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Structural information from two-dimensional fifth-order
Raman spectroscopy
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Two-dimensional~2D! fifth-order Raman spectroscopy is a coherent spectroscopy that can be used
as a structural tool, in a manner analogous to 2D nuclear magnetic resonance~NMR! but with much
faster time scale. By including the effect of dipole-induced dipole interactions in the molecular
polarizability, it is shown that 2D Raman experiments can be used to extract distances between
coupled dipoles, and thus elucidate structural information on a molecular level. The amplitude of
cross peaks in the 2D Raman spectrum arising from dipole-induced dipole interactions is related to
the distance between the two dipoles (r ) and the relative orientation of the dipoles. In an isotropic
sample with randomly distributed dipole orientations, such as a liquid, the cross peak amplitude
scales asr 26. In an anisotropic sample such as a solid, where the orientational averaging effects do
not nullify the leading order contribution, the amplitude scales asr 23. These scaling relationships
have analogy to the dipole coupling relationships that are observed in solid state and liquid 2D NMR
measurements. ©1999 American Institute of Physics.@S0021-9606~99!02425-3#
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I. INTRODUCTION

The expanding interest in the determination of molecu
and collective dynamics in condensed phases requires
experimental methods that are sensitive both to structure
its time evolution. When studying complex molecular sy
tems, it is often difficult to extract detailed microscopic i
formation on the sample for several possible reasons;~1!
limitations in relating the experimental observable to prec
molecular structures,~2! ambiguous observables due to com
plex ensemble averaging, or~3! insufficient time resolution.
One of the most powerful methods for dealing with the fi
two limitations and extracting detailed structural informati
is two-dimensional~2D! NMR.1,2 The power of this coheren
correlation spectroscopy is its ability to quantify the stren
of interaction between spectral features of well-defined m
lecular origin. The magnetic shift of a resonance can be u
to assign it to a particular functional group of a molecu
and dipolar couplings can be observed between diffe
resonances in a 2D spectrum. The strength of this interac
can be used to determine the distance between dipoles.
becomes the first step in the structure determination of c
plex molecules in solution.

As a dynamic tool, multidimensional NMR is limited b
its time resolution. The inherent time scale associated w
2D NMR measurements is no shorter than milliseconds.
the other hand, most ‘‘soft molecular materials,’’ includin
liquids and solutions,3,4 glasses,5 polymers,6 liquid crystals,
and numerous biologically relevant molecules a
macromolecules7–9 show evolution of molecular and collec
tive structure on shorter time scales. With all of these s
tems it is of interest to be able to gain detailed insight in
4920021-9606/99/111(2)/492/12/$15.00
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their structural dynamics on relevant time scales, from fs
ms. The possibility of using the concepts developed in NM
but with significantly increased time resolution requires o
tical methods. Coherent two-dimensional vibrational10–15

and electronic spectroscopies16–20 are alternative approache
that are optical and infrared analogues of the NMR te
niques.

One of these methods, 2D Raman spectroscopy, ba
on a fifth-order nonlinearity, is the subject of much rece
theoretical and experimental research.10–12,21–54It has be-
come clear that 2D Raman spectroscopy has the potentia
structure determination on a picosecond time scale. Altho
this technique was originally proposed to describe inhom
geneous broadening of Raman active molecular vibration10

it has recently been shown that its 2D nature leads to hig
levels of information. Demonstration of the capability of 2
Raman spectroscopy to distinguish the nonlinear depend
of the polarizability and anharmonicity of the vibration
potential45,46 was a fundamental step for the following the
retical developments,12,40–42,46–51and led to studies based o
the normal mode analysis, molecular dynamics, and
quantum Fokker–Planck equation.52–54 The introduction of
phase-sensitive heterodyne detection methods34,11 allowed
coherent 2D Fourier transform Raman spectroscopy49 to be
implemented in a manner analogous to 2D NMR, and de
onstrated that vibrational interactions in liquids can be o
served. Just as 2D NMR observes the interaction betw
spins as cross peaks in a 2D spectrum, cross peaks in
Raman spectra arise from the interactions between Ra
active vibrational modes. The ability to observe these cr
peaks suggests the possibility of using their interaction
extract structural information on a molecular level. The co
© 1999 American Institute of Physics
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bined advantages of quantifying the strength of vibratio
couplings, observing inhomogeneous broadening, and m
suring with high time resolution suggest an unusually po
erful tool.

In this paper, we address the determination of inter- a
intramolecular distances from a 2D Raman spectrum thro
an understanding of the distance-dependence of vibrati
interaction mechanisms. In the previous literature the in
actions between vibrations observed in fifth-order Ram
spectroscopy have been described in terms of anharmon
or nonlinear polarizability. The anharmonic mechanism
lows mechanical coupling of vibrational modes through c
bic expansion terms in the potential. Nonlinear polarizabi
describes a nonlinear dependence of the molecular pol
ability on the nuclear coordinates, due to expansion bey
the traditional linear Placzek terms. In either case, a non
earity exists that allows for the interaction of vibration
modes to be observed, and thus is the basis for a broad r
of physical processes, including overtone transitions,
interaction-induced effects, and dipole-induced dipole c
plings.

In order to probe further into the nature of the nonline
polarizability in a manner that allows the introduction of
spatial variable in the vibrational interactions, we reform
late the description of the nuclear-coordinate dependenc
the molecular polarizability to include dipole-induced dipo
effects.55–61 In the following section, the nonlinear polariz
ability is expanded in the individual coordinates, while t
interactions between coordinates arise from dipole-indu
dipole couplings. For the purposes of this work, anharmo
coupling between the coordinates is neglected. In Sec. II
is shown that cross peaks in the absolute value 2D Ra
spectrum arise from dipole-induced-dipole coupling, wh
diagonal and overtone peaks arise from nonlinear expan
coefficients of the polarizability in the vibrational coordinat
The 1/r 3 distance dependence of the dipolar coupling for
the basis for extracting distances between vibrational coo
nates (r ), forming the basis for extracting structural inform
tion. Model 2D Raman spectra with varying distance b
tween interacting coordinates are calculated in Sec. IV.
complex nature of ensemble averaging leads to differ
scaling relationships for systems with aligned dipoles (1/r 3)
and for isotropically distributed dipoles (1/r 6), as shown in
Secs. III and V, respectively. These relationships form
basis for extracting structural information from molecules

II. EXTENDED PLACZEK MODEL

We extend the classical Placzek model,62 which allows a
classical description of the Raman process by postulatin
linear dependence of the molecular polarizability on
nuclear coordinate, to include the dipole-induced dipole
fect. We have found that the extended Placzek model in
duced below can reproduce the leading order results of
quantum Brownian oscillator model, which has been f
quently used43 in the literature. The use of the Feynman d
gram for the quantum Brownian oscillator model is a prac
cal necessity at higher orders in order to obtain the cor
quantum result through economic calculations. However,
use the extended Placzek model with the Green’s func
l
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method below, because it is instructive~offering an intuitive
classical picture! and it gives the correct result at the lowe
order.

