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Two-dimensional2D) fifth-order Raman spectroscopy is a coherent spectroscopy that can be used
as a structural tool, in a manner analogous to 2D nuclear magnetic resgNahiRe but with much

faster time scale. By including the effect of dipole-induced dipole interactions in the molecular
polarizability, it is shown that 2D Raman experiments can be used to extract distances between
coupled dipoles, and thus elucidate structural information on a molecular level. The amplitude of
cross peaks in the 2D Raman spectrum arising from dipole-induced dipole interactions is related to
the distance between the two dipole3 é&nd the relative orientation of the dipoles. In an isotropic
sample with randomly distributed dipole orientations, such as a liquid, the cross peak amplitude
scales as ~°. In an anisotropic sample such as a solid, where the orientational averaging effects do
not nullify the leading order contribution, the amplitude scales a5 These scaling relationships
have analogy to the dipole coupling relationships that are observed in solid state and liquid 2D NMR
measurements. €999 American Institute of PhysidsS0021-96009)02425-3

I. INTRODUCTION their structural dynamics on relevant time scales, from fs to
ms. The possibility of using the concepts developed in NMR

The expanding interest in the determination of moleculambut with significantly increased time resolution requires op-
and collective dynamics in condensed phases requires netical methods. Coherent two-dimensional vibratidfaP
experimental methods that are sensitive both to structure arghd electronic spectroscopt®s?®are alternative approaches
its time evolution. When studying complex molecular sys-that are optical and infrared analogues of the NMR tech-
tems, it is often difficult to extract detailed microscopic in- niques.
formation on the sample for several possible reasobs; One of these methods, 2D Raman spectroscopy, based
limitations in relating the experimental observable to preciseon a fifth-order nonlinearity, is the subject of much recent
molecular structure€?2) ambiguous observables due to com-theoretical and experimental reseatfnt>?1->*|t has be-
plex ensemble averaging, 8) insufficient time resolution. come clear that 2D Raman spectroscopy has the potential for
One of the most powerful methods for dealing with the firststructure determination on a picosecond time scale. Although
two limitations and extracting detailed structural informationthis technique was originally proposed to describe inhomo-
is two-dimensiona({2D) NMR.>2 The power of this coherent geneous broadening of Raman active molecular vibrafins,
correlation spectroscopy is its ability to quantify the strengthit has recently been shown that its 2D nature leads to higher
of interaction between spectral features of well-defined molevels of information. Demonstration of the capability of 2D
lecular origin. The magnetic shift of a resonance can be useRaman spectroscopy to distinguish the nonlinear dependence
to assign it to a particular functional group of a molecule,of the polarizability and anharmonicity of the vibrational
and dipolar couplings can be observed between differerpotentiaf®“®was a fundamental step for the following theo-
resonances in a 2D spectrum. The strength of this interactioretical developments#°=4246-54nd led to studies based on
can be used to determine the distance between dipoles. Thise normal mode analysis, molecular dynamics, and the
becomes the first step in the structure determination of comguantum Fokker—Planck equatioft>* The introduction of
plex molecules in solution. phase-sensitive heterodyne detection metffodsallowed

As a dynamic tool, multidimensional NMR is limited by coherent 2D Fourier transform Raman spectrostofiy be
its time resolution. The inherent time scale associated witlimplemented in a manner analogous to 2D NMR, and dem-
2D NMR measurements is no shorter than milliseconds. Omnstrated that vibrational interactions in liquids can be ob-
the other hand, most “soft molecular materials,” including served. Just as 2D NMR observes the interaction between
liquids and solutions;* glasses, polymers? liquid crystals,  spins as cross peaks in a 2D spectrum, cross peaks in a 2D
and numerous biologically relevant molecules andRaman spectra arise from the interactions between Raman
macromolecules® show evolution of molecular and collec- active vibrational modes. The ability to observe these cross
tive structure on shorter time scales. With all of these syspeaks suggests the possibility of using their interaction to
tems it is of interest to be able to gain detailed insight intoextract structural information on a molecular level. The com-
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bined advantages of quantifying the strength of vibrational T Ty Sample Ej
couplings, observing inhomogeneous broadening, and mea- E,
suring with high time resolution suggest an unusually pow-
erful tool. E, ‘
In this paper, we address the determination of inter- and Ey ‘
intramolecular distances from a 2D Raman spectrum through ,
an understanding of the distance-dependence of vibrational Ep ‘
interaction mechanisms. In the previous literature the inter- El‘ N

actions between vibrations observed in fifth-order Raman ] ] )

spectroscopy have been described in terms of anharmonici&G' 1. The pulse con_f|gurat’|on of_the 2D Raman spectroscopy. The first
. . L . . mtosecond pulse paiEg,E;) excites Raman modes, the second pulse

or nonlinear pOIa“Zab'“ty' The anharmonic mechanism aI'pair (E,,E)) after the delay tim&, causes further Raman interactions, and

lows mechanical coupling of vibrational modes through Cu-the final probe puls&; after the delayT, induces the signa, .

bic expansion terms in the potential. Nonlinear polarizability

describes a nonlinear dependence of the molecular polariz-

ability on the nuclear coordinates, due to expansion beyongethod below, because it is instructitafering an intuitive
the traditional linear Placzek terms. In either case, a nonlin¢/@ssical pictureand it gives the correct result at the lowest

earity exists that allows for the interaction of vibrational ©"der- . . _ _
modes to be observed, and thus is the basis for a broad range Th€ Pulse configuration of the 2D Raman experiment is
of physical processes, including overtone transitions, andiVen in Fig. '1, and the electric field is presented below for
interaction-induced effects, and dipole-induced dipole coulater calculations,
plings. E(t,r)=Eq(t,r) +Ef(t,r)+ Ex(t,r) + E5(t,r)+ Eq(t,r),

In order to probe further into the nature of the nonlinear (1)
polarizability in a manner that allows the introduction of a where, fori=1,2,
spatial variable in the vibrational interactions, we reformu-

