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We consider separately a spin and an oscillator that are coupled to their environment. After a finite interval
of random length, the state of the environment changes, and each change causes a random change in the
resonance frequency of the spin or vibrational frequency of the oscillator. Mathematically, the evolution of these
frequencies is described by a continuous-time random walk. Physically, the stochastic dynamics can be understood
as non-Gaussian because the frequency of the system and state of the environment change on comparable time
scales. These dynamics are also nonstationary, and so might apply to a nonequilibrium environment. The re-
sonance and vibrational spectra of the spin and oscillator, as well as the ensemble-averaged displacement of the
oscillator, are investigated in detail. We observe some distinct non-Gaussian features of the dynamics, such as the
narrow, leptokurtic shape of the resonance spectrum of the spin and beating of the average oscillator displacement.
The convergence to Gaussian dynamics as changes in the environment occur with increasing frequency is also
considered. Among other results, we observe narrowing of the resonance and vibrational lines in the Gaussian
limit due to a weakening of the system-environment interaction.
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I. INTRODUCTION

Stochastic processes are versatile ways of describing the
effect of a random, many-body environment on the time evolu-
tion of a system. They serve as projections of the environment’s
motion on the system, and appear in the equations of motion
for the system as either parameters or forces. Aside from
massive numerical simulations, stochastic processes cannot
in general be derived from detailed microscopic models for
the environment, and so the choice of a specific process
for a particular problem is subjective. Gaussian stochastic
processes, in which the probability distribution function for the
process at all times is given by Gaussian (normal) distribution,
are popular choices for a variety of problems since their
well-developed mathematical theory allows for reasonable
handling [1,2]. Gaussian processes are applicable whenever
the time scale of the system’s motion is considerably longer
than the time scale of the motion of the environment degrees
of freedom. This interpretation follows from the central
limit theorem, which states that the sum of independent
and identically distributed random variables converges to a
Gaussian random variable as the number of terms in the sum
becomes infinite.

If a system’s motion is on a time scale much larger
than that its surroundings, then each individual system-
environment degree of freedom interaction can only ever
have a very small influence on the system’s trajectory. In
Gaussian stochastic models, this requirement appears in a
variety of ways. For example, in the usual theory of Brownian
motion the Brownian particle is assumed to be considerably
more massive than the surrounding fluid. However, chemical
problems involve molecule-molecule interactions, and in many
cases the molecules of the environment and the system
do not differ enough for the individual system-environment
interactions to be as weak as a Gaussian theory demands.
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It is therefore not too surprising that sensitive experimental
techniques such as nonlinear spectroscopies have detected
non-Gaussian dynamics in several condensed phase systems.
For example, Steinel et al. found that it is not possible to
analyze correlation spectra of the O-D stretch of HOD if one
assumes Gaussian interactions between the O-D oscillator and
surrounding aqueous solvent molecules [3]. An experimental
and computational study by Jansen et al. showed that Gaussian
frequency fluctuations of an O-H stretch of water in acetonitrile
do not account for differences observed in dephasing of the
symmetric and asymmetric modes [4]. Further examples are
discussed by Roy et al. [5]. This paper is concerned with
the stochastic dynamics of systems whose motions have time
scales comparable to those of the surrounding degrees of
freedom, where one cannot assume Gaussian processes or
apply methodologies based on Gaussian processes such as the
cumulant expansion technique. We will offer a description of
these non-Gaussian dynamics, and look at how these dynamics
evolve into Gaussian dynamics in particular limits.

Before elaborating further on our own ideas, we point
out that there is currently a large interest in non-Gaussian
noises among the physics community. Baura et al. studied the
escape rate of a particle from a metastable state subject to
non-Gaussian noises defined by a type of Langevin equation
[6]. Milotti has shown that non-Gaussianity arises very easily
when analyzing data collected from relatively small samples
using statistical estimators that are asymptotically Gaussian
[7]. Non-Gaussian noises in semiconductors were investi-
gated theoretically by Melkonyan using the idea that non-
Gaussianity arises when only a few charge carriers participate
in forming the noise on the time scale of acquiring a sample [8].
Augello et al. looked at the role of non-Gaussian noise in
Josephson junctions using various examples of non-Gaussian
distributions supplied by the probability literature [9]. Via
first-principles theory, Danon and Brouwer investigated non-
Gaussian distributions of the persistent current around thin
conducting ring structures penetrated by a magnetic field [10].
A molecular dynamics simulation by Shin et al. looked at
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non-Gaussianity in the fluctuating force on Brownian particles
of very small diameters [11]. In quite a different study,
d’Onofrio and Gandolfi theoretically studied the resistance
of tumor cells to drugs due to “noise-induced transitions,” i.e.,
a stochastic interplay between various biological factors that
leads to a resistance enhancement [12]. This study also defined
the non-Gaussian noise using various types of Langevin equa-
tions. Each of these studies was published within the last two
years. From this quick survey of the literature, it is nonetheless
clear that there are no standard physical concepts associated
with non-Gaussianity like we have for Gaussianity. A goal of
this paper is to encourage developments in this direction.

