frequencyQ m the T, Q|reetlon and(Q) and Z) in the T, ala;[[[Qz Q] QZ] Q2]> andala;[[[Qz 0?1 QZ] Q])

direction as discussed in Figsa@and db). In Fig. 8a), the respectively. Each of them is expressed by the product of

signal oscillates with the frequencyXn the T, and theT, circled parts, which lead to the third-order correlation func-
direction, which is attributed to the zero quantum transitions, | "\ (+-) andQ, andP.. Using the similar manipulation

|[v)—|v) at the timet=7-+T, and the two guantum transi- as in the fifth-order case, the diagrams in Figs.al-212(d)

tion [v)—|v+2) at the timet=7+T,;+T, shown in Figs. I : . S
9(e) and df). In Fig. &a), the signal is symmetric with re- lead to the oscillation with frequend in the T, direction

spect toT, andT, axis since the diagrams FiggeDand 9f)
cast into the formP_ K" (T, + T,) KT )(T)KE )(T,) (a)

i . _ O o

with the use of the relation®,, 1,=P, K" (T, 400

+T,) and Q,.r, =P, K(*)(Ty) for Q,=0, which is de- © O o

rived from Eq.(3.27). The signal in Fig. &) includes vari- 300 © O o

ous components corresponding to the diagrams in Fig$,. 9 200

9(d), 9e), and 9f) that lead the oscillations with the fre- © O o

quencyQ and 2} in the T, andT, direction with the differ- 100

ent weight depending on a conditiontat - and as a conse- 0 © g

guence, the signal is asymmetric. In Figc)8 the signal

consists of thé?, andQ, contribution which are depicted in (b) © O ©

Figs. 8@ and 8b) with the ratio —sin¢(7) to cosé(7). A 400 @ 30

profile of any signal in the present model can be character- » 300

ized by the phaseé (7). Thus, by obtaining a propef() to :;) @ C

simulate experimental data, we can trace the motion of the - 20

wave packet at=r7 moved from the initial state at=t, . 100 -G

The main advantage of the present method is that, by mea- { @

suring the signal for different, we can directly trace the 0

time evolution of the wave packet in the phase space, i.e., we (C) u ]

can obtain the momentum and the coordinate of the wave 400

packet at once. Note that, although the same argument can be - D C

applied to the third-order response, the higher-order response 300 @ C

that leads the two-dimensional profile reveals the more criti- 200 - N

cal information. @ E:
Finally, we plot the seventh-order signa{”)(T,,T3;7) 100

=R()(T3,T,=0,T,;7) calculated from Eq(3.31) for y/Q . ‘ @:

=0.1. The equilibrium part(")(T,,T5;%) is given in Fig. 0 100 200 300 400

10. The nonequilibrium parts, I{2(T;,T5;Q,.P,) T, (fs)

. o TN 7

R} )(T3’0T1’Q"’ P2), f_OI’ @ QTjso’ 37_0'01’ (b) ?g FIG. 11. Contour plot of the seventh-order Raman resp&\g&T;, T;) in
—Q.Ol, P.=0, and (c) Q,=5x10°3, P,=-8.66<10 the underdamped case0.10) for (8 (Q,,P.)=(0,0.01),(b) (Q,,P.)
which correspond to the phase) ¢(7)=—m/2, (b) #(7)  —(0.01,0), ando) (Q,,P,)=(5% 10 3 —8.66x10"2). Dashed contours
=0, and(c) ¢(7)=/3 are given in Figs. &), 11(b), and  are negative.
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@ ﬁ_ 143> (b Fe——— 143> ;how the r_nodg with the frequen_cy)ZNhich does not appear
e 12> Y=g 2> in the equilibrium case. In the third order response, the signal
\,—\‘—‘ = lv+l > - ‘:;—t\ lv+1 > decays with decreasing the displacem@ntfor the positive
T3l ATl lv> Tl < +TI+T3'V> displacement_‘():O) and it increases with decreasifg,|
. R for the negative displacementpE& 7). Consequently, the
(©) 7% v Iv#3> (d) Iv+3 > time evolution of the signal implies whether the wave packet
N L s NN ‘s S I . . i
R SR |v | SR AT IV | is displaced initially toward decreasing or increasing bond
A K Y |:+> > RN I:J; > length. In the fifth-(seventh) order response, the component
T t+T T+ +T; T THT] THT+T; of the signal which is proportional t&, is symmetry with
@), 55— lv+d> respect toT, and T, (T, and T3). On the other hand, the
‘L_“{'.' 143 > component which is proportional Q. is asymmetric. These
e 142> properties can be explained with the help of the energy level
\\- '—'—]E;_ v+l > diagrams. In the signal, the ratio of @, contribution to a
T 14T, 4T 4T tv> P./(MQ) contribution is cogh to —sin¢. Thus, by looking