- —iwjt+ikj-r
late the description of the nuclear-coordinate dependence of B(tn=E(t(e = +cc)2, @
the molecular polarizability to include dipole-induced dipole E/(t r)ZE(t)(efiwiHiki'~r+C'C.)/2 3
effects®>~® In the following section, the nonlinear polariz- Y ' '
ability is expanded in the individual coordinates, while the Ef(t,r):Ef(t)[e*iwftﬂquC_C_]/z, (4

interactions between coordinates arise from dipole-inducegd, .o . ¢ stands for the complex conjugate while the ampli-
dipole couplings. For the purposes of this work, anharmoniqudes’ are given as

coupling between the coordinates is neglected. In Sec. I, it _

is shown that cross peaks in the absolute value 2D Raman Ei(t)=Eqdp(t—tn+T1+Ty), 6)
spectrum arise from dipole-induced-dipole coupling, while = = _

diagonal and overtone peaks arise from nonlinear expansion Ea(1)=Eodp(t—tm T T2), )
coefﬂmgnt_s of the polarizability in the V|prat|onal Cerdlnate. Eq(t)=Eodp(t—ty), )
The 1f° distance dependence of the dipolar coupling forms

the basis for extracting distances between vibrational coordiwhereép(t) is normalized Gaussian function with the width

nates ¢), forming the basis for extracting structural informa- longer than the optical cycle{1/w;) but much shorter than

tion. Model 2D Raman spectra with varying distance be—the nuclear dynamicp~1/41s, see Eq(20) below for the

: : . . recise definition of the characteristic frequery]. The
tween interacting coordinates are calculated in Sec. IV. Th . .
; . ime of measurement of the signal is setto In the follow-
complex nature of ensemble averaging leads to differen ; ; L
. . ) : h . ing we assume that the amplituég is real for simplicity.
scaling relationships for systems with aligned dipoles )1/ o : )
. . o . g For the purposes of describing a possible experiment, we
and for isotropically distributed dipoles ¢}, as shown in R : .
. 4 ) show in Fig 2 a macromolecule with two nuclear coordi-
Secs. lll and V, respectively. These relationships form the
basis for extracting structural information from molecules.

Il. EXTENDED PLACZEK MODEL
We extend the classical Placzek motfelvhich allows a ST -
classical description of the Raman process by postulating a Y o N
linear dependence of the molecular polarizability on the )‘$ ;z :"‘$ b
; . ; . . LA TN .. A B
nuclear coordinate, to include the dipole-induced dipole ef- B~

fect. We have found that the extended Placzek model intro- ) B

duced below can reproduce the leading order results of the ) (i)

quantum Brown'an QSC'Ilator model, which has been f_re'FIG. 2. A complex molecule in dilute solution. Each molecule has two
quently usetf in the literature. The use of the Feynman dia-functional groups, A and B, both of which has a distinctive Raman active
gram for the guantum Brownian oscillator model is a practi_mode. The arrows denote the induced dipoles, which are all iz theec-

cal necessity at higher orders in order to obtain the corre on, the direction of the polarization of the applied fields. The dipole pair
y 9 A,B) is away from the dipole pairs in the other molecules. For some

quantum result through economic Ca'ICUIationS- However, W ason, the structure changes fr@no (ii), with the change of the distance
use the extended Placzek model with the Green’s functiometweenA andB.
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nates A and B with corresponding Raman active vibrationalvheree,, r, andr , are the dielectric constant of the vacuum,
transitions. These dipoles can interact with one anothefhe magnitude of the vectar, and thea component of the
through dipole-induced-dipoléDID) effects which decay | nit vector F=r/r, respectively. In the aboverag=r4
with the inverse of the A—B distance cubed. As the molecule_rB, which is regarded as a constant compared with the
changes its structure frorti) to (i), for example during a [ clear dynamicgsee below.
temperature change, observation of weakened DID couplings The energy of the two induced dipoles in the external
would be a direct measure of structural changes to the mokq|q j<54
ecule. For a dilute case, where only A—B interactions need to
be considered, the ability to quantify the magnitude of DID ~ V,(t)=— 3pa(t)-Ee(t,ra)— 3Pa(t)-Eetirg). (12
interactions would potentially allow direct distances to be
extracted.

The DID coupling effect is closely related to combina-
tion peaks in traditional one-dimensiordD) spectroscopy;
the change in the intensity of combination peaks may reflect — as(t)=as(t)l, (13

structural variations. However, in condensed phase 1D spegyhere a((t) and| are the scalar isotropic polarizability and
troscopy, the interactions between vibrations are difficult tathe unit tensor. Furthermore, we assume that all the polariza-
distinguish from more intense fundamental peaks and conigns of the fields E..E;,E,,E5,Ef) in Fig. 1 are parallel
gested spectra. Two-dimensional data have the advantages@ihng the laboratory axis. The time scale of structural re-
spreading congested information out over two dimensiongaxation in most systems will be longer than the deldys
and also directly visualizing interactions as cross peaks. ARndT,. This ensures that the induced dipoles are parallel to
additional advantage to 2D Raman spectroscopy is that eveshe another over the course of the experiment.

the diagonal peaks in the 2D spectrum arise from weak non-  ith these assumptions and from Eq8)—(10), the z
linearities, so that observing weak DID interactions shouldcomponent op(t) can be expressed as

not be obscured by strong fundamental peaks. In the follow-

ing, we describe this ideal property of 2D Raman spectros- Pa(t)=aa(t)(E() + Taglas(D{E(M) +---}]), (14

copy. - o - = ax(HE(), (15
As an example of physical interaction which is sensitive _ o

to the structural change of molecules, we employ the Cony\{here the effective polarizability is given by the DID expan-

ventional dipole-induced dipole interaction as follows®?  Sion,

The dipole moment associated with the nuclear coordinates

Here, agairE,,(t,rs) can be replaced bl (t,rg).
To simplify orientational averaging, we assume that
a(t) is an isotropic tensor,

an()=ap+ apTapas+ anTagasToatat - -. 16
A andB at the timet, pg(t) (s=A,B), can be expanded by At ) AT TATABTE T TATABTE TBATA ) 18
the electric field at the same timeE(t,ry), Here, Tag is thezz element ofT 55 and E(t) is thez com-
ponent of the external fiell.(t,rg). Note here that, at any
Ps(t) = st ag(t):E(t,rg) + - - -. (8 order of the expansion gi,(t), terms show the linear de-

u. is the permanent dipole moment, ang(t) is the polar- pendence on the gxt_ernal field(t). Thgs, the intgrac?ioh’,
izability tensor®® For the purposes of this work we do not P€cOmes quadratic in the external fit), which is re-
consider couplings due to permanent dipolgs € 0). sponsible for the Raman transition,