This paper will consider separately a spin and an oscillator
system coupled to environment degrees of freedom. In both
cases, the underlying stochastic process works out to be a
special case of a continuous-time random walk (CTRW),
and is non-Gaussian in the sense that the time scale of the
surroundings and system are assumed to be comparable. The
spin model might be interpreted as a chromophore molecule
in a host molecular crystal [13,14], or a solute molecule in a
dipolar solvent [15–17]. We might regard the oscillator model
as a model for the vibrational dephasing of a diatomic molecule
in a diatomic solvent. An example is provided by HF liquids,
in which the vibrational frequency of HF molecules changes
in time due to the formation and deformation of the hydrogen
coupling between the HF molecules [18]. Because we are
considering a single spin or a single oscillator in contact with
its environment, these can be regarded as models for single
molecule trajectories. Explicit stochastic models for situations
involving comparable system-environment time scales have
been studied for many years (see, for example, [19]), several
of which are reviewed in monograph by Dattagupta [20]. How-
ever, the CTRW treatment that we use has some differences.
The non-Gaussian emphasis of this paper is because the CTRW
has a well-defined Gaussian limit, as is necessary for a model
of non-Gaussianity to be consistent with Gaussian models.
In addition, the CTRW can be expressed in terms of sums
of independent and identically distributed random variables.
In many cases this will allow us to decompose our results
into separate Gaussian and non-Gaussian contributions and
to identify when a particular contribution can be neglected.
Sums of independent and identically distributed random
variables have a significant presence in the mathematical
statistics literature (see, for example, [21]). Another difference
from the above processes is that the CTRW that we use is
nonstationary. The model is therefore relevant to a molecule
in an environment that has been brought out of equilibrium by
an external influence.

The single molecule CTRW approach therefore affords
insights that compliment results from other theories [19–22].
Below we show beating behavior of the trajectory-averaged
oscillator displacement as it relaxes from its initial value to its
equilibrium value. Moreover, the form of the renormalization
will make it clear how the system-environment interaction
becomes particularly weak in approaching the Gaussian limit,
providing physical insights into the narrowing phenomenon.

Section II constructs the stochastic process that will be
used for the spin and oscillator models and establishes some
of its statistical properties. The dynamics of the oscillator
and the spectral lines of the central spin and the oscilla-

tor are investigated in Secs. III and IV gives some final
remarks.

II. CONTINUOUS-TIME RANDOM WALK FREQUENCY
MODULATION PROCESS

We consider two different problems. The first is an energy-
fluctuating spin model, in which a spin (main system) is
coupled to a large number of other spins (the environment).
The fluctuations are due to random couplings to new spins
or random decouplings from old spins. The second one is a
frequency fluctuating oscillator model, in which the frequency
of an oscillator (main system) fluctuates due to successive,
random interactions with other oscillators (environment). The
following will employ fixed initial conditions for the frequency
of the spin and oscillator systems. This means that we are
either preparing the systems in well-defined states and then
introducing them to the environment, or waiting for the system
to enter into a particular state before we start recording its tra-
jectory. This might correspond to an idealized single-molecule
experiment. Throughout the following, random variables and
stochastic processes are denoted by capital italic Roman
letters. A subscript t denotes the value of the stochastic process
at time t . Expected values and variances will be denoted by
E() and var(), respectively.

In both cases, starting from time 0 we suppose that the
main system stays in its initial state up to a random time U1,
where the state of the interacting environmental molecules
change (i.e., a new spin couples to or an old spin decouples
from the central spin, or the current environment oscillator
decouples from the oscillator and a different one couples to
it). The main system stays in this new arrangement of the
environment molecules up to another random time U2, when
the environment undergoes another such change, then stays
in this arrangement up to a random time U3, and so on. The
stochastic dynamics described by these models can be regarded
as non-Gaussian. For the spin model, the resonance frequency
of the central spin can change on a time scale comparable to
changes in the state of the environment, and for the oscillator
model the vibrational frequency of the central oscillator can
be comparable to the frequency of new interactions with
environment oscillators.

Three important assumptions will be made for both models.
Let K1 = U1,K2 = U2 − U1, . . . be the durations over which
the main system remains a particular arrangement of the
environment molecules. We will suppose that these durations
are independent of one another and have the same probability
distribution. If 1/λ is their average length, then the probability
distributions of K1,K2, . . . are exponential, i.e.,

P (Ki < k) = 1 − e−λk. (1)

The parameter λ can be taken as being related to the
temperature of the surroundings or the time resolution of
the experiment. It follows from Eq. (1) that U1,U2, . . . are
transition times for a Poisson process N [23]. At time t , the
frequency of the main system (resonance frequency of the
central spin or vibrational frequency of the oscillator) can
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therefore be written as

Qt = Q0 +
Nt∑
i=1

Xi, (2)

where Q0 is an initial frequency and Xi is the frequency
change that accompanies the change in the spin environment
or new environment oscillator interaction at time Ui . The
second assumption is that each Xi is a random variable
between −M and +M , where M is the bound on the width
of the fluctuations that measures the strength of the coupling
between the system and environment. The third assumption
is that the random variables X1,X2, . . . are independent
and are uniformly distributed on the interval [−M,M]. For
the fluctuating spin model, this means that any spins in
environment can flip equal probability. This assumption is
valid if the temperature of the environment is high. For the
frequency fluctuating oscillator model it means that the range
of possible environment molecules that can couple is relatively
small. The third assumption is mainly a convenience, because
it avoids having to specify the distributions further using more
detailed microscopic arguments.

With these assumptions, the process Q is an example
of a continuous-time random walk (CTRW) [24], and also
a Markov process [25]. Some example trajectories (sample
paths) for this CTRW with various values of λ are shown in
Fig. 1 (simulated in R 2.12 [26]). Throughout the following, all
values of λ are in units of 1/unit time. This involved simulating
an exponential random variable K1 and keeping the process
constant at the value Q0 for a duration K1, then simulating a
uniform random variable X1 and another exponential random
variable K2, and keeping the process constant at the value
Q0 + X1 for a duration K2, and so on.