The pulse configuration of the 2D Raman experimen
given in Fig. 1, and the electric field is presented below
later calculations,

E~ t,r !5E1~ t,r !1E18~ t,r !1E2~ t,r !1E28~ t,r !1Ef~ t,r !,
~1!

where, fori 51,2,

Ei~ t,r !5Ēi~ t !~e2 iv i t1 iki•r1c.c.!/2, ~2!

Ei8~ t,r !5Ēi~ t !~e2 iv i t1 iki8•r1c.c.!/2, ~3!

Ef~ t,r !5Ēf~ t !@e2 iv f t1 ik f•r1c.c.#/2. ~4!

Here, c.c. stands for the complex conjugate while the am
tudes are given as

Ē1~ t !5E0dp~ t2tm1T11T2!, ~5!

Ē2~ t !5E0dp~ t2tm1T2!, ~6!

Ēf~ t !5E0dp~ t2tm!, ~7!

wheredp(t) is normalized Gaussian function with the wid
longer than the optical cycle (;1/v i) but much shorter than
the nuclear dynamics@;1/Vs , see Eq.~20! below for the
precise definition of the characteristic frequencyVs#. The
time of measurement of the signal is set totm . In the follow-
ing we assume that the amplitudeE0 is real for simplicity.

For the purposes of describing a possible experiment,
show in Fig. 2 a macromolecule with two nuclear coord

FIG. 1. The pulse configuration of the 2D Raman spectroscopy. The
femtosecond pulse pair (E1 ,E18) excites Raman modes, the second pu
pair (E2 ,E28) after the delay timeT1 causes further Raman interactions, a
the final probe pulseEf after the delayT2 induces the signalEs .

FIG. 2. A complex molecule in dilute solution. Each molecule has t
functional groups, A and B, both of which has a distinctive Raman ac
mode. The arrows denote the induced dipoles, which are all in thez direc-
tion, the direction of the polarization of the applied fields. The dipole p
(A,B) is away from the dipole pairs in the other molecules. For so
reason, the structure changes from~i! to ~ii !, with the change of the distanc
betweenA andB.
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nates A and B with corresponding Raman active vibratio
transitions. These dipoles can interact with one anot
through dipole-induced-dipole~DID! effects which decay
with the inverse of the A–B distance cubed. As the molec
changes its structure from~i! to ~ii !, for example during a
temperature change, observation of weakened DID coupl
would be a direct measure of structural changes to the m
ecule. For a dilute case, where only A–B interactions nee
be considered, the ability to quantify the magnitude of D
interactions would potentially allow direct distances to
extracted.

The DID coupling effect is closely related to combin
tion peaks in traditional one-dimensional~1D! spectroscopy;
the change in the intensity of combination peaks may refl
structural variations. However, in condensed phase 1D s
troscopy, the interactions between vibrations are difficult
distinguish from more intense fundamental peaks and c
gested spectra. Two-dimensional data have the advantag
spreading congested information out over two dimensio
and also directly visualizing interactions as cross peaks.
additional advantage to 2D Raman spectroscopy is that e
the diagonal peaks in the 2D spectrum arise from weak n
linearities, so that observing weak DID interactions sho
not be obscured by strong fundamental peaks. In the foll
ing, we describe this ideal property of 2D Raman spectr
copy.

As an example of physical interaction which is sensit
to the structural change of molecules, we employ the c
ventional dipole-induced dipole interaction as follows.55–61

The dipole moment associated with the nuclear coordin
A andB at the timet, ps(t) (s5A,B), can be expanded b
the electric field at the same timet, E(t,r s),

ps~ t !5ms1as~ t !:E~ t,r s!1•••. ~8!

ms is the permanent dipole moment, andas(t) is the polar-
izability tensor.63 For the purposes of this work we do n
consider couplings due to permanent dipoles (ms 5 0!.

E(t,rA) in Eq. ~8! is the local electric field at the point o
the dipoleA and is decomposed as

E~ t,rA!5Ein~ t,rA!1Eex~ t,rA!, ~9!

whereEin(t,rA) andEex(t,rA) are the local field produced b
the dipoleB at the position of the dipoleA and the externally
applied laser field, respectively. The density of the molecu
system is assumed to be low enough to avoid the other m
ecules contribute toEin(t,rA). ~In this description we neglec
higher-order dipole interactions, self-induced dipoles, a
hyperpolarizabilities.! Since the distance between A and
are smaller than the optical wave length, the external fi
Eex(t,rA) can be replaced byEex(t,rG), whererG denotes the
center of the molecule.

WhenA andB are relatively close,Ein(t,rA) can be ex-
pressed as~see Discussion for other possibilities!

Ein~ t,rA!5T~rAB!:pB~ t !, ~10!

where the second-rank tensor is given by

T~r !ab5
1

4pe0
•

3r̂ a r̂ b2dab

r 3
, ~11!
l
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wheree0 , r, andr̂ a are the dielectric constant of the vacuum
the magnitude of the vectorr , and thea component of the
unit vector r̂[r /r , respectively. In the above,rAB5rA

2rB , which is regarded as a constant compared with
nuclear dynamics~see below!.

The energy of the two induced dipoles in the extern
field is64

VI~ t !52 1
2 pA~ t !•Eex~ t,rA!2 1

2 pB~ t !•Eex~ t,rB!. ~12!

Here, againEex(t,r s) can be replaced byEex(t,rG).
To simplify orientational averaging, we assume th

as(t) is an isotropic tensor,

as~ t ![as~ t !I , ~13!

whereas(t) and I are the scalar isotropic polarizability an
the unit tensor. Furthermore, we assume that all the polar
tions of the fields (E1 ,E18 ,E1 ,E28 ,Ef) in Fig. 1 are parallel
along the laboratoryz axis. The time scale of structural re
laxation in most systems will be longer than the delaysT1

andT2. This ensures that the induced dipoles are paralle
one another over the course of the experiment.

With these assumptions and from Eqs.~8!–~10!, the z
component ofps(t) can be expressed as

pA~ t !5aA~ t !~E~ t !1TAB@aB~ t !$E~ t !1•••%#!, ~14!

[āA~ t !E~ t !, ~15!

where the effective polarizability is given by the DID expa
sion,

āA~ t !5aA1aATABaB1aATABaBTBAaA1•••. ~16!

Here,TAB is thezz element ofTAB andE(t) is thez com-
ponent of the external fieldEex(t,rG). Note here that, at any
order of the expansion ofpA(t), terms show the linear de
pendence on the external fieldE(t). Thus, the interactionVI

becomes quadratic in the external fieldE(t), which is re-
sponsible for the Raman transition,

VI~ t !52 1
2 E~ t !ā~ t !E~ t !, ~17!

where the total effective polarizability is given by

ā~ t !5āA~ t !1āB~ t !. ~18!