E_(t,rA) in Eq_. (8) is the local electric field at the point of V()= — JE() al(t)E(1), (17)
the dipoleA and is decomposed as

E(t:rA):Ein(ter)+Eex(t1rA)! (9)

whereE;,(t,r) andEg(t,r,) are the local field produced by
the dipoleB at the position of the dipol& and the externally
applied laser field, respectively. The density of the molecular 1 )
system is assumed to be low enough to avoid the other mol- Vi(t)=— §[aA(t)+ ag(t)JE(t)
ecules contribute t&;,(t,r5). (In this description we neglect
higher-order dipole interactions, self-induced dipoles, and — ap(t) ap(t) TagE(t)?
hyperpolarizabilitieg. Since the distance between A and B _ 2 2
are smaller than the optical wave length, the external field an(t) gDl aa(t) + ag(t) I TagE()
Eo(t,ra) can be replaced b (t,rg), wherer g denotes the - (19
center of the molecule.

WhenA andB are relatively closeE;,(t,r,) can be ex-
pressed agsee Discussion for other possibilitjes

where the total effective polarizability is given by
a(t)=aa(t) + ag(t). (18
The first few terms can be explicitly written as

For the time being, we limit ourselves to keep up to the
first-order terms inT,g. The second-order contribution is
examined in Sec. V.

dt

Ein(t,ra)=T(rag):pa(t), (10) In our model, the nuclear vibrational coordinadg as-
o sociated withag is governed by the following equation of
where the second-rank tensor is given by motion
1 3r =6, d2Qq(t dQq(t
T(Nap=7—- E_2f (12) 2 )-I-l\/lys Qul )+MQ§QS(t)=FS(t), (20)
0

r3 dt?
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where the force is given bl¢(t)=—dV,(t)/dQq(t). If we 1
neglectTg in this equation and assume the linear polariz- Q(“)(t)— aWPa@(1+4a9Ty)
ability, it reduces to the equation for the Placzek model. In

this paper, we shall not introduce any anharmonicity for sim- ) )
plicity. By using the Green function method, the specific deTf d7r'E(t—7)°E(t—7—7")°Ds(7)Ds(7")
solution of Eq.(20) is given by
1
w + Za(l)[a(l)]ZTSS,J' de dr'E(t—17)2
Q0= [ arFyt-npyo). @
XE(t—7—7")?Dy(7) Do (7). (27)
Here, the Green function or the propagaldy( ) is given
by66 Ill. CALCULATION OF THE SIGNALS
1 o The macroscopic polarization, which becomes the
D) =0(ny7. ¢ 2 sin £, (220 source of the signal, is given by
S

where Zs=\/Q2— y2/4 and 6(t) is the Heaviside step func- P(t,r)=% [p(1)Im/Vo=(P(1))v,, (28)

tion. L
The time dependence of the polarizability comes l‘romWhere P(t)=pa(t) +pg(t). Here, the summation is taken

) over all the molecules in the macroscopic voluwe Before

the nuclear coordinate, . ; .
calculating the fifth-order signal, we reproduce the well-

known third-order signal, because it presents the prototype of
the calculations below. Neglectifigyg, the third-order opg
is given by

ay(t)=a?+aMQy(t) + aPQyt) %2+ - - - (23

In the present situation, we assume that there are no cou
plings between the two modes A and B at the level of the  P{¥=a{VQPE(1)

polarizability, i.e., the terms such d&3,(t)Qg(t) can not 1

appear in the expansion afy(t). Thus, at this level, only = _[agl)]zf d7E(t)E(t—7)2D(7). (29)
DID mechanisms allow the interactions of the polarizability 2

of the modes A and B. This is reasonable since the diphles The propagatoD¢(r) contains the factof(r) and it deter-
B are localized, compared with the distance A-B. In thismines the time order of the fields(t) andE(t—7)2 in the

case, the force is evaluated as above expressionE(t)E(t—7)? can be identified with
L W @ © . @ E¢(t)E,(t— 7)2. [There is noE,(t) field in the third-order
Fs()=3(ag '+ ag’Qst - )[1+2Tsg (g’ + ag Qs case] Neglecting the terms proportional & 2'“i*, one ob-
tains
+a?QZ 12+ )]E(1)2, (24) _
Ei(t,roEi(t,re)=|Ei(t)[*[1+cogAk;-rg)], (30)

whe(rze) (s,?;))=(A1B) or (Bﬂﬁg- _DecomposingQs as Qs \yheres ands’ are A or B. Here,|X| denotes the absolute
=Qs”+Qg"+ -+, where Qg” is theith order of Qs in | 110 ofX and Ak = k. — k/
I I

f the fieldE btain th ¢ . { . It is possible to perform the
terms of the fielde, we obtain the set )0_ equatiofere as- integration in Eq.(29) owing to the 5,(t) function, which
sume that the homogeneous solut@&? is zerd,

can be treated as the Dirac delta function for the nuclear
dynamics. In this way we find the dipole of a single mol-
+MQ2QYR ecule,p®(t)=pL(t) + pS)(t), to be given by

d2o0@)t (2)(t
yd Qs ()‘HVW dQg” (1)
dt? dt 1
1 i p(t)= 5E(t.re) Eg [1+cogAk;-rg)]
=5l (14209 oo E(D),
X 2 [aDy(Ty). (31)
s=A,B

d*QfV(t) dQf™(t) @
M TJF Mys—gr— TMQ:Qs At the length scale of the optical wavelength, the molecules
are regarded as being distributed continuously. If we assume

1 2) (0) ) that all the molecules contribute to the polarization in the
=5las"(1+2ay Tse) Qs same manner[i.e., all molecules have the same
aM Qq,vs,Md], thezcomponent of the macroscopic polar-