There are other stochastic models of frequency modulation
which assume comparable time scales for the system and
surroundings. The Kubo-Anderson process is a prototypic
example, in which the frequency takes on one value at a
random time, then another random value at another random
time, and so on (see, for example, [27]). A more general
version of this process, which allows for the Hamiltonian
of the oscillator at different times to be noncommutative,
was described by Clauser and Blume [19], and was extended
further by Dattagupta [28]. Despite appearances, the CTRW
in Eq. (2) is actually different. In the Kubo-Anderson process
and other former cases the process leaps from one frequency to
another in the space of frequencies (state space), irrespective
of its current value. Each realization of the process at the
jump times is therefore a sequence (not a sum) of independent
random variables. On the other hand, at the transition time Ui ,
the CTRW makes a small frequency change of size Xi . The
CTRW therefore undergoes small changes from its current
value, rather than completely starting over at each transition
time like these other examples do. This is arguably more
natural in describing a slowly changing spin environment. It
also notes that only a narrow range of environment oscillators
could couple to the central oscillator at each transition time,
because a frequency close to the frequency of the system
would be needed for efficient coupling. Unrestrained leaping
across the space of frequencies at each transition time does
not necessarily fit this picture. An advantage of working with

small changes is that we can express the process as a sum of
independent and identically distributed (iid) random variables,
as in Eq. (2). This means that the process has a well-defined
Gaussian limit, as will be described in the next section. This
is not necessarily true for these other processes. For example,
one might expect a noise process upon taking the limit of zero
waiting times for these other cases, but yet such a process is
not a well-defined mathematical object [29]. A well-defined
Gaussian limit is preferred for a consistent description of
non-Gaussian stochastic dynamics.

A restriction of the CTRW approach is that it is necessarily
nonstationary. The distribution and moments of a sum of iid
random variables never approach a time-independent state. It
is not always clear how to assign random initial conditions
to a nonstationary process. Nevertheless we consider a single
molecule with a well-defined initial condition, and treat the
realizations of its evolution as different repetitions of the
experiment. The results we obtain are most suitable for
describing dynamics over relatively short, preequilibrium time
periods. Nonstationary initial conditions of a process are often
useful for describing the dynamics of molecules in an excited
environment [30].

A. Moments and distribution of the CTRW process

The moments of Q can be worked out by making use of
conditional expectations, namely

E
(
Qn

t

) = E

{
E

[(
Nt∑
i=1

Xi

)n ∣∣∣∣∣Nt

]}
. (3)

Equation (3) says that the nth moment can be worked out
by taking Nt as a nonrandom constant, computing the nth
moment, and then averaging over Nt . A method for carrying
out this calculation is presented in the Appendix and [31].
While no general formula for this step can be given, the second,
fourth, and sixth moments work out to be

E
(
Q2

t

) = λtM2

3
,

E
(
Q4

t

) = λtM4

5
+ 3λ2t2M4

9
, (4)

E
(
Q6

t

) = λtM6

7
+ λ2t2M6 + 15λ3t3M6

27
,

The odd moments are identically zero. In general, the final
term on the right-hand side of each of these equations is of the
form σntn/2(n − 1)!!, where a!! = a(a − 2)(a − 4) · · · 1 is the
double factorial and

σ =
√

λM2/3. (5)

These terms can therefore be identified with the moments
of a Gaussian random variable with mean zero and standard
deviation σ . Referring to the other terms in Eq. (4) as the “non-
Gaussian contribution,” we have the general decomposition

E
(
Qn

t

) = Enon-Gaussian
(
Qn

t

) + σntn/2(n − 1)!!. (6)

The moments of the CTRW process can therefore be
thought of as additive corrections to the Gaussian moments.

As λ → ∞ and changes in the surrounding environment
become more and more rapid compared to the time scale of the
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FIG. 1. Representative trajectories of the CTRW process computed with M = 1 unit, and (a) λ = 0.1, (b) λ = 0.5, (c) λ = 1, and
(d) λ = 10. A time step of 0.01 was used, and values of λ are in units of 1/unit time (i.e., 1/100 time steps).

system, we might expect that the non-Gaussian contribution
to the moments would vanish. However, Eq. (4) shows that
both the Gaussian and non-Gaussian terms grow without
bound with λ. This occurs because, on its own, the limit
λ → ∞ does not render the system-environment interactions
weak enough for the dynamics to be Gaussian. The size
of the frequency modulation due to changes in the state of
the environment is given by the parameter M , and so this
needs to take on a new value in the limit, i.e., it needs to
be renormalized. If we suppose that close to the limit M

becomes

M =
√

3/λ, (7)

then the non-Gaussian term in Eq. (6) vanishes in the limit,
and the Gaussian term becomes

σntn/2(n − 1)!! → tn/2(n − 1)!!. (8)

The renormalizer in Eq. (7) was chosen so that the limiting
Gaussian random variable has the same moments as a Wiener
process at time t . This choice is not so arbitrary, because for
small λ the Gaussian terms in Eq. (4) are the moments of a
Wiener process with time rescaled by a factor of σ .

The renormalized M in Eq. (7) becomes vanishingly small
in the Gaussian limit λ → ∞. For the spin model, this suggests

that at the times U1,U2, . . . only spins that are very far
from the central spin may decouple from the system, and
new spins can only couple from a large distance away. A
possible explanation is that, if a spin that is close to the system
becomes particularly unstable, then in the Gaussian limit it is
quickly restabilized due to relatively fast spin changes further
away from the system, and so does not end up decoupling.
For the oscillator model, a very small M means that only
environmental oscillators with a frequency very close to the
system may couple in the Gaussian limit. This suggests that the
coupling between the system and environment oscillators with
much different frequencies takes too long to complete, and
is interrupted by an oscillator with a much closer frequency
before it is finished. Note that a renormalizer of equivalent form
was obtained in Ref. [32] in a study of the onset of Ornstein-
Uhlenbeck-type dynamics in a simple model of motion in
a condensed phase. The reappearance of the renormalizer
in Eq. (7) tentatively suggests that it is of more general
significance in connecting non-Gaussian and Gaussian-type
stochastic dynamics.

