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We have developed a theory of the fifth-order off-resonant spectroscopy to study the effect of
anharmonicity of molecular vibrational modes. The anharmonicity, as well as nonlinear dependence
of polarizability on nuclear coordinates, can be the origin of the fifth-order Raman signal. A profile
of the signal varies depending on the relative importance of the two effects—the anharmonicity and
the nonlinearity. The anharmonicity of a potential can be distinguished from the other effects such
as the nonlinearity or the inhomogeneity of vibrational modes. In order to carry out calculations
analytically, we employ the multimode Brownian oscillator model and treat anharmonicity as
perturbation to the harmonic vibrational modes. A simple analytical expression for the fifth-order
polarization is obtained through a diagrammatic technique, called Feynman rule on the unified time
path. Physical pictures for the analytical expression are given for a single mode system through
numerical calculations and through double-sided Feynman diagrams. Applications to CHCl3 and
CS2 are made where the third-order experiments are used to extract parameters. In the CS2 case, the
theoretical fifth-order signals are compared with recent experiment, which suggests some sign of
anharmonicity. ©1997 American Institute of Physics.@S0021-9606~97!00331-0#
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I. INTRODUCTION

The feature of inter- and intramolecular vibration
modes and their dephasing in liquids plays a central role
virtually all chemical processes in solution. The recent
vent of ultrafast laser technology makes it possible to p
form nonlinear vibrational experiments that can probe
information. Experiments conducted so far, including imp
sive stimulated light scattering~ISS!,1 femtosecond optica
Kerr effect~OKE!,2–4 and far infrared~IR! absorption,5 have
yielded spectral densities in the low-frequency range, prov
ing characteristic properties of intermolecular nuclear
grees of freedom, both local and collective.

Recently, two-dimensional off-resonant spectrosco
was proposed to separate the inhomogeneous distributio
slowly varying parameters~e.g., due to local liquid configu
rations! from the total spectral distribution of nuclear tim
scale.6 This experiment uses two pairs of excitation puls
and related to the fifth-order nonlinearity. Experimental7–9

and theoretical10–13 studies have been made to explore p
sibility to detect such inhomogeneity. In this paper, w
present another possibility of the fifth-order off-resonant
periments: detection of anharmonicity of vibrational mod
with the help of the third-order experiments such as ISS
OKE.

The primary microscopic basis for understanding sp
troscopic experiments can be normal modes analysis by
lecular dynamics simulations.14–17In this simulation method,
calculation of the higher-order optical signals is demand
and the method to include quantum effects are not w
established.17 On the other hand, if we employ the mult
mode Brownian oscillator model,18,19 analytical calculation
can be performed quantum mechanically, though mic
scopic origins of the Brownian modes are sometimes
scured. In the Brownian model, collections of normal mo
J. Chem. Phys. 107 (7), 15 August 1997 0021-9606/97/107(7)/22
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oscillations can be interpreted as being represented by
eral primary~harmonic! modes coupled to the baths.

For the moment, we consider a system with a sin
Brownian coordinateQ to present experimental observabl
in terms of response functions. In the third-order off-reson
experiments, such as ISS and OKE, the signal is relate
the two-time correlation function of the nuclear polarizab
ity, R(3)(t);^@a(t),a(0)#&, wherea(t) is the polarizability
in the Heisenberg representation@defined in Eq.~2.5!#. In
such polarizability sensitive measurements, coordinate
pendence ofa is essential, since, ifa is a c-number,a(t)
commutes witha~0! and R(3) vanishes. If one expands po
larizability in terms of the coordinate in the Heisenberg re
resentationQ(t), i.e., a(t)5a01a1Q(t)1a2Q2(t)/21•••
~assuminguanQnu@uan11Qn11u!, then characters ofR(3) are
determined bya1

2^@Q(t),Q#&.
In the fifth-order off-resonant measurements, the sig

is related to the three-time correlation function,R(5)(t,t8)
; ^@@a(t),a(t8)#,a(0)#&, which is defined in Eq.~2.6!.
Since thea1

3 term ~i.e., ^@@Q(t),Q(t8)#,Q#&! vanishes in the
harmonicBrownian model, features of the signal can be ca
tured by the term proportional to a1

2a2 ~i.e.,
^@@Q2(t),Q(t8)#,Q#&, etc.!.