+ 2a§1)a$)TsszS)]E(t)z. (25  izationP(t,r) is given, from Eq(28), by the right-hand side

of Eqg. (31) multiplied by the number density of the mol-
Now we can solve these equations by the form(®4).  ecules, withr; replaced byr. Actually, molecules have dif-
Keeping up to the first order ifiyg, We have ferent values okr{",Q¢,y,, andMg, and these parameters
in P(t,r) should be interpreted as averaged values. In this
way, we reproduce the well-known expression for the third-

(2)(ty= (1) (0) 2
Q)= (1+2ay Tss’)f d7E(t—7)°D4(7), (26) order signal,
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EOT)~ELS [alPDy(Ty). (32 Ges ()= f drE(t—7)?Dy(7)

In the frequency domain, the spectral density is expressed as )
X | dr'E(t—7—7")Dg(7'), (39
IME®)(w)]
o can be replaced as
1)q92
Yey= S LT ©% 33 Ger(D=E{1+cogAk; ro)][1+cog Ak, )]
s“AB Ms  (Qf-0)?+(wyy)?

where E®(w,) = [5dT,e'1TES)(T,,T,). Here, we have
neglected the higher order corrections due to the nonlinearit
(a!?), the DID (T,g), etc.

To study the fifth-order signal, we calculate the fifth- pNL(t) = %Ef(t,rG)ES[lJrcos{Akl-rG)][1+cos(Ak2-rG)]
order ofpg(t) in terms of the external fielE(t). It should be
noted here that the fifth-order @f(t) vanishes ifa{®) and X[ P PaPDA(T)[Da(T1) +Da(T1+T,)]
Tag are both zero in the harmonic oscillator approximation.
The parameterse'® and Tpg, Which are normally small, T(A=B), (41)
produce the leading order contribution and we can observsolo(t): %Ef(t,rG)Eé[leCOE{Akl'fe)][1+ cog Ak,
these weak effects without background. It suggests that, even
if there are any fundamental peaks, they are not strong, sat- o) [ a1 T AgDA(T,)[Dg(Ty) +Dg(Ty
isfying the ideal condition mentioned in Sec. Il. We shall
calculate two contributions separately, one coming from +T2)]+(A=B), (42
nonlinear dependence on the nuclear coordinate of the polajyhere p*(t)=pX(t) + pa(t) (X=NL,DID). Here, the nota-
izability and the other coming from the dipole-induced di- tion (A< B) implies the term obtained by interchanging

XDy(T2)Dg(Ty). (40)

After these replacements, we obtain the following expression
Yor the NL and DID contributions from a single molecule,

pole interaction, which are proportional @) and Tag,  and B in the previous term. The nonlinear contribution
respectively. ' o ~ pN(t) reproduces the expression previously obtained in Ref.
" To calculate the nonlinear-polarizability contribution 10, Both contributions can be more economically obtained
Ps (), we neglecfT 5g in the fifth-order ofpy(t) to have by using Feynman rul®® Although these expressions have
= = been derived by classical calculation in this paper for the
pet(H) = (") +3aPIRPMTPIEM), (34 ¢ pap

o heuristic purpose, we checked, by use of the Feynman rule,
wherng') is given by Egs(26) and(27) with T,g=0. To  that they agree with the leading contributions of quantum
calculate the dipole-induced dipole contributipd®(t), we  calculation.
neglecta® to have From Eq.(28), thez component of the macroscopic po-

- A N larization P(t,r) is given by the sum of Eqg41) and (42
DDty — ( (1AH(4) (1) (1) (2) (2)
Ps (D)= (ag7Q™ (D) + a5 ay TagQs™ (1 Qg (D) E(Y), multiplied by the number density. Hereg should be re-

(39 placed byr, if we assume that all the molecules contribute to
whereQ{" is given by Eqs(26) and (27) with a{?=0. the polarization in the same manrée., all molecules have
For the fifth-order impulsive pulse sequence, we find thethe samer g, ag'),QS,yS,MS]. Actually, as in the third-
replacement rule, order case, the parametergg, ag'),Qs,ys, and Mg in
P(t,r) should be interpreted as averaged values. Note here
Gy(1) Gy (1)=Eg[ 1+cog Aky ) [1+cog Ak, rg)] that we can regard,g as time-independent constant com-
pared with the dynamics @@, andQg, when the structural
X[Do(T2)Ds(T1+T) dynamics are slower than the nuclear dynamics. Thus,
+Dg(T2)Dg(T1+T5)]1, (36 P(t,r) is given by the sum of Eq$41) and(42), whereT 55
defined by
where
1 [3coglrs—1
TAB: 3 ’ (43)
Gs(t)zf drE(t—7)?Dy( 7). (37) 47T€o< ras >V0
o . . whered,g andr g are the angle which the vectogg makes
This is understood by noting the relation against thez direction(the direction of the polarization of the
applied field$ and the magnitude of the vectokg, respec-
Gs(t)Gs/(t):f de d7’ 6(7")E(t—7)°E(t—7—17')? tively. If 8,5 andr g are independently distributed,g is
given by
X[DS(T)DS’(T+T’)+Ds’(7)Ds(T+7/)]v c 1
(39 TAB_47T€0' T (44)
and by following a similar line to the one explained in the 0
third-order case. wherec=(3 CO§0AB—1)VO. For an isotropic distribution of

In a similar way, the expression, s, C becomes zer® For aligned systems such as a liquid
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comes zerh while that ofF{** is enhanced, and in the
second and fourth quadrants vice versa. This fact implies
that the four peaks have the same intensity. In addition,
from the above approximate expression, we see that the
width along both thew; and w, axes is given byya/2.

This implies that these diagonal peaks are symmetric
with respect to the two axes.

rystal wheref,g's of all the molecules take the same value
0y, Cc depends directly on the valug. It reaches the maxi-
mum when§,=0. In this section and the next section we
assume that is nonzero and thus the results are applicable
for the system with a certain anisotrofig the sense that this
average is nonzeyoThe isotropic case that considers ran-
domly distributed dipole orientations is treated in Sec. V.

Aside from the above interpretations of the DID factor
Tag, the signal field amplitude is uniquely given by

EGXT,, T, =EN+EPP,
where

ENLN

The same description applies to the four other peaks of
the B mode, with the widths given byg/2.