The first eight moments of Qt are plotted in Fig. 2 as a
function of λ. M has been set to its limiting value given by
Eq. (7) so that we can try and identify a critical value λc beyond
which the non-Gaussian contribution in Eq. (4) is particularly
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FIG. 2. The fourth, sixth, and eighth moments of Qt after
substituting in the renormalizer Eq. (7). The second moment is
constant under renormalization, and so is not plotted.

small. The figure suggests that

λc ≈ 10. (9)

This value of λc looks to be more accurate for the
lower moments than the higher moments, because the higher
moments appear to converge at successively higher values of
λ. We will justify this value of λc further at the end of this
section.

For later use, we work out the correlation function of the
CTRW, using the fact that for s � t , Qt − Qs and Qs are
independent random variables. This is because Qt − Qs and
Qs are themselves sums of independent random variables
Eq. (2), and neither sum contains any common elements. We
therefore obtain

E (QtQs) = E {[(Qt − Qs) + Qs] Qs}
= E

(
Q2

s

)
. (10)

Because the correlation function depends on s explicitly,
rather than just on time difference t − s, it can be seen that the
CTRW process is nonstationary.

The probability density of the CTRW process at time t can
be computed in a similar way to the moments. Denote the
density by f (q) and let f (q|Nt = n) be the density of Qt

computed as if Nt was fixed at the constant value n. Then we
can write

f (q) =
∞∑

n=0

f (q|Nt = n)P (Nt = n)

= e−λt

∞∑
n=0

λntn

n!
f (q|Nt = n). (11)

The density f (q|Nt = n) is a density of a sum of n

uniform random variables. An expression for this is available

(see [33], p. 28), and upon substitution of it into Eq. (11) it
yields

f (q) =
∞∑

n=0

n∑
k=0

e−λtλntn(−1)k

(2M)nn!(n− 1)!

(
n

k

)
[q + (n − 2k)M]n−1

+ ,

(12)

where a+ = a if a > 0 and is 0 otherwise. Equation (12) is
plotted in Fig. 3 for M = 1 and t = 1 for various values of λ. It
was computed by keeping 50 terms in the first sum. Including
more terms does not notably affect the distributions in Fig. 3.
As λ increases and the environment changes more and more
frequently, the distribution of the frequency process broadens
from a sharp, leptokurtic spike to a Lorentzian-type curve
through to a broad Gaussian-like curve. We will interpret this
result further in Sec. III.

Figure 3 allows us to justify the value of λc in Eq. (9) further.
It is known that the higher moments of a distribution determine
the tails of a distribution, and that two distributions whose first
several moments are equal have very similar tails [34]. Figure 2
therefore shows that at λ ≈ 10, the tails of the distribution of
Qt are essentially those of a normal distribution. On the other
hand, Fig. 3 shows that at small λ the essential difference
between the distribution of Qt and a Gaussian distribution is
that the former has much heavier tails (i.e., the tails have larger
values and approach zero more rapidly). The similarity of the
tails at λ ≈ 10 therefore suggests that at this value the two
distributions are quite similar.

The form of Eq. (12) is not so easy to interpret. In fact,
using the decomposition (6) we can decompose the density
f (q) into a Gaussian density and an additive correction term.
The characteristic function of Qt is

φ(k) = 1 +
∞∑

n=1

inknE
(
Qn

t

)
n!

= 1 +
∞∑

n=1

inkn

n!

[
Enon-Gaussian

(
Qn

t

) + σn (n − 1)!!
]

= [φGaussian(k) − 1] + φnon-Gaussian(k). (13)

φnon-Gaussian(k) is the characteristic function for a random
variable with moments given by Enon-Gaussian(Qn

t ). We will
assume that such a random variable is well defined. The density
function f (q) is found by taking the Fourier transform of
Eq. (13), namely

f (q) =
[∫ ∞

−∞
φGaussian (k) e−ikqdk −

∫ ∞

−∞
e−ikqdk

]

+
∫ ∞

−∞
φnon-Gaussian (k) e−ikqdk

= [fGaussian(q) − δ(q)] + fnon-Gaussian(q), (14)

where δ(q) is a delta function centered on 0 and fGaussian(k) is
a Gaussian density with standard deviation σ . The second
equality in Eq. (13) shows that φnon-Gaussian(k) − 1 → 0 as
λ → ∞ and Enon-Gaussian(Qn

t ) → 0, and so as the moments of
the CTRW process converge to those of a Wiener process, the
probability density also converges. This is a nontrivial obser-
vation, because mathematically, convergence of moments and
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FIG. 3. Plots of the distribution of Qt [Eq. (12)] computed at t = 1 unit, M = 1 unit, and (a) λ = 0.5, (b) λ = 2, (c) λ = 5, and (d) λ = 10.

convergence of probability distributions do not always imply
one another [35]. Note that in a strict mathematical sense,
the above only proves convergence of the stochastic process
at an arbitrary fixed point in time. To prove that the process
jointly converges at all fixed times to the Wiener process, we
would need to make use of the independence of the increments
of the CTRW process, the central limit theorem, and the
so-called continuous mapping theorem, and also establish
a property called tightness [32,36]. These extra steps do
not add to our discussion, so we do not worry about them
here.

III. DYNAMICS AND SPECTRAL LINES

A. Spin system

The distribution of the frequency process at time t in
Eq. (12) and in Fig. 3 can loosely be interpreted as a magnetic
resonance (MR) line of the central spin in the coupled spin
model. In fact, it corresponds to the average MR signal of a
single spin measured in a single molecule experiment, i.e., the
average MR line measured from all possible trajectories of the
spin. The breadth of the line represents the fluctuations in the
resonance frequency due to interactions with the environment.
As can be seen from the moments in Eq. (4), as λ increases

and changes in the surrounding environment occur more
and more frequently, the distribution becomes broader. Note
that for small λ, where the non-Gaussian contributions to
the spectrum should be relatively large, the spectrum has a
distinctly sharp peak and leptokurtic shape.