The first few terms can be explicitly written as

VI~ t !52
1

2
@aA~ t !1aB~ t !#E~ t !2

2aA~ t !aB~ t !TABE~ t !2

2aA~ t !aB~ t !@aA~ t !1aB~ t !#TAB
2 E~ t !2

2•••. ~19!

For the time being, we limit ourselves to keep up to t
first-order terms inTAB . The second-order contribution i
examined in Sec. V.

In our model, the nuclear vibrational coordinateQs as-
sociated withas is governed by the following equation o
motion,

M
d2Qs~ t !

dt2
1Mgs

dQs~ t !

dt
1MVs

2Qs~ t !5Fs~ t !, ~20!
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where the force is given byFs(t)52dVI(t)/dQs(t). If we
neglectTAB in this equation and assume the linear polar
ability, it reduces to the equation for the Placzek model.
this paper, we shall not introduce any anharmonicity for s
plicity. By using the Green function method, the speci
solution of Eq.~20! is given by

Qs~ t !5E
2`

`

dtFs~ t2t!Ds~t!. ~21!

Here, the Green function or the propagatorDs(t) is given
by66

Ds~t!5u~t!
1

Mzs
e2gst/2 sin zst, ~22!

wherezs5AVs
22gs

2/4 andu(t) is the Heaviside step func
tion.

The time dependence of the polarizability comes fro
the nuclear coordinate,

as~ t !5as
(0)1as

(1)Qs~ t !1as
(2)Qs~ t !2/21•••. ~23!

In the present situation, we assume that there are no
plings between the two modes A and B at the level of
polarizability, i.e., the terms such asQA(t)QB(t) can not
appear in the expansion ofas(t). Thus, at this level, only
DID mechanisms allow the interactions of the polarizabil
of the modes A and B. This is reasonable since the dipoleA,
B are localized, compared with the distance A-B. In th
case, the force is evaluated as

Fs~ t !5 1
2 ~as

(1)1as
(2)Qs1••• !@112Tss8~as8

(0)
1as8

(1)Qs8

1as8
(2)Qs8

2 /21••• !#E~ t !2, ~24!

where (s,s8)5~A,B! or ~B,A!. DecomposingQs as Qs

5Qs
(2)1Qs

(4)1•••, where Qs
( i ) is the i th order of Qs in

terms of the fieldE, we obtain the set of equations@we as-
sume that the homogeneous solutionQs

(0) is zero#,

M
d2Qs

(2)~ t !

dt2
1Mgs

dQs
(2)~ t !

dt
1MVs

2Qs
(2)

5
1

2
as

(1)~112as8
(0)Tss8!E~ t !2,

M
d2Qs

(4)~ t !

dt2
1Mgs

dQs
(4)~ t !

dt
1MVs

2Qs
(4)

5
1

2
@as

(2)~112as8
(0)Tss8!Qs

(2)

12as
(1)as8

(1)Tss8Qs8
(2)

#E~ t !2. ~25!

Now we can solve these equations by the formula~21!.
Keeping up to the first order inTAB , we have

Qs
(2)~ t !5

1

2
as

(1)~112as8
(0)Tss8!E dtE~ t2t!2Ds~t!, ~26!
-
n
-

u-
e

Qs
(4)~ t !5

1

4
as

(1)as
(2)~114as8

(0)Tss8!

3E dtE dt8E~ t2t!2E~ t2t2t8!2Ds~t!Ds~t8!

1
1

2
as

(1)@as8
(1)

#2Tss8E dtE dt8E~ t2t!2

3E~ t2t2t8!2Ds~t!Ds8~t8!. ~27!

III. CALCULATION OF THE SIGNALS

The macroscopic polarization, which becomes t
source of the signal, is given by

P~ t,r !5(
M

@p~ t !#M /V0[^p~ t !&V0
, ~28!

where p(t)5pA(t)1pB(t). Here, the summation is take
over all the molecules in the macroscopic volumeV0. Before
calculating the fifth-order signal, we reproduce the we
known third-order signal, because it presents the prototyp
the calculations below. NeglectingTAB , the third-order ofps

is given by

ps
(3)5as

(1)Qs
(2)E~ t !

5
1

2
@as

(1)#2E dtE~ t !E~ t2t!2Ds~t!. ~29!

The propagatorDs(t) contains the factoru(t) and it deter-
mines the time order of the fieldsE(t) andE(t2t)2 in the
above expression;E(t)E(t2t)2 can be identified with
Ef(t)E1(t2t)2. @There is noE2(t) field in the third-order
case.# Neglecting the terms proportional toe62iv i t, one ob-
tains

Ei~ t,r s!Ei~ t,r s8!5uĒi~ t !u2@11cos~Dk i•rG!#, ~30!

wheres and s8 are A or B. Here, uXu denotes the absolut
value ofX andDk i5k i2k i8 . It is possible to perform thet
integration in Eq.~29! owing to thedp(t) function, which
can be treated as the Dirac delta function for the nucl
dynamics. In this way we find the dipole of a single mo
ecule,p(3)(t)[pA

(3)(t)1pB
(3)(t), to be given by

p(3)~ t !5
1

2
Ef~ t,rG! E0

2 @11cos~Dk i•rG!#

3 (
s5A,B

@as
(1)#2Ds~T1!. ~31!

At the length scale of the optical wavelength, the molecu
are regarded as being distributed continuously. If we assu
that all the molecules contribute to the polarization in t
same manner @i.e., all molecules have the sam
as

(1) ,Vs ,gs ,Ms], thez component of the macroscopic pola
ization P(t,r ) is given, from Eq.~28!, by the right-hand side
of Eq. ~31! multiplied by the number density of the mo
ecules, withrG replaced byr . Actually, molecules have dif-
ferent values ofas

(1) ,Vs ,gs , andMs , and these parameter
in P(t,r ) should be interpreted as averaged values. In
way, we reproduce the well-known expression for the thi
order signal,
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E(3)~T1!;E0
3(

s
@as

(1)#2Ds~T1!. ~32!

In the frequency domain, the spectral density is expresse

Im@E(3)~v!#

;J~v!5 (
s5A,B

@as
(1)#2

Ms
•

vgs

~Vs
22v2!21~vgs!

2
, ~33!

where Es
(3)(v1)5*0

`dT1eiv1T1Es
(3)(T1 ,T2). Here, we have

neglected the higher order corrections due to the nonlinea
(as

(2)), the DID (TAB), etc.
To study the fifth-order signal, we calculate the fift

order ofps(t) in terms of the external fieldE(t). It should be
noted here that the fifth-order ofps(t) vanishes ifas

(2) and
TAB are both zero in the harmonic oscillator approximatio
The parameters,as

(2) and TAB , which are normally small,
produce the leading order contribution and we can obse
these weak effects without background. It suggests that, e
if there are any fundamental peaks, they are not strong,
isfying the ideal condition mentioned in Sec. II. We sh
calculate two contributions separately, one coming fr
nonlinear dependence on the nuclear coordinate of the p
izability and the other coming from the dipole-induced d
pole interaction, which are proportional toas

(2) and TAB ,
respectively.

