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24.1 Introduction

Recent progress in manipulating small-scale systems provides the possibility of
examining the foundation of statistical mechanics in nano materials [1–3]. In par-
ticular, elucidating how such purely quantum mechanical phenomena as quantum
entanglement and coherence are manifested in thermodynamics is of particular inter-
est in the field of quantum thermodynamics [4, 5]. Such problems have been studied
with approaches developed through application of open quantum dynamics theory.

Widely used approaches employ a quantum master equation (QME) that can be
derived from the quantum Liouville equation with a system plus bath Hamiltonian
by tracing out the heat bath degrees of freedom. To obtain time-evolution equations
for the reduced density operator in a compact form, one usually employs the Markov
approximation, in which the bath correlation time is very short in comparison to the
characteristic time of the system dynamics. The QME with the second-order treat-
ment of the system-bath interaction and theRedfield equation (RE) have been derived
with the projection operator method, for example [6, 7]. Aswewill show in Fig. 24.1,
however, even if the dissipation process isMarkovian, the fluctuation processmay not
be, because the latter has to be related to the former through thefluctuation-dissipation
theorem (FDT). For this reason, if we apply the QME under Markovian assumption
to low temperature systems, then the positivity of the probability distributions of the
reduced system cannot bemaintained. As amethod to preserve positivity, the rotating
wave approximation (RWA), which eliminates the non-resonant interaction between
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the system and the heat bath, has been applied in order to write the master equation in
the Lindblad form.However, this approximationmaymodify the thermal equilibrium
state aswell as the dynamics of the original totalHamiltonian, because the FDT is also
altered. For example, while the true thermal equilibrium state of the system at inverse
temperature β is given by Trbath[exp(−β Ĥtotal)]/Trtotal[exp(−β Ĥtotal)], where Ĥtotal

is the total system-plus-bath Hamiltonian, the thermal equilibrium state obtained
from the second-order QME approach is exp(−β Ĥsys)/Trsys[exp(−β Ĥsys)] where
Ĥsys is the bare system Hamiltonian. This implies that the Markovian assumption
even in a perturbative system-bath coupling regime is incompatible through obtain-
ing a quantummechanical description of dissipative dynamics at low temperature[8].
Furthermore, the consistent description of the QME with the FDT is important to
investigate the non-trivial quantum thermodynamic processes, because the violation
of the FDT is responsible for the heat generation [9, 10].

As explained in the above, there is a strong limitation on the basis of the con-
ventional QME approaches for the study of quantum thermodynamics, despite their
successes to predict the performance of heat machines and propose systems. For
example, the inconsistency between the global and local QME, in which the bath
couples to the eigenstates of the system and the eigenstates of the sub-system, respec-
tively, have to be reconciled even in a weak system-bath coupling regime [11, 12].
While the global QME can predict the Gibbs distribution in the equilibrium situa-
tions, some unphysical behavior caused by employing the global QME in the non-
equilibrium situations are reported. Moreover, the local QMEmay violate the second
lawof thermodynamics.Attempt to recover the correct thermodynamic description of
the global QME was made by incorporating the non-additive dissipation [13], which
was not treated in the conventionalQMEapproaches. The interplay between the quan-
tum coherence and environmental noise is essential to optimize the excitation energy
and heat transport [14, 15] that should be clarified by using the non-perturbative and
non-Markovian quantum dynamical theory [16].

To this time, the approaches used to study the strong coupling regime in the field
of quantum thermodynamics include the QME employing a renormalized system-
plus-bath Hamiltonian derived with the polaron transformation [17] or the reaction-
coordinate mapping [18, 19], the non-equilibrium Green’s function (NEGF) method
[20–22], the functional integral approach [23], and the stochastic Liouville-von Neu-
mann equation approach [24]. However, the QME with the renormalized Hamilto-
nians and the NEGF method are limited to a case with a slowly driving field. The
stochastic Liouville-von Neumann equation approach is only applicable to the short-
time region due to an enormous number of stochastic sampling.