(45) (2) Eight overtone peaks awf ,w,)=(x=Q,,+20,) and
(wq,w)=(=Qg,=20g). The approximate analytical
expression of the signal around the first four peéis

1e=5r (1)72 (2)
7Eolan’1°ax'Da(T2)[Da(T1) +DA(T1+Ty)] the A mod is given by

+(A<B), (46)
()20 |FAA
EDID %Eg[a(Al)aél)]zTABDA(Tz)[DB(Tl) |S(wy,@5)| = A8M2 A Zz } (52
+Dg(T;+T) ]+ (A< B). 47) A A
The 2D Fourier transformation of the observable is de- However, we see that by the cancellation mechanism as

mentioned in the above the peaks in the second and
fourth quadrants are weaker than in the first and third
guadrants. The width along the andw, axes are given

fined as

S(wq,w5)~ fo dT, fo dT,e'“1Tig @2T2EC) (T, | T,). (48

The complete analytical expression of the 2D Raman

signal amplitudeS(w4,w»), is given in Eq.(A9) in Appen-
dix. It is worth while noting that the expressi¢A9) is given
by a linear combination of the functioR(**?, which takes

by yA/2 andy,, respectively. This implies that the peak
shape is elongated in the direction of the second axis.
Four zero-frequency or axial peaks atw4(,w,)
=(£0,4,0) and @q,w5)=(*£03z,0). The approximate
analytical expression of the signal around the first four

the following form in the underdamped limity(— 0), peaks(of the A modg is given by

w1w2+9(15n§)9(25n§)

FSS,—) _ g . ’ (49) (a'(Al))Za'&Z) FElAA)

T [i 50— (057)? |S(w;,w,)|= > 2‘. (53
where 8Mi £ ‘

Q) Q) The width along thew; and w, axes are given by,/2

11, 21, Qg Qs and y,, respectively, making the peak shape elongated

Qs als) —Qy QO 0 in the direction of the second axis.

Q) ol Qg Qs+ Qg 0 In the similar way, we see th&P'® gives rise to the follow-

Q?LZS’) Q(zisr) -0y Q—Qy ing cross peaks:

(1) Eight cross peaks ataf;,w;)=(xQ,,=Qg) and
From the complete analytical expression, we see thatthe (w,,w,)=(+Qg,*Q,). The approximate analytical
nonlinear contributiorEN" gives rise to the following peaks. expression of the signal around the first four peaks is

We note here that the essential points of the following state-  given by

ments can be easily understood from the limit expression

(49):

(1) Eight diagonal peaks atal(;,w;)=(=Q4,*=Q,) and
(wq,w)=(=Qg,=Qg). The approximate analytical
expression of the signal around the first four peaks
the A mode is given by

(el FEN-FE)

wy,w,)|=T, .
|S(w1,0,)|=Tap 4MAMB| TN |

(59

In the first and third quadrants the numeratorH A
almostcancels out as in the above, while thatdF? is
enhanced, and in the second and fourth quadrants vice
‘versa. This fact implies that the four peaks have the
same intensity. In addition, we see that the width along
the w; and w, axes are given by,/2 andyg/2, respec-
tively.

The parallel discussion applies to the last four peaks at
(wq,w)=(=Qg,=Q,). In this case, the width along

() 2af? | PPN —F)

, 51
8M3 g | &Y

|S(w1,w2)|=

whereF®%) is given in Egs.(A7) and (A4). These are
obtained by picking up the terms with resonant denomi-

nator[in F(*%)] at the four peak position&n the zero
damping limiy. In the first and third quadrants, the nu-
merator ofF*” in Eq. (A7) almostcancels out to take (2)
the value, " AT [in the limit expressior49) it be-

the w; and w, axes are given byg/2 andy,/2, respec-
tively.

Eight cross peaks ata(,w,)=(=Qa,£(Qa+Q5))
and (w1,w,)=(xQg,=(Qa+Qg)). The approximate
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analytical expression of the signal around the first four

peaks is given by 5
2
(a,(Al)a(Bl))z FgBA)‘ Q
w1, w,0)|=T . (55) i
|S( 1 2)| AB 4MAMB gAgB‘ %
Due to the cancellation the peaks in the second and E
fourth quadrants is weaker than in the first and third. The <)
width along thew; and w, axes are given by,/2 and - : ‘ ; ,
(ya+ ve)/2, respectively. This implies that the peak 0 200 400 600 800 1000
shape is elongated in the direction of the second axis. o fem™]
For the last four cross peaksw{,w,)=(*=Qg, FIG. 3. The third-order signal in the frequency domain, &8), from two
+(Qa+Qg)), the width along thav; and w, axes are  modes at the frequencie€,, =400 andz=600, with the damping con-
given by yg/2 and (ya+ yg)/2, respectively. stanty,= yg=20 in the unit.cm™]. (See the details in the text.

(3) Eight cross_peflés ai“(ldW);(iQAHi(QA_QB)) tensities at {,w;)=(04,Q,), for the normalization,
and (wy,0p) =(*{g, = (22={g)). The approximate iy a0 denoted®) (s=L,H). It should be noted that
analytical expression of the signal around the first founl.(s) _5) /) (s—L or H) can be determined ambigu

As - -

eaks is given b AB;s™ 'ABs : : . : .
P g y ously from the experiment in which only the relative ampli-
(aPa®d)2|FEN
@p dp 4 ‘

_T tudes are available. AIthougjri\SE),‘S itself depends on param-
|S(w1,02)|=Tas AMA Mg | {alsl eters not available from the experimdisuch asa'?], we

] still have the relation,
When wg>w,, the peaks in the second and the fourth )

quadrants are stronger than in the first and the fourth. Tag /T asn~ (1584158 0) Y. (59)

The width along the»; and w, axes are given bya/2  Here, the parameters not readily available are assumed to
and (ya+ ys)/2, respectively, implying that the peak gepend on the temperature only weakly. In this way, we can
shape is elongated in the direction of the second axis. getermine the ratio Eq58) within the experimentally avail-