To calculate the nonlinear-polarizability contributio
ps

NL(t), we neglectTAB in the fifth-order ofps(t) to have

ps
NL~ t !5~as

(1)Q̃s
(4)~ t !1 1

2 as
(2)@Q̃s

(2)~ t !#2!E~ t !, ~34!

whereQ̃s
( i ) is given by Eqs.~26! and ~27! with TAB50. To

calculate the dipole-induced dipole contributionps
DID(t), we

neglectas
(2) to have

ps
DID~ t !5~as

(1)Q̂s
(4)~ t !1as

(1)as8
(1)TABQ̂s

(2)~ t !Q̂s8
(2)

~ t !!E~ t !,
~35!

whereQ̂s
( i ) is given by Eqs.~26! and ~27! with as

(2)50.
For the fifth-order impulsive pulse sequence, we find

replacement rule,

Gs~ t !Gs8~ t !⇒E0
4@11cos~Dk1•rG!#@11cos~Dk2•rG!#

3@Ds~T2!Ds8~T11T2!

1Ds8~T2!Ds~T11T2!#, ~36!

where

Gs~ t !5E dtE~ t2t!2Ds~t!. ~37!

This is understood by noting the relation

Gs~ t !Gs8~ t !5E dtE dt8u~t8!E~ t2t!2E~ t2t2t8!2

3@Ds~t!Ds8~t1t8!1Ds8~t!Ds~t1t8!#,

~38!

and by following a similar line to the one explained in th
third-order case.

In a similar way, the expression,
as
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Gss8~ t ![E dtE~ t2t!2Ds~t!

3E dt8E~ t2t2t8!2Ds8~t8!, ~39!

can be replaced as

Gss8~ t !⇒E0
4@11cos~Dk1•rG!#@11cos~Dk2•rG!#

3Ds~T2!Ds8~T1!. ~40!

After these replacements, we obtain the following express
for the NL and DID contributions from a single molecule,

pNL~ t !5 1
4 Ef~ t,rG!E0

4@11cos~Dk1•rG!#@11cos~Dk2•rG!#

3@aA
(1)#2aA

(2)DA~T2!@DA~T1!1DA~T11T2!#

1~A↔B!, ~41!

pDID~ t !5 1
2 Ef~ t,rG!E0

4@11cos~Dk1•rG!#@11cos~Dk2

•rG!#@aA
(1)aB

(1)#2TABDA~T2!@DB~T1!1DB~T1

1T2!#1~A↔B!, ~42!

where pX(t)[pA
X(t)1pB

X(t) (X5NL,DID). Here, the nota-
tion (A↔B) implies the term obtained by interchangingA
and B in the previous term. The nonlinear contributio
pNL(t) reproduces the expression previously obtained in R
10. Both contributions can be more economically obtain
by using Feynman rule.68 Although these expressions hav
been derived by classical calculation in this paper for
heuristic purpose, we checked, by use of the Feynman r
that they agree with the leading contributions of quant
calculation.

From Eq.~28!, thez component of the macroscopic po
larization P(t,r ) is given by the sum of Eqs.~41! and ~42!
multiplied by the number density. Here,rG should be re-
placed byr , if we assume that all the molecules contribute
the polarization in the same manner@i.e., all molecules have
the samerAB , as

( i ) ,Vs ,gs ,Ms#. Actually, as in the third-
order case, the parametersrAB , as

( i ) ,Vs ,gs , and Ms in
P(t,r ) should be interpreted as averaged values. Note h
that we can regardrAB as time-independent constant com
pared with the dynamics ofQA andQB , when the structural
dynamics are slower than the nuclear dynamics. Th
P(t,r ) is given by the sum of Eqs.~41! and~42!, whereTAB

defined by

TAB5
1

4pe0
K 3 cos2uAB21

r AB
3 L

V0

, ~43!

whereuAB andr AB are the angle which the vectorrAB makes
against thez direction~the direction of the polarization of the
applied fields! and the magnitude of the vectorrAB , respec-
tively. If uAB and r AB are independently distributed,TAB is
given by

TAB5
c

4pe0
•

1

^r AB&V0

3
, ~44!

where c[^3 cos2uAB21&V0
. For an isotropic distribution of

uAB , c becomes zero.69 For aligned systems such as a liqu
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rystal whereuAB’s of all the molecules take the same valu
u0 , c depends directly on the valueu0. It reaches the maxi-
mum whenu050. In this section and the next section w
assume thatc is nonzero and thus the results are applica
for the system with a certain anisotropy~in the sense that this
average is nonzero!. The isotropic case that considers ra
domly distributed dipole orientations is treated in Sec. V.

Aside from the above interpretations of the DID fact
TAB , the signal field amplitude is uniquely given by

E(5)~T1 ,T2!5ENL1EDID, ~45!

where

ENL; 1
4 E0

5@aA
(1)#2aA

(2)DA~T2!@DA~T1!1DA~T11T2!#

1~A↔B!, ~46!

EDID; 1
2 E0

5@aA
(1)aB

(1)#2TABDA~T2!@DB~T1!

1DB~T11T2!#1~A↔B!. ~47!

The 2D Fourier transformation of the observable is d
fined as

S~v1 ,v2!;E
0

`

dT1E
0

`

dT2eiv1T1eiv2T2E(5)~T1 ,T2!. ~48!

The complete analytical expression of the 2D Ram
signal amplitude,S(v1 ,v2), is given in Eq.~A9! in Appen-
dix. It is worth while noting that the expression~A9! is given

by a linear combination of the functionFn
(ss8) , which takes

the following form in the underdamped limit (gs→0),

Fn
ss8→2

v1v21V1n
(ss8)V2n

(ss8)

@v1
22~V1n

(ss8)!2#@v2
22~V2n

(ss8)!2#
, ~49!

where

S V11
(ss8) V21

(ss8)

V12
(ss8) V22

(ss8)

V13
(ss8) V23

(ss8)

V14
(ss8) V24

(ss8)

D→S Vs8 Vs

2Vs8 Vs

Vs8 Vs1Vs8

2Vs8 Vs2Vs8

D . ~50!

From the complete analytical expression, we see that
nonlinear contributionENL gives rise to the following peaks
We note here that the essential points of the following sta
ments can be easily understood from the limit express
~49!:
~1! Eight diagonal peaks at (v1 ,v2)5(6VA ,6VA) and

(v1 ,v2)5(6VB ,6VB). The approximate analytica
expression of the signal around the first four peaks~of
the A mode! is given by

uS~v1 ,v2!u5
~aA

(1)!2aA
(2)

8MA
2 UF1

(AA)2F2
(AA)

zA
2 U , ~51!

whereFn
(ss8) is given in Eqs.~A7! and ~A4!. These are

obtained by picking up the terms with resonant deno

nator @in Fn
(ss8)] at the four peak positions~in the zero

damping limit!. In the first and third quadrants, the n
merator ofF2

(AA) in Eq. ~A7! almostcancels out to take
the value,G (AA)G2

(AA) @in the limit expression~49! it be-
e

-

-

n

e

-
n

i-

comes zero#, while that ofF1
(AA) is enhanced, and in the

second and fourth quadrants vice versa. This fact imp
that the four peaks have the same intensity. In additi
from the above approximate expression, we see that
width along both thev1 andv2 axes is given bygA/2.
This implies that these diagonal peaks are symme
with respect to the two axes.