In the limit λ → ∞, the distribution becomes Gaussian
and the standard deviation becomes

√
t . At large but finite

λ, the non-Gaussian contribution to the moments in Eq. (4)
is relatively small, and so the standard deviation of the
distribution is close to σ

√
t . Because the renormalizer in

Eq. (7) only strictly needs to hold right in the limit, for
arbitrary M the distribution at large λ can be broader than
the limiting distribution. The MR signal is therefore broader
for large λ, non-Gaussian frequency modulation than it is
for infinite λ Gaussian modulation. Equation (7) says that
individual changes in the surrounding spin environment have
a small effect on the resonance frequency of the spin in the
Gaussian limit. The resonance frequency therefore changes
by a relatively small extent during the MR measurement,
and so the line appears more narrow. This observation might
correspond to motional narrowing of spectral lines seen
in MR experiments, in which as the temperature of the
system (here related to λ) increases the line becomes more
narrow [22].
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B. Oscillator system. Decay of mean displacement

In the case of the spin system given above, the only variable
that is available to study is the resonance frequency of the spin
and its distribution. However, for the oscillator problem we
can investigate the displacement of the oscillator as well as
its vibrational spectrum. At time t , the displacement of the
oscillator from its equilibrium position is

Zt = z0 exp

(
i

∫ t

0
Qrdr

)
, (15)

where the initial condition Q0 is set to 1. Note that Eq. (15)
does not uniquely describe the coordinate of a harmonic
oscillator. For example, Zt could also be interpreted as the
angular displacement of a rigid rotor. The non-Gaussian
angular frequency Qt could be understood in terms of random
collisions with other rotors after the intervals K1,K2, . . .,
leading to frequency changes of X1,X2, . . .. Throughout the
following, we will stick with the oscillator interpretation of
Eq. (15).

The dynamics of the oscillator can be broadly described
by looking at the mean and variance of Eq. (15). These
correspond to averages over the possible trajectories of a single

molecule in a single molecule experiment. It does not appear
possible to evaluate the expectation of the right-hand side of
Eq. (15) without approximating the integral. By the mean value
theorem, the integral can be written as∫ t

0
Qrdr = Qht, (16)

where h is a time in (0,t) that depends on t . When λ is
very small and t does not greatly exceed 1/λ, then with high
probability the sample paths of Q will not fluctuate too wildly
in the interval (0,t). The time average of most trajectories of
Q over the interval (0,t) will not therefore change so greatly
with t , and so we can approximate Eq. (16) with∫ t

0
Qrdr ≈ Qtt. (17)

The expected value of Zt under this approximation is
worked out in the Appendix. It is

E(Zt ) = e−λt exp

[
λ

M
sin (Mt)

]
. (18)

Figures 4(b)–4(d) illustrate Eq. (18) for M = 1 and various
small λ. The curves are compared to averages estimated from

FIG. 4. (Color online) Plots of E(Zt ) for small λ estimated from numerical simulations, using M = 1 unit and a time step of 0.01. Plot
(a) compares the cases a λ = 0.01, b λ = 0.05, and c λ = 0.1. The analytic formula Eq. (18) (thin red curve) is compared to the numerical
results (thick black curve) for (b) λ = 0.01, (c) λ = 0.05, and (d) λ = 0.1.
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FIG. 5. (Color online) Plots of the rms displacement ±√
var(Zt ) for each of the cases in Fig. 4.

2000 simulations of the oscillator displacement process, as
computed in R 2.12.0 using the method to simulate trajectories
of the frequency fluctuation process described at the end of
Sec. II A and the trapezium rule to handle the integral. The
simulated curves are compared directly in Fig. 4(a). It can
be seen that the simulated curves do not decay smoothly
to their equilibrium value. These features are most obvious
for the λ = 0.01 curve, which decays via a series of small
steps. Averaging over further trajectories does not eliminate
the presence of these features. Equation (18) agrees with
the simulated λ = 0.01 curve reasonably well, predicting the
correct height of the steps in the decay curve and in some
cases getting the steps in the correct place. These steps can be
understood in terms of “beating” between different trajectories
in the ensemble of possible trajectories for the diatomic
molecule. Thus, at small λ and after short times the vibrational
frequencies of the oscillators in the ensemble will only differ
from one another by a small amount, causing the oscillation
phases across the ensemble to match periodically. The smaller
the value of λ, the less the variation in oscillation frequencies
across the ensemble, and so the shorter this period becomes.
Equation (18) does not compare as well to the simulated curves
for the cases λ = 0.05 and λ = 0.1, but nonetheless suggests
that the bumpy decay of these curves can also be traced to
beating across the ensemble.

The variance of the oscillator displacement is

var(Zt ) = E(ZtZ
∗
t ) − E(Zt )

2

= 1 − E(Zt )
2. (19)

The first equality is permitted so long as we are only
interested in the real part of Zt . Substituting Eq. (18) into
Eq. (19) gives, for small λ,

var(Zt ) = 1 − e−2λt exp

[
2λ

M
sin (Mt)

]
. (20)

The root mean square (rms) displacement of the oscillator,
±√

var(Zt ), is plotted in Fig. 5 for each of the cases in Fig. 4
and again compared to numerical estimates. Beating is again
for the λ = 0.01 case, this time as a series of plateaus that the
rms displacement goes through as it increases spreads from its
initial zero value. Weaker irregular features are also seen for
λ = 0.05 and λ = 0.1 cases.

