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We have developed a theory of the fifth-order off-resonant spectroscopy to study the effect of
anharmonicity of molecular vibrational modes. The anharmonicity, as well as nonlinear dependence
of polarizability on nuclear coordinates, can be the origin of the fifth-order Raman signal. A profile
of the signal varies depending on the relative importance of the two effects—the anharmonicity and
the nonlinearity. The anharmonicity of a potential can be distinguished from the other effects such
as the nonlinearity or the inhomogeneity of vibrational modes. In order to carry out calculations
analytically, we employ the multimode Brownian oscillator model and treat anharmonicity as
perturbation to the harmonic vibrational modes. A simple analytical expression for the fifth-order
polarization is obtained through a diagrammatic technique, called Feynman rule on the unified time
path. Physical pictures for the analytical expression are given for a single mode system through
numerical calculations and through double-sided Feynman diagrams. Applications tq @htCl

CS, are made where the third-order experiments are used to extract parameters. |p thse; $he
theoretical fifth-order signals are compared with recent experiment, which suggests some sign of
anharmonicity. ©1997 American Institute of Physid$0021-960607)00331-0

I. INTRODUCTION oscillations can be interpreted as being represented by sev-
) ) o eral primary(harmoni¢ modes coupled to the baths.
The feature of inter- and intramolecular vibrational For the moment, we consider a system with a single

modes and their dephasing in liquids plays a central role ifgrq\ynjan coordinate) to present experimental observables

virtually all chemical processes in solution. The recent ady, terms of response functions. In the third-order off-resonant

vent of ultrafast laser technology makes it possible to per'experiments, such as ISS and OKE, the signal is related to

fofrm nc;plinegr vipratio?al exgeri[m;ntsfthaj[ c?r:j.pro.be ﬂ: he two-time correlation function of the nuclear polarizabil-
e 165 1 fomosooond ohionl 1 RO ~([a(t),a(0)]), wherea(t) is the polarizability
sive stimulated light scatterindSS), femtosecond optica in the Heisenberg representatipdefined in Eq.(2.5)]. In

2-4 : .
Kerr effect(OKE),**and far infrared|R) absorptiort, have such polarizability sensitive measurements, coordinate de-

yielded spectral densities in the low-frequency range, provid- . . : .
. L . . pendence ofx is essential, since, if is a c-number, «(t)
ing characteristic properties of intermolecular nuclear de- . (3) .

. commutes witha(0) and R**) vanishes. If one expands po-
grees of freedom, both local and collective.

: : larizability in terms of the coordinate in the Heisenberg rep-
Recently, two-dimensional off-resonant spectrosco . .
y P py?sentatlorQ(t), i.e., a(t)=ag+ a;Q(t) + ayQ?(t)/2+ -

was proposed to separate the inhomogeneous distribution {z . n N+l 3)
slowly varying parametere.g., due to local liquid configu- assuming a,Q 2|>|a"+1Q ), then characters &2 are
rationg from the total spectral distribution of nuclear time détermined bya’i([Q(t),Q1)- _
scale® This experiment uses two pairs of excitation pulses " the fifth-order off-resonant measurements, the signal

and related to the fifth-order nonlinearity. Experimefital IS related to the three-time correlation functid’®)(t,t")
and theoreticd

P~ studies have been made to explore pos-~ {([[a(1),a(t")],2(0)1), which is defined in Eq(2.6).
sibility to detect such inhomogeneity. In this paper, weSince theay term(i.e., ([[Q(t),Q(t")],Q])) vanishes in the
present another possibility of the fifth-order off-resonant ex-narmonicBrownian model, features of the signal can be cap-
periments: detection of anharmonicity of vibrational modestured by the term proportional to aja, (i.e.,
with the help of the third-order experiments such as ISS of[[Q%(1).Q(t")1,Q1), etc).

OKE. The easy-to-handle harmonic models in general are a
The primary microscopic basis for understanding specfairly good but idealized model. The multimodearmoniq
troscopic experiments can be normal modes analysis by md3rownian model has been successfully used to study vibra-

lecular dynamics simulationd-7In this simulation method, tional spectroscopy in liquidS.From a molecular dynamics
calculation of the higher-order optical signals is demandingstudy, however, anharmonicities in the low frequency vibra-
and the method to include quantum effects are not wellional normal modes were found in waters well as in
established” On the other hand, if we employ the multi- CS,.* To reflect such anharmonicities, we include anharmo-
mode Brownian oscillator modé$;*® analytical calculation nicity, expressed byg;Q3+g,Q*+--- , into the primary
can be performed quantum mechanically, though microBrownian mode(More dynamics-oriented interpretation of
scopic origins of the Brownian modes are sometimes obanharmonicities is given in Sec. YIAlthough anharmonici-
scured. In the Brownian model, collections of normal modeties of each normal mode and of the Brownian modes are not
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the same, we believe that the present study must be a godke polarizability. The effective Hamiltonian for a system
starting point to take the normal-mode anharmonicities intdrradiated with the off-resonant electric fiele(r,t) is given
account. by!8:19

In the pre;ent study we assume that the z_inharmonk_:i_ty is Hey=Hq(P,Q) — Ez(r,t)aQ, 2.1
weak so that it can be dealt with as perturbation. In addition, ) o o
we assume that the polarizability is well approximated byWhereHg(P.Q) is a molecular vibrational Hamiltonian on
first few terms in the expansion in terms of the primary co-8" €léctronic ground-state potential surface angis the
ordinate Q. These assumptions may be reasonable to giv€cordinate dependent polarizability. Hefe,and Q collec-
representative results, although there may be a case wheli¥ely represent the momenta and coordinates of the vibra-
this standpoint is not appropriat®. tional motions. . .

Taking the anharmonicity into account, we re-examine  |f the system is described by a single nuclear mode
the response functioR® andR®) presented above. Even in specified by its coordinat® and momentunP (generaliza-
the anharmonic case, behaviorR#® can still be described tion to a multimode nuclear system is dealt with in Seg,. V
by ai([Q(t),Q]) as in the harmonic case, if the anharmo-the polarizability and the vibrational Hamiltonian are, re-

nicity is not considerably strong. spectively, expressed as
In contrast, the main contribution ®®) in the anhar- @
monic case can be different from that in the harmonic case. @qQ= ao+ @1Q+ > Q- (2.2

For example, if the anharmonicity; is significantly large
compared with the nonlinear polarizability,, the principal
part can be the term proportional tcvzfg3 (i.e.,
([Q(1),Q(t")1,Q1)).2* On the contrary, in the harmonic N oo )
. . p; m: w: C-Q 2
case, the dominant part is always the &ﬁexz term as men- n E B b B P
tioned before. Since the time dependence ofdﬁl@3 termis =1 | 2m; 2 ! miwi2 '
; 2 (5) i . .

different from tha_t _of thealc_uz .term, R™ can be_ used to Here,V(Q) is the anharmonicity of the potential
detect anharmonicityln realistic cases, depending on the
relative ratio 3g3/(@ 3a,) (whereX denotes dimension- 93 3, 94 4

. : . V(Q)=57Q°+ = Q%+, 2.4
less quantity of), the behavior oR®) may vary since the Q=37+ Q 2.4

time dependences of the terms proportionagga:f and to  gpg ¢; is the coupling constant between the systed) and
afa, are different from each other. the bath ;).