for the phasep to simulate experimental data, we can trace
FIG. 12. Examples of the energy level diagrams associated with thqhe motion of the wave packet at tinbe + moved from the
seventh-order response functionTat=0 are shown. The vibrational states . itial state at imet=0. Th . d t f th t
are denoted asgv), [v+1), [v+2), [v+3), and [v+4). (@ and (b) ni I?] Zae: imet=0. b e_mi:n _afvan age Ob € presenl
COrrespOnd thiagq[[szQle]‘QD and ai“%{[[[QZ,Q],QZ],QD met oa is t at we can o ta'n t ein Ormat|0n al OUt I”IOt on y

(©), (), and (&) correspond toa,a([[[0%0%],01,02]), aya([[[O? the position but also the momentum of the wave packet.

01,02,82]), and a;aX([[[0%,0%],02],Q]), respectively. The contribu- In the Zprﬁﬁz-nt studiesN, we restricted our analygis to the
tion of the dashed parts i) and(d) are the equivalent to the diagrarfa order of e, ~ and aja; , so the response functions do
and(b), whereas the dotted parts o) and(d) give the factorQ; . not depend on the initial width of the wave packet and the

temperature as stated in Sec. lll; the dependence of the tem-
perature and the width of the wave packet appear in the order
of e} 1. Such effects as well as the effects of the anharmo-
nicity of an oscillation mode may be studied from the equa-

tion of motion approach!3334

and 2} in the T; direction, and the diagram in Fig. (&
leads to the oscillation with the frequenc 2oth in theT;
andT; direction. Then we observe the oscillatiOnin the T,
direction and 2 in the T, direction in Fig. 10, since only the
diagrams in Figs. 1@) and 12b) contribute to the equilib-
rium signal. In the case Fig. (&), we observe the oscillation
2Q) both T, and T3 direction, since the process correspond-  The authors thank professor Hiro-o Hamaguchi mention-
ing to Fig. 1Ze) contributes to the signal. In the case Fig. ing about a possibility to use 2D spectroscopy to detect the
11(b), the diagram Figs. 12)—12e) contribute to the signal. phase of the wave packet motion. The present investigations
Hence the oscillation in th&, direction and that in thd;  were supported by the Grant-in-Aid on Priority Area of
direction becomes by the superposition of the oscillationgChemical Reaction Dynamics in Condensed Phases
with the frequencie€) and 2). The signal in Fig. 1) is (10206210, the Grant-in-Aid for Scientific Research
given by the linear combination of the signals in Figs(all (B)(1244017)

and 11b) with the ratio—sin ¢(7) to cos¢(7). This situation

is same as the fifth-order case and we can use the seventhPPENDIX A: DERIVATION OF THE GENERATING

order experiment to see the dynamics of the wave packet iIRUNCTIONAL

the phase space, as well.

ACKNOWLEDGMENTS

In this Appendix, we derive the generating functional
W[ J,K] defined by Eq(3.2) for the initial state Eqs(3.7)—
V. CONCLUSION (3.10. By integrating over the bath coordinatg and g, ,

In this paper, we derived the generating functional for aVlJ,K1 is given by
Brownian oscillator system whose initial state is described i 1
by displaced Gaussian wave packet from the path integral exp<%W[J,K]) = H T Gho
approach. The generating functional allows for the calcula- 2 sinhTI
tion of the third-, fifth-, seventh-order Raman response of a
harmonic oscillator with coordinate dependence of the polar- i1
izability. To demonstrate effects of the nonequilibrium initial Xex;{% 52 oc dtdt’
condition, we plot the Raman response for the different dis- ' 1re2
placement and momentum of the wave packet at the time h S
= 7 when the first pump pulses interact with the system. Any X (i_ 523D
state at timer can be expressed by a Gaussian wave packet
centered aP./(MQ)=—Asin¢ andQ.= A cos¢, whereA x(é ) )
and ¢ are the amplitude and the phase in the phase space and i ocJ(t")
are given byA=Qq and ¢=Q 7 for an oscillator with fre-
quency(). Due to the off-diagonal elements of the state at
t=r, the signals depend on the wave packet motion anavhere