Many of the above-mentioned limitations can be overcome with the hierarchical
equations of motion (HEOM), which are derived by differentiating the reduced den-
sity matrix elements defined by path integrals [25–30]. This approach allows us to
treat systems subject to external driving fields in a numerically rigorousmanner under
non-Markovian and non-perturbative system-bath coupling conditions and have been
applied for the studies of quantum information theory [31, 32] and quantum ther-
modynamics [33, 34]. Moreover, non-additive dissipation can be incorporated into
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the HEOM approach through the explicit non-Markovian treatment of the reduced
dynamics.

This chapter presents the introduction of the HEOM for the open quantum dynam-
ics and its application to the quantum thermodynamic processes by evaluating the
heat current transferred between the system and the bath in a numerically rigorous
manner. As we shown in Ref. [34], the heat current is defined so as to be consistent
with the first and second laws of thermodynamics by incorporating non-trivial tri-
partite correlations. The exact reduced expression for the heat current and the way to
numerically evaluate it through the use of the HEOM approach are presented. Then,
the numerical illustrations of our approach are given for the two-level heat transfer
model and the three-level autonomous heat engine model.

24.2 Hierarchal Equations of Motion Approach

We consider a system coupled to multiple heat baths at different temperatures. With
K heat baths, the total Hamiltonian is written

Ĥ(t) = Ĥsys(t) +
K∑

k=1

(
Ĥ (k)

int + Ĥ (k)
bath

)
, (24.1)

where Ĥsys(t) is the system Hamiltonian, whose explicit time dependence originates
from the coupling with the external driving field. TheHamiltonian of the kth bath and
the Hamiltonian representing the interaction between the system and the kth bath are
given by Ĥ (k)

bath = ∑
j �ωk, j b̂

†
k, j b̂k, j and Ĥ

(k)
int = V̂k

∑
j gk, j (b̂

†
k, j + b̂k, j ), respectively,

where V̂k is the system operator that describes the coupling to the kth bath. Here,
ωk, j , gk, j , and b̂k, j and b̂

†
k, j ,are the frequency, coupling strength, and the annihilation

and creation operators for the j th mode of the kth bath, respectively. We assume the
factorized initial conditions, ρ̂tot(0) = ρ̂(0)

∏K
k=1 e

−βk Ĥ
(k)
bath/Tr(e−βk Ĥ

(k)
bath), where ρ̂ is

the reduced density operator of the system.
Due to the Bosonic nature of the bath, all bath effects on the system are

determined by the bath correlation function, Ck(t) ≡ 〈X̂k(t)X̂k(0)〉B, where X̂k ≡∑
j gk, j (b̂

†
k, j + b̂k, j ) is the collective coordinate of the kth bath and 〈. . .〉B represents

the average taken with respect to the canonical density operator of the baths. The
bath correlation function is expressed in terms of the bath spectral density, Jk(ω), as

Ck(t) =
∫ ∞

0
dω

Jk(ω)

π

[
coth

(
βk�ω

2

)
cos(ωt) − i sin(ωt)

]
, (24.2)

where Jk(ω) ≡ π
∑

j g
2
k, jδ(ω − ωk, j ), and βk is the inverse temperature of the kth

bath. The real part of Eq. (24.2) is analogous to the classical correlation function of the
bath and corresponds to the fluctuations, while the imaginary part of its corresponds
to the dissipation. The fluctuation term is related to the dissipation term through the
quantum version of the FDT.
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(a) (b)

Fig. 24.1 The real part of Eq. (24.2), depicted as a function of the dimensionless time t for the
intermediate and large values of the inverse noise correlation time: a γ = 1 and bγ = 5 for theDrude
spectrum, J (ω) = ζγ2ω/(ω2 + γ2) with ζ = 1. Note that γ → ∞ corresponds to the Markovian
(Ohmic) limit. The inverse temperatures are, from top to bottom, β� = 0.5, 1.0, 3.0, and 5. The
bath correlation function becomes negative in a and b at low temperature [28, 30]