Thus it is possible that anharmonicity and nonlinear cou-  This HamiltonianHy(P,Q) can describe a dissipative

pling produce identical third-order signals, but rather differ'system in the condensed phase, since the Euler—Lagrange
ent fifth-order signals. To demonstrate this, we calculated thgquaﬂon forQ(t) in this system has the friction term

fifth-order response function in the presence of anharmonic-

ity of vibrational modes. To carry out caI(_:uIations we M| dt’ y(t—t’)Q(t’),

employed the Feynman rule on the unified time Fat>

which is suitable for the oscillators in the coordinate where y(t) is specified by the bath parameters; (w;,c;)
representatioR® We obtained simple analytical expressionsand is proportional te?. (We have to seN— o to describe
for the fifth-order off-resonant signal. In a single mode casethe dissipation.We can parameterize our theory in terms of
numerical calculations, as well as interpretations in terms ofy(t) instead of specifying all the valuesn(,;,c;). In the
double-sided diagrams, were given to explain physical dyfollowing we employ the Ohmic dissipation modei(t)
namics in the fifth-order processes. In the multimode casess y5(t), wherey is a constant{This choice ofy(t) is pos-

we calculated the fifth-order signal numerically by using pa-sible only after we leN—.] The strength of dissipation is
rameters obtained from the third-order experimental data ofeflected in the constant

CHClz and CS. By comparison of the numerical results with The physical observables in optical experiments can be
the recent fifth-order experimental data by Tokmakoff andrelated to the response functioR",° which are expecta-
Fleming? we found some sign of anharmonicity in £SVe  tion values of multicommutators. The response function re-
analyze the physical nature of the Brownian modes of i8S lated to the third- and fifth-order off-resonant experiment are

PZ  MO? |
Hy(P.Q) =5+ —5— Q°+V(Q)

2.3

Sec. VI. defined by
i
RO(ry)= 7 ([a(71),a(0)]), (2.9
. - - i\?
:é.XTPI-éERI'KAHElﬁg AND FIFTH-ORDER OFF-RESONANT R(5>(71172):<g) ([[a(r+ 1), a(r)],a(0)]), (2.6

We consider a molecular system in the condensed phad¥éhere [+] is the commutator [A,B]=AB—BA), (---)
irradiated with electronically off-resonant pulses. The off-(= T1[Pg***]) i the expectation by the initial distribution at
resonant pulses allow us to selectively probe the vibrationatlhe Inverse temperatug@
dynamics associated with the electronic ground state through  py=e~#Hs(PQ/Ti{ e~ AHs(P.Q)], 2.7
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Ei(t)  Eq(t) E4(t) For impulsive pump experiments, we set
/A /A\ /\ EA()= (1),
° . . - E (t)=a(t+Ty),

~—T I, —~ E,(t)=8(t+T,+T,). .11

FIG. 1. Pulse configuration for the fifth-order experiment. The two pairs of ) ) ]

pulses are applied to the system, which are followed by the last probe pulsdhen the signals, which are observed in a phase-matched
The temporal profiles of the pulseB(t), E(t), and E; (1) peak at direction?’~°and related to the square of the polarization,
t=—T,—T,, t=—T,, andt=0, respectively. are given by(up to a proportionality constant

=R (T2, (2.12
and«(t) is the Heisenberg operator associated with the elec- 5) 5) 5
tronic ground state Hamiltonian 1®=|R®(T1, T)[% (213
— a(ilh)HG(P,Q)t —(ilh)Hy4(P,
“(t)_e(l (PR Qe (Rg(P.Q)L, (2.9 lll. FEYNMAN RULES FOR RESPONSE FUNCTIONS
Now we explain pulse configuration for the third- and In this section we derive the response functions of a

fifth-order experiment. In general, the electric fi@¢r,t) in  single mode system by using the Feynman rule on the
the (2n+1)th order experiment is given byE(r,t)  unified-time path(UTP). Originally the Feynman rule was
=E¢(r,t)+2]_;Ej(r,t), where E;(r,t)=Ej(t)(e"/""™"  developed to calculate the vacuthe ground stajeexpec-

+ eiw,-’t*ikj’-r) +c.c. and E¢(r,t)=E;(t)e'“t"kKiT+c.c. in  tation values of operators in an anharmonic systémsimi-
which c.c. stands for the complex conjugate. For example, i@l diagrammatic rule was initiated by using the Matsubara
the third-order experimentlSS or OKB, the envelopes Green’s functions (propagators to obtain the thermal
E,(t) andE (1) peak att=—T, andt=0, respectively §  expectatiorf” The Feynman rule on UTP is an extension of
=1). Thus, in the third order, we apply the system twothese rules to obtain the nonequilibrium expectation values,

simultaneous pulsegenter frequencieso;,w; and wave Of the real-time correlation functions.
vectorsky ,kj) att=—T, and then the probe pulge; and The common feature of these three methods is that ex-

ki) att=0. pectation values are given by the sum of Feynman diagrams.
Pulse configuration for the fifth-order experiment is Each Feynman diagram consists of points connected by lines

given by the above expression f&(r,t) with n=2 and is and corresponds to an analytical expression by the rule in a

described in Fig. £:° The temporal profiles of the pulses unique way.

E,(t), Ex(t), andE, (t) peak at=—T,—T,, t=—T,, and We define here some terms for diagrammatic expan-

t=0, respectively; the two pairs of pulses are applied to th&ions; examples are given shortly. TiRpoint in a diagram is

system, which are followed by the last probe pulse. The firsg point from whichi lines go out. Anyi-point is either an
pair (wy,»; andky,k}) is irradiated at the tim¢=—T, external point or an internal point; the former originates from

—T,, the secondw,,w) andk,,k}) att=—T,, and the an operator for which the expectation value is calculated,

final pulse(w; andk;) att=0. while the latter from anharmonicity. The internal point is
The polarizations relevant to the third-order and thealso called vertex and the line is called propagator. The in-
fifth-order experiments are, respectively, giverf"by ternali-point is also called-vertex.