With larger values of λ [larger than about ten interac-
tions per unit time, according to Eq. (9)], the frequency
variation across the ensemble would be very large, even
for relatively short times. The oscillation phases across the
ensemble would almost never match, and so we would
expect for E(Zt ) to decay in a relatively smooth manner.
When λ is very large, the non-Gaussian terms in Eqs. (4)
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FIG. 6. Diagram showing integration domain for Eq. (21). The
diagonal line is t2 = t1.

and (14) are negligible and Qt is approximately a Gaussian
random variable [with standard deviation given by Eq. (5)].
M does not necessarily take on its renormalized value in
Eq. (7), because that only needs to hold very close to the
limit λ → ∞, and not necessarily for arbitrarily large λ.
E(Zt ) can be computed approximately using the Gaussian
result

E(Zt ) ≈ exp

[
−1

2

∫ t

0

∫ t

0
E

(
Qt1Qt2

)
dt1dt2

]

= exp

[
−1

2

∫ t

0

∫ t

0
E

(
Q2

min(t1,t2)

)
dt1dt2

]
, (21)

where we have substituted in Eq. (10). The integral in Eq. (21)
is over the square area (0,t) × (0,t), which can be divided
into two triangular areas A and B. In region A min(t1,t2) = t1,
whereas in region B min(t1,t2) = t2 (Fig. 6). We can therefore
write∫ t

0

∫ t

0
E

(
Qt1Qt2

)
dt1dt2

= 1

2

∫ ∫
A

E
(
Qt1Qt2

)
dt1dt2 + 1

2

∫ ∫
B

E
(
Qt1Qt2

)
dt1dt2

= 1

2

∫ t

0
dt2

∫ t2

0
dt1E

(
Q2

t1

) + 1

2

∫ t

0
dt1

∫ t1

0
dt2E

(
Q2

t2

)
,

(22)

and so, using Eq. (4),

E(Zt ) ≈ exp

(
−λM2t3

18

)
. (23)

Figure 7(a) illustrates Eq. (23) using M = 1 and various
λ, and is compared to numerical calculations. For these
cases, the curve is indeed a smooth monotonic decay, and
there is no occurrence of beating among different trajectories
in the ensemble. Using Eq. (19), the variance works out
to be

var(Zt ) = 1 − exp

(
−λM2t3

9

)
. (24)

FIG. 7. (Color online) Plots of (a) E(Zt ) and (b) the rms
displacement for large λ estimated by numerical simulations (thick
black lines) using M = 1 and a time step of 0.01, and compared to
the analytic formula Eq. (18) (thin red lines) for the cases a λ = 2
and b λ = 5.

The rms displacement for the high λ case is plotted in
Fig. 7(b), and is seen to spread in a smooth manner from zero.
The results obtained here suggest that beating of the average
trajectory of a molecule is a signature of slow, non-Gaussian
frequency modulation. It would be interesting to investigate it
in the laboratory, possibly using Eq. (18) to help estimate a
value of λ.

In the limit λ → ∞, the frequency fluctuation process Q

converges to a Wiener process and M takes on the renormalized
value in Eq. (7). Proceeding as we did to work out Eq. (23),
but using E(Wtt Wt2 ) = E(W 2

min(t1,t2)) = min(t1,t2) in place of
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FIG. 8. Plots of Eq. (23) for M = 1 and λ = 10 (thin line) and
Eq. (25) (thick line). Equation (25) corresponds to the limit λ → ∞,
M → √

3/λ.

E(Qt1Qt2 ) in Eq. (21), we obtain

E(Zt ) = e−t3/6. (25)

Equations (23) and (25) are compared in Fig. 8, using
M = 1 and λ = 10, which lies near the transition point Eq. (9).
It is seen that the high lambda average described by Eq. (23)
relaxes to its equilibrium state more quickly than the infinite
lambda, Gaussian case described by Eq. (25), despite the
observation in Figs. 4(a) and 7(a) that E(Zt ) decays more
rapidly for larger λ. In Sec. II A, the renormalized M was
interpreted to mean that only environmental oscillators with
a frequency very close to the system may couple in the
limit. Here we see that relaxation of a oscillator from its
initial displacement by rapid successive interactions with the
environment is inefficient when the interactions are restricted
in this way. Similar comments apply to the rms displacement
in the limiting case (result not shown here).

C. Oscillator system. Vibrational spectra

Similar to what we had with the discussion of line shapes in
the spin problem, the spectra discussed here correspond to the
average spectrum measured from a single molecule trajectory.
Such a spectrum is the Fourier transform of the correlation
function of its dipole moment, where the correlation function is
taken over all possible trajectories of the molecule. In turn, the
dipole moment is proportional to the oscillator displacement
Zt , and so we can write the spectrum of the oscillator as

I (q) = 1

2π

∫ +∞

−∞
E (ZtZt+s)e

−iqsds. (26)

Equation (26) is a version of the Wiener-Khinchin theorem,
and only holds when E(ZtZt+s) is independent of t and
only depends upon the time difference s (i.e., when Z is
a stationary process) [1]. Because Q is not a stationary

process, we cannot expect that Z is stationary. However, there
is a theorem which says that the Wiener-Khinchin theorem
holds for a nonstationary process if E(ZtZt+s) is replaced by
〈E(ZtZt+s)〉, its long time-averaged value [mean value in t

over a wide time interval [−T , T ] [37]. The following will
therefore employ time-averaged correlation functions.

We first show that for small λ the spectrum can be decom-
posed into Gaussian and non-Gaussian components. Using
the formula E(Zt+sZt ) = E(Zt+sZ

∗
t ) and the approximation

discussed in the previous section, we have

E(Zt+sZt ) 	 E(eisQs ). (27)

The choice of time s in the exponent is allowed because
we are assuming that the trajectories of the CTRW process
do not vary too much over all times of interest. Equation (27)
is the characteristic function of Qs evaluated at s. It can be
decomposed into a Gaussian and non-Gaussian component
as in Eq. (13), and so, after time averaging and integrating,
Eq. (26) takes on the form

I (q) = [IGaussian(q) − δ(q)] + Inon-Gaussian(q). (28)

In the small λ regime where Eq. (28) applies, the term
IGaussian(q) − δ(q) makes a relatively small contribution.
Figure 9 plots the spectra estimated from 1000 to 2000
simulations of the displacement process Zt for λ = 0.1
and 0.5. This was done by estimating the autocorrelation
function E(Zt+sZt ) for each sample using R 2.12.0 (via
the acf subroutine, which averages over all t), fast Fourier
transforming the result (via the spec.ar subroutine, which
smoothes the spectrum by fitting an autoregressive model to

