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Dephasing by a continuous-time random walk process
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Stochastic treatments of magnetic resonance spectroscopy and optical spectroscopy require evaluations of
functions such as 〈exp(i

∫ t

0 Qsds)〉, where t is time, Qs is the value of a stochastic process at time s, and
the angular brackets denote ensemble averaging. This paper gives an exact evaluation of these functions for
the case where Q is a continuous-time random walk process. The continuous-time random walk describes an
environment that undergoes slow steplike changes in time. It also has a well-defined Gaussian limit and so allows
for non-Gaussian and Gaussian stochastic dynamics to be studied within a single framework. We apply the results
to extract qubit-lattice interaction parameters from dephasing data of P -doped Si semiconductors (data collected
elsewhere) and to calculate the two-dimensional spectrum of a three-level harmonic oscillator undergoing random
frequency modulations.
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I. INTRODUCTION

Relaxation of an ensemble to equilibrium is the central
problem of nonequilibrium statistical mechanics. One particu-
lar example of relaxation is dephasing, which is of considerable
interest to the quantum information community [1,2]. As an
example of dephasing, consider an ensemble of noninteracting
qubits that have each been put into a coherent state. Because
each qubit experiences different random interactions with its
environment, the phase of the qubits will drift apart with
time, and experimental signatures of the coherent states will
decay with time when studied from a macroscopic sample
[3]. Coherent states also arise in spectroscopy, for example,
between the time at which a molecule is excited by an external
field and when it emits a photon [4]. Random modulations
of the phases of these molecules by interactions with their
environments means that photons end up being emitted at a
variety of frequencies. This causes the net emission of the
ensemble at a particular frequency to decay with time, and
this decay partly determines the shape of the spectral lines that
are measured in the experiment [5–7]. This paper is about
a stochastic continuous-time random walk (CTRW) model
of dephasing. We will present the key equations and will
show how to evaluate them. We will then apply the model
to study qubit dephasing in solid-state environments and to
calculate two-dimensional spectra of a harmonic oscillator.
This paper follows a previous paper in which the properties
of the continuous-time random walk were studied in detail
and the relaxation equations were evaluated approximately in
certain limits [8].

Stochastic models of dephasing were pioneered by Kubo
[5] and Anderson [9] in the 1960s. In these models, the
microscopic physics of the system-environment interaction
are modeled by adding a stochastic process to the relevant
frequencies of the system. Although stochastic models lack the
atomistic detail of other models, they are of great practical use
because they can be applied without too much effort and have
intuitive physical interpretations. Consider an ensemble which
has instantly been brought out of equilibrium at time 0 by an
external pulse. In the context of stochastic models, ensemble
means an infinitely large number of systems that interact
with their surrounding environments but not with each other.

The environments around each system in the ensemble are
independent of each other, and each environment corresponds
to a different realization of the stochastic process. In stochastic
models of dephasing, the average phase of the systems of the
ensemble relaxes at equilibrium for first order according to the
equation,

F (t) =
〈
exp

(
i

∫ t

0
Q(r)dr

)〉
, (1)

where Q(t) is the value of a stochastic process at time t and 〈〉
denotes averaging over the possible realizations of Q(t) (i.e.,
averaging over the systems of the ensemble) [5–7]. F (t) goes
by a variety of names in the literature, including the charac-
teristic functional [10,11], the decoherence function [12], the
Kubo-Anderson correlation function [13], and, depending on
the context, the first-order response function [7]. We will call
F (t) the phase relaxation function. For problems in nonlinear
spectroscopy in which special experimental schemes are used,
we need to compute higher-order relaxation functions, such as

F (t) =
〈
exp

(
ic1

∫ t1

t0

Q(r)dr + ic2

∫ t2

t1

Q(r) · · ·

+ icn−1

∫ tn

tn−1

Q(r)dr

)〉
, (2)

where t0 � · · · � tn and c1, . . . ,cn−1 are real constants [4].
Thus, solving stochastic models of phase relaxation comes
down to evaluating a phase relaxation function. The phase
relaxation function in (1) has been evaluated for the case
of a stationary Gaussian process (an Ornstein-Uhlenbeck
process) [5], and the cumulant expansion technique allows
for evaluation of higher-order relaxation functions, such as
(2). Gaussian processes apply when the interactions between
the system and the environment occur very frequently on the
experimental time scale. For interactions that take place on a
slower time scale, we have stationary Markov jump processes
(also known as the random telegraph process). The phase
relaxation function in Eq. (1) [but apparently not the one in (2)]
has been evaluated and has been applied for a variety of such
cases [5,9,11–16].
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Like the stationary Markov jump processes, the CTRW de-
scribes relatively infrequent system-environment interactions.
It runs as follows. Choose an initial value Q0 for the process,
and hold it for a random duration K1. Then, select a random
number X1, and hold the process at the value Q0 + X1 for
a random duration K2. Then, select another random number
X2, and so on. The key difference between the CTRW and
the Markov jump processes is that it evolves through a series
of small steps X1,X2, . . ., rather than by making unrestrained
leaps across the state space. This might be appropriate, e.g., for
the effective magnetic field felt by a qubit on a lattice of nuclear
spins. In this situation, two nearby spins exchange polarization
at random points in time, and this causes a small change in
the effective magnetic field felt by the qubit [17–19]. The
CTRW is also nonstationary and so, describes an environment
that is held out of equilibrium by an external field [20]. An
attractive feature of the CTRW is that the limit K1,K2, . . . → 0
yields a well-defined Gaussian process (the Wiener process),
and so, we can investigate the transition from non-Gaussian
CTRW dynamics to Gaussian dynamics within a single model
[8,21–23]. Physically, this limit corresponds to changes in
the system-environment interaction occurring more and more
frequently on the time scale of the experiment.