The same description applies to the four other peaks
the B mode, with the widths given bygB/2.

~2! Eight overtone peaks at (v1 ,v2)5(6VA ,62VA) and
(v1 ,v2)5(6VB ,62VB). The approximate analytica
expression of the signal around the first four peaks~of
the A mode! is given by

uS~v1 ,v2!u5
~aA

(1)!2aA
(2)

8MA
2 UF3

(AA)

zA
2 U . ~52!

However, we see that by the cancellation mechanism
mentioned in the above the peaks in the second
fourth quadrants are weaker than in the first and th
quadrants. The width along thev1 andv2 axes are given
by gA/2 andgA , respectively. This implies that the pea
shape is elongated in the direction of the second axi

~3! Four zero-frequency or axial peaks at (v1 ,v2)
5(6VA,0) and (v1 ,v2)5(6VB,0). The approximate
analytical expression of the signal around the first fo
peaks~of the A mode! is given by

uS~v1 ,v2!u5
~aA

(1)!2aA
(2)

8MA
2 UF4

(AA)

zA
2 U . ~53!

The width along thev1 andv2 axes are given bygA/2
andgA , respectively, making the peak shape elonga
in the direction of the second axis.

In the similar way, we see thatEDID gives rise to the follow-
ing cross peaks:

~1! Eight cross peaks at (v1 ,v2)5(6VA ,6VB) and
(v1 ,v2)5(6VB ,6VA). The approximate analytica
expression of the signal around the first four peaks
given by

uS~v1,v2!u5TAB

~aA
(1)aB

(1)!2

4MAMB
UF1

(BA)2F2
(BA)

zAzB
U. ~54!

In the first and third quadrants the numerator inF2
(BA)

almostcancels out as in the above, while that ofF1
(BA) is

enhanced, and in the second and fourth quadrants
‘versa. This fact implies that the four peaks have t
same intensity. In addition, we see that the width alo
thev1 andv2 axes are given bygA/2 andgB/2, respec-
tively.

The parallel discussion applies to the last four peak
(v1 ,v2)5(6VB ,6VA). In this case, the width along
thev1 andv2 axes are given bygB/2 andgA/2, respec-
tively.

~2! Eight cross peaks at (v1 ,v2)5(6VA ,6(VA1VB))
and (v1 ,v2)5(6VB ,6(VA1VB)). The approximate
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analytical expression of the signal around the first fo
peaks is given by

uS~v1 ,v2!u5TAB

~aA
(1)aB

(1)!2

4MA MB
UF3

(BA)

zAzB
U. ~55!

Due to the cancellation the peaks in the second
fourth quadrants is weaker than in the first and third. T
width along thev1 andv2 axes are given bygA/2 and
(gA1gB)/2, respectively. This implies that the pea
shape is elongated in the direction of the second axi

For the last four cross peaks, (v1 ,v2)5(6VB ,
6(VA1VB)), the width along thev1 andv2 axes are
given bygB/2 and (gA1gB)/2, respectively.

~3! Eight cross peaks at (v1 ,v2)5(6VA ,6(VA2VB))
and (v1 ,v2)5(6VB ,6(VA2VB)). The approximate
analytical expression of the signal around the first fo
peaks is given by

uS~v1 ,v2!u5TAB

~aA
(1)aB

(1)!2

4MA MB
UF4

(BA)

zAzB
U. ~56!

WhenvB.vA , the peaks in the second and the fou
quadrants are stronger than in the first and the fou
The width along thev1 andv2 axes are given bygA/2
and (gA1gB)/2, respectively, implying that the pea
shape is elongated in the direction of the second axi

As for the last four peaks, (v1 ,v2)5(6VB ,6(VA

2VB)), the peaks in the first and the third quadrants
stronger than in the second and fourth~whenvB.vA),
the width along thev1 and v2 axes are given bygB/2
and (gA1gB)/2, respectively.

It should be noted here that all the above discuss
becomes rigorous only when damping constants are s
enough for all peaks to be well separated. In the case w
damping constants are not small enough, interference
tween the peaks should be observed.

From the above discussion, it is clear that the amplitu
of cross peaks scale as 1/r AB

3 , while the other peaks originat
ing from the nonlinearity in the polarizability are indepe
dent of r AB . To be precise, let us concentrate on the cr
peak at (v1 ,v2)5(VA ,VB). In the weak damping limit
(gs→0), the peak intensity is given by

S~VA ,VB!→
TAB~aA

(1)aB
(1)!2

2MA gAVAMB gBVB
. ~57!

For example, let us assume that we measure the 2D Ra
signals at two different temperatures (TL and TH) and get
different peak intensities@ I AB,L

(5) and I AB,H
(5) ] at (v1 ,v2)

5(VA ,VB). Then, the ratio of the change of distance
given by

r AB,L /r AB,H;~ I AB,H
(5) /I AB,L

(5) !1/3. ~58!

~This relation is good for weak damping case.! Since only
the relative ~not the absolute! value of peak intensities
are available from usual measurements, we should, in p
tice, renormalizeI AB,L

(5) and I AB,H
(5) by other peak intens

ities which do not depend on the temperature when us
Eq. ~58!; for example, we can use the diagonal peak
r

d
e

r

h.

e

n
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re
e-

e

s
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c-

g
-

tensities at (v1 ,v2)5(VA ,VA), for the normalization,
which are denotedI A,s

(5) (s5L,H). It should be noted tha
Ĩ AB,s

(5) [I AB,s
(5) /I A,s

(5) (s5L or H) can be determined ambigu
ously from the experiment in which only the relative amp
tudes are available. AlthoughĨ AB,s

(5) itself depends on param
eters not available from the experiment@such asaA

(2)], we
still have the relation,

r AB,L /r AB,H;~ Ĩ AB,H
(5) / Ĩ AB,L

(5) !1/3. ~59!

Here, the parameters not readily available are assume
depend on the temperature only weakly. In this way, we
determine the ratio Eq.~58! within the experimentally avail-
able quantities.

The determination of the absolute value ofr AB may be
difficult in practice. Mathematically, the peak intensity of th
third order signal is given by

J~Vs!5
~as

(1)!2

MsgsVs
, ~60!

and thus the absolute value may be given by

r AB5S J~VA!J~VB!

pe0I AB
(5) D 1/3

. ~61!

However, in practice, the absolute value of peak intensi
are not usually available from measurements.