Here, in order to illustrate the origin of the positivity problem in the
Markovian master equation and RE [28, 30], we present the profiles of fluctuation
term, Re[C(t)], for the Drude spectrum, J (ω) = ζγ2ω/(ω2 + γ2)with ζ and γ being
the coupling strength and cutoff frequency, respectively, which will be employed in
the subsequent numerical calculations. As shown in Fig. 24.1, the fluctuation term
becomes negative at low temperature in the region of small t . This behavior is char-
acteristic of quantum noise [28, 30]. We note that the characteristic time scale that
we observe Re[C(t)] < 0 is not determined from the bath spectral density J (ω), but
from the bath temperature. Thus, the validity of the Markovian (or δ(t)-correlated)
noise assumption is limited in the quantum case to the high temperature regime.
Approaches employing the Markovian master equation and the RE, which are usu-
ally applied to systems possessing discretized energy states, ignore or simplify such
non-Markovian contributions of the fluctuation, and this is the reason that the positiv-
ity condition of the population states is broken. As a method to resolve this problem,
the RWA is often employed, but a system treated under this approximation will not
satisfy the FDT, and thus the use of such an approximation may introduce signifi-
cant error in the thermal equilibrium state and in the time evolution of the system
toward equilibrium. Because the origin of the positivity problem lies in the unphys-
ical Markovian assumption for the fluctuation term, the situation is better in the
non-Markovian case, even within the framework of the RE without the RWA [30].

With the factorized initial conditions we can obtain the exact expression for
ρ̂(t), for example, by using the cumulant expansion technique. In the following,
the interaction representation of any operator, Â, with respect to the non-interacting
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Hamiltonian is expressed as Ã(t). Then, the reduced density operator is writ-
ten as ρ̃(t) = T+[UIF(t, 0)ρ̂(0)], where UIF(t, t0) = ∏K

k=1 exp[
∫ t
t0
dτWk(τ , t0)] is the

Feynman–Vernon influence functional in operator form, and T+[. . .] is the time-
ordering operator, where the operators in [. . .] are arranged in a chronological order.
The operators of the influence phase are defined by

Wk(τ , t0) =
∫ τ

t0

dτ ′�̃k(τ )
{
Re

[
Ck(τ − τ ′)

]
�̃k(τ

′) − Im
[
Ck(τ − τ ′)

]
�̃k(τ

′)
}

,

(24.3)

where �̂k Â = (i/�)[V̂k, Â] and �̂k Â = (1/�){V̂k, Â}. This expression for the
reduced density operator, however, does not lead to the closed time-evolution equa-
tion.

Then, Tanimura and his collaborators developed the hierarchical equations of
motion (HEOM) that consist of the set of equations of motion for the auxiliary
density operators (ADOs) as the closed time-evolution equations [25–30]. Here, we
consider the case that the bath correlation function, Eq. (24.2), is written as a linear
combination of exponential functions, Ck(t) = ∑Lk

l=0 ck,l e
−γk,l |t |, which is realized

for the Drude, Lorentz [35, 36], and Brownian bath spectral models [37] (and com-
binations thereof [38, 39]). Note that, using a set of special functions instead of the
exponential functions, we can treat a system with a sub-Ohmic spectral distribution
at the zero temperature, where the quantum phase transition occurs [40, 41]. We
might include a delta function for better description of the bath correlation function
for the HEOM formalism, for example, to approximate the contribution from the
higher-order Matsubara frequency terms [27]. The ADOs introduced in the HEOM
are defined by

ρ̂�n(t) ≡ T+
{
exp

[
− i

�

∫ t

0
ds L(s)

]}

× T+

{
K∏

k=1

Lk∏

l=0

[
−

∫ t

0
dτ e−γk,l (t−τ )�̃k,l(τ )

]nk,l

UIF(t, 0)ρ̂(0)