FIG. 9. Spectra estimated from trajectory simulations using
M = 1, a time step of 0.01, and a λ = 0.1 and λ = 0.5 (overlapping
curves), b λ = 2, and c λ = 5. See text for calculation details. The
spectra are centred on zero frequency and the intensity axis goes
from 0 to 1. Each spectrum is normalised to have unit intensity at its
maximum.
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FIG. 10. Spectra estimated by fast Fourier transforms of Eq. (34)
with M = 1 and λ = 10 (thin line) and of Eq. (35) (thick line). Equa-
tion (35) corresponds to the limit λ → ∞, M → √

3/λ. The spectra
are centred on zero frequency and the intensity axis goes from 0 to 1.
Each spectrum is normalised to have unit intensity at its maximum.

it) and averaging over the spectra. The two curves overlap,
and there is essentially no difference between them. At these
values of λ we can suppose that only the non-Gaussian term
in Eq. (28) makes any significant contribution, and so that
the spectra for λ = 0.1 and 0.5 in Fig. 10 essentially represent
Inon-Gaussian(q). Figure 9 therefore shows that the non-Gaussian
component takes the form of a narrow, Lorentzian-type curve,
which slowly broadens as λ increases. In fact, in the limit
λ → 0 we have Qt = Q0 = 0 with probability 1 and

E(ZtZt+s) = E

[
exp

(
i

∫ t+s

t

Qrdr

)]
→ 1. (29)

Substituting Eq. (29) into Eq. (27) gives

lim
λ→∞

I (q) = δ(q), (30)

and so for extremely small λ, I (q) ≈ Inon-Gaussian(q) ≈ δ(q).
The narrowness of these lines at small λ reflects the fact
that, when the occurrence of new oscillator-environment
interactions is relatively rare, the oscillator can only explore
a relatively limited range of frequencies over a typical
measurement period.

Figure 9 also shows spectra estimated for the cases λ = 2
and λ = 5, where the Gaussian character of the spectrum
should be more discernable. Like the non-Gaussian spectra,
these higher λ spectra also take the form of a narrow
Lorentzian-type curve, broadening slightly as λ increases. The
similarity of shape between the two types of spectra suggests
that the Gaussian and non-Gaussian stochastic dynamics
cannot be distinguished by the shapes of linear spectra alone.

The high λ case can be computed approximately without
trajectory simulations. When λ is large enough for Qt to be

approximately a Gaussian random variable, but not so large
that M needs to be renormalized, we can write

E(Zt+sZt ) ≈ exp

[
−1

2

∫ t+s

t

∫ t+s

t

E
(
Qt1Qt2

)
dt1dt2

]

= exp

[
−1

2

∫ t+s

t

∫ t+s

t

E
(
Q2

min(t1,t2)

)
dt1dt2

]
,

(31)

where we have used the formula E(Zt+sZt ) = E(Zt+sZ
∗
t ) to

obtain the first equality and Eq. (10) for the second. Proceeding
as in Eqs. (23) and (31) works out to be

〈E (Zt+sZt )〉 ≈ exp

(
−λM2s3

36

) 〈
exp

(
−λM2 |t | s2

12

)〉
.

(32)

The angular brackets indicate an averaging with respect to t

over a large time interval. t has been replaced with its absolute
value so that the averaging can be carried over to negative
times. The term in the angular brackets is twice the average
value of an exponential decay over a long period of time, which
is a very small quantity that does not appreciably change with
ordinary values of s. It can therefore be regarded as a constant,
and Eq. (32) can be rewritten as

〈E (Zt+sZt )〉 ∝ exp

(
−λM2s3

36

)
. (33)

For the case where λ → ∞ and the CTRW process
converges to a Wiener process, we obtain

〈E(Zt+sZt )〉 = e−s3/6〈e−|t |s2/2〉
∝ e−s3/6. (34)

Fast Fourier transform of Eqs. (34) and (33) gives the
spectra shown in Fig. 10. They were computed with λ = 10 and
M = 1. The limiting curves still have a Lorentzian appearance;
however, the Gaussian case where λ → ∞ is slightly more
narrow than the high λ case. Similar to the spin system,
this line narrowing is due to the weakness of the individual
oscillator-environment oscillator interactions in the limit. The
restriction to interactions with environment oscillators with a
frequency very close to the system means that the oscillator
explores a relatively restricted range of frequencies in the
Gaussian limit. Again, this result may correspond to motional
narrowing that is seen in experimental IR spectra [22].

IV. FINAL REMARKS

Throughout this paper, we have taken “non-Gaussian
dynamics” to mean that the time scale of the system’s motion is
comparable to the time scale of the motion of the surrounding
degrees of freedom. This interpretation is not unique; however,
it provides an obvious situation where approximations based
on the central limit theorem should not work. We used
this concept to construct a simple non-Gaussian stochastic
process describing the motion of the environment. This process
assumed that the system stayed interacting with one particular
state of the environment up to a random length of time,
then with another particular state of the environment up to
another length of time, and so forth. This is a special case
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of a continuous-time random walk. To a large extent, the
statistical properties of this process were shown to decom-
pose into Gaussian and non-Gaussian contributions, with the
former playing the dominant role when the frequency of new
environment states was more than about ten per unit time. It is
therefore reasonable to regard our non-Gaussian, continuous-
time random walk process in terms of additive corrections to
a Gaussian process. This concept was useful at several points
in this work, and future investigations could look at whether
it allows for approximations based on established results for
Gaussian processes; for example, whether product moments
such as E(Qt1Qt2 · · · Qtn) can be approximately decomposed
into sums of products of two-time correlation functions.