)c?G(C”‘i @)t ,t)

exp{%—WS[J,K]),

(A1)
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i where
ex%%wi‘m) V(QiK(8) = —K(9)a(Q), (A7)
- | o [ daiailei®Ia) sttr— - | g SN0 tsinfitet
R i MO sinQT
X(QUL(te 1) Usi(te 1) Q)), (A2) g 5
- B2 +6’(t,_t)sinQ(t—t|)sinQ(tF—t’) A8)
Usu(t,t)= Tex% fds TR MQZQZ SinQT

The kernel of the return path with the sourde and K,,

(a=1,2), (A3)  denoted by(Qi|Us(t) ,te)|QF), is given by replacing;
and K; with J, and K, for the complex conjugate of Eq.

—Ja<s>©—Ka(s>a(Q>)

i 1 (A6). By integrating oveQg, Eq. (A8) is expressed as
S T : ;
sinh—— f dQF<QI,|U;2(tF ADIQENQFIU,, (te,1)|Q1) (A9)
i i (te ﬁ 5
L ., iBh —f 8
+ 0c(t t)cm{ (t t+ )“ (A4) _V(i_ msz(S))]

HereQ is given in Eq.(3.17). Notice that we take the final

time tg to be set infinity in the end of this Appendix. The

functional differentiation 6/ 5cJ(t) means 6/6J4(t) and

— 6/ 6J,(t) for te C, andte C,, respectively. i
o

t
o (Q—Qf)— Jt thD(+_)(t_t|))

L 2 Q+Q/
The factor(Q[|UL(tr,t))Ug(tr,1)|Q,) is calculated P
as follows. Inserting the completeness relation 1
=[dQg|Qr)( Q| at the final timetg, we have

(Q/1UL(te, 1) Ugy(te 1] Q1)

fthtcosQ(t—t.)J_(t)
]

tg tg
+f dtf dt'J_(t)D<+—>(t—t’)3+(t’))}, (A10)

where J.. is defined by Eq(3.11). Choosing the displaced

f dQr(Q/ 0L (te,t)| Qe (Qr|Usi(te . 1)|Q)). Gaussian wave packé3.10 as the initial stateWd J,K] is
calculated by integrating oveQ;—Q;) and @, +Q)/2 as
(A5)

i
The time evolution kernel with the sourced; ,K,, ex;<%WS[J,K])
(QelUsi(te,1)|Q)) is given by(see, for example, Ref. 35

n _ i (tr O
(Qr|Usi(te,t)[Qy) =ex _%J’tl dS{V(I 53 (s) 1(3))

~ 1/2
-V i—m.Kz(S)

27t sinQT
i (tr h o . .
R —_ -K o , ( _) _, )
Xexr{ ﬁft. dsv(i 53,(s)’ 1(5))] XeXP|ﬁJt, dtftl dt'3 (DD I(t-t)I (1)

+QpcosQ(t—t)d(t—t"))

i1
Xex{%{ Ejn dt dt J1(D)A(L,T")I (")

4 dtf dt’I_()DE P (t,t)I_(t')}. (Ald)
I 2h Jy, 4
te SiNQ(tg—1)
+Q|j dt—————J3(t) HereD(* ~) andD(* ) are the propagators without coupling
R sinQT to the bath and are given by E(§.16 and
e sinQ(t—t MO .. h _ R
+QFdet _(~ ) 3ty ——Q\Q¢ DU I(t,t')=—| —aD!" V(t—t)DC (1’ 1))
4 sinQT sinQT
1 ~ ~
MO cosQT - —Zcosﬂ(t—t,)cosﬁ(t’—t,)),
+— (QF+QP) ] (A6) Aah
2 stT (A].Z)
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[
1= exr{ 7 L1+C2dt3(t) o(t)

from the right-hand side of EqA1), and using the relation™e ¥ M eFalllgldsXs)e(s)| _ = gFalI*doelghalel] _; we obtain
the following result:

exp(%W[J,K]) Il —— Bﬁwl %JJFL ( +)+J (t))

2 sinh

(A13)

i ([t
Lzozexp(%ftl dt(J+(t)<p(t)+J(t)<P+(t)))

¢=0

|D<+ (t—t’ )( +J4(1)

5( 0 +roosQ(t t)o(t—t")