This paper is organized as follows. Section II reviews the
CTRW and shows how the relaxation functions in Eqs. (1) and
(2) can be evaluated. Section III applies the relaxation function
to qubit dephasing in solid-state environments, and Sec. IV
computes the two-dimensional spectra of a simple harmonic
oscillator system. Conclusions and general comments are left
for Sec. V.

II. RELAXATION FUNCTION FOR A CONTINUOUS-TIME
RANDOM WALK

We denote random variables by capital italic Roman letters
and use subscript t to indicate the value of a stochastic process
at time t . Expected values (ensemble averages) are indicated
by E() or 〈〉. This section begins with a short review of the
continuous-time random walk. The phase relaxation function
is derived in Sec. II B.

A. The continuous-time random walk

A stochastic process can be visualized in terms of an
imaginary particle making a motion along the real numbers.
Let the position of the particle at time 0 be Q0. The CTRW
model supposes that the particle stays at this position up
to a random time U1 where it takes a step of size X1 and
moves to a new position Q0 + X1. The particle stays in this
position up to another random time U2 where it undergoes a
change in size X2 and moves to position Q0 + X1 + X2, and
so on. If the waiting times K1 = U1,K2 = U2 − U1, . . . are
independent exponential random variables, i.e., they all have
the distribution,

P (Ki < k) = 1 − e−λk, (3)

where 1/λ = E (K1) = E (K2) = · · · is the average length of
the waiting times, then the position of the particle at time t is

Qt = Q0 +
Nt∑
i=1

Xi. (4)

In (4), Nt is the value of a Poisson process at time t .
The CTRW is only really useful when the random variables
X1,X2, . . . are independent and have the same distribution
(i.e., they are iid random variables), and so we make this
assumption. By (3), the CTRW is a Markov process [24].

It will be helpful to derive the characteristic function of the
CTRW at time t . We, therefore, wish to compute

φQt
(v) = E(eivQt ), (5)

where v is a real constant. We can do this via conditional
expectation, namely,

E(eivQt ) = E[E(eivQt |Nt )]. (6)

Equation (6) says that the characteristic function can be
computed by first supposing that Nt is a nonrandom constant,
computing the expectation of exp(ivQt ), and then, averaging
the result over all Nt . The first step gives

E

⎡
⎣exp(ivQ0)exp

⎛
⎝iv

Nt∑
j=1

Xj

⎞
⎠

∣∣∣∣∣∣ Nt

⎤
⎦ = φQ0 (v)φNt

X (v), (7)

where φQ0 (v) and φX(v) are the characteristic functions of
the initial position and steps X1,X2, . . . , respectively. Equa-
tion (7) results from the fact that X1,X2, . . . are independent
and have the same distribution. We have also assumed that the
initial condition and X1,X2, . . . are independent. Averaging
(7) over Nt then gives

E(eivQt ) = φQ0 (v)
∞∑

n=0

φn
X(v)P (Nt = n)

= φQ0 (v) exp {−λt[1 − φX(v)]}. (8)

The first line in (8) is from the formula E[f (Nt )] =∑∞
n=0 f (n)P (Nt = n) [25]. The second was obtained

by substituting in the Poisson distribution P (Nt = n) =
exp(−λt)λntn/n!. Equation (8) will be useful once the distri-
bution of the initial coordinate and of the step sizes is specified.