As for the last four peaks,af;,w,)=(=Qg,=(Q,  able quantities.
—Qyg)), the peaks in the first and the third quadrants are  The determination of the absolute valuergg may be
stronger than in the second and foufithen wg>w,),  difficult in practice. Mathematically, the peak intensity of the
the width along thew; and w, axes are given byg/2  third order signal is given by
and (ya+ yg)/2, respectively. (agl))z

It should be noted here that all the above discussion J(QS):—MSYSQS' (60)
becomes rigorous only when damping constants are small .
enough for all peaks to be well separated. In the case whef@d thus the absolute value may be given by

: ; 113
damping constants are not small enough, interference be- J(Q)I(Qp)
tween the peaks should be observed. ABT | T (5)

From the above discussion, it is clear that the amplitude T€ol AB
of cross peaks scale asié, while the other peaks originat- However, in practice, the absolute value of peak intensities
ing from the nonlinearity in the polarizability are indepen- are not usually available from measurements.
dent ofr,g. To be precise, let us concentrate on the cross,,

’ . L . NUMERICAL RESULTS
peak at (q,w,)=(Q4s,Qg). In the weak damping limit

(56)

(61)

(v.—0), the peak intensity is given by As an example, we assume the nuclear coordinates A
and B have the characteristic frequenci€ék, =400 and
Tag(aPaf))? Qp=600, the damping constanty,=20 and yg= 20, re-
S(Qa. )~ M A YAQAM 5 7505 (57 spectively, in the unit ofcm™*]. The third-order signa®

in this case is given in Fig. 3. The ratio of the strength of the
For example, let us assume that we measure the 2D Ramggo oscillations ¢{/a{)? is set to make the two peak

signals at two different temperature¥, (and T;) and get jntensities the samésee the Appendix for the detgillin
different peak intensitieg 1§, and 133 4] at (@1,02)  practice, we can determine all these parameters from a third-
=(Qa,Qp). Then, the ratio of the change of distance isorder experiment or molecular dynamics simulation. The sig-
given by nal is of course independent of the distamgg .

rABL/rABHN(I,(ASB) H“gsg L)1/3_ (58) In Figs. 4i) and 4ii), we showed.the absolute value of

' ' : * the fifth-order spectrumiS(w;,w,)| using the same param-

(This relation is good for weak damping cas8ince only eters as in Fig. 3. In these plots, we see the cross peaks or
the relative (not the absolute value of peak intensities combination peaks in addition to the diagonal and overtone
are available from usual measurements, we should, in prageaks, as discussed in the previous section. The diagonal and
tice, renormalizelf’,%yL and Iffng by other peak intens- overtone peaks originate from the nonlinear polarizability
ities which do not depend on the temperature when usingv(sz), while the cross peaks from the dipole-induced dipole
Eq. (58); for example, we can use the diagonal peak in-interactionT ;. General features of the peaks discussed in



J. Chem. Phys., Vol. 111, No. 2, 8 July 1999 Fifth-order Raman spectroscopy 499

(i) (i) tribution, for which cases Ed44) is not valid. In addition, if
1200 v L I L B R I A B 0ag is distributed around finite average value, the deviation
L - ] sl o ¢ + | can even increase the cross peak intensities. The isotropic
oa0r e b EEN A & T system where these difficulties do not exist is treated in the
E o ? é : 1 B of 490 4b next section.
3 a0 | %& _;f 8 8" 400 B ‘LA ‘3’* 7
soor 4o ] 800 ° ] V. CROSS PEAK INTENSITY IN THE ISOTROPIC
~1200 et -1200 Lo Lo Ly 1o SYSTEM
-800 -400 0 400 800 -800 -400 0 400 800
o [om] o, [em] In the isotropic system, the first-order contribution in

T g is averaged to zero and the cross peaks are produced b
FIG. 4. The fifth-order signal in the frequency domaabsolute value of thAB d 9 d tributi Withi tﬂ l pl izabil y
Eq. (A9)] dependent on the distance of the two functional groups A and B € Secon_ 'Or_ er contribution. Within e_ me_ar PO a_nza -
by using the same parameters in Fig. 3. The average distaggk, in (i) ity approximation, the second-order contribution is given by

is four times as large as that i), while the orientation is fixedfag=0).
The cross or combination peaks are seen in addition to the diagonal arld

overtone peaks. The relative intensity of the cross peaks diminish as the 1 4
distance becomes larger. =5E¢(t,rg)Eg[ 1+ cogAK;-rg)][1+cog Ak, rg)]

X T2l (@) @D A(T)[DA(T1) + Da(T1+T2)]

5 5
)+ pg)

the previous section based on the analytical expression are ©) 1 (Ohe (1) (In2
almost perfectly reflected in the plots. One may see slight +3(ag’+ag’)(ap’ag’) Da(Ty)
disagreements, Wh_ich should be due to interference between X[Dg(Ty)+Dg(Ty+ T ]} +(AB). 62)
the peaks as mentioned before.

The important difference between Fig$i)4and 4ii)isa  Note here that the Fourier transformed expression of &2).
change in the average distance(ofg)y, by a factor of 4. is completely given through EQ#AS) and (A6).

Since onlyT x5 depends on the average distan%)vo, the Equation(62) can be obtained through the calculations

. . . ' similar to the ones in the previous sections. These second-
intensities of the cross peaks in the figure decrease as tr(l)erder terms(in T ) appears through two mechanisms; one
distance becomes larger. Thus, the intensity of the cros AB) app 9 '

peaks are the measure of the distance of the nuclear coorc}?]rough the first-order perturbation of the third term in the

nates A and B. It should be noted here that the cross pearI ht-hand side of Eq(19) and the other through the second-

: . o . order perturbation of the second term in Efj9). We have
intensities scale as ¥y, thereby giving direct structural . ;

: . checked that a quantum calculation by using the Feynman
information[see Eq.(58)].

rule (see Ref. 6Balso gives Eq(62).