}
. (24.4)

Here,we have �̂k,l ≡ Re(ck,l)�̂k − Im(ck,l)�̂k andL(t)ρ̂ = [Ĥsys(t), ρ̂]. EachADO
is specified by the index �n = (n1,0, . . . , n1,L1 , n2,0, . . . , nK ,LK ), where each element
takes an integer value larger than zero. The ADO for which all elements are zero,
n1,0 = n1,1 = · · · = nK ,LK = 0, corresponds to the actual reduced density operator.
Taking the time derivative of Eq. (24.4), the equations of motion for the ADOs are
obtained as

d

dt
ρ̂�n(t) = −

[
i

�
L(t) +

K∑

k=1

Lk∑

l=0

nk,lγk,l

]
ρ̂�n(t)

−
K∑

k=1

�̂k

Lk∑

l=0

ρ̂�n+�ek,l (t) −
K∑

k=1

Lk∑

l=0

nk,l�̂k,l ρ̂�n−�ek,l (t), (24.5)
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where �ek,l is the unit vector along the k × (l + 1)th direction. The HEOM consist of
an infinite number of equations, but they can be truncated at finite order by ignoring
all ADOs beyond the value at which

∑
k,l nk,l first exceeds some appropriately large

value N . In principle, the HEOM provides an asymptotic approach that allows us
to calculate various physical quantities with any desired accuracy by adjusting the
number of hierarchal elements determined by N ; the error introduced by the trunca-
tion is negligibly small in the case that N is sufficiently large. Note that we can also
derive the HEOM for the Fermionic baths [42–44]. Therefore, we can extend the
present investigations for the heat transport to the electronic heat current problem.

24.3 Heat Currents

For this system-bath Hamiltonian, the heat current (HC) is defined as the rate of
decrease of the bath energy, Q̇HC,k(t) ≡ −d〈Ĥ (k)

bath(t)〉/dt . Using the Heisenberg
equations, the heat current can be rewritten as (see Appendix A for the derivation)

Q̇HC,k(t) = Q̇SEC,k(t) + d

dt

〈
Ĥ (k)

int (t)
〉
+

∑

k ′ 	=k

İk,k ′ , (24.6)

where

Q̇SEC,k(t) = i

�

〈[
Ĥ (k)

int (t), Ĥsys(t)
]〉

(24.7)

and

İk,k ′(t) = i

�

〈[
Ĥ (k)

int (t), Ĥ (k ′)
int (t)

]〉
. (24.8)

The first term on the right-hand side of Eq. (24.6), Q̇SEC,k , describes the change of
the system energy due to the coupling with the kth bath that is defined as the total
kth heat current in the conventional QME approaches, which we call it the system
energy current (SEC). The second term vanishes under steady-state conditions and
in the limit of a weak system-bath coupling. The third term contributes to the HC
even under steady-state conditions, while it vanishes in the weak coupling limit.
The third term is the main difference with the SEC. This term plays a significant
role in the case that the kth and k ′th system-bath interactions are non-commuting
and each system-bath coupling is strong. We also note that because this third term
is of greater than fourth-order in the system-bath interaction, it does not appear in
the second-order QME approach. Therefore only non-perturbative approaches that
include higher-order QME approaches allow us to reveal the features. Here, we
investigate this contribution using the HEOM theory. Hereafter, we refer to this term
as the “tri-partite correlations” (TPC) because the statistical correlation among the
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kth bath, system, and k ′th bath is at least necessary for Ik,k ′ to be present. There
are two physical situations that the TPC contributions of Eq. (24.8) vanishes: One
is that each V̂k acts on a different Hilbert space of the system, which is realized
for a mesoscopic heat-transport system, including nanotubes and nanowires. This is
because the left and right reservoirs are coupled to the left and right end degrees of
freedom of the system. Another is the cases for V̂k ∝ V̂k ′ , which is often assumed
for a simple heat transport system. However, for a microscopic system that includes
single-molecular junctions and superconducting qubits, the TPC contribution may
play a significant role because of the microscopic manipulation of the system-bath
interactions for [V̂k, V̂k ′ ] 	= 0.