For the applications in this paper, we will work with the
continuous-jump CTRW. Here, the distribution of the step
sizes X1,X2, . . . is uniform on (−M,M), where M > 0. The
characteristic function of the step sizes is then [26]

φX(v) = sin(vM)

vM
. (9)

For a continuous-jump CTRW, it can be shown that, as
λ → ∞ and successive jumps of the particle occur more and
more frequently, the distribution of Qt − Q0 converges to the
distribution of Wt , a Wiener process (a nonstationary Gaussian
process) at time t , providing that M takes on the value,

M =
√

3/λ, (10)

somewhere close to the limit [8]. Equation (10) is a renor-
malization of the constant M . Thus, a particle undergoing
a continuous-jump CTRW with very frequent, very small
jumps can be regarded as one undergoing a Wiener process.
A physical interpretation of the renormalizer in (10) was given
in Ref. [8].
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B. The phase relaxation functions

We will consider three variants of the phase relaxation
function. Type 1 is a minor generalization of (1), namely,

F1(t) = E

[
exp

(
ic

∫ t

0
Qrdr

)]
, (11)

where c is a real constant. Type 1 appears in first-order
perturbative treatments of relaxation, such as in linear response
theory [5–7]. For the continuous-jump CTRW, this works out
to be (see the Appendix)

F1(t) = φQ0 (ct)e−λt exp

(
λ

cM
Si(t ; cM)

)
, (12)

where φQ0 is the characteristic function of the initial condition
and Si(t ; cM) is a special case of the sine integral,

Si(t ; cM) =
∫ t

0

sin(cMr)

r
dr. (13)

The sine integral cannot be computed analytically, however,
it is easy to evaluate numerically. Here, it is computed with
the trapezium rule, using a partition of the interval (0,t) of
size 10 000. Convergence is achieved with partitions of size
around 7000. Figure 1 plots the type 1 relaxation function F (t)
for various λ’s, M = 1, and with nonrandom initial conditions
[i.e., Q0 = 0, φQ0 (ct) = 1]. The trends are the same as those
predicted by approximate formulas in the previous paper [8].
Namely, that relaxation becomes faster as λ and M increase.
The curve for the case λ = 0.1 in Fig. 1 is slightly irregular,
however for larger values of λ the decay is faster and the
irregular shape cannot be seen. This irregular behavior has
been seen in similar studies of the two-state Markov jump
process by Kitajima et al. [11]. If the initial condition Q0 is a

FIG. 1. Plot of the phase relaxation function for the continuous-
time random walk (12) for M = 1 and σ = 0.

Gaussian random variable rather than a nonrandom constant,
then

φQ0 (v) = exp(−v2σ 2/2), (14)

where σ is the standard deviation of Q0. We will use this initial
condition throughout the rest of the paper. σ = 0 corresponds
to a nonrandom initial condition. This random initial condition
enhances the exponential decay by adding a quadratic term
−σ 2t2/2. This causes the irregular features in Fig. 1 to become
less apparent (result not plotted).

The type 2 phase relaxation function is

F2(t1,t2) = E

[
exp

(∫ t2

t1

Qrdr

)]
, (15)

where t2 � t1. This type of phase relaxation function appears
in certain nonlinear optical problems, such as pump-probe
spectroscopy [4]. In the Appendix, we show that

F2(t1,t2) = φQ0 [c(t2 − t1)]e−λt2

× exp

(
λ

[
t1

t2 − t1

sin[c(t2 − t1)M]

cM

+ (t2 − t1)Si(t2 − t1; cM)

])
. (16)

The type 3 phase relaxation function is particularly relevant
to two-dimensional spectroscopy,

F3(t1,t2, . . . ,tm) = E

[
exp

(
ic1

∫ t1

0
Qrdr + ic2

×
∫ t2

t1

Qrdr + · · · + ic2

∫ tm

tm−1

Qrdr

)]
,

(17)

where tm � tm−1 � · · · � t1 � 0 and c1,c2, . . . are constants
that can be set to zero. There does not seem to be an obvious
way to generalize the derivation of the type 1 and 2 phase
relaxation functions to the type 3 relaxation function in (17).
However, we can derive a recursive formula that can be
computed to any desired degree of accuracy without too much
effort, namely,

F2(t1, . . . ,tm) = lim
n→∞ φQ0 (tmB1)

n∏
k=1

φ�Q(tmBk), (18)

where

φ�Q(tmBk) = exp

(
−λtm

n
[1 − φX(tmBk)]

)
, (19)

with φX given by (9), and

Bk = 1

n

n∑
i=k

β(ti), (20)

and β(r) is such that

tk−1 � r < tk ⇒ β(r) = ck. (21)

β(r) is zero otherwise.
For a given n, (18) can be evaluated by first comput-

ing φQ0 (tmB1)φ�Q(tmB1), then multiplying the result by
φ�Q(tmB2), and so on, up to φ�Q(tmBn). Convergence is
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similar to numerical integration of the sine integral and is
achieved at around n = 8000. We will use n = 10 000 in the
following calculations. For a given tm, this calculation takes a
few seconds on a modern desktop computer.