IV. NUMERICAL RESULTS

As an example, we assume the nuclear coordinate
and B have the characteristic frequencies,VA5400 and
VB5600, the damping constants,gA520 andgB520, re-
spectively, in the unit of@cm21#. The third-order signalEs

(3)

in this case is given in Fig. 3. The ratio of the strength of t
two oscillations (aA

(1)/aB
(1))2 is set to make the two pea

intensities the same~see the Appendix for the detail!. In
practice, we can determine all these parameters from a th
order experiment or molecular dynamics simulation. The s
nal is of course independent of the distancerAB .

In Figs. 4~i! and 4~ii !, we showed the absolute value o
the fifth-order spectrumuS(v1 ,v2)u using the same param
eters as in Fig. 3. In these plots, we see the cross peak
combination peaks in addition to the diagonal and overto
peaks, as discussed in the previous section. The diagona
overtone peaks originate from the nonlinear polarizabi
as

(2) , while the cross peaks from the dipole-induced dipo
interactionTAB . General features of the peaks discussed

FIG. 3. The third-order signal in the frequency domain, Eq.~33!, from two
modes at the frequencies,VA5400 andVB5600, with the damping con-
stantgA5gB520 in the unit@cm21#. ~See the details in the text.!
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the previous section based on the analytical expression
almost perfectly reflected in the plots. One may see sli
disagreements, which should be due to interference betw
the peaks as mentioned before.

The important difference between Figs. 4~i! and 4~ii ! is a
change in the average distance of^r AB&V0

by a factor of 4.
Since onlyTAB depends on the average distance^r AB&V0

, the
intensities of the cross peaks in the figure decrease as
distance becomes larger. Thus, the intensity of the c
peaks are the measure of the distance of the nuclear co
nates A and B. It should be noted here that the cross p
intensities scale as 1/r AB

3 , thereby giving direct structura
information @see Eq.~58!#.

We mention the parameters used in Fig. 4. As a dem
stration, we considered the case where distance and orie
tion of dipoles are independent variables@Eq. ~44!#, and as-
sume that all induced dipoles are aligned (c52). @The
analytical expression in general case is given in Eq.~A9!,
and the isotropic case (c50) is treated in Sec. V.# In addi-
tion to the parameters used to calculate the 1D spectrum
Fig. 3, the ratios of the parametersas

(2) andr AB are required
to calculate the fifth-order signal. To demonstrate the sal
features of our analytical results, we setāA

(2)/(āA
(1))2

5āB
(2)/(āB

(1))2([a), andr AB
( i i )/r AB

( i ) 54 in Fig. 4. The param-
eter ās

( i ) is the dimensionless counterpart ofas
( i ) , as defined

in the Appendix, andr AB
( i ) and r AB

( i i ) are the values ofr AB in
Figs. 4~i! and 4~ii !, respectively. For example, when we s
a51/500,r AB57.5 and 30~Å! in Figs. 4~i! and 4~ii !, respec-
tively, and, whena51/0.5, r AB50.75 and 3~Å!, respec-
tively. See the details for Appendix. These parameter
tings are important only for a visual presentation; import
quantitative structural information can be obtained with
regard toas

( i ) as mentioned around Eq.~59!.
For these numerical calculations, we have assumed

ordered system, such as a crystal, in which the dipoles
aligned end to end (uAB50,c52), while the magnitude of
the distance between A and B is distributed with some av
age value. As the distribution ofuAB randomizes, the cros
peak intensities decrease due to the variation ofuAB about
zero for a fixedr AB . More generally, the distancer AB also
changes whenuAB deviates from the purely anisotropic di

FIG. 4. The fifth-order signal in the frequency domain@absolute value of
Eq. ~A9!# dependent on the distance of the two functional groups A an
by using the same parameters in Fig. 3. The average distance^r AB&V0

in ~ii !
is four times as large as that in~i!, while the orientation is fixed (uAB50).
The cross or combination peaks are seen in addition to the diagona
overtone peaks. The relative intensity of the cross peaks diminish as
distance becomes larger.
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tribution, for which cases Eq.~44! is not valid. In addition, if
uAB is distributed around afinite average value, the deviatio
can even increase the cross peak intensities. The isotr
system where these difficulties do not exist is treated in
next section.

V. CROSS PEAK INTENSITY IN THE ISOTROPIC
SYSTEM

In the isotropic system, the first-order contribution
TAB is averaged to zero and the cross peaks are produce
the second-order contribution. Within the linear polarizab
ity approximation, the second-order contribution is given

pA
(5)1pB

(5)

5 1
2 Ef~ t,rG!E0

4@11cos~Dk1•rG!#@11cos~Dk2•rG!#

3TAB
2 $~aA

(0)!4aB
(0)DA~T2!@DA~T1!1DA~T11T2!#

13~aB
(0)1aB

(0)!~aA
(1)aB

(1)!2DA~T2!

3@DB~T1!1DB~T11T2!#%1~A↔B!. ~62!

Note here that the Fourier transformed expression of Eq.~62!
is completely given through Eqs.~A5! and ~A6!.

Equation~62! can be obtained through the calculatio
similar to the ones in the previous sections. These seco
order terms~in TAB) appears through two mechanisms; o
through the first-order perturbation of the third term in t
right-hand side of Eq.~19! and the other through the secon
order perturbation of the second term in Eq.~19!. We have
checked that a quantum calculation by using the Feynm
rule ~see Ref. 68! also gives Eq.~62!.

From the above expression, we can show that the c
peak intensities, if any, scale asTAB

2 . In Sec. III, we have
shown that the factorsDs(T2)@Ds8(T1)1Ds8(T11T2)# (s
5A,s85B) lead to the cross peaks, whereasDs(T2)
3@Ds(T1)1Ds(T11T2)# lead to diagonal, overtone, an
axial peaks. Since the right-hand side of Eq.~62! is propor-
tional to TAB

2 and contains terms proportional toDs(T2)
3@Ds8(T1)1Ds8(T11T2)# (s5A,s85B), we see that the
cross peaks scale asTAB

2 in the present case.
In the isotropic system, the orientational average ofTAB

2

is nonzero while that ofTAB is zero. Thus, in the isotropi
cally distributed system, the cross peak intensities scale
1/r AB

6 and the relation to extract the structural informati
~58! is replaced by

r AB,L /r AB,H;~ I AB,H
(5) /I AB,L

(5) !1/6. ~63!

It is emphasized here that the right-hand side can be c
pletely obtained by the quantities available from the us
relative amplitude measurements as mentioned around
~59!.

VI. DISCUSSION

In this section, we explain the optical processes cont
uting to the formation of cross peaks and the role of the fi
optical pulses in the processes. We also compare our re
with 2D NMR and mention a possible deviation from o
scaling law.
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In the present model, quantum states of a molecule
be characterized by the matrixunA ,nB&^nB ,nAu, wherens is
the quantum number for the vibration of thes mode at the
frequencyVs . For simplicity, we assume that the molecu
is initially in the stateu0,0&^0,0u. By using this notation, one
of the possible processes which contributes to the forma
of the cross peaks for theanisotropic system@see Eq.~45!#
can be described as follows. The first pair of pulses nonre
nantly excites the A mode through a one-quantum Ram
transition; the molecule is in the coherence stateu1,0&^0,0u
during the first time periodT1. The second pair excites the
mode and de-excites the A mode through the DID coupl
~two simultaneous one-quantum transitions!; the molecule is
in the coherent stateu0,1&^0,0u during the second time perio
T2. The final probe pulse then brings back the molecule
the stateu0,0&^0,0u.