The easy-to-handle harmonic models in general ar
fairly good but idealized model. The multimode~harmonic!
Brownian model has been successfully used to study vib
tional spectroscopy in liquids.19 From a molecular dynamics
study, however, anharmonicities in the low frequency vib
tional normal modes were found in water15 as well as in
CS2.

16 To reflect such anharmonicities, we include anharm
nicity, expressed byg3Q31g4Q41••• , into the primary
Brownian mode.~More dynamics-oriented interpretation o
anharmonicities is given in Sec. VI.! Although anharmonici-
ties of each normal mode and of the Brownian modes are
226767/17/$10.00 © 1997 American Institute of Physics
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2268 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
the same, we believe that the present study must be a g
starting point to take the normal-mode anharmonicities i
account.

In the present study we assume that the anharmonici
weak so that it can be dealt with as perturbation. In additi
we assume that the polarizability is well approximated
first few terms in the expansion in terms of the primary c
ordinateQ. These assumptions may be reasonable to g
representative results, although there may be a case w
this standpoint is not appropriate.20

Taking the anharmonicity into account, we re-exam
the response functionR(3) andR(5) presented above. Even i
the anharmonic case, behavior ofR(3) can still be described
by a1

2^@Q(t),Q#& as in the harmonic case, if the anharm
nicity is not considerably strong.

In contrast, the main contribution toR(5) in the anhar-
monic case can be different from that in the harmonic ca
For example, if the anharmonicityg3 is significantly large
compared with the nonlinear polarizabilitya2 , the principal
part can be the term proportional toa1

3g3 ~i.e.,
^@Q(t),Q(t8)#,Q#&!.21 On the contrary, in the harmoni
case, the dominant part is always the thea1

2a2 term as men-
tioned before. Since the time dependence of thea1

3g3 term is
different from that of thea1

2a2 term, R(5) can be used to
detect anharmonicity. In realistic cases, depending on th
relative ratio ã 1

3g̃3 /(ã 1
2ã2) ~where x̃ denotes dimension

less quantity ofx!, the behavior ofR(5) may vary since the
time dependences of the terms proportional tog3a1

3 and to
a1

2a2 are different from each other.
Thus it is possible that anharmonicity and nonlinear c

pling produce identical third-order signals, but rather diffe
ent fifth-order signals. To demonstrate this, we calculated
fifth-order response function in the presence of anharmo
ity of vibrational modes. To carry out calculations w
employed the Feynman rule on the unified time path,22–25

which is suitable for the oscillators in the coordina
representation.26 We obtained simple analytical expressio
for the fifth-order off-resonant signal. In a single mode ca
numerical calculations, as well as interpretations in terms
double-sided diagrams, were given to explain physical
namics in the fifth-order processes. In the multimode ca
we calculated the fifth-order signal numerically by using p
rameters obtained from the third-order experimental data
CHCl3 and CS2. By comparison of the numerical results wi
the recent fifth-order experimental data by Tokmakoff a
Fleming,9 we found some sign of anharmonicity in CS2. We
analyze the physical nature of the Brownian modes of CS2 in
Sec. VI.

II. THE THIRD- AND FIFTH-ORDER OFF-RESONANT
EXPERIMENT

We consider a molecular system in the condensed ph
irradiated with electronically off-resonant pulses. The o
resonant pulses allow us to selectively probe the vibratio
dynamics associated with the electronic ground state thro
J. Chem. Phys., Vol. 107,
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the polarizability. The effective Hamiltonian for a syste
irradiated with the off-resonant electric fieldE(r ,t) is given
by18,19

Heff5Hg~P,Q!2E2~r ,t !aQ , ~2.1!

whereHg(P,Q) is a molecular vibrational Hamiltonian o
an electronic ground-state potential surface andaQ is the
coordinate dependent polarizability. Here,P and Q collec-
tively represent the momenta and coordinates of the vib
tional motions.