To illustrate the Feynman rule, we first consider the dia-
@ otk » @ grammatic expansion &®). According to the expansion of
P&t =[Es(1)e"“r*+c.c] jo dry R™(7y) the polarizability,R®®) can be expressed as

2B m){rcosibont=m)=dketl] gy L aro0ry) 00
hot ’

(2.9
[
: = = + = %(T1),Q(0)]+[Q(T1),Q%0
P(S)(t):[Ef (t)el(wft—kf-r)_i__c-cl]f dTlf d7'2 % a1a2<[Q ( 1) Q( )] [Q( 1) Q ( )]>
0 0
[
XRO(7y,75)2|Eq(t— 71— 7)) [ 2| Ep(t—7p) |2 ta a5([Q4(T1).QXO) )+, 3.1
X[1+cos{Aw (t—71—75)—Akq-r
[ Ao 17 72) 1] whereQ(t) is the Heisenberg operator
Q(t):e(i/h)Hg(P,Q)th—(i/ﬁ)Hg(P,Q)t_ (32)
where we have introduced w,= w,—w,, and Ak,=k]
e The diagrammatic expansion of the first term is given by
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%a§<[Q(T1),Q(0)]> = o=+ C_QO * :

where we consider thg; and g, anharmonicities explicitly ~Third, we make all possible connected diagrams out of the
and draw diagrams up to the second order in these anharmgiven external and internal points by jointing them with lines
nicities. (propagators In the g3 case, we can make two different

In each of the above diagrams the two white circles argjiagramgthe third and forth in Eq(3.3)] from two 1-points
external 1-points and correspond to the operato/®(T1)  and two 3-points. In the course, we can use as many lines as
anda;Q(0). Theblack circles are vertices or internal points. e need and all possible diagrams have to be taken into
For example, the second diagram have a 4-vertex or an iNjecount in the calculation of that order.
ternal 4-point from which four lines go out; this vertex cor- The term proportional tmiggg vanishes in Eq(3.3.

o 7
responds to the a_nharmomc InteractgyQ". Diagrammatically this simply means that we cannot make
From these diagrams, we know the dependences of the

. connected diagrams out of two 1-points and one 3-point. In
diagrams on the parametersandg; ; the number and types . . -
of circles determine them. The first diagram is proportionalgeneralf we can gasﬂy pick up nonzero contributions by
to o3, the second tarig,, the third toa?g3 and so forth. these diagrammatic rules. .

These diagrams can be generated as follows. First, we !N the Feynman rule for the vacuum expectation value
determine an operator for which the expectation is calcu@nd for the thermal expectation, analytical expressions for
lated, which fixes the external points that have to be used i§2ch diagram would be obtained from the above diagrams.
diagrams. In the above case, the external points to be usddPwever, in the rule on the unified-time paiTP) for the
are the two 1-points represented by white circles, which corhonequilibrium expectation, we add indicest;” * —,” or
respond to the operators;Q(T,) anda;Q(0). Second, we “3,” to all the extremities of the lines in order to derive
determine which order of the expectation we calculate@nalytical expressions. These diagrams with indices are
which fixes the internal points. In the case of the order ofcalledspecified diagramswhile the diagrams as given above
g% [the third and the fourth diagrams in E®.3)], the inter-  are calledsimplified diagramsn the UTP rule?* The speci-
nal points are two 3-points represented by black circlesfied diagrams corresponding to E.3) are given by

— +o+o_ Y R +O+...' (3.4
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The reason why we need the extra (—, 3) indices as Im¢?
above is that we have three typestiofie evolution operators
for the nonequilibrium expectatiofsee Appendix A These
three operators, the real time evolution operator of the ket
e (IMH(P.QL " that of the brae(MHe(P-Qt and the imagi-
nary time evolution operata #"o(P.Q)| are associated with
the C;-, C,-, and C;-paths in Fig. 2, respectively. In the C
original Feynman rule for the vacuum expectation, only the 1
C;-path comes into play, and the propagatbé), which
connect two points on th€;-path, are used. In the rule for
the thermal expectation, only thes-path comes into play,
and the propagator®©® (Matsubara Green’s function
which connect two points on the;-path, are used. Only one
kind of propagatofD*V or D(®?)) can appear in both cases.

In the UTP case, however, all the three patli5 ,C,,Cj3)

have to be considered and thus we use all the propagators
D (i,j=1,2,3), which connect a point on ti@&-path and

a point on theC;-path. For convenience, we use the four Fi. 2. The unified time-patlC=C,+C,+C; on the complext plane
independent element®(~*), D7), D(-3) andD®3, of  (T—w). It starts from the origin up to an infinity along the real path
the 3x3 matrix D) in the UTP rule. Thus, in order to (C1). returns to the origin€,), and then goes te-iB7% along the imagi-
specify the four propagators, we add indices, €, 3) tothe "2 &S €3).

diagrams. The detail rule for putting these indices are given

in Ref. 24.

From the specified diagrams, we can easily obtain anasiate the propagatdd (™. Then, analytical expressions are
lytical expressions. With an external and interir@oints we  obtained by integrating the product of all the factors and
associate the factora; and g;, respectively. With a line propagators over all internal points. Detail rules are given in
whose ends carry indicésandm (I, m=+,—, 3), we asso- Ref. 24, and here we only present two examples

—ifh

T 0 ? (3.5
——0 = -aiD"H(T),
12 7 o
T @ 0 = —z—ﬁa% (—£g4> /0 dtlD(—+)(T1 - tl)D(—‘_)(tl — tl)D(_+)(t1). (3.6
— - ¥

In the Ohmic case the propagatdf~ ") (t)=D("")(t,0) is  Note that, though this propagator does not depend on tem-
calculated &% perature, all the other propagatot®(~ ), D", and
D®%) depend on i£#~%

3 From the above arguments, we have
DUt =6(t) —— e "2 sin {t, (3.7
iM¢Z
i
(3) — — 2p(—*+) ..
with RE(TY =z eiD (T4, (3.9
{=NQ %4, (3.8)  where the terms represented by-* are anharmonic cor-
rections.

wherey is the strength of the damping as mentioned before.  Now we examineR(®
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2
—) a([[Q(T1+T2),Q(T1)1.Q(0)])

R(S)(Tl 1T2)

i\ 2
+ ;,L—) aax([[QX(T1+T2),Q(T1)],Q(0)]

+2 termg+--- . (3.10

The first term proportional tar is called RAM in the
following and diagrammatically expressed?s:

(3.11

where the terms represented by-
order corrections.

are anharmonic higher

The first diagram in Eq(3.11) is proportional t0alg3,
RAH originates from anharmonicity;. The a?gg term van-

come from higher order terms, some of which are shown in
Eq. (3.4) [they are represented by-“" in Egs. (3.11) and
(3.12], through temperature-dependent propagators such as
D7), D3 and DG, This means that these response
functions have a weak temperature dependence if the anhar-
monicity is weak. Although, in what follows, we only con-
sider these temperature-independent terms based on the
weak-anharmonicity approximation, we stress here that these
expressions are the results of temperature-dependent calcula-
tions and are very good approximation within the parameter
region discussed in this study.

For later convenience, the Fourier transform of the two-
time correlation function is defined by

RO (w)= fmdt e“RA)(t). (3.19
0

Its imaginary part or the spectral distribution in the Ohmic
case is given from Eq3.9) by

wy

= (3) =
J(w)=Im R¥(w)= M(a) 2)2+w2y2+

(3.1

ishes since we can not make a connected diagram out ¢¥- FIFTH-ORDER SIGNAL FROM A SINGLE MODE

three 1-points.