We mention the parameters used in Fig. 4. As a demon- .
. X . . From the above expression, we can show that the cross
stration, we considered the case where distance and orienta-

tion of dipoles are independent variab[&y. (44)], and as- peak intensities, if any, scale 8%g. In Sec. lll, we have
sume that all induced dipoles are aligned=@2). [The shown that the factor®y(T,)[Ds/(T1) *Do (T1 +T2)] (s

. A LI ; =A,s'=B) lead to the cross peaks, where&x(T,)
analytical expression in general case is given in &®), X[D(T1)+Dy(T,+T,)] lead to diagonal, overtone, and
and the isotropic casec&0) is treated in Sec. Y.In addi- sl S . A -

. axial peaks. Since the right-hand side of E8pR) is propor
tion to the parameters used to calculate the 1D spectrum 'Honal to T2, and contains terms proportional B(T,)
Fig. 3, the ratios of the parametetﬁz) andr ,g are required AB st 2

to calculate the fifth-order signal. To demonstrate the salient D5/ (T) D (T +T5)] (S=A,s"=B), we see that the

_ 2),—in2  Cross peaks scale % in the present case.
features of our analytical results, we sef/(a}’) In the isotropic system, the orientational averagd f

:;gz)/.(;(Bl))z(Ea), andr{g/riy=4 in Fig. 4. The param- s nonzero while that off x5 is zero. Thus, in the isotropi-
eteral’ is the dimensionless counterpartef’, as defined cally distributed system, the cross peak intensities scale as
in the Appendix, and{} andr{y are the values of 55 in  1/rS; and the relation to extract the structural information
Figs. 4i) and 4ii), respectively. For example, when we set (58) is replaced by
a=1/500,r ,g=7.5 and 3QA) in Figs. 4i) and 4ii), respec- 5) 11(5) \U6
tively, and, whena=1/0.5, r \5=0.75 and 3(A), respec- FagL /T aen~ (Lag il Las )™ (63
tively. See the details for Appendix. These parameter sett is emphasized here that the right-hand side can be com-
tings are important only for a visual presentation; importantpletely obtained by the quantities available from the usual
quantitative structural information can be obtained with norelative amplitude measurements as mentioned around Eq.
regard toa!) as mentioned around E¢59). (59).

For these numerical calculations, we have assumed an
ordered system, such as a crystal, in which the dipoles ar,
aligned end to endf,g=0,c=2), while the magnitude of Vi. piscussion
the distance between A and B is distributed with some aver- In this section, we explain the optical processes contrib-
age value. As the distribution df,g randomizes, the cross uting to the formation of cross peaks and the role of the five
peak intensities decrease due to the variatiorf gf about  optical pulses in the processes. We also compare our results
zero for a fixedr o5 . More generally, the distanagg also  with 2D NMR and mention a possible deviation from our
changes whem g deviates from the purely anisotropic dis- scaling law.
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In the present model, quantum states of a molecule cafion) in the process with interactiom(A(t))ZaA(t)TiBE(t)Z
be characterized by the matrfifa ,ng)(Ng.Nal, Wherensis  or (ag(t))2aa(t) TagE(1)? [i.e., the last four sets in Eq.
the quantum number for the vibration of tkemode at the (64)] Unlike the anisotropic cases, the time_perid'qsand
frequency(Qs. For simplicity, we assume that the molecule T, do not necessarily describe the dynamics of the coherence
is initially in the state{0,0)(0,0. By using this notation, one state. At least one of the time periods do describe the coher-
of the possible processes which contributes to the formatiognce dynamics, while the other time period probes the dy-
of the cross peaks for thenisotropic systenisee Eq.(45]  namics of the ground population state in some processes.
can be described as follows. The first pair of pulses nonreso- The scaling relationships observed for the ordered
nantly excites the A mode through a one-quantum Ramagample and the isotropically distributed sample are similar to
transition; the molecule is in the coherence s{di®)(0,0  those observed for 2D NMR. In liquid state NMR, the am-
during the first time period’;. The second pair excites the B plitude of cross peaks arising from dipolar coupling scales as
mode and de-excites the A mode through the DID couplingy/r® whereas 1P terms contribute to solid state NMR. It
(two simultaneous one-quantum transitiprthe molecule is  should be pointed out that significant differences still exist
in the coherent stat®,1)(0,0 during the second time period petween the orientational averages in these experiments. Ori-
T,. The final probe pulse then brings back the molecule tqntational dynamics have not been considered here, but
the state0,0)(0,. rather only the distribution within an ensemble. Orientational

Basically, the molecule experiences the interaction withrelaxation processes exist on faster time scales than the ex-
the ||ght field three times; a One'quantum transition of the Aperiment in both solid state and ||qu|d state NMR, while
mode, a one-quantum transition of the B mode, and the tw@rientational relaxation is either on equal or longer time
simultaneous one-quantum transition of A and B modescales than the 2D Raman experiment. These effects will be
through the DID coupling. These three interactions corresjgnificant contributions to analysis 2D Raman spectra of
spond respectively to the terms (t)E(t)?, ag(t)E(t)%, and  real systems, and will need further consideration.
aa(t) ag(t) TagE(t)?, appearing in Eq(19). Among the six We mention about a possible deviation from the scaling
possible orders of these three interactions, four chshere |aw of the cross peak intensities. The DID couplifigg
the last interaction is not due (t) ag(t) TasE(t)?] cON-  comes from the electric field produced by a dipole. In gen-
tribute to the formation of the cross peaks, since the finakral, the field consists of the three terms proportional to
interaction cannot be the DID coupling. The cross peak in1/r,,, 135, and 1f3; (see Chap. 9.2 of Ref. §5If the
tensities are proportional taafy)af”)?; each mode experi- two nuclear coordinates A and B are close, then thdgl/
ences a one-quantum excitation followed by a one-quanturferm dominates and the expressidd) is justified; this is the
de-excitation[Note thata!’ is associated with@,)', which  type of DID interaction which has been frequently employed.
can cause transitions witiquantaj Thus, 16 sequences con- |f we can observe a weak DID coupling effect wheg is
tribute to the cross peaks. In all the 16 cases, at least one frge, we may extract structural information at larger scale;
the two modes is in the coherence state dufingandTo;  however, in such a cas&,g may no longer scale asrgf .
both time periods probe the dynamics of coherence states.|n addition, strong anharmonicity can contribute to cross

For the isotropic case where the signal is given throughyeaks and can be a source of deviation from our scaling law.
Eq. (62), six sets of three interaction combinations repre-|n the practical use of our theory, these points should be kept

sented bysee Eq(19)] in mind.
2 2 2
aa(t) ag() TagE(D", an(Das(DTaE(D% aa(DEMD™ )~ yel usion
aa(t) ag() TasE(1)?, aa(t) ap(t) TagE(1)?, a(D E(1)? We reproduced the third-order signal in the impulsive

measurement in a heuristic way within the Placzek model by

E(1)?,(aa(t))2apg(t) TAgE(1)?, aa(t)E(t)?
as(DE( (@a(1) as(V) TigE()" aalt)E(L) using the Green function method or by using the propagator.