If the system is described by a single nuclear mo
specified by its coordinateQ and momentumP ~generaliza-
tion to a multimode nuclear system is dealt with in Sec. V!,
the polarizability and the vibrational Hamiltonian are, r
spectively, expressed as

aQ5a01a1Q1
a2

2
Q21••• , ~2.2!

Hg~P,Q!5
P2

2M
1

MV2

2
Q21V~Q!

1(
i 51

N F pi
2

2mi
1

miv i
2

2 S qi2
ciQ

miv i
2D 2G . ~2.3!

Here,V(Q) is the anharmonicity of the potential

V~Q!5
g3

3!
Q31

g4

4!
Q41••• , ~2.4!

andci is the coupling constant between the system (Q) and
the bath (qi).

This HamiltonianHg(P,Q) can describe a dissipativ
system in the condensed phase, since the Euler–Lagr
equation forQ(t) in this system has the friction term

ME dt8 g~ t2t8!Q̇~ t8!,

whereg(t) is specified by the bath parameters (mi ,v i ,ci)
and is proportional toci

2. ~We have to setN→` to describe
the dissipation.! We can parameterize our theory in terms
g(t) instead of specifying all the values (mi ,v i ,ci). In the
following we employ the Ohmic dissipation modelg(t)
5gd(t), whereg is a constant.@This choice ofg(t) is pos-
sible only after we letN→`.# The strength of dissipation is
reflected in the constantg.

The physical observables in optical experiments can
related to the response functionsR(n),19 which are expecta-
tion values of multicommutators. The response function
lated to the third- and fifth-order off-resonant experiment
defined by

R~3!~t1!5
i

\
^@a~t1!,a~0!#&, ~2.5!

R~5!~t1 ,t2!5S i

\ D 2

^@@a~t11t2!,a~t1!#,a~0!#&, ~2.6!

where @•••# is the commutator (@A,B#[AB2BA), ^•••&
(5Tr@rg•••#) is the expectation by the initial distribution a
the inverse temperatureb

rg5e2bHg~P,Q!/Tr@e2bHg~P,Q!#, ~2.7!
No. 7, 15 August 1997
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2269K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
anda(t) is the Heisenberg operator associated with the e
tronic ground state Hamiltonian

a~ t !5e~ i /\!Hg~P,Q!taQe2~ i /\!Hg~P,Q!t. ~2.8!

Now we explain pulse configuration for the third- an
fifth-order experiment. In general, the electric fieldE(r ,t) in
the (2n11)th order experiment is given byE(r ,t)
5Ef (r ,t)1( j 51

n Ej (r ,t), where Ej (r ,t)5Ej (t)(e
iv j t2 ik j –r

1eiv j8t2 ik j8–r)1c.c. and Ef (r ,t)5Ef (t)eiv f t2 ik f–r1c.c. in
which c.c. stands for the complex conjugate. For example
the third-order experiment~ISS or OKE!, the envelopes
E1(t) and Ef (t) peak att52T1 and t50, respectively (n
51). Thus, in the third order, we apply the system tw
simultaneous pulses~center frequenciesv1 ,v18 and wave
vectorsk1 ,k18! at t52T1 and then the probe pulse~v f and
k f ! at t50.

Pulse configuration for the fifth-order experiment
given by the above expression forE(r ,t) with n52 and is
described in Fig. 1.6,19 The temporal profiles of the pulse
E1(t), E2(t), andEf (t) peak att52T12T2 , t52T2 , and
t50, respectively; the two pairs of pulses are applied to
system, which are followed by the last probe pulse. The fi
pair ~v1 ,v18 and k1 ,k18! is irradiated at the timet52T1

2T2 , the second~v2 ,v28 and k2 ,k28! at t52T2 , and the
final pulse~v f andk f ! at t50.

The polarizations relevant to the third-order and t
fifth-order experiments are, respectively, given by6,19

P~3!~ t !5@Ef ~ t !ei ~v f t2k f–r !1c.c.#E
0

`

dt1 R~3!~t1!