+; dtftF ( i +J_(t ) Ot ( LH t' )
2h f i Sp.(t) (HDT L) S (t) -
Xexp[z'ﬁz f dt | dt {e- (DG L) e (1) + o ()G (t=t") . (t' )}}

, (Al4)

—
XeXF{—%—ft ds{V(e1(s);K1(8)) —V(¢a(s);Ky(s))}

¢=0

where

1
- " — ~(mj, o)) ’ (m; o) A 2 H ’
G I (t—t)=G () -Gl (L) = ot —t ) sinwi(t—t"), (A15)

. -
G I(tt)=> (G(’“' Dt +GH ) +GH () + G () = 5 — cotl’(ﬁzw')COSwi(t—t’).
“ (A16)

Equation(Al4) leads to the Feynman rule described in Fig. 13. Using this W|el,K] can be cast into the following form:

i t,: h 1) ~
— = _— (+*) 1/ - !
ex"(ﬁW“’K] Il T ex‘{ J, o], [(. EPRG AR ”)K (ONT Sy ))
+1(ﬁ +J_ (t))K(++>(tt )( ° —tJ (t’))
2\i 6 +(t) €D+(t/) -

(A17)

-
xexp[_;_tft ds{V(¢1(5);K1(S)) = V(ea(s);K2(8))}
|

¢=0

HereK(* ™) andK(**) are the propagators for the system including the effects of the bath. By using the faist that
—1t') is causal, we can find the graphical expression Fig. 14 from the Feynman rule Fig. 13. The algebraic expression of Fig.
14 is represented as

KE)(t—t)=D" (t— t)+f dsf ds' D )(t— s)(Z c?G§+—>(s—s')>D<+—>(s’—t’)
f f
te te te te
+f dsf ds’f ds’ ds”’D“Rt—s)(E cizGi“‘)(s—s’))D(*)(s’—s”)
t t t) t i

% 2 CiZGi(+)(S/r_sm))D(+)(Sm_tr)___. (A18)
I
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Summing up the right-hand side of Fig. 14, we have the h o) _ +
g up the mg g LK = pn + et
following relation:
+ +
KO (t—t) =D (t—t") + -~ + -+
te te FIG. 14. Diagrammatical expression of a propagatér ).
+f dsf ds'DF ) (t—s)
f f
P> c?ef*><s—s'>>K<+><sf—v>. where G~ (t—t)=G{" (t'~1),  KU(t-t')
i =K )(t'—t) and another propagato®(**)(t,t’) and

(A19)

Using the Laplace transformatiok!™ ™) in tr— is repre-
sented as

K& I(2)=D" )(2)+ D (2

X Z c$G§+‘>(z))K<+—>(z), (A20)
whereD(* 7)(2) andG{* 7)(z2) are given by

1 1

D )(z)=— —, (A21)
M 22+ 02
1 1

)7 = —
S (A22)

This leads the expression in E@.18).

Next, K(FH)(t,t") can be obtained in the same manner.

The algebraic expression &™) is

t t
K<++>(t,t'):D<++>(t,t')+f "ds| ds'D**)t,s)
9] 9]

X

> chf‘”(s—s’))K(‘+)(s’—t’)
1

te tp
+f ds| ds'D(f)(t—s)

f t

X

> G (s s’)) KO )(s',t)
I

tg te
+f dsf ds'DFI(t—s)
t) f)

2 ++ 2 -
X Z c2G! )(s,s))K( (s —t'),
(A23)

Propagators Vertices External points

+- . - i ++) [~
Ry llD( ) —_@—%;C?Gf —_O%L

B0 P | 2 () i

PRl 15D *‘:@7'72;6’{6} —+'7J_

FIG. 13. Feynman rule.

G{"*)(t,t') are given by Egqs(A12) and (A16), respec-

tively. Now, we take the final timéz—. Using the first

line of EqQ.(3.18 and substituting Eq$A12) and(A16) into

Eq. (A23), we obtain the propagatét* *) as in Eq.(3.19.
Applying the relation,

eF1015¢] gl dSK(s)¢(s) — gl dsK(S)e(S) gF(o15¢) + K] (A24)

to Eq. (A17), we arrive at the result given in E.12.