Basically, the molecule experiences the interaction w
the light field three times; a one-quantum transition of the
mode, a one-quantum transition of the B mode, and the
simultaneous one-quantum transition of A and B mod
through the DID coupling. These three interactions cor
spond respectively to the termsaA(t)E(t)2, aB(t)E(t)2, and
aA(t)aB(t)TABE(t)2, appearing in Eq.~19!. Among the six
possible orders of these three interactions, four cases@where
the last interaction is not due toaA(t)aB(t)TABE(t)2] con-
tribute to the formation of the cross peaks, since the fi
interaction cannot be the DID coupling. The cross peak
tensities are proportional to (aA

(1)aB
(1))2; each mode experi

ences a one-quantum excitation followed by a one-quan
de-excitation.@Note thatas

( i ) is associated with (Qs)
i , which

can cause transitions withi-quanta.# Thus, 16 sequences con
tribute to the cross peaks. In all the 16 cases, at least on
the two modes is in the coherence state duringT1 and T2;
both time periods probe the dynamics of coherence state

For the isotropic case where the signal is given throu
Eq. ~62!, six sets of three interaction combinations rep
sented by@see Eq.~19!#

aA~ t !aB~ t !TABE~ t !2,aA~ t !aB~ t !TABE~ t !2,aA~ t !E~ t !2

aA~ t !aB~ t !TABE~ t !2,aA~ t !aB~ t !TABE~ t !2,aB~ t !E~ t !2

aB~ t !E~ t !2,~aA~ t !!2aB~ t !TAB
2 E~ t !2,aA~ t !E~ t !2

~aA~ t !!2aB~ t !TAB
2 E~ t !2,aB~ t !E~ t !2,aB~ t !E~ t !2

~aB~ t !!2aA~ t !TAB
2 E~ t !2,aA~ t !E~ t !2,aB~ t !E~ t !2

~aB~ t !!2aA~ t !TAB
2 E~ t !2,aA~ t !E~ t !2,aA~ t !E~ t !2 ~64!

all contribute to the cross peaks. Since the DID coupl
cannot be the last interaction, only one order of the th
interactions is possible for each of the first two sets, wh
four orders are possible for each of the other four sets. F
Eq. ~62!, we see that the cross peak intensities are prop
tional to (aA

(1)aB
(1))2aA

(0) or (aA
(1)aB

(1))2aB
(0) . This implies

that each mode experiences a one-quantum excitation a
one-quantum de-excitation. Although the excitation is f
lowed by the de-excitation in the process where the inte
tion aA(t)aB(t)TABE(t)2 acts twice@i.e., the first two sets in
Eq. ~64!#, the excitation and the de-excitation of a sing
mode can also occur simultaneously~zero-quantum transi
n
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tion! in the process with interaction (aA(t))2aA(t)TAB
2 E(t)2

or (aB(t))2aA(t)TAB
2 E(t)2 @i.e., the last four sets in Eq

~64!#. Unlike the anisotropic cases, the time-periodsT1 and
T2 do not necessarily describe the dynamics of the cohere
state. At least one of the time periods do describe the co
ence dynamics, while the other time period probes the
namics of the ground population state in some processe

The scaling relationships observed for the orde
sample and the isotropically distributed sample are simila
those observed for 2D NMR. In liquid state NMR, the am
plitude of cross peaks arising from dipolar coupling scales
1/r 6, whereas 1/r 3 terms contribute to solid state NMR. I
should be pointed out that significant differences still ex
between the orientational averages in these experiments.
entational dynamics have not been considered here,
rather only the distribution within an ensemble. Orientation
relaxation processes exist on faster time scales than the
periment in both solid state and liquid state NMR, wh
orientational relaxation is either on equal or longer tim
scales than the 2D Raman experiment. These effects wi
significant contributions to analysis 2D Raman spectra
real systems, and will need further consideration.

We mention about a possible deviation from the scal
law of the cross peak intensities. The DID couplingTAB

comes from the electric field produced by a dipole. In ge
eral, the field consists of the three terms proportional
1/r AB , 1/r AB

2 , and 1/r AB
3 ~see Chap. 9.2 of Ref. 65!. If the

two nuclear coordinates A and B are close, then the 1/r AB
3

term dominates and the expression~11! is justified; this is the
type of DID interaction which has been frequently employe
If we can observe a weak DID coupling effect whenr AB is
large, we may extract structural information at larger sca
however, in such a case,TAB may no longer scale as 1/r AB

3 .
In addition, strong anharmonicity can contribute to cro
peaks and can be a source of deviation from our scaling l
In the practical use of our theory, these points should be k
in mind.

VII. CONCLUSION

We reproduced the third-order signal in the impulsi
measurement in a heuristic way within the Placzek mode
using the Green function method or by using the propaga
In the similar way, we obtained the fifth-order signal takin
into account the dipole-induced dipole coupling between
two specific dipoles A and B of a complex molecule. A
though we used an extended Placzek model for the der
tion, the results analytically agree with the ones from t
quantum Brownian oscillator model with the dipole-induc
dipole interaction at this order of calculation.

In the present model, the fifth-order signal is shown
be formed from the two reasons; nonlinear polarizabil
~NL! and dipole-induced dipole~DID! coupling. NL spawns
the fundamental and overtone peaks while DID the cross
combination peaks. Since the fundamental peaks come f
the small nonlinear effect, they can be comparable to w
cross peaks.

While the nonlinear polarizability expansion coefficien
are independent of distance, the DID interaction tensorTAB

varies with the inverse cube of the distance vectorr AB be-
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tween the dipoles A and B. We can thereby visualize str
tural change in the system as the change of cross peak in
sities relative to diagonal peaks. The cross peak inten
drops as the average dipole separation increases.

The scaling of the cross peak amplitude as a function
distance depends on the effects of dipole orientational a
aging that is appropriate for the system. In a system w
randomly distributed dipole orientations, such as a liquid,
cross peak amplitude scales as 1/r 6, while a 1/r 3 dependence
is observed in an anisotropic, aligned system. These sca
relationships have analogy to the dipole coupling scaling
lationships observed in liquid and solid state NMR, resp
tively.