32uE1~ t2t1!u2@11cos$Dv1~ t2t1!2Dk1–r%#,

~2.9!

P~5!~ t !5@Ef ~ t !ei ~v f t2k f–r !1c.c.#E
0

`

dt1E
0

`

dt2

3R~5!~t1 ,t2!2uE1~ t2t12t2!u2
•2uE2~ t2t2!u2

3@11cos$Dv1~ t2t12t2!2Dk1–r%#

3@11cos$Dv2~ t2t2!2Dk2–r%#, ~2.10!

where we have introducedDvn5vn82vn , and Dkn5kn8
2kn .

FIG. 1. Pulse configuration for the fifth-order experiment. The two pairs
pulses are applied to the system, which are followed by the last probe p
The temporal profiles of the pulsesE1(t), E2(t), and Ef (t) peak at
t52T12T2 , t52T2 , and t50, respectively.
J. Chem. Phys., Vol. 107,
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For impulsive pump experiments, we set

Ef~ t !5d~ t !,

E1~ t !5d~ t1T1!,

E2~ t !5d~ t1T11T2!. ~2.11!

Then the signals, which are observed in a phase-matc
direction1,2,7–9 and related to the square of the polarizatio
are given by~up to a proportionality constant!

I ~3!5uR~3!~T1!u2, ~2.12!

I ~5!5uR~5!~T1 ,T2!u2. ~2.13!

III. FEYNMAN RULES FOR RESPONSE FUNCTIONS

In this section we derive the response functions o
single mode system by using the Feynman rule on
unified-time path~UTP!. Originally the Feynman rule was
developed to calculate the vacuum~the ground state! expec-
tation values of operators in an anharmonic system.27 A simi-
lar diagrammatic rule was initiated by using the Matsub
Green’s functions ~propagators! to obtain the thermal
expectation.27 The Feynman rule on UTP is an extension
these rules to obtain the nonequilibrium expectation valu
or the real-time correlation functions.

The common feature of these three methods is that
pectation values are given by the sum of Feynman diagra
Each Feynman diagram consists of points connected by l
and corresponds to an analytical expression by the rule
unique way.

We define here some terms for diagrammatic exp
sions; examples are given shortly. Thei -point in a diagram is
a point from whichi lines go out. Anyi -point is either an
external point or an internal point; the former originates fro
an operator for which the expectation value is calculat
while the latter from anharmonicity. The internal point
also called vertex and the line is called propagator. The
ternal i -point is also calledi -vertex.

To illustrate the Feynman rule, we first consider the d
grammatic expansion ofR(3). According to the expansion o
the polarizability,R(3) can be expressed as

R~3!~T1!5
i

\
a1

2^@Q~T1!,Q~0!#&

1
i

\
a1a2^@Q2~T1!,Q~0!#1@Q~T1!,Q2~0!#&

1
i

\
a2

2^@Q2~T1!,Q2~0!#&1••• , ~3.1!

whereQ(t) is the Heisenberg operator

Q~ t !5e~ i /\!Hg~P,Q!tQe2~ i /\!Hg~P,Q!t. ~3.2!

The diagrammatic expansion of the first term is given

f
se.
No. 7, 15 August 1997
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where we consider theg3 andg4 anharmonicities explicitly
and draw diagrams up to the second order in these anha
nicities.

In each of the above diagrams the two white circles
external 1-points and correspond to the operatorsa1Q(T1)
anda1Q(0). Theblack circles are vertices or internal point
For example, the second diagram have a 4-vertex or an
ternal 4-point from which four lines go out; this vertex co
responds to the anharmonic interactiong4Q4.

From these diagrams, we know the dependences of
diagrams on the parametersa i andgi ; the number and type
of circles determine them. The first diagram is proportio
to a1

2, the second toa1
2g4 , the third toa1

2g3
2 and so forth.