III. APPLICATION TO QUBIT DEPHASING

Consider an ensemble of noninteracting spins in a magnetic
field B0 parallel to the z axis. The spins each have eigenstates
|0〉 and |1〉, and we use ω to denote the frequency of the
transition |0〉 → |1〉. ω is proportional to B0. The magnetic
field causes the spin vectors to precess about the z axis. A
magnetic field B1 circularly polarized in the xy plane (from a
radio frequency field) with frequency ω is then applied to the
spins, causing the spin vectors to shift into the xy plane. The
spin vectors are then rotating about the z axis within the xy

plane with angular frequency ω. Phase decoherence occurs as
the angular frequencies of the ensemble are modulated due to
interactions with the surrounding environment, and eventually
the spin vectors fall out of alignment with each other. We can
map the rotation in the xy plane onto the unit circle by means
of the complex number exp[i

∫ t

0 ω(s)ds]. Letting ω(t) =
ω + Qt and taking expectations gives the linear response
function,

R(t) = eiωtF1(t), (22)

where F1(t) is a type 1 relaxation function with c = 1
[see (11)]. It turns out that the free induction decay measured
in a magnetic resonance experiment is proportional to the real
part of R(t).

The case where Q is a continuous-time random walk can
be used to model dephasing for qubits in a crystalline material,
such as silicon. In a crystal under high magnetic fields,
dephasing of a qubit is primarily caused by random exchange
between nearby nuclear spins of the crystalline lattice. For
example, consider phosphorous-doped silicon. In this material,
the unpaired electrons of the phosphorous atoms can be
regarded as qubits. These electrons are relatively localized
on the P atom (i.e., their wave functions do not extend far
beyond the P atom and into the Si lattice [27]). Natural crystals
of silicon-28 contain 4.7% 29Si, which has a nuclear spin of
1/2. Two nearby 29Si atoms can exchange their polarization,
and in turn, this polarization can travel around the lattice.
When this polarization comes close enough to any qubit,
hyperfine interactions between the 29Si nuclei and the electron
cause transition frequency ω of the qubit to fluctuate [17].
We will model this as follows. Consider a single qubit (i.e.,
a single electron from a phosphorous atom). Starting from
time 0, we suppose that the silicon lattice remains unchanged
up to time U1 where two adjacent 29Si nuclei in the lattice
exchange polarization and, hence, cause a small change X1 in
the resonance frequency of the qubit. The silicon lattice then
remains unchanged up to time U2 where a random change in the
lattice causes a change in size X2 in the resonance frequency
of the qubit, and so on. We can model the stochastic part
of the resonance frequency of the qubit as a continuous-time
random walk if we assume exponential waiting times between
successive polarization exchange events. The continuous-time

random walk model is very approximate compared to other
theoretical treatments of polarization exchange (for example,
Refs. [18,19,27–29]). It seems reasonable under the following
circumstances. (i) The 29Si spins are widely spaced apart. (ii)
Polarization exchange between one pair of 29Si is independent
of polarization exchange between any other pair of 29Si. (iii)
Each adjacent 29Si pair in the lattice has an equal chance to
flipping at each of the times U1,U2, . . .. Assumption (i) means
that the change in the resonance frequency of the qubit due to
a flip of one 29Si is not canceled by the opposite change due
to the flip of the other spin. This other spin is too far from
the qubit to have a significant effect. The concentration of
29Si in silicon is very small, so this assumption is reasonable.
Assumption (ii) means that the random variables X1,X2, . . .

are independent. Assumption (iii) means that X1,X2, . . . are
uniform random variables between −M and +M , where
M is a positive constant. X1,X2, . . . will be close to ±M

if the spin that flips is close to the qubit, and will be
closer to zero for spins that are further away. M will be
related to the nuclear spin-electron spin hyperfine splitting
constant, although we will not investigate the connection
here.

The top graph in Fig. 2 compares a plot of the type 1
relaxation function for a continuous-jump random walk with
experimental data of photon echo decay of a natural Si crystal
doped with phosphorous (data reported by Tyryshkin et al.
[17]). We assumed that the bandwidth of the pulse used
in the electron spin resonance experiment is so narrow that
errors in Q0 can be disregarded (i.e., σ = 0). Note that the
oscillating component of the data has been subtracted. From
this, we adjusted M and λ to 15 and 8 ms−1, respectively,
to produce the fit in the figure. The agreement is reasonably
good, although the relaxation function overestimates the echo
decay signal at small times and decays more quickly. The
oscillations at small times in the data are an experimental
artifact and can be ignored [17]. According to this value of λ,
the qubit experiences an average of only 8 ms−1 × 0.5 ms = 4
changes in the surrounding nuclear spin environment during
the course of the experiment. Although the hyperfine coupling
constant between the unpaired electron on phosphorous and
the 29Si nuclei in crystalline silicon does not appear to have
been reported in the literature, the value of M appears to be
very small. For example, Assali et al. estimate the coupling
constant between an electron and the 29Si nucleus in a silicon
quantum dot to be about 10 000 times larger [30]. However, in
this case, we would expect the coupling constant to be larger
because the electron is not localized on a phosphorous atom
and the shape of the quantum dot would cause the 29Si nuclei to
be quite close to the electron. In the case of crystalline silicon,
the number of 29Si nuclei that are in the immediate vicinity
of the phosphorous atoms in the lattice might be very small
(if most 29Si were far away from the phosphorous atom, then
the coupling would be weakened, and M would be reduced).
This would be worth investigating further in experimental
studies and computational studies, and theoretical researchers
might like to investigate the connection between M and the
P -electron-29Si nucleus hyperfine coupling constant in more
detail.