APPENDIX B: DERIVATION OF N TIME
CORRELATION FUNCTION BY USE OF FEYNMAN
RULES

In this Appendix, we present the Feynman rules that lead
the N time correlation functionsG&N*%), defined by Eq.
(3.5. From Egs.(3.5 and(3.14), we have following rules:

(1) PrepareN+1 white circles corresponding ...,
and ay, (ki=1,2...;i=0,1,..,N). The white circle cor-
responding toay from which k; lines emerge shall be
called the external point;

(2) Prepare black circles corresponding to sourdgs that
are treated as one-point vertices. A line emerges from
this black circle;

(3) Attach a time valuablg, to the external point corre-
sponding toa . We call it an external point labeled;

(4) Attach a time valuablg; to the external point corre-
sponding toay . We call it an external point labelegl;

(5) Attach a time valuablé to a black circle corresponding

to J;
(6) Prepare lines corresponding to propagat(’s,=);
(7) Attach the index 4" or “ —" to each line from an

external point or a black circle as in Fig. 15.
The factors on the right of the graphs imply attachments
to the graphs.

(8) Using the propagators, external points, and one-point
vertices, draw all connected diagrams which are topo-
logically distinct. Note here that the diagram which con-
tains the propagators connecting the indices’‘and “

—" are excluded;

(9) Carry out the integration over all internal time from
to ox;

(10) Multiply the contribution of each diagram by
(A11)NTY/S, whereS is the symmetry factor. The sym-
metry factorSis defined as the order of the permutation
group of the internal lines and vertices leaving the dia-
gram unchanged when the external lines are fixed.
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. Vertices . (a) t ‘
i i +
—ol 7 % —oly = % l—hGg)(t(),t.) = + :@_tl
+ i + : b
ty °< %az In < %az ( h) &) Iy &L b
5 Cr (o1 ,) = ©@F—0—0
~ i (n=1~N)
tO < h @2 lo tz tl tl to tz
+ +
+ tl + tz
+ — -_—
Propagators Sources . I + t0+
AK(H T + + + +
- +n —h -
e c
3 K (h) o th h 1,
_ < Gg (t0.11,12.13) =
FIG. 15. Feynman rule for response functions.
hoty, B ot oy
1 0 2 3 _
+ @—o—o0—0 ToT——o- —© + t0+<:> 13
. A 43
As an example, let us consider the second-order correla- h -
2

tion function, Gg)(to,tl). In accordance with the above
rules, G&)(ty,t,) is diagrammatically given by Fig. 16
after introducing the expression

+ (All permutation of (¢ ,t; ,t3))

FIG. 16. Diagrammatical representation (@ second-,(b) third-, and(c)
fifth-order response functions expressed by the termqfh.and Fig. 15.

i; t; (%
i
© = O t O— 7GR (to,t1) = (a1 + @QP (o)) K to—ty) (e
a1 a1+ - h
+aQ(ty))
i * _ ~ i
=7 a1+a2ftI dsKF I (t—s)30(s) +a%gK(“’(to,tl)K“"(to—tl)
i Hee (B2)
= (a1 +a,QPA1)), (B1)
poot TR In the same way, the third-order correlation function,

GQ)(to,tl,tz), and the fourth order correlation function,
where the last equation is obtained with the use of the secorﬂg‘)(to ,t1,t5,13), are diagrammatically expressed as in Figs.
line of Eq.(3.21). Following to the rules, we can write down 16(b) and 1&c), respectively. Then the analytical expression
the analytical expression in the form for these diagrams are given by

i\2
|
(g) GR(to,t1 1) = (@1 + @2QP(10)) K" (to—t) Kt = to) (@1 + @2QP(12)) + (Lo t2) + (e

i
+ QP (11)) KT (1= to) KU to—ty) (a1 a2QP(1)) + - 23(K (1o, )
XK (to—t) KTt —t) + KT (1o, t) KT (to—t) KTty —tp)) -+, (B3)
i : 0 2 0
(g) GE(to b1, ta,t3) = (a1 + a2Q(t0)) 5K (to—t) K )ty —to) K (1~ tg) (e + QP 15))
+(5 terms that are all permutation @t ,t,,t3))+ (a;+ a,Q%(ty))
X 3K (= tg) KO (tg—t) Kt~ tg) (ag + 2,Q(t3))
i
+ (five terms that are all permutation @ty ,t,,t3))+ ga‘Z‘(K(**)(to—tl)K(**)(tl—tz)
XK (t,—t3) KT (t5,t0)) + (5 terms that are all permutation @t ,t,,t3))+- -+ . (B4)
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