These diagrams can be generated as follows. First,
determine an operator for which the expectation is cal
lated, which fixes the external points that have to be use
diagrams. In the above case, the external points to be
are the two 1-points represented by white circles, which c
respond to the operatorsa1Q(T1) anda1Q(0). Second, we
determine which order of the expectation we calcula
which fixes the internal points. In the case of the order
g3

2 @the third and the fourth diagrams in Eq.~3.3!#, the inter-
nal points are two 3-points represented by black circ
J. Chem. Phys., Vol. 107,
o-

e

n-

he

l

e
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ed
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,
f
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Third, we make all possible connected diagrams out of
given external and internal points by jointing them with lin
~propagators!. In the g3

2 case, we can make two differen
diagrams@the third and forth in Eq.~3.3!# from two 1-points
and two 3-points. In the course, we can use as many line
we need and all possible diagrams have to be taken
account in the calculation of that order.

The term proportional toa1
2g3 vanishes in Eq.~3.3!.

Diagrammatically this simply means that we cannot ma
connected diagrams out of two 1-points and one 3-point
general, we can easily pick up nonzero contributions
these diagrammatic rules.

In the Feynman rule for the vacuum expectation va
and for the thermal expectation, analytical expressions
each diagram would be obtained from the above diagra
However, in the rule on the unified-time path~UTP! for the
nonequilibrium expectation, we add indices, ‘‘1,’’ ‘‘ 2,’’ or
‘‘3,’’ to all the extremities of the lines in order to derive
analytical expressions. These diagrams with indices
calledspecified diagrams, while the diagrams as given abov
are calledsimplified diagramsin the UTP rule.24 The speci-
fied diagrams corresponding to Eq.~3.3! are given by
~3.4!
No. 7, 15 August 1997
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2271K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
The reason why we need the extra (1,2, 3) indices as
above is that we have three types oftimeevolution operators
for the nonequilibrium expectation~see Appendix A!. These
three operators, the real time evolution operator of the
e2( i /\)Hg(P,Q)t, that of the brae( i /\)Hg(P,Q)t, and the imagi-
nary time evolution operatore2bHg(P,Q), are associated with
the C1-, C2-, and C3-paths in Fig. 2, respectively. In th
original Feynman rule for the vacuum expectation, only
C1-path comes into play, and the propagatorsD (11), which
connect two points on theC1-path, are used. In the rule fo
the thermal expectation, only theC3-path comes into play
and the propagatorsD (33) ~Matsubara Green’s function!,
which connect two points on theC3-path, are used. Only on
kind of propagator~D (11) or D (33)! can appear in both case
In the UTP case, however, all the three paths (C1 ,C2 ,C3)
have to be considered and thus we use all the propaga
D ( i j ) ( i , j 51,2,3), which connect a point on theCi-path and
a point on theCj -path. For convenience, we use the fo
independent elements,D (21), D (22), D (23), andD (33), of
the 333 matrix D ( i j ) in the UTP rule. Thus, in order to
specify the four propagators, we add indices (1,2, 3) to the
diagrams. The detail rule for putting these indices are gi
in Ref. 24.

From the specified diagrams, we can easily obtain a
lytical expressions. With an external and internali -points we
associate the factorsa i and gi , respectively. With a line
whose ends carry indicesl andm ~l , m51,2, 3!, we asso-
re

J. Chem. Phys., Vol. 107,
et

e

ors

n

a-ciate the propagatorD ( lm). Then, analytical expressions a
obtained by integrating the product of all the factors a
propagators over all internal points. Detail rules are given
Ref. 24, and here we only present two examples

FIG. 2. The unified time-pathC5C11C21C3 on the complext plane
(T→`). It starts from the origin up to an infinity along the real pa
(C1), returns to the origin (C2), and then goes to2 ib\ along the imagi-
nary axis (C3).
~3.5!

~3.6!
em-
In the Ohmic case the propagatorD (21)(t)[D (21)(t,0) is
calculated as23,24

D ~21 !~ t !5u~ t !
\

iM z
e2gt/2 sin zt, ~3.7!

with

z5AV22g2/4, ~3.8!

whereg is the strength of the damping as mentioned befo
 .