We can also derive a simple graphical method for estimating
λ and M from experimental dephasing data. Taking the
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FIG. 2. (Color online) (a) Red line: a comparison of the phase
relaxation function (12) with experimental dephasing data from a
natural silicon crystal doped with phosphorous, using σ = 0, M = 15,
and λ = 8 ms−1. (b) Thin black line: comparison of the logarithm
of the experimental data from the top figure with (24). Equation (24)
was fit with least squares regression to data in the range of 0.4–0.5 ms
and predicts M ∼ 10 and λ ∼ 11 ms−1. The red line is a plot
of the logarithm of the phase relaxation function (12) using these
parameters. Experimental data are from Tyrshykin et al. [17].

logarithm of the type 1 relaxation function gives

ln F (t) = −λt + λ

M

∫ t

0

sin Mr

r
dr. (23)

Using the fact that limt→∞
∫ t

0 sin (Mr)/r dr = π/2, we can
approximate (23) for large times,

ln F (t) ≈ πλ

2M
− λt. (24)

Thus, for large t , a plot of ln F against t should yield a
straight line with slope-λ and intercept πλ/(2M). The bottom
graph in Fig. 2 plots the logarithm of the data of Tyryshkin
et al. [17] and fits a linear regression line to the data collected
beyond 0.4 ms (fitting performed in R 2.13.1 [31]). The fitting
procedure gives λ = 11.31 and M = 9.83 ms−1. These values
are slightly different from those estimated by directly fitting
the relaxation function in the top graph in Fig. 2 but are in
the same order of magnitude. Equation (24) looks suitable for
making “ballpark” estimates of the dephasing parameters λ

and M from experimental dephasing data.
As well as the other approximations mentioned earlier,

the continuous-time random walk approach is restricted to
large magnetic fields only. For small magnetic fields, the
random exchange of spins across the lattice is supplemented
with various other nuclear spin-nuclear spin interactions
[18,32]. This also prevents the continuous-time random walk
model from exploring interesting features of spin dephasing
that occur at low magnetic fields, such as periodic revivals
of the echo signal in a lattice of nuclei with different
Lamor frequencies [18,19,32] and dependences of the echo
signal on the orientation of the crystal in the magnetic field
[17]. Nonetheless, these shortcomings are redeemed by the
ease with which the continuous-time random walk can be
applied to experimental data. Highly accurate and physically
detailed models cannot be applied in such a straightforward
fashion.

Finally, note that we could have also fit the data in
Fig. 2 with the phase relaxation function for a stationary
Gaussian process (Eq. (5) in Ref. [5]). Stochastic processes
are very approximate models for the complicated qubit-lattice
interaction, and it is not easy to justify the use of one
model over the other. The stationary Gaussian process and
CTRW process model two extreme cases, namely, when the
frequency of occurrence of polarization exchange around a
qubit is extremely fast and relatively slow, respectively, on
the time scale of the experiment. Both models, therefore,
give alternative noncomplimentary insights into the qubit
dephasing mechanism, and we suggest that they be used
together to interpret experimental data. The stationary Markov
jump process might also be fit to the data in Fig. 2 as
well, and this process describes the case where the frequency
of occurrence of polarization exchange is relatively slow.
However, the stepwise evolution of the CTRW captures
the small frequency shifts that accompany each polarization
exchange event. The unrestrained jumps that are involved
with the Markov jump process do not seem as natural in this
context.

IV. APPLICATION TO TWO-DIMENSIONAL
SPECTROSCOPY

The goal of two-dimensional spectroscopy is to measure
the third-order response function,

R3(t3,t2,t1) = i

h̄3 〈μ(t3),[μ(t2),[μ(t1),[μ(0),ρ(−∞)]]]〉,
(25)

where μ(tk) is the electric dipole operator of the system of
interest at time tk and ρ(−∞) is the density operator of the
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system at the initial time −∞ [4,33]. The electric dipole
operator is in the interaction picture, and the times t1, t2, and
t3 indicate different interaction times with an external electro-
magnetic field. In a two-dimensional spectroscopy experiment,
the field interactions represented by μ(0),μ(t1),μ(t2), and
μ(t3) correspond to different laser pulses at times 0, t1, t2, and
t3 striking an ensemble of systems. Between times 0 and t1, the
ensemble is relaxing from an excited state, and we can Fourier
transform the macroscopic polarization during this time to
obtain a (one-dimensional) spectrum. Similarly, between times
t2 and t3, the ensemble is relaxing again, and, from that, we
can obtain another (one-dimensional) spectrum. For a fixed
t2 − t1, the two-dimensional spectrum is the two-dimensional
Fourier transform of the relaxation dynamics over the intervals
(0,t1) and from (t2,t3). See Ref. [33] for more details.