The second term in Eq3.10 proportional toa’a, is
called RN in the following since it originates from nonlin-
earity a,. A diagrammatic expression is given¥y

0Ty + T,
RNL(Tl,T2 _T1+T2<-|—Tlo< 4.
+ oo

(3.12

are anharmonic cor-

where the terms represented by--
rections.

SYSTEM

In this section, we show that anharmonicity and nonlin-
ear coupling can produce identical third-order signals, but
very different fifth-order signals. Our arguments below are
based on analytical results, double-sided diagrams and nu-
merical simulations.

To clarify the points, we assume thaf in Eqg.(2.2) and
gy in Eq. (2. 4) are proportional to the dimensionless param-
etersal andg*~?2, respectively, for the time being.

Even if we do not specify the relative magnitude af
andg (but do assume,g<1), we can conclude tha®®
introduced in Eq(2.5 has the largest nonzero contribution
of the ordera?g® [explicitly given in Eq.(3.9)]. Based on

From above specified diagrams, the analytical expresdiagrammatic representation, we can also show that remain-

sions forRA" andRN* are then given B/

i)|2 i &
RAH(T]_,TZ): ifl) ai<_%g3) fo dt D(_+)(T1+T2_t)
CH-TYD () +--- (3.13
i 2
RYN(Ty,T2)= g) aja;D'"(Ty)

X[DU(T+Tp)+D(T)]+--- .
(3.14

We note here we can perform the integration in E213
analytically (see Appendix B
In Egs.(3.9), (3.13), and(3.14), the leading terms, which

ing correction terms, including terms proportionaldga:,

are all smaller tharm?g®. (The a;a, term, for example, is
smaller thara?g?, since this term is of the order’g?; in a
harmonic system, the;a, term vanishes, since we cannot
make a connected diagram from one 1-point and one
2-point)

On the other hand, the largest contributiorR{d cannot
be determined unless we specify the raticadio g. If a is
much larger tharg (but still less than unity the largest is
RN, If g is much larger tham, the largest iR*". This is
becausdR(®) consists oRN", RAH, and the other termsep-
resented by “--" in Eq. (3.10] where the largest terms of
RNY andRAM are of the ordera*g® anda®g?, respectively,
and the other terms are smaller thafty® or a®g*. (Again,
this can be shown from diagrammatic representation.

are explicitly shown, do not depend on temperature, since the Thus under the assumption afg<<1, the third-order

corresponding diagrams in Eg8.4), (3.11), and(3.12 con-

signals can be identical for two systems which have different

sist exclusively of the temperature-independent propagatamatiosa/g, while the fifth-order signals for the two systems
D" %), The temperature dependence of response functiorsan look different as seen from the analytical expressions of
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RAH and RNL. In other words, we can use the fifth-order various parameters. Before checking this point numerically,
experiment to determine the relative importance of anharmowe explain that the two contributions come from very differ-
nicity and nonlinearity. ent physical processes.

The effectiveness of this strategy depends on how the To have a physical insight, we employ the double-sided
two main contributionsR*" andRN", behave differently for Feynman diagrams.For the third-order experiment we have

0 1 0 0 1 1 0 0 0 0 0 1
—_——e— —_— —_—
RO(T) = . n L + L " - T
0 0 0 0 0 1 0 1 0 0 1
T1 T1 T1 T1

4.2

Here, the first four diagrams correspond to the first term irrefers to the statéi){j| (i#j), and the population state to
Eq. (3.9 or the diagram in Eq(3.5). li)(i]. Att=0 the ket again interacts with the laser, and the
In these diagrams, the lower horizontal line correspondsystem is brought back to the sta®0|. (The final state of

to the time evolutionfrom the left to the right of the bra  the bra and ket have to be the same state so that the case
and the upper line to that of the ket. Black circles stand forwhere the final state becomé®(0| should be excludey.
the laser interaction. If the polarizability is linear, the laserThus during theT; period the system in the staf£(0| un-
interaction changes the vibrational state of the systejn dergoes the coherence relaxation.
into the statdv = 1). This is because we assume the linear  Similarly, we find that in the second diagram the system
polarizability a;Q, in which Q can be expressed ast+a’. is in the statd1)(0| in the T, period, whereas in the third and
Here,a anda' are the annihilation and creation operatorsfourth diagrams it is in the stai@)(1| in the T, period.(In
(@'|lv)y=|v+1), etc). For simplicity, we have assumed that general, the two diagrams different only in the positions of
the system is initially in the ground sta@ in Eq. (4.1). the rightmost interaction make the same contribujidmus
The first diagram can be interpreted as follows. At first athe third-order experiment probes the dynamics of the coher-
system is in the population sta®(0|. At t=—T, the ket|0)  ence statd0)(1| or |1)0| (the dephasing procesfor the pe-
interacts with the laser, and the system is in the coherenaéod T, .
state|1)(0| in the next periodT,. Here, the coherence state The diagrams oR*" in Eq. (3.13 are given by

9 9
0 1 0 1 0 0o 0 1 0 1
~ e . — .
AH P E Lo E
R, 1) = o T T T T
T] Tz Tl TZ

4.2

In above diagrams the cross stands for the anharmonic All the diagrams which have to be considered for the
interactiong;Q3, which changes the state) into the state first term in Eq.(3.13 are obtained by the first diagram in
lv+1) (aaa', etc) or jv=3) (a'a'a', etc). The cross can Eq. (4.2) by moving black circles and the cross to the lower
be placed on either upper or lowEs portion of the horizon- line. For example, the second diagram is obtained by moving
tal lines; this can be seen from the fact that the integratiorthe leftmost circle to the lower line. Thus, we havé dla-

J5 dt in Eq. (3.13 reduces to the one over thg period grams in total.
f%”z dt (due to the step function contained i~ ")). In the first diagram, the system is in the coherence state
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|1)(0] in the T, period, while it changes the state during the period it changes the state from a population state to a co-

T, period in two ways:|0)(0|—|1)(0| and [2){(0]—|1)  herence state, or from a coherence state to another coherence

x(0l. state
By studying all the diagrams, we find that in tfiig ) ] )
period the system is in the coherence state while inTthe The diagrams oR"" are given by
|
2 2
0 1 0 0 0 0 _ 0 1
»———=% ¢
RN(Ty, Ty) = P + Lo L
0 0 0 0 01 1 1 4.3
nn T Ty Ty
|
In these diagrams, the white circle stands for the laser _  «, [ % ir2
interaction through the nonlinear polarizabilityQ?. This ai:a_ (m) (4.6)
interaction changes the stdie) into [v=2) (a'a', etc) or 0
does not change the statea’, etc). The dimensionless spectral distribution is expressed as
The diagrams are classified into two types RY": In
one type, only the rightmost circle is whiteorresponding to ~ Qg ~ 5 @y
the first diagram in Eq(3.12)] and, in the other, only the Jw)= 2 J(w)=0a} (@ 2- 0%+ 5 %y 2 T
middle circle is white[corresponding to the second in Eq. 0 4.7
(3.12)]. Each type has 2diagrams in the harmonic case.
By studying all the 23 diagrams, we find that during Where
the T, period the system is in a coherence state, while it ~ -
keeps either the population state or the coherence state in the 0=01Q, y=7/Qy, (4.9

T, period.