Note that, although here we focus only on the first moment of the work and the
heat, we can investigate the characteristic features of quantum thermodynamics on
the basis of the distribution functions of them by using the HEOM [45] and other
approaches [23, 46].

24.3.1 The First and Second Laws of Thermodynamics

In this section, we formulate the first and second laws of quantum thermodynamics
that are valid for any system-bath coupling strength, as the natural extensions of the
classical thermodynamic laws. This is because we are not sure how the quantum
thermodynamic effects emerge into the extension of the classical thermodynamic
laws, in particular, in the strong coupling regime. Then we restrict our investigation
of the second law in the steady state case, because there is an ambiguity of formulating
the second law under non-steady case in a strong coupling regime [21].

We can obtain the first law of thermodynamics by summing Eq. (24.6) over all k:

K∑

k=1

Q̇HC,k(t) = d

dt

〈
Ĥsys(t) +

K∑

k=1

Ĥ (k)
int (t)

〉
− Ẇ (t), (24.9)

where Ẇ (t) = 〈(∂ Ĥsys(t)/∂t)〉 is the power. The quantity, Ĥsys(t) + ∑K
k=1 Ĥ

(k)
int (t),

is identified as the internal energy, because the contributions of İk,k ′ cancel out.
In a steady state without external driving forces, the second law is expressed as

[47, 48]

−
K∑

k=1

βk Q̇HC,k ≥ 0, (24.10)

while with a periodic external driving force, it is given by

−
K∑

k=1

βk Q
cyc
HC,k ≥ 0, (24.11)

where Qcyc
HC,k = ∮

cyc dt Q̇HC,k(t) is the heat absorbed or released per cycle. When
the system is coupled to the hot (k = h) and the cold (k = c) baths and is driven by
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the periodic field, the heat to work conversion efficiency is bounded by the Carnot
efficiency, which is derived by the combination of the first and second laws, as

η ≡ −W cyc

Qcyc
HC,k

≤ 1 − βh

βc
. (24.12)

The second law without a driving force can be rewritten in terms of the SEC as

−
K∑

k=1

βk Q̇SEC,k ≥
K∑

k,k ′=1

βk İk,k ′ . (24.13)

When the right-hand side of Eq. (24.13) is negative, the left-hand side can also take
negative values. However, this contradicts the Clausius statement of the second law,
i.e., that heat never flows spontaneously from a cold body to a hot body. As we
show in the following sections, it is necessary to include the TPC terms to have a
thermodynamically valid description.

24.4 Reduced Description of Heat Currents

For the bosonic bath Hamiltonians considered here, we can trace out the bath degrees
of freedom in an exact manner by using the second-order cumulant expansion and
obtain the reduced expression for the HC, Eq. (24.6). The derivation is given in
Appendix B and Ref. [34] in cases that the bath correlation function involves the
delta function. The analytical reduced expression for the kth HC is given by

Q̇HC,k(t) = 2

�

∫ t

0
dτ Im

[
Ċk(t − τ )

〈
V̂k(t)V̂k(τ )

〉]
+ 2

�
Im [Ck(0)]

〈
V̂ 2
k (t)

〉
.

(24.14)

Note that the second term on the right-hand side of Eq. (24.14) should vanish as
can be seen from the definition of the bath correlation function. However, for the
Drude bath spectrum, the contribution of second term is finite, and is found to be
necessary to guarantee the first law at least numerically, because of the coarse-
grained (long-time approximation) nature of the Drude model [14, 49]. The first
term of Eq. (24.14) consists of non-equilibrium two-time correlation functions of the
system operator in the interaction Hamiltonian, and the calculation of these terms
seems to be formidable task specifically when the system is driven by the external
fields. However, by employing the noise decomposition of the HEOM approach for
the bath correlation functions in Eq. (24.14), and comparing the resulting expressions
with the definition of the ADOs given in Eq. (24.4), we can evaluate the HC in terms
of the ADOs as [34]
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Q̇HC,k(t) = −
Lk∑

l=0

γk,lTr
[
V̂k ρ̂1×�ek,l (t)