Consider a quantum harmonic oscillator with three levels.
In increasing order of energy, the levels are |0〉, |1〉, and |2〉.
The |1〉 ← |0〉 and |2〉 ← |1〉 transition energies are both h̄ω.
We suppose that ω(t) = ω0 + Qt , where ω0 is a constant
and Qt is the value of a continuous-time random walk at
time t . If we expand the commutators in (25), then we
obtain a variety of terms. Each term can be represented by
a double-sided Feynman diagram from Fig. 3. The complex
conjugates of the diagrams are not shown. By integrating the
von Neumann equation (dρ/dt = −(i/̄h)[H0,ρ], where ρ is
the density matrix of the system and H0 is the unperturbed
Hamiltonian of the system), we can find expressions for the
evolution of the density matrix elements between the laser
pulses. For an time t between two arbitrary successive pulses,
these work out to be

⎛
⎜⎝

ρ̇00 ρ̇01 ρ̇02

ρ̇10 ρ̇11 ρ̇12

ρ̇20 ρ̇21 ρ̇22

⎞
⎟⎠ = −i

⎛
⎜⎝

0 −ω (t) ρ01 −2ω (t) ρ02

ω (t) ρ10 0 −ω (t) ρ12

2ω (t) ρ20 ω (t) ρ21 0

⎞
⎟⎠ . (26)

Using the shorthand,

Z
a1a2a3±±± =

〈
exp

(
± ia1

∫ t1

0
Qrdr ± ia2

∫ t2

t1

Qrdr ± ia3

∫ t3

t2

Qrdr

)〉
, (27)

and integrating (26), the terms corresponding to the diagrams
in Fig. 3 work out to be

RL
1 = exp[−iωt1 − iω(t3 − t2)]Z101

−0−,

RR
1 = exp[−iωt1 + iω(t3 − t2)]Z101

−0+,

RL
2 = exp[iωt1 − iω(t3 − t2)]Z101

+0−,

RR
2 = exp[iωt1 + iω(t3 − t2)]Z101

+0+,
(28)

RL
3 = exp[iωt1 + 2iω(t2 − t1) + iω(t3 − t2)]Z121

+++,

RR
3 = exp[iωt1 − iω(t3 − t2)]Z101

+0−,

RL
4 = exp[−iωt1 − 2iω(t2 − t1) − iω(t3 − t2)]Z121

−−−,

RR
4 = exp[−iωt1 − iω(t3 − t2)]Z101

−0−,

where we have set all dipole transition moments to 1. See
Ref. [33] for further details. The third-order response function
is

R3(t3,t2,t1; t2 − t1) = i

h̄3

{
4∑

j=1

(
RL

j + RR
j

)

−
[

4∑
j=1

(
RL

j + RR
j

)]∗}
. (29)

The argument t2−t1after the semicolon indicates that, in a
two-dimensional spectroscopy experiment, t2 − t1 is treated
as a parameter. The factors Z

a1a2a3±±± are type 3 phase relaxation
functions and can be computed with (18).

Figure 4 presents two-dimensional spectra computed from
(29). Because the raw spectra are difficult to visualize and
involve complex and imaginary parts, we present them as
power spectra here. They were calculated with the fft sub-
routine of R 2.13.1 [31]. We set t2 − t1 = 1, M = 1, σ = 0.1,
and ω = 1 (arbitrary units). The spectra were normalized by
dividing through by the height of the peak in the λ = 0.01
case. The spectra have a cross shape, which is typical of
many two-dimensional spectra. The key observation is that the
peak height decreases as λ increases, and the continuous-time
random walk approaches the Wiener process in the Gaussian
limit. The Wiener process is a nonstationary Gaussian process.
For the case of a stationary Gaussian process, the two-
dimensional spectrum of a three-level quantum oscillator is
known to vanish completely [34]. The spectra in Fig. 4,
therefore, show a clear difference between non-Gaussian
continuous-time random walk stochastic modulation and
Gaussian stochastic modulation. This difference might be
useful for experimentalists wishing to spot signatures of
non-Gaussian frequency modulation in the laboratory.