These scaling relationships form the basis for quant
tively extracting structural information from 2D Raman e
periments. Clearly the variation of cross peak amplitude a
function of variation in external variables allows structu
change to be followed, but the goal of using 2D Ram
experiments to extract absolute distances is still a challe
The ratio of change in distances can be determined from
change in intensity of a cross peak@see Eqs.~58! and ~63!#
and the intensity change can be completely determined f
knowledge available from the experiment@see Eq.~59!#.
However, the determination of absolute distance will requ
parameters not readily available, such as the polarizab
expansion coefficientsas

( i ) @see Eq.~61!#. Determination of
these expansion coefficients and distinguishing signal co
butions from anharmonic coupling are challenges that n
to be addressed in the future.
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APPENDIX: ANALYTICAL AND DIMENSIONLESS
EXPRESSIONS

In this Appendix, we present analytical expressions u
in the numerical simulations. We also introduce dimensi
less parameters, which are used to specify the paramete
the text.
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By rewriting products of trigonometric functions b
trigonometric functions with combined arguments@i.e., by
using relations such as, sinx sin y52$cos(x1y)2cos(x
2y)%/2], one finds

Ds~T2!Ds8~T1!52u~T2!u~T1!
f 1

(ss8)2 f 2
(ss8)

2Ms Ms8 zs zs8

, ~A1!

Ds~T2!Ds8~T11T2!52u~T2!u~T11T2!
f 3

(ss8)2 f 4
(ss8)

2Ms Ms8 zs zs8

,

~A2!

where

f n
(ss8)5e2G(ss8)T12Gn

(ss8)T2 cos~V1n
(ss8)T11V2n

(ss8)T2!. ~A3!

Here, the damping constants and the~complex! frequencies
are given by

G (ss8)5gs8/2, S G1
(ss8) V11

(ss8) V21
(ss8)

G2
(ss8) V12

(ss8) V22
(ss8)

G3
(ss8) V13

(ss8) V23
(ss8)

G4
(ss8) V14

(ss8) V24
(ss8)

D
5S gs/2 zs8 zs

gs/2 2zs8 zs

~gs1gs8!/2 zs8 zs1zs8

~gs1gs8!/2 2zs8 zs2zs8

D . ~A4!

The two-dimensional Fourier transform is then given by

F @Ds~T2!Ds8~T1!#52
F1

(ss8)2F2
(ss8)

2Ms Ms8 zs zs8

, ~A5!

F @Ds~T2!Ds8~T11T2!#52
F3

(ss8)2F4
(ss8)

2Ms Ms8 zs zs8

, ~A6!

where
Fn
(ss8)52

~v11 iG (ss8)!~v21 iGn
(ss8)!1V1n

(ss8)V2n
(ss8)

@~v11 iG (ss8)!22~V1n
(ss8)!2#@~v21 iGn

(ss8)!22~V2n
(ss8)!2#

. ~A7!
In the above, we have used the notationF@X(T1 ,T2)#
5*dT1*dT2eiv1T11 iv2T2X(T1 ,T2). Thus, the 2D Fourier
transformation ofpNL(t)1pDID(t) is given by

F@pNL~ t !1pDID~ t !#5E0
4Ef~ t,rG!@11cos~Dk1•rG!#

3@11cos~Dk2•rG!#S~v1 ,v2!. ~A8!

Here, the 2D Raman signalS(T1 ,T2) is given by
S~v1 ,v2!5SNL1SDID, ~A9!

where

SNL52
~aA

(1)!2 aA
(2)

8~MA zA!2
~F1

(AA) 2F2
(AA) 1F3

(AA) 2F4
(AA) !

1~A↔B!, ~A10!
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SDID52TAB

~aA
(1)aB

(1)!2

4MA MB zA zB
~2~F1

(AB)2F2
(AB) !1F3

(AB)

2F4
(AB) !1~A↔B!, ~A11!

whereTAB should be interpreted as an averaged quantity@see
Eq. ~43!#. We have plotted the absolute value ofSNL1SDID

in Fig. 4.
To specify the parameters used in the numerical ca

lations, we introduce dimensionless expansion coefficie
ās

( i ) by

as
(1)5ās

(1)
•a0AMs V0 /\, ~A12!

as
(2)5ās

(2)
•a0Ms V0 /\, ~A13!

where a0 and V0 are arbitrary units for polarizability and
frequency. Here, we takea054pe0r 0

3 with r 051@Å # and
V0 /(2pc)51@cm21#.

The prefactors in Eqs.~A10! and ~A11! are reduced to

~as
(1)!2 as

(2)

2~Ms zs!
2

5
a0

3

\2
•

~ ās
(1)!2 ās

(2)

2z̄s
2

, ~A14!

TAB

~aA
(1)aB

(1)!2

MA MB zA zB
5

a0
3

\2
•

~ āA
(1) āB

(1)!2

z̄A z̄B

•T̄AB , ~A15!

where z̄s5zs /V0 and T̄AB5TAB a0. Under Eq.~44!, T̄AB

5c/ r̄ AB
3 , wherer̄ AB5^r AB&V0

/r 0. The prefactor of the third-
order signal in Eq.~33! is reduced to

@as
(1)#2

Ms
5

a0
2

\2
•@ās

(1)#2 V0 , ~A16!

and, thus, the ratio ofāA
(1) to āB

(1) is determined by compari
son of experimental data with simulations, together withVs

andgs . To make the two peak intensities in the third-ord
spectrum, we have setJ(VA)5J(VB), which reduces to
(āA

(1))2/(gA VA)5(āB
(1))2/(gB VB). Since gA5gB , this is

equivalent to sethB /hA52.25, whereh i5(ā i
(1))2 V i in

Figs. 3 and 4.
In addition to the parameters appearing in the third-or

signal, there are three more parameters,ās
(2) (s5A,B) and

r̄ AB , which should be fitted to the experimental data, in
fifth-order case. However, these three parameters are no
dependent. This is understood as follows. The essential
rameters for the fifth-order signal are the prefactors in E
~A14! and ~A15!, and independent parameters are the t
parameters; one is Eq.~A14! for s5A divided by Eq.~A15!
and the other is Eq.~A14! for s5B divided by Eq.~A15!,
that is, āA

(2)VB r̄ AB
3 /@(āB

(1))2VA# and āB
(2)VA r̄ AB

3 /
3@(āA

(1))2VB# if we assumeVs..gs . In the present case
whereJ(VA)5J(VB), these reduce toāA

(2) r̄ AB
3 /(āA

(1))2 and
āB

(2) r̄ AB
3 /(āB

(1))2, respectively. In Figs. 4~i! and 4~ii !, we set
ar̄AB

3 52 and 54, respectively, wherea[āA
(2)/(āA

(1))2

5āB
(2)/(āB

(1))2. This implies thatr AB57.5 and 30~Å! in
Figs. 4~i! and 4~ii !, respectively, whena51/500, andr AB

50.75 and 3~Å!, respectively, whena51/0.5.
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;^@@ā(T11T2),ā(T1)#,ā(0)#&, to expressR(5) as a sum of correlation
functions of nuclear coordinates, and then we apply our Feynman rule
these correlation functions.

69In the purely isotropic case,uAB is randomly distributed; c
5*0

pdu sinu (3 cos2 u21)/p50.