Note that, though this propagator does not depend on t
perature, all the other propagators~D (22), D (23), and
D (33)! depend on it.22–24

From the above arguments, we have

R~3!~T1!5
i

\
a1

2D ~21 !~T1!1••• , ~3.9!

where the terms represented by ‘‘•••’’ are anharmonic cor-
rections.

Now we examineR(5)
No. 7, 15 August 1997
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2272 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
R~5!~T1 ,T2!5S i

\ D 2

a1
3^@@Q~T11T2!,Q~T1!#,Q~0!#&

1S i

\ D 2

a1
2a2^@@Q2~T11T2!,Q~T1!#,Q~0!#

12 terms&1••• . ~3.10!

The first term proportional toa1
3 is called RAH in the

following and diagrammatically expressed as:24

~3.11!

where the terms represented by ‘‘•••’’ are anharmonic higher
order corrections.

The first diagram in Eq.~3.11! is proportional toa1
3g3 ;

RAH originates from anharmonicityg3 . Thea1
3g3

0 term van-
ishes since we can not make a connected diagram ou
three 1-points.

The second term in Eq.~3.10! proportional toa1
2a2 is

called RNL in the following since it originates from nonlin
earity a2 . A diagrammatic expression is given by24

~3.12!

where the terms represented by ‘‘•••’’ are anharmonic cor-
rections.

From above specified diagrams, the analytical expr
sions forRAH andRNL are then given by24

RAH~T1 ,T2!5S i

\ D 2

a1
3S 2

i

\
g3D E

0

`

dt D~21 !~T11T22t !

3D ~21 !~ t2T1!D ~21 !~ t !1••• , ~3.13!

RNL~T1 ,T2!5S i

\ D 2

a1
2a2D ~21 !~T2!

3@D ~21 !~T11T2!1D ~21 !~T1!#1••• .

~3.14!

We note here we can perform the integration in Eq.~3.13!
analytically ~see Appendix B!.

In Eqs.~3.9!, ~3.13!, and~3.14!, the leading terms, which
are explicitly shown, do not depend on temperature, since
corresponding diagrams in Eqs.~3.4!, ~3.11!, and~3.12! con-
sist exclusively of the temperature-independent propag
D (21). The temperature dependence of response funct
J. Chem. Phys., Vol. 107,
of

s-

he

or
ns

come from higher order terms, some of which are shown
Eq. ~3.4! @they are represented by ‘‘•••’’ in Eqs. ~3.11! and
~3.12!#, through temperature-dependent propagators suc
D (22), D (23), and D (33). This means that these respon
functions have a weak temperature dependence if the an
monicity is weak. Although, in what follows, we only con
sider these temperature-independent terms based on
weak-anharmonicity approximation, we stress here that th
expressions are the results of temperature-dependent cal
tions and are very good approximation within the parame
region discussed in this study.

For later convenience, the Fourier transform of the tw
time correlation function is defined by

R~3!~v!5E
0

`

dt eivtR~3!~ t !. ~3.15!

Its imaginary part or the spectral distribution in the Ohm
case is given from Eq.~3.9! by

J~v![Im R~3!~v!5
a1

2

M

vg

~v22V2!21v2g2 1••• .

~3.16!

IV. FIFTH-ORDER SIGNAL FROM A SINGLE MODE
SYSTEM

In this section, we show that anharmonicity and nonl
ear coupling can produce identical third-order signals,
very different fifth-order signals. Our arguments below a
based on analytical results, double-sided diagrams and
merical simulations.

To clarify the points, we assume thata j in Eq. ~2.2! and
gk in Eq. ~2.4! are proportional to the dimensionless para
etersaj andgk22, respectively, for the time being.

Even if we do not specify the relative magnitude ofa
and g ~but do assumea,g!1!, we can conclude thatR(3)

introduced in Eq.~2.5! has the largest nonzero contributio
of the ordera2g0 @explicitly given in Eq.~3.9!#. Based on
diagrammatic representation, we can also show that rem
ing correction terms, including terms proportional toa1a2 ,
are all smaller thana2g1. ~The a1a2 term, for example, is
smaller thana2g1, since this term is of the ordera3g1; in a
harmonic system, thea1a2 term vanishes, since we cann
make a connected diagram from one 1-point and o
2-point.!