V. FINAL REMARKS

The contribution of this paper is the evaluation of the phase
relaxation function for a continuous-time random walk. We
evaluated the phase relaxation function analytically in the
type 1 and 2 cases (up to the sine integral) and provided a
straightforward numerical algorithm for computing the more
general type 3 case. The results are in Eqs. (12), (16), and (18).
This algorithm is so fast and easy to implement that, for
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FIG. 3. Double-sided Feynman diagrams for a system with
eigenstates |0〉, |1〉, and |2〉. Each diagram corresponds to a term
from the expansion of the commutators of (25) (complex conjugate
terms are not included). Time runs from bottom to top. The two
numbers A and B, enclosed by the two vertical lines, represent the
ket and bra of the density matrix, respectively.

practical purposes, it can be regarded as a complete evaluation
of the type 3 relaxation function. We demonstrated how these
relaxation functions can be applied in practice by finding a way
to extract qubit-lattice interaction parameters from dephasing
data from P -doped silicon semiconductors and by showing
that a strong signal in the two-dimensional spectrum of
an oscillator implies strongly non-Gaussian continuous-time
random walk-type stochastic frequency modulation.

Prior to this research, there were only two types of
stochastic processes for which the relaxation function had
been evaluated. Namely, for Gaussian processes [5,9] and
for the Markov jump process [10–16]. Our results add the
continuous-time random walk to this list. We evaluated its
moments in full in a previous paper as well as its probability
density function (see Ref. [8]; note that the characteristic
function in Eq. (8) of this paper is more useful than the
expression for the density derived in the previous paper).
These properties, as well as the relaxation function, are
probably sufficient for the continuous-time random walk to be
applied to most typical problems in nonequilibrium statistical
mechanics. One particular advantage of the continuous-time
random walk is that it converges to a well-defined Gaussian
process (a Wiener process), which allows for non-Gaussian
and Gaussian dynamics to be studied within a single model. A
possible setback is that the continuous-time random walk and
limiting Wiener process are nonstationary, whereas, physical
applications often require a stochastic process to be stationary.
Nonetheless, the continuous-time random walk can still be
used in an approximate manner (stochastic processes are
only heuristic descriptions of environment anyways), and the
nonstationary property may be useful for describing a system

FIG. 4. (Color online) Two-dimensional spectra for a three-level
harmonic oscillator computed from (29) with t2 − t1 = 1, M = 1,
σ = 0.1, and ω = 1 (in arbitrary units) and (a) λ = 0.01, (b) 0.1, and
(c) 1. In the figures, ω [1] and ω [2] are the frequencies from
the Fourier transform of (29) over the intervals t2 − t1 and t3 − t2,
respectively.

in a nonequilibrium environment [20]. Future applications of
the continuous-time random walk might include more rigorous
modeling of qubit dephasing and of the nonlinear spectra of
more interesting non-Gaussian systems, such as the O-H bond
of water [35–37].
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APPENDIX

Here, we prove the results from Sec. II B [Eqs. (12), (16),
and (18)].

Type 1. If we partition the time interval (0,t) into intervals
(t0,t1),(t1,t2), . . . ,(tn−1,tn), where t0 = 0, tn = t and each
segment has length t/n, then, we can approximate the integral
in (11) with its Riemann sum,∫ t

0
Qsds ≈

n∑
k=1

Qtk

t

n
. (A1)

This formula is exact in the limit n → ∞. Letting �Qtk =
Qtk − Qtk−1 , the sum in (A1) can be rewritten as

n∑
k=1

Qtk

t

n
= t

n

n∑
k=1

(
Qt0 + �Qt1 + · · · + �Qtk

)

= t

n

{
nQt0 + n �Qt1 + (n − 1)�Qt2

+ · · · + [n − (n − 1)]�Qtn

}
. (A2)

Introducing the sequence,

A = {ak} = {1 − (k − 1)/n}nk=1, (A3)

we can rewrite (A2) as∫ t

0
Qsds ≈ tQt0 + t

n∑
k=1

ak�Qtk . (A4)

Let us note the limit behavior of the sequence A. Explicitly,
A = {1,1 − 1/n,1 − 2/n, . . . ,1/n}. Taking the limit gives

lim
n→∞ A = (0,1] ∩ Q, (A5)

where Q is the rational numbers. We will use this result soon.
Substituting (A4) into (11) gives

F1(t) = E

[
eictQt0

n∏
k=1

exp
(
ictak�Qtk

)]
. (A6)

Because the time intervals (t0,t1),(t1,t2), . . . do not over-
lap, the sums �Qt1 = ∑Nt1

i=1 Xi,�Qt2 = ∑Nt2
i=Nt1 +1 Xi, . . .

do not contain any common elements. The increments
�Qt1 ,�Qt2 , . . . are, therefore, independent random variables.
We will also suppose these increments are independent of the
initial frequency Qt0 . Moreover, because X1,X2, . . . have the
same distribution and that the time intervals (t0,t1),(t1,t2), . . .
have the same length, (A6) factorizes into