(aa(t)2ag(t) TAE(1)2, ag(t)E(1)?, ag(t)E(t)? In the similar way, we obtained the fifth-order signal taking
) 5 ) ) ) into account the dipole-induced dipole coupling between the
(ag(t) aa(t) TagE(D)", aa(DE(), ag(t)E(T) two specific dipoles A and B of a complex molecule. Al-

2 2 2 2 2 though we used an extended Placzek model for the deriva-
(ag(t)"aa(DTaE(L" aa(DED% aa(DB(DT - (64) tion,gthe results analytically agree with the ones from the
all contribute to the cross peaks. Since the DID couplingguantum Brownian oscillator model with the dipole-induced
cannot be the last interaction, only one order of the threalipole interaction at this order of calculation.

interactions is possible for each of the first two sets, while  In the present model, the fifth-order signal is shown to
four orders are possible for each of the other four sets. Frorbe formed from the two reasons; nonlinear polarizability
Eq. (62), we see that the cross peak intensities are proportNL) and dipole-induced dipoléDID) coupling. NL spawns
tional to (@' a)2alY or (@ Paf)?a). This implies the fundamental and overtone peaks while DID the cross or
that each mode experiences a one-quantum excitation andcambination peaks. Since the fundamental peaks come from
one-quantum de-excitation. Although the excitation is fol-the small nonlinear effect, they can be comparable to weak
lowed by the de-excitation in the process where the interaceross peaks.

tion aa(t) ag(t) TagE(t)? acts twicdi.e., the first two sets in While the nonlinear polarizability expansion coefficients
Eqg. (64)], the excitation and the de-excitation of a single are independent of distance, the DID interaction tefisgy
mode can also occur simultaneougBero-quantum transi- varies with the inverse cube of the distance vectgy be-
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tween the dipoles A and B. We can thereby visualize struc- By rewriting products of trigonometric functions by
tural change in the system as the change of cross peak intettigonometric functions with combined argumeijte., by
sities relative to diagonal peaks. The cross peak intensitysing relations such as, sisiny=—{cosk+y)—cosk
drops as the average dipole separation increases. —y)}/2], one finds

The scaling of the cross peak amplitude as a function of
distance depends on the effects of dipole orientational aver- f(lSS')_f(SS')
aging that is appropriate for the system. In a system wittPs(T2)Ds/(T1)=—0(T2) H(T1)———,
randomly distributed dipole orientations, such as a liquid, the MMy s Lo
cross peak amplitude scales as®livhile a 1f2 dependence
is observed in an anisotropic, aligned system. These scali
relationships have analogy to the dipole coupling scaling rgBS(TZ)DS’(T1+T2): B 0(T2)0(T1+T2)2M My Colo
lationships observed in liquid and solid state NMR, respec- e S(Az)
tively.

These scaling relationships form the basis for quantitawhere
tively extracting structural information from 2D Raman ex-
periments. Clearly the variation of cross peak amplitude as @gss’):e—r(SS’>T1—r(nSS’>T2 cog QPIT,+05T,). (A3)
function of variation in external variables allows structural
change to be followed, but the goal of using 2D RamanHere, the damping constants and flcemple® frequencies
experiments to extract absolute distances is still a challengeyre given by
The ratio of change in distances can be determined from the

(A1)

f(ss )_fgss)

change in intensity of a cross pefpdee Eqs(58) and (63)] rss) s ss)
. . . 1 11 21

and the intensity change can be completely determined from , . .

knowledge available from the experimefgee Eq.(59)]. res) o) ofy)

However, the determination of absolute distance will require re$)=ygl2,

: . g res) o) ol
parameters not readily available, such as the polarizability 3 13 23

expansion coefficienta) [see Eq.(61)]. Determination of rées) s o)
these expansion coefficients and distinguishing signal contri-
butions from anharmonic coupling are challenges that need Vs/2 {s' gs
to be addressed in the future. v¢/2 — Ly Ls
= . (A4)
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APPENDIX: ANALYTICAL AND DIMENSIONLESS sMs {5 ls
EXPRESSIONS ) (o8
) i ) ) F355 _ F SS
_ In this Ap_pend_|x, we_present analyt!cal expressions gsed FID(To)Do(Ty+Ty)]=— , (A6)
in the numerical simulations. We also introduce dimension- 2M My Z iy
less parameters, which are used to specify the parameters in
the text. where
|
, (01 +iTC) (w,+iME)) +QED QL)
Fis)=— , N - (A7)
[(01+iTCD)2= QG 2N (0a+iTFD)? = (05)%]
|
In the above, we have used the notatiGhX(T,,T,)] S(wq,w,)=SNt+SPP, (A9)
= [dT,fdT,e'“1Tatio2T2X (T, T,). Thus, the 2D Fourier
transformation ofpN:(t) + pP'°(t) is given by where
FpN(1)+pPP(1)]=EJE(t,rg)[1+cog Aky - Tg)] (a2 4@
NL_ _ A A_(EAA) _E(AA) | E(AA) L E(AA)
(FPY —FOA L FOA — (M)

X[1+cogAky 1) ]S(wy,wz). (AB) 8(Ma {a)?
Here, the 2D Raman sign&(T,,T,) is given by +(A~B), (A10)
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(ai)af)?
sPD— _ T (Z(F(AB)—F(AB))+F(AB)
PP AMAMLags Tt 2 ’

-F®)+(A-B), (A11)

whereT 55 should be interpreted as an averaged quafsig
Eq. (43)]. We have plotted the absolute value -+ SP'P
in Fig. 4.

To specify the parameters used in the numerical calcu-
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