Based on the above analysis, we expect thafTthee-
pendences oR(®), RAH andRN" may have similar property
since in all cases the dynamics of the coherence ixtH

with Q4 being an arbitrary unit of frequency.

The correction terms represented by in Eq. (4.7)
were calculated in Ref. 23 in a different context. The results
; ) X o show that the correction terms approach to zero wligithe
and|1)(0| is probed in theT, period. In addition, we expect anharmonic parameter becomes small@), the damping

that theT, dependences "' andR™" may look different. constanty/Q) becomes larger, o3) the mode frequency
Note that, however, the present analysis based on doubl%-QB becomes largexfor a fixed temperature ). This

sided diagram fails to include the effect of dissipation so thahweans that, even for low frequency modes in liquids where
the argument may be reasonable only in weak dampingq can he much less that A/ the correction term can be
cases. negligible if the anharmonic parameter is small enough. In

o In order to car][y out Tum.erlca! carl]culatlor}s, We rewrite i following numerical calculations, we use several set of
the expressions of signals given in the previous section if, ameters. In all cases, including CH@hd CS cases be-

dimensionless quantities. First, the dimensionless propagat w, we have checked that the correction terms given in Ref.

f(t) is defined by 23 are small and negligible. N
The largest contributions t&*"=%2RA"/a3 and RN

Q :
f()=e "singt. 4.4 =RV ag are given by
~an ey (T2t T2
Note here that the “frequency’? is being allowed to be R™(T1,Ty)=—0sa lle Q dt f(Ty+T2—1)
complex to include over and underdamped motion. Then, the
dimensionless third-order signal is given by, ®)(T;) XF(t=Tyf(1), (4.9

=|R®) 2 -
|R™(Ty)|%, where RNY(T,, To) =3 Za,H(TH)[f(T,+To)+f(T)],  (4.10

~ h _
RO(Ty=— RO(TY=a f(T+- . (45 Where
0

gi % i12
Here, 9=%0 (m) : .17
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(a) AH case (c) AH+NL case
18 18
HQ Q ©
- pRBOYO [ :
0 0
(b) NL case (d) AH-NL case
18 Q S 18
T; 9
0
0 9 18 0 9 18
T T,

FIG. 3. The contour plots of the fifth-order signal from a weak damping mode with=0.1. The parameter@§,«,) are(0.01, 0, (0, 0.03, (0.01, 0.0},
and(—0.01, 0.0} in (a), (b), (c), and(d), respectively. The frequendy is normalized to unity.

Using these dimensionless expressions, we performedonlinearity are comparable are discussed by the two cases
numerical calculations for the Ohmic damping. The fifth- (c) and(d), which are different in the relative sign g§ and
order signals defined by I®)(T,, T)=|R™(T,,T,)  a,.
+RNY(T,,T,)|? are presented for a weak damping constant  In the weak damping cag€ig. 3), the signals oscillate
(Fig. 3 and for a strong damping constafig. 4). The case  Wwith the frequency @ alongT; in all the case$a)—(d). This
where anharmonicitygs) is much stronger than nonlinearity is the same oscillation as that 8&3)(T,), as clearly seen
(ay) is discussed bya) AH case; the opposite case is dis- from Eq.(3.9). This supports the conclusion drawn from the
cussed byb) NL case. The cases where anharmonicity anddouble-sided Feynman diagrams that Thedependences of
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(a) AH case (c) AH+NL case
6 6
T2 % - T2 -
T 0 0
0 3 6 0 3 6
T T
(b) NL case (d) AH-NL case
6 6
T2 ™ 3 T2 - 3
T 0 T 0
0 3 6 0 3 6
T1 Tl

FIG. 4. The contour plots of the fifth-order signal from a strong damping mode with=1.0. The other parameters are the same as in Fig. 3.

R®), RAH andR\' are similar at least for weak damping. (a)—(d) show very different profile. In the AH case, the sig-
On the contrary, along,, the signals in the caga)—(d)  nal is distinctly asymmetric with respect Ig and T, axis,

look rather different. In the cas@—(d), the signals along while it is fairly symmetric in the NL case. Another feature

T, are superpositions of one, two, three, and three oscillatiom the AH case is that the signal does not have initial rise

(s) of the frequency 2, respectively. The way of interfer- along T, axis within a certain range of,; it only decays

ence among these components in c@sés opposite to that from a certain value along;. On the other hand, the signal

in case(d) due to relative sign difference gf anda,. This  rises initially, reaches a peak, and then shows decay along

also supports the conclusion on tfig¢ dependences of the both axis in the NL case. The signals in caé®sand(d) can

signals drawn from the double-sided diagrams. be understood as superpositions of those in casemd (b).
Under strong dampingFig. 4), the signals in the cases In this way we have shown that two different system can
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produce identical third-order signals but rather different Experimental Data ——
fifth-order signals. Fitted Data ——-

V. SIGNALS FROM MULTIMODE SYSTEMS

A generalization to the multimode system is straightfor-
ward. The multimode Hamiltonian is given by Eg.1) with
Pg Msﬂg 2
Hy(P.Q) =2 [2M5+ 5 Qi+ Vs(Qy)

gi Mg j gi Csi Us 2 e
S

- Mg wg
(5.1

Here,Qs andV4(Qs) are the coordinate of theth mode and
the anharmonicity of the potential for tleth mode, respec-
tively. As in the single mode case, we employ the Ohmic , _ _ _
dissipation model and we parameterize the theory in terms df'C: 5. The third-order signals for CHEIThe experimental data in Ref. 3
. . L (solid line) are well simulated by the three-mode modaioken ling.

the damping constantys instead of giving the values
(ms,i y Wgj -Cs,i)- o ) )

The anharmonicity/s is given by linear termaya,.Qs shall be symbolically denoted, in the

Tas ~s Tus ~4 following.) This is the reason two expressions of the third-

Vs(Qe) =Alds| Zy Qs 5 Qs+ |, (5.2 orderR® in Appendix C are the same within the approxi-

' ' _ mation. The difference between polarizabilities in the two
where the dimensionless coordinafy is defined byQs  models appears in the square tefdenoteda,); the MC
=QsVil(M)y). model has coupling terms such @5Q,, while the MNC

In this HamiltonianH4(P,Q), all the modegspecified does not. This is the reason the fifth-order signals in the two
by s) are assumed to be mutually independent. This assumpnodels are different from each oth@ee Appendix ¢
tion may be reasonable, particularly if the mode frequencies  The fifth-order expressions for the multimode system
Qg are well separated in magnitude. can be classified into two parts as in the single mode case:
For the polarizabilityaq in Eq. (2.1), in addition to the  one originating from nonlinearity and the other from anhar-
linear model defined byo=ao(1+ ¥a1sQs), we consider monicity. The former nonlinear contribution in the MC
two simple modelsmode noncoupling modahdmode cou- model, calledRN"M€, is different from that in the MNC