F1(t) = φQt0
(ct)

n∏
k=1

φ�Qtk
(ctak), (A7)

where φQt0
(ct) = E[exp(ictQt0 )] and φ�Qtk

(ctak) =
E[exp(ictak�Qti )] are the characteristic functions of the
random variables Qt0 and �Qtk , respectively. φ�Qtk

(ctak) can
be computed via conditional expectation, namely,

φ�Qtk
(ctak)

= E

⎧⎨
⎩E

⎡
⎣exp

⎛
⎝ictak

Ntk∑
j=Ntk−1 +1

Xj

⎞
⎠
∣∣∣∣∣∣Ntk − Ntk−1

⎤
⎦
⎫⎬
⎭ .

(A8)

This works out to be

φ�Qtk
(ctak) = exp

(
−λt

n
[1 − φX(ctak)]

)
. (A9)

Substituting (A9) into (A7),

F1(t) = φQt0
(ct)e−λt exp

[
λt

(
1

n

n∑
k=1

φX(ctak)

)]
. (A10)

Now, according to (A5) and the definition of the Riemann
integral,

lim
n→∞

n∑
k=1

φX(ctak)(1/n) =
∫ 1

0
φX(ctz)dz. (A11)

Substituting (A11) into (A10) gives

F1(t) = φQ0 (ct)e−λt exp

(
λt

∫ 1

0
φX(ctz)dz

)
. (A12)

For the case of the continuous-jump CTRW, we can go
further and can eliminate the variable z. Substituting in (9), we
obtain

F1(t) = φQ0 (ct)e−λt exp

(
λ

cM

∫ 1

0

sin(ctMz)

z
dz

)
. (A13)

Now, let

G(t) = exp

(
λ

cM

∫ 1

0

sin(ctMz)

z
dz

)
, (A14)

and differentiate it with respect to t ,

dG(t)

dt
= λ

ctM
sin(ctM)G(t). (A15)

Solving (A15) and noting that G (0) = 1 from (A14) gives

G(t) = exp

(
λ

cM
Si(t ; cM)

)
, (A16)

where

Si(t ; cM) =
∫ t

0

sin(cMr)

r
dr. (A17)

Substituting (A16) back into (A13) yields (12).
Type 2. To avoid confusion between notation, we will briefly

rewrite the type 2 relaxation function in (16) as

F2(s1,s2) = E

[
exp

(
ic

∫ s2

s1

Q dr

)]
. (A18)

Following the steps for the type 1 relaxation function, we
partition (s1,s2) into n intervals of length (s2 − s1)/n. The
corresponding Riemann sum is

∫ s2

s1

Qr dr =
n∑

k=1

Qtk

(
s2 − s1

n

)
, (A19)

where, here, t0 = s1 < t1 < t2 < · · · < tn = s2. As in (A2) and
(A4), this can be rewritten as

∫ s2

s1

Qrdr ≈ (s2 − s1)Qt0 + (s2 − s1)
n∑

k=1

ak�Qtk . (A20)
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Carrying this expression through the steps in the previous
proof gives

F2(s1,s2) = φQs1
[c(s2 − s1)]e−λ(s2−s1)

× exp

(
λ(s2 − s1)

∫ 1

0
φX[c(s2 − s1)z]dz

)
,

(A21)

or, upon substituting in (9) and switching back to the original
notation,

F2(t1,t2) = φQ0 [c(t2 − t1)]e−λt2 exp

(
λ

[
t1φX[c(t2 − t1)]

+ (t2 − t1)
∫ 1

0
φX[c(t2 − t1)z]dz

])
. (A22)

For the continuous-jump random walk, this works out to be

F2(t1,t2) = φQ0 [c(t2 − t1)]e−λt2

× exp

(
λ

[
t1

t2 − t1

sin[c(t2 − t1)M]

cM

+ (t2 − t1)Si(t2 − t1; cM)

])
. (A23)

Type 3. Rewrite the integral in Eq. (17) as

ic1

∫ t1

0
Qrdr + ic2

∫ t2

t1

Qrdr + · · · + ic2

∫ tm

tm−1

Qrdr

= i

∫ tm

0
β(r)Qrdr, (A24)

where β (r) is such that

tk−1 � r < tk ⇒ β (r) = ck. (A25)

By partitioning the interval (0,tm)into n subintervals and
approximating (A25) with its Riemann integral, we can show
that [cf. (A4)]

n∑
k=1

β(tk)Qtk

tm

n
= tm

n
{Qt0 [β(t1) + · · · + β(tm)]

+�Qt1 [β(t1) + · · · + β(tm)]

+�Qt2 [β(t2) + · · · + β(tm)]

+ · · · + �Qtnβ(tm)} + · · · . (A26)

Substituting (A26) into (17) and using the iid property of
the increments gives the result.
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