]
+ 2

�
Im [Ck(0)] Tr

[
V̂ 2
k ρ̂�0(t)

]
. (24.15)

We note that the ADOs here we employed are the same as that of the conventional
HEOM: Using ADOs obtained from the numerical integrating of the HEOM in
Eq. (24.5), we can calculate the HC.

24.5 Numerical Illustration

To demonstrate a role of the TPC in the HC, we consider a two-level heat transfer
model [50–53] and a three-level autonomous heat engine model [18] (Fig. 24.2). We
investigate the steady-state HC and SEC obtained from Eq. (24.5) with the condition
(d/dt)ρ̂�n = 0 using the BiCGSafe method for linear equations [54]. We assume that
the spectral density of each bath takes the Drude form, Jk(ω) = ζkγ

2ω/(ω2 + γ2),
where ζk is the system-bath coupling strength, and γ is the cutoff frequency. A
Padé spectral decomposition scheme [55–57] is employed to obtain the expansion
coefficients of the bath correlation functions. The accuracy of numerical results is
examined by increasing the values of L1, . . . , LK and N until convergence is reached.

24.5.1 Two-Level Heat Transfer Model

The model studied here consists of a two-level system coupled to two Bosonic baths
at different temperatures. This model has been employed extensively as the simplest
heat-transport model. The system Hamiltonian is given by Ĥsys = (�ω0/2)σz . We
consider the case in which the system is coupled to the hot bath through V̂h = σx

and to the cold bath through σx and σz in the form V̂c = (σx + σz)/
√
2. In order to

investigate the difference in the HC with the SEC that usually calculated from the

Fig. 24.2 Schematic depiction of a the two-level heat transfer model and b the three-level
autonomous heat engine model investigated in this study
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Fig. 24.3 The heat current
(HC) and system energy
current (SEC) for the
two-level heat transfer model
as functions of the
system-bath coupling. Both
currents are calculated from
the HEOM, Eq. (24.5)

QME approaches, we consider the case [V̂h, V̂c] 	= 0, because otherwise the TPC
term vanishes. This is the case that most of previous investigations have considered.
We chose βh = 0.5 �ω0,βc = �ω0, and γ = 2ω0.

Figure24.3 depicts the HCs in the steady state, Q̇HC,h = −Q̇HC,c or Q̇SEC ≡
Q̇SEC,h = −Q̇SEC,c, as functions of the system-bath coupling strength, ζ ≡ ζh =
ζc. In the weak system-bath coupling regime, both HC and SEC increase linearly
with the coupling strength in similar manners. In this case, we found that the TPC
contribution is minor. As the strength of the system-bath coupling increases, the
difference between them becomes large: While Q̇SEC decreases after reaching a
maximum value near ζ = 0.2ω0, the TPC contribution, İh,c, dominates the HC, and
as a result, it remains relatively large. Thus, in this regime, the SEC becomes much
smaller than theHC. In the very strong coupling regime, the SEC eventually becomes
negative, which indicates the violation of the second law. In order to eliminate such
non-physical behavior, we have to include the İh,c term in the definition of the SEC.
Note that the differences between the SEC and HC described above vanish when
V̂c = V̂h = σx , and hence in this case, there is no negative current problem.