J(w)

0 100 200 300 400

wlcml]

pling model model, calledRNt. The latter anharmonic contributions in
In the mode noncouplingVINC) model, the polarizabil- the two models are the same and are caRé4.
ity is given by The third-order expression involves the independent pa-
rameters()s, ys, anda;s (see Appendix € R*" involves
aQ:aOE exH31:Qs]— ag(Ns—1), (5.3  the parametegss in addition to the third-order parameters
S

Qg, v, anda;s. On the other handRN: and RN"MC are
Where’éls is a dimensionless expansion parameter'mgﬂg Specified Only by the the third-order parameters. This is be-
the number of modes. The modes in this system can pgause, in the MC and MNC models, the coefficient of the
treated as independent with each other and the total responggcond nonlinearity is determined @s. Thus from the
function is given by the sum of the response function forthird-order experiment, we can determine the parameters
each mode. The response functions are given in Appendix G2s. ¥s, anda;s, but we cannot determine the remaining

In the mode couplingMC) model, we assunié® parametergs. The remaining parametegss should be de-
termined through the fifth-order experiment.
aQ= (4 4)) exﬁ{zs 515 QS

_ (5.4 To demonstrate the results in the multimode case, we
calculate the fifth-order signals for chloroform (CHChand

The modes in this model are no longer independent and theS? hird-ord ) liditv of ,

interact with each other through radiation fields. However, rom third-order experiments. Validity of various assump-

r carbon disulfide (Cg by using parameters obtained

we can calculate response functions rather easily even in thjlons of the current theory will be discussed in the next sec-

model, if we use the collective coordinale=23;5Qs as a The third-order experiment of CHglcan be well ex-
main variable in the calculation. For details and the expres-

sions of the response functions in this model, see A endii?lamed by the multimode Hamiltonian with three modes as
c P ' PP shown in Fig. 5, where the parameténs the unit[cm 1])

Polarizability in both the MC and MNC models coin- 2'€ 91Ven by

cides with that in the linear model up to the linear teffirhe 1=2117 Q,=39.00 y,=77.0
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AA /\ A JAVAYAN
0.2 0.4 0.6 0.8

T, [ps]

BY(T,T)

BH(0.33,Ty)

FIG. 6. The fifth-order signal of CHGlfor the AH2 case. The graph in the right is the signal gt 0.33ps 1].

7,=2.10 Q,=2585 v,=15.0 (5.5 similar to those in Fig. @) since only the(2, mode comes
into play in this model; the two plots in Fig. 6 complement

73=1.25 (13=368.5 y3=220. the contour plot in Fig. @&). Compared with the plots in Fig.

6, the plots in Fig. 7 are quite complicated due to interfer-

= ence of the three modes. The difference between the two

75={sAus" (5.6 cases are significant enough to be distinguished by experi-

By using the above set of parameters, we calculate anghents.
compare the fifth-order signal of CHOh two considerably We next apply our result to carbon disulfide (£.Sfor
simple cases. In one cag@H2 cas@, we assume that Wwhich the fifth-order experiments have been done
only the second modeQ, has anharmonicity g,  extensively’® As shown in Ref. 7, the third-order experi-
= Q3= 0,’§ng 0) and that the polarizability is linefrg ments on Cgare well explained by the two-mode system

= ap(1+=,:04)]. Since the value s, determines only ~ Specified by the parametefis [cm™'])
the absolute magnitude of the signal and does not contribute _ _ _

to profile of the signal, here we set it to unity. In the other L=100 Q,=12.9 % =430
case(NL casg, we assume that all the modes are harmonic =220 0,=39.2 7y,=63.7.

in the MNC model.
The fifth-order signall ®)(T;,T,)=|RO)X(T,,T,)|? in We examined the mode noncouplifyINC) and the

the AH2 case is given in Fig. 6. The features of the signal arenode couplingMC) models, in addition to the linear model,

Here, we have introduced the strength of the mode

(5.7

MYT,T;)

I[‘\\

o‘t\
)\ I ‘\ »
,‘/I/I' X ' /,Q\'I/'//» “‘:', BN

FY0.33,1y)

/ / \" ,, l'
0‘1 w//,, ", // ‘ .
0.2 =&
Ty [ps] 0.3
0 Oi2 O.'4 ofe 0j8 1
T, [ps]

FIG. 7. The fifth-order signal of CHGIfor the NL case. The graph in the right is the signalla&0.33ps 1].
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by using this set of parameters and by changing remaining
free parametergs; andgsy . After a careful examination,
we found that the MC model is the best of the three. Within
a rather broad range of anharmoniciy,/a;y=—6 to 0
with g5, =0, the MC model gives fairly reasonable fits to the
experimental resulfFig. ).

All the signals in Fig. 8 resemble the experimental re-
sults (given in Fig. 10 of Ref. ®in the following three
points: (S1) the 2D signal decays asymmetrically in the two
time variablesT; andT,. (S2) alongT, axis with fixed T,
the signal first rises from zero, reaches a peak and then de-
cays with smaller time constant than that of the third-order
signal.(S3 slowest decay rate alorf, axis is almost iden-
tical to that of third-order signal.

However, there are following two differences between
the experimental signal and the calculated signal in Fig. 8:
(D1) the experimental signal has no inertial rise alongThe
axis aroundr,=0—500[fs] (the signal afT;=0 has a non-
zero valug, while the calculated signal rises fromi;
=0[fs] to the peak aroundi, = 120[fs]. The ridge alond »
axis (aroundT;=100-20( fs]) observed in the calculated
signals is not seen in the experimental sigril2) in the
experiment the slowest decay along Theaxis is about three
times faster than that along tfig axis, while in the calcu-
lated cases the former is faster but not three times faster than
the latter.

The main characters of the strongly damped anharmonic
contribution to the signal is that it has nonzero valuél at
=0 and shows no inertial rise in a certain rangeTgf[see
Fig. 4(a), for examplg as has been observed in the experi-
ments. We thus suspect that anharmonicity of the mode
plays some role in the fifth-order signal, although it is diffi-
cult to determine the qualitative rat@y,, /a;; as mentioned
before. (Inclusion of the anharmonicity into the lower fre-
guency modeg), deteriorates the fits.

As seen above, the theoretical signals cannot perfectly fit
the experimental signal. Since the reasons for this have been
already discussed in the literaturé,we do not iterate them
here. It should be noticed that the difference between our
analysis and previous ones is only inclusion of anharmonic-
ity which is assumed to be rather weak in the above and thus
can not be the fundamental reason for the discrepancy.

VI. DISCUSSION

In this section, we discuss validity of the assumptions of
weak anharmonicity of the potential and of weak nonlinear-
ity of the polarizability ;> «,) in real substances. For in-
tramolecular modes these assumptions may be reasonable
since the relevant value @, is confined to a small region
around an equilibrium configuration. For low frequency in-
termolecular modes, here we explain some more detail by
taking the C$ case as an example.