To investigate the physical dynamics that come about from
this process, we looked at a spin and an oscillator system whose
frequencies are modulated as described above. More attention
was given to the oscillator system, because that provides an
extra variable that can be studied—the displacement as a
function of time—in addition to its frequency. The oscillator
displacement, when averaged over all possible trajectories
from a given initial point, showed beating between different
trajectories in the average when the occurrence of new
interactions was extremely infrequent. This feature vanished
when the Gaussian contributions to the process became more
important, and so it might be regarded as a signature of
non-Gaussian dynamics for the oscillator system. If this
situation could be replicated in the laboratory, then it might
allow for measurement of the average frequency at which the
surrounding environment changes (i.e., of the parameter λ in
the main text). Throughout the paper, it was emphasized that
changes in the state of the surrounding environment can only
have a very small influence on the system’s evolution in order
for the Gaussian limit to be meaningful. As a consequence of
this, we saw that the (trajectory-averaged) resonance spec-
trum of the spin system and vibrational spectrum of the
oscillator were more narrow when the frequency at which the
surroundings changed was infinite than when it was a large,
but finite, value of the frequency. If we take larger values
of λ to mean a larger temperature of the environment, then
this narrowing probably corresponds with motional narrowing
seen in experimental spectra [22].

Because the non-Gaussian concepts were developed by
explicitly considering the spin and oscillator problems, our ap-
proach might appear very application dependent and difficult
to apply in more general settings. A more general framework
might be provided by the stochastic Liouville equation, which
in the quantum case reads as

dρ̂

dt
= − i

h̄
[Ĥ0 + V̂Q,ρ̂], (35)

where ρ̂ is the density operator of the system, Ĥ0 the system
Hamiltonian, and V̂Q an operator which couples the CTRW
stochastic process Q to the system [38]. The stochastic
Liouville equation in the above form is a particularly useful
starting point for spectroscopic problems. Applying it would
involve integrating it for a sample of trajectories of the
CTRW process, and then estimating the relevant statistics.
Note that the integration step would require certain specialized
mathematical techniques to handle the discontinuities of the
trajectories of the CTRW process, as well as to ensure that

the solutions remain stable as we approach the Gaussian
limit [39]. Like our own treatment of the spin and oscillator
problems, Eq. (35) does not account for energy dissipation
from the system to the surroundings. This is no significant
difficulty when dynamics over relatively short time scales
are of interest, but it is a problem over longer time scales
where equilibrium distributions become important. More
sophisticated versions of the stochastic Langevin equation
are available, in which dissipation is incorporated by means
of path integral techniques [40,41]. Stochastic differential
equations and the Langevin equation also provide a means to
tackle mechanical problems with and without dissipation [42].
The CTRW process could appear in these as the random
force term, and would be best implemented by means of
the “Ito” representation dQt/dt . This would involve changes
via a series of randomly spaced spikes, each representing the
occurrence of a new system-environment interaction.

As well as the above, future studies might try and apply
the above to problems in nonlinear response theory. This
would allow the above ideas to be tested against data collected
from nonlinear spectroscopy experiments, in which several
instances of non-Gaussian dynamics have been observed.
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APPENDIX

1. Formula for the moments of a sum of iid random variables

Let X1,X2, . . . be a sequence of iid random variables that
have the same distribution as a random variable X, and Nt the
value of a Poisson process at time t . We assume that the random
variable Nt is independent of X. The pth moment of the sum

Qt =
Nt∑
i=1

Xi (A1)

can be worked out as follows. Define a collection of products
of moments of X:

C =
{
E(Xr )E(Xs) · · · E(Xu) :

r,s, . . . ,u ∈ {1,2, . . . ,p}
r + s + · · · + u = p

}
.

(A2)

The pth moment of Qt is

E
(
Q

p
t

) = E
[
E

(
Q

p
t

∣∣Nt

)]
=

∑
qi∈C

E(Ai)qi, (A3)

where, for qi = E(Xp1 )E(Xp2 ) · · · E(Xpm ),

E(Ai) = 1

l1!l2! · · · lh!
E

[
Nt !

(Nt − m)!

]
p!

p1!p2! · · ·pm!

= λmtm

l1!l2! · · · lh!

p!

p1!p2! · · · pm!
. (A4)

In Eq. (A4), h is the number of distinct constants in the
sequence {p1,p2, . . . ,pm}, l1 the number equal to the first
constant, l2 the number equal to the second constant, . . ., and
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lh the number equal to the hth constant. Further explanation
and proof of Eqs. (A3) and (A4) can be found in Ref. [31].
The second formula in Eq. (A4) was obtained with a formula
of Noras for the moments of a Poisson random variable
[43].

2. Derivation of Eq. (18)

Equation (17) of the main text requires evaluation of

E(Zt ) ≈ E(eitQt ), (A5)

which is the characteristic function of the random variable
tQt = ∑Nt

i=1 tXi . This can be done via the conditioning
argument

E
(
ei

∑Nt
j=1 tXj

) = E
[
E

(
ei

∑Nt
j=1 tXj

∣∣Nt

)]
= E

(
φ

Nt

xt

)
, (A6)

where φxt = E(eiXt ). The second quantity follows from the
fact that X1,X2, . . . are iid random variables with the same

distribution as X. φxt is a nonrandom quantity, and so the
only random variable that φ

Nt

xt depends upon is Nt . The second
expectation in Eq. (A8) can therefore be evaluated with respect
to the Poisson distribution. This gives

E
(
φ

Nt

xt

) =
∞∑

n=0

φn
xt e

−λt (λt)n/n!

= e−λt eλtφxt . (A7)

Similarly, the only random quantity in eiXt is X. φxt can
therefore be evaluated by averaging with respect to the uniform
distribution over [−M,M], which yields

E(eiXt ) =
∫ M

−M

eixt 1

2M
dx

= 1

Mt
sin Mt. (A8)

Substituting Eq. (A8) into Eq. (A7) gives Eq. (18) of the
main text.
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