24.5.2 Autonomous Three-Level Engine

The autonomous three-level heat engine model considered here consists of three
states, denoted by |0〉, |h〉, and |c〉, coupled to three bosonic baths. The work is
extracted through the work bath. The system Hamiltonian is expressed as Ĥsys =∑

i=0,h,c �ωi |i〉〈i | with ωh > ωc > ω0. The system-bath interactions are defined as

V̂h =|0〉〈h|+|h〉〈0|, V̂c =|0〉〈c|+|c〉〈0|, and V̂w =|h〉〈c|+|c〉〈h|.We setω0 = 0with-
out loss of generality. A mechanism for the system acting as the heat engine is as
follows: First, the heat is absorbed from the hot bath. This heat is transferred from
the system to the work bath in the form of the work, while the remaining heat is
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(a) (b)

Fig. 24.4 aTheheat current (HC, red line) and the systemenergy current (SEC, blue line) calculated
from the HEOM approach, and the HC from the RE approach (black circles) as functions of the
temperature of the work bath. The shaded area represents the region that the system acts as the heat
engine. b The fidelity F[ρ,σ] as a function of the temperature of the work bath, where ρ and σ
are the reduced density matrix in the steady state calculated from the HEOM and RE approaches,
respectively

damped into the cold bath. Therefore, the sign conditions for the HC have to be
Q̇HC,h>0, Q̇HC,c<0, and Q̇HC,w<0. However, in order to identify the HC to the
work bath with the power, the entropy change of the work bath have to be negligibly
small, which is realized when the temperature of the work bath becomes infinitely
high, βw → 0 [48, 58, 59]. It should be noted that the stochastic Liouville equation
(SLE), in which the back action to the reservoir is ignored, corresponds to the infinite
temperature limit of the HEOM [28]. Therefore the entropy calculated from the SLE
does not change. When the temperature of the work bath is finite, only the part of
the energy extracted from the system can be used as work. However, we show in the
following calculation that the system does not act as the engine in the infinitely high
temperature limit of the work bath. We set ωc = 0.5ωh , ζh = ζc = ζw = 0.001ωh ,
γ = 10ωh , βh�ωh = 0.1, and βc�ωh = 1.

In Fig. 24.4a, we depict the HC evaluated from the HEOM approach, Eq. (24.15),
SEC, and the HC from the RE approach, as functions of the temperature of the
work bath. While the SEC and the HC from the RE approach look identical and
weakly dependent on the work-bath temperature with the negative sign, the actual
HC increases as the temperature of the work bath increases, and eventually its sign
changes from negative to positive in the vicinity of (βw�ωh)

−1 = 20 − 30. This
indicates that the TPC determines the characteristic of the heat-engine system; the
system no longer acts as the heat engine.

It should be noted that the TPC effect on the HC becomes important even in
the weak system-bath coupling case, as we chose ζ = 0.001ωh . To illustrate this
point, we plot the fidelity, F[ρ,σ] = Tr[√√

ρσ
√

ρ], where ρ and σ are the steady
state distributions calculated from theHEOMand the RE approaches, respectively, in
Fig. 24.4b. For all temperature region, the deviation of the fidelity from 1 is negligibly
small indicating the system-bath coupling strength is sufficiently weak to be the



586 A. Kato and Y. Tanimura

RE approach valid. This implies that both the HEOM and RE give the identical
steady state, while there is large discrepancy between the HEOM and RE results in
the calculation of HC in Fig. 24.4a. Thus, we have to introduce autonomous heat
engine models which are robust against the tri-partite correlations. The theoretical
prescription for the finite temperature bath is required to divide the energy obtained
from the system into work and heat. Because of the tri-partite correlations, the QME
approach is not valid even in the weak-coupling regime.

24.6 Concluding Remarks

In this paper, we introduced an explicit analytical expression for the heat current
(HC) on the basis of the energy change of the baths, which includes contributions
from the tri-partite correlations (TPC) in addition to that from the system energy
current (SEC). Our definition of the HC can be applied to any system with any bath
spectral distribution and any strength of the system-bath coupling. Investigation on
the basis of the HEOMapproach indicated that the HC is physicallymore appropriate
thermodynamics variable than the SEC; the TPC contribution in the heat-engine
system is significantly large even in a weak system-bath coupling regime.