Since the third order signal can be well fitted by the two
modes(), and Q,, the following simple physical picture

2279

(@) %3/ 8in =00

1000

T[ts] 500

0 500 1000

niffs]

(b) B/ Oy =-3.0

1000

T[ts] 500

0 500 1000

Ti[ts]

(©) %35/ g =060

1000

Ty[fs] 500

0 500

1000

Ti[fs]

has b?en emplpyed II‘.I the literatusee, for example, Refs' 7 FIG. 8. The fifth-order signal of CSor the mode couplingMC) model at
and 8: By the first pair of pulses, molecules are excited duey) g,,,/3,,,=0.0, (b) Gay /A= — 3.0, () Gy Az = —6.0. to be com-
to the strong(anisotropi¢ polarizability, and start to librate pared with Fig. 10 in Ref. 9.
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in phase to the other excited molecules in the potential wellfourth-order anharmonicity can be lager than those of the
formed by surrounding molecules. This coherently excitedhird-order, in the seventh-order spectroscémfated to the
motion decay by the loss of the phase relations among thfour-time correlation function {[[[ a(t1),a(ty)],a(t3)],
excited molecules. After this decay, the initial isotropic po-a(t,)])).?*
larizability can not be restored, because the molecules ex- The analysis in the present article was focused on off-
cited by the first pair of pulses have perturbed their environresonant measurements using optical pulses. Equivalent ex-
ment, forming a net orientation. This anisotropic distributionperiments can be carried out by using infrared pulses to
of molecular orientation finally decays by diffusion. This bi- probe the vibrational transitiorf&.In such a case we should
modal process may be observed by the final probe pulseeplace the interactiorEz(r,t)aQ in the effective Hamil-
From this point of view, the),; mode has its origin in the tonian Eq.(2.1) by E(r,t)uq. Here, ug is the transition
coherently excited intermolecular librational motion and thedipole moment. The present formulation can be adapted to
Q, mode in the slowest bulk diffusive motion. this case by simply replacing the multitime correlation func-
The fast librational motion may be influenced by thetions of «(t) by the corresponding correlation function of
local environment and thus be inhomogeneous, while the difu(t). The advantages of the infrared experiment is, for ex-
fusive dynamics may be caused by a random process arample, that lower order nonlinearity is requirghe infrared
thus be homogeneous. Accordingly, Tominaga and Yoshiphoton echo(third-ordey and the Raman ech¢seventh-
hara as well as Tokmakoff and Fleming simulated the signabrdep experiments both measure the three-time response
taking into the inhomogeneous effects for the higher frefunction| although ultrafast technology of infrared laser is
guency modés). However, it was found that the inhomoge- not developed well. Despite the formal similarity of the off-
neous effects are not so large in their analysis. This is theesonant optical and the resonant infrared experiments, the
reason we employed homogeneous two modes here. information is complementary since the correlation functions
Thus it is natural that the librational motion be describedof « and u carry different information as was shown in the
by an anharmonic Brownian oscillaté},,. To justify the  water casé®
description of diffusive motion by}, , it should be noted
that in the Br(_)wnlan oscllllator. model a V|brat|'or7al mode IS\ /11 CONCLUSION
not necessarily a physical vibrational mode; in an over-

damped case whef@Z< y2/4, the third-order response func- In this paper, we derived the fifth-order nuclear response
tion (in the harmonic cagecan be expressed as a product offunction for the fifth-order off-resonant experiments. The an-
a rising function and a decaying function harmonicity of the vibrational modes was treated as pertur-

bation. It is stressed here that the signal is sensitive to rela-
ﬁ‘sg)(t)z'é % Q_s; (1—e s t/7os, 6.1) tiye importance of the anharmonicity and the nonlinegrity,
20 since both effects can be observed as the largest contribution
to the signal. On the other hand, the third-order signal is
where 1fg= 24“;52,/752/4—952 and 1kp=y/2—({,. This insensitive to neither anharmonicity nor nonlinear coordinate
form with exponential rise constant. and decay constant dependence of polarization, since the largest contribution de-
Tos has been widely used in previous studies of the thirdpends on neither the anharmonicity nor the nonlinearity.
order experimen(see, for example, Ref.)4In other words, Based on analytical expressions, double-sided diagrams,
the Brownian oscillator model is a convenient mathematicahnd numerical calculations, we showed that anharmonicity
tool which can deal with a vibrational motiorﬂé> y§/4) and nonlinear coupling can produce identical third-order sig-
and a diffusive motion $(L§< y§/4) in a unified way. nals, but very different fifth-order signal, explicitly for a
As considered above, the anharmonic Brownian oscillasingle mode system.
tor model seems to be a fairly reasonable modeling for low  We also calculated the fifth-order two-dimensional sig-
frequency modes in liquids. The assumption of weak nonlinnals for CHC} and C$ using the spectral distribution ob-
earity of polarizability @,> «,) also fits the above interpre- served in the third-order experiments such as ISS. We com-
tation, is a mathematically simple assumption that is easy tpared our results with experimental data on, ©Btained by
handle, and thus can be a reasonable starting point of thEokmakoff and Fleming, which indicates a sign of anharmo-
theory. Accordingly, the assumption of weak nonlinearity nicity in CS,.
has been successfully and widely used for,ds the
literature®"~°
In this study only the third-order anharmonicitye.,
g°Q3) surfaces and it makes the leading order contributionto  The authors appreciate fruitful discussions with S.
the fifth-order off-resonance signal in the linear-polarizationMukamel, K. Tominaga, K. Yoshihara, and T. Tahara. They
approximation. Though the fourth-order anharmoni¢itg.,  would also like to thank A. Tokmakoff, G. R. Fleming, T.
g*Q*) plays a minor role in the fifth-order experiments, it is Steffen, and K. Duppen for sending their preprints prior to
possible to take into account such effects by a simple genepublications. We greatly acknowledge the support from the
alization of the present study. As shown in the separatdapanese Society for the Promotion of Science and Grand-
article2* we can explore higher-order anharmonicity throughin-Aid for Scientific Research from the Japan Ministry of
higher-order experiments. For example, the effects of théducation, Science, Sports, and Culture.
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APPENDIX A: RESPONSE FUNCTIONS AND THEIR

GENERATING FUNCTIONAL

In this Appendix we introduce the generating function
W(J) and show that the response functions can be generated

2281

(Q(t2)Q(t3)Q(t1))e

=(Q2Q3Q1) —(Q2Q3)(Q1) —(Q3Q1){(Q2)
- <Q2Q1><Q3> + 2<Q2><Q3><Q1>

from W(J) through derivative byl. Following arguments

are the basis of the Feynman rule on the unified time path
(UTP). The derivation of the rule itself is given in Ref. 24

which relies on the arguments here.

In order to calculate response functions, we consider théor t;>t,>t,, whereQ(t;) is denoted byQ; .

7 W)
3=0

=01(t1)d5(12) 5 [ﬁl(t3)+<92(t3)] (A4)

In the above

system given in Eq(2.1) with artificial external sources at we have sef=0 after performing the derivatives in order to
E(r,t)=0. The source is introduced for calculational conve-recover the original system.

nience and shall be set to zero at the end. The time evolution

In general the expectation of the multicommutator is

operator and the initial density matrix in the presence of theequal to the cumulant expectation. For example, we have

artificial external fieldJ=(J,, J,,
KJa(ty,t,)=Te (1) diHg(P.Q)-
pla=Te (U1 diHg(P.Q)~351Q],

whereT is the time-ordering operator,

J.(0)Q]

J3) are given by

([[Q3,Q2],Q11)c=([[Q3,Q2],Q1]), (A5)

(=12, andR® can be expressed as

2
(A1) RO(Ty,Ty) = ( ) ([[a(T1+T),a(T) ] a(0)])c.

which reorders opera{\ote here the last subscriptis the difference from the pre-

tors according to the time associated with the operators. Thgioys definition ofR®).

nonequilibrium generating functionalV(J) for the con-

Thus, from relations similar to EqA4) and from the

nected(or cumulant response function is then defined by  gefinition

eMW) =Ty [ pIs[ K I2( o0

0)]'K1(,0)].

Here, Tr means the trace over both the syst€h and the

bath (;) coordinates. The three

[KY2(,0)]", andp’s, correspond to the real time evolution

(A2) 9 h_o
I)=7 - 30 T a3,
operators,’1(,0), c?(’)(t)E% (? aja(t)_ TL_ &Ja(t))'
1 2

of the ket, that of the bra, and the imaginary time evolution
for the initial state, respectively. These three time evolutiongve have
are, respectively, associated with tGg-, C,-, and C;-path

in Fig. 2.

Introducing the time ordering operatdg on the unified
time pathC=C;+ C,+ C3, which reorders operators along

the arrow shown in Fig. 2, we have

e(im)W(Ic)

whereJc(t)=J,(t) if tisonC, («=1,2,3).

=Tr[Te e (M)Jc dtiHg=3cv QI

2
i
5 _
Rl )(Tl,Tz)—(%) [, 0)@a, (1)~ @ay0)XayT))
= 0) %oy (T T Aay(0)Xay(Ty]

i
X a&(‘>(T1+T2) g W(J) ’ (A6)

(A3) 1o

where

We employ simple notations for derivative operators

_ﬁ
31(t)=i—m,

ﬁz(t)E—i—m.

Note that we add the minus sign fé
should be removed if we replad&/(J)

following expressions sincéc(t,,t5)=—

(S Cz] .
We can show

(A7)

@y = g+ ad(t)+ za[ A(t) ]2+ -

In the same way we have the expression for the response
functionsR®), RA", andR" in terms ofW(J)

i i
RE(T) =+ afd(0)d (T 2 WJ)| . (A8)
J=0
in the above, but it i\
in the above, but i RAH(T. T _) 39 (0) o (T
with W(Jg) in the (T1.T2)=| 7] @19 (007 7(Ty)
dc(ta—t3) [to,t) i
xa(‘)(TlJrTz)%W(J) , (A9)
J=0
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NL _
RVN(T.,To)=| &
+9(0)9 (T a' (Ty)
+97(0)07(0)a(Ty)]

12
|
_> afay[d(0)d (T T+ Ts)

X TN(T+T,) ;,L—W(J) (A10)
J=0

The derivative operators appearing in E¢&8)—(A10)

correspond to external points in the specified diagrams. For,
example, two 1-points and one 2-point in the first diagram in2

Eq. (3.12 come from the derivative operatos{™)(0)
AT d )T+ T,)0 7 )(T1+T,) in Eq. (A10).

APPENDIX B: ANALYTICAL EXPRESSION FOR
RAM(T,, Ty)

To perform the integration overin Eq. (3.13), we first
use the formula

Sin X, Sin X5 Sin X3

1 .
= - Z 2 6263 S|n(X1+ 62X2+ €3X3). (Bl)
52,53:t
The result of the integration is given by
RAN(T,To)=—03al[F(T) —F(Ty+Ty)], (B2)
where
4 e T2
F(t)= -1)
=207 & V' Vv zay?
Y .
X ES|r[§(ait+bi)]+§ai cog {(ait+bj)];.
(B3)

Here, (al,az,a3,a4)=(1,_1,_3,_1) and @1,b2,b3,b4)
=(T2,To, 2T+ T, 2T+ T5).

APPENDIX C: RESPONSE FUNCTIONS FOR
MULTIMODE SYSTEMS

K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes

3
ag o T1+Ty
RAM(TL To)=— 23 2 Tasdl f O, dt
S Ty

Xfs(Ty+ To—)f(t=Ty)fs(1), (€3
3

RNL(leTz): % z a 55525
Xf(To)[fs(T1+T2) +f5(T1)]. (CH

Here, @,,=42 2, and the dimensionless propagafqft) is

iven by

Q
f(t)= — e " sin 7t (C5)
Ls
with = Q- y/4.
In the mode couplingMC) model, the response func-
tions are expressed as

2
o
R(s)(Tl): 2 fyuc(Ty), (Co)
RO(Ty,Tp)=RA(T,, Tp) +RVME(T,,Ty), (C7)
where the functiorf,: is given by
fuc()=2 @ (D), (C8)

andRN"MC which is equivalent to the homogeneous limit of
Eqg. (4.17) in Ref. 6, is given by

]
RVME(T,T,) = 72 fmc(T2)[Fmc(T1+T2) +fuc(To) ]

(C9

As mentioned in text, the third-order response function
and the fifth-order sign®®*" are the same in the two models
within the approximation. Note th&®) in Eq. (C1) and Eq.
(C6) as well asR* in Eq. (C2) and Eq.(C7) are the same.
The spectral distribution in the two models of polarizability
is then given by

NsWYs
0?0+ YL’

2
Iw)= % p) ( (C10

In this Appendix, we give expressions for response funcwhere the strength of the mode is definedy= Q4 2..

tions for the multimode Hamiltonian. The largest contribu-
tions to R®)(T,) and to the counterparts &*" and RN
(introduced in the single mode casere presented below
under the assumptioa, ;< 1.

In the mode noncouplingMNC) model, the response

As suggested in text, the expression RV-MC(T,,T,)
given in the above is obtained easily by introducing into the
Hamiltonian the source ternd, = a;Qs in which the
sourced, (¢=1,2,3) is coupled to a collective variab@
=3, a,Qs. Then derivation oRN-MC becomes straightfor-

functions are given by the sum of the response functions fo, 54 and, here, we only note that the propagator of this

each modes as mentioned before
2

o
R<3>(Tl)=2s 705 2 £(Ty), (C1)
RO(T,,T,)=RA(T,, T,) +RY(T,,Ty), (C2

where

collective variable is given by

§ a2, D ()= —ifye(t), (C11)

since the source for the collective modes can be re-expressed

asJ, 3¢ a;4Qs wherea;s=a15/(MQJ)/%.
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