In this study, we restricted our analysis to a system described by several energy
states. Using the HEOM approach it is possible to investigate a system described
by coordinate and momentum (Wigner space) to treat potentials of any form with
time-dependent external forces [30, 60]. This feature is ideal for studying quantum
transport systems, including the self-current oscillation of a resonant tunneling diode
system [61] and the tunneling effect of a ratchet system [62].Moreover, this treatment
allows identification of purely quantum mechanical effects through comparison of
classical and quantum results in the Wigner distribution [60, 62, 63].

Although our analysis are limited to the harmonic heat bath, now it becomes
possible to study a system with many degrees of freedom, for example, a part of
which can be regarded as a spin bath, due to the advent of the computer technology.
The numerical implementation of the HEOM by a message passing interface [64],
graphical processingunit [65, 66], and theopen computer language [67] or theHEOM
combined with the stochastic Schrödinger equation [68–70] are such examples.

We leave such extensions to future studies to be carried out in the context of
quantum thermodynamics.
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Appendix A: Derivation of Equation (24.6)

The heat current is defined as the rate of decrease of the bath energy, Q̇HC,k(t) =
−d〈Ĥ (k)

bath(t))〉/dt , which can be rewritten by using theHeisenberg equations for Ĥ (k)
int

and Ĥ (k)
bath as

Q̇HC,k(t) = i

�

〈[
Ĥ (k)

bath(t), Ĥ
(k)
int (t)

]〉

= i

�

〈[
Ĥ (k)

int (t), Ĥsys(t)
]〉

+ d

dt

〈
Ĥ (k)

int (t)
〉
+

∑

k ′

i

�

〈[
Ĥ (k)

int (t), Ĥ (k ′)
int (t)

]〉
.

(24.16)

The first term of r.h.s. of Eq. (24.16) is related to the energy flow to the kth bath via the
energy conservation equation for Ĥsys as d

dt 〈Ĥsys(t)〉 = Ẇ (t) + ∑
k Q̇SEC,k(t),where

Q̇SEC,k(t) = (i/�)〈[Ĥ (k)
int (t), Ĥsys(t)]〉. Therefore, by using the above definition for

Q̇SEC,k(t) and Eqs. (24.8), (24.6) is derived.

Appendix B: Derivation of Equation (24.14)

ToderiveEq. (24.14),we adapt a generating functional approach by adding the source
term, fk(t), for the kth interaction Hamiltonian as

V̂k X̂k → V̂k, f (t)X̂k ≡
(
V̂k + fk(t)

)
X̂k (24.17)

Here, in order to evaluate an expectation value, we add the source term to the ket
(left) side of the density operator, which does not change a role of the system-bath
interaction in the time-evolution operator. This source term enables us to have a
collective bath coordinate with the functional derivative as

X̃k(t)ρ̃tot(t) = i�
δ

δ fk(t)
ρ̃tot, f (t)

∣∣
f ≡0 . (24.18)

Then, the expectation value of the operator Ẑk ≡ Â X̂k for any system operator Â
reads

〈
Ẑk(t)

〉
= Trsys

[
Ã(t)i�

δ

δ fk(t)
ρ̃ f (t)

∣∣∣∣
f ≡0

]

= 2

�

∫ t

0
dτ Im

[
Ck(t − τ )

〈
Â(t)V̂k(τ )

〉]
. (24.19)
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Next, the kth HC, Eq. (24.6), is rewritten by using the Heisenberg equation for V̂k

as Q̇k(t) = d
dt 〈Ĥ (k)

int (t)〉 − 〈( d
dt V̂k(t))X̂k(t)〉. The time derivatives, d

dt 〈Ĥ (k)
int (t)〉 and

〈( d
dt V̂k(t))X̂k(t)〉, are given by the time differentiation of Eq. (24.19) for Â = V̂k and

Eq. (24.19) for Â = d
dt V̂k , respectively. This immediately leads to the expression for

the kth HC in Eq. (24.14).
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