On the other hand, the largest contribution toR(5) cannot
be determined unless we specify the ratio ofa to g. If a is
much larger thang ~but still less than unity!, the largest is
RNL. If g is much larger thana, the largest isRAH. This is
becauseR(5) consists ofRNL, RAH, and the other terms@rep-
resented by ‘‘•••’’ in Eq. ~3.10!# where the largest terms o
RNL andRAH are of the ordersa4g0 anda3g1, respectively,
and the other terms are smaller thana4g0 or a3g1. ~Again,
this can be shown from diagrammatic representation.!

Thus under the assumption ofa,g!1, the third-order
signals can be identical for two systems which have differ
ratiosa/g, while the fifth-order signals for the two system
can look different as seen from the analytical expression
No. 7, 15 August 1997
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2273K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
RAH and RNL. In other words, we can use the fifth-ord
experiment to determine the relative importance of anhar
nicity and nonlinearity.

The effectiveness of this strategy depends on how
two main contributions,RAH andRNL, behave differently for
i

nd

fo
e

a

rs
at

t a

n
te

on

tio

J. Chem. Phys., Vol. 107,
o-

e

various parameters. Before checking this point numerica
we explain that the two contributions come from very diffe
ent physical processes.

To have a physical insight, we employ the double-sid
Feynman diagrams.19 For the third-order experiment we hav
~4.1!
o
he

case

m
d

of

er-
Here, the first four diagrams correspond to the first term
Eq. ~3.9! or the diagram in Eq.~3.5!.

In these diagrams, the lower horizontal line correspo
to the time evolution~from the left to the right! of the bra
and the upper line to that of the ket. Black circles stand
the laser interaction. If the polarizability is linear, the las
interaction changes the vibrational state of the systemuv&
into the stateuv61&. This is because we assume the line
polarizability a1Q, in which Q can be expressed asa1a†.
Here, a and a† are the annihilation and creation operato
~a†uv&5uv11&, etc.!. For simplicity, we have assumed th
the system is initially in the ground stateu0& in Eq. ~4.1!.

The first diagram can be interpreted as follows. At firs
system is in the population stateu0&^0u. At t52T1 the ketu0&
interacts with the laser, and the system is in the cohere
stateu1&^0u in the next periodT1 . Here, the coherence sta
n

s

r
r

r

ce

refers to the stateu i &^ j u ( iÞ j ), and the population state t
u i &^ i u. At t50 the ket again interacts with the laser, and t
system is brought back to the stateu0&^0u. ~The final state of
the bra and ket have to be the same state so that the
where the final state becomesu2&^0u should be excluded.!
Thus during theT1 period the system in the stateu1&^0u un-
dergoes the coherence relaxation.

Similarly, we find that in the second diagram the syste
is in the stateu1&^0u in theT1 period, whereas in the third an
fourth diagrams it is in the stateu0&^1u in the T1 period. ~In
general, the two diagrams different only in the positions
the rightmost interaction make the same contribution.! Thus
the third-order experiment probes the dynamics of the coh
ence stateu0&^1u or u1&^0u ~the dephasing process! for the pe-
riod T1 .

The diagrams ofRAH in Eq. ~3.13! are given by
~4.2!
he
n
er
ing

tate
In above diagrams the cross stands for the anharm
interactiong3Q3, which changes the stateuv& into the state
uv61& ~aaa†, etc.! or uv63& ~a†a†a†, etc.!. The cross can
be placed on either upper or lowerT2 portion of the horizon-
tal lines; this can be seen from the fact that the integra
*0

` dt in Eq. ~3.13! reduces to the one over theT2 period

*T1

T11T2 dt ~due to the step function contained inD (21)!.
ic

n

All the diagrams which have to be considered for t
first term in Eq.~3.13! are obtained by the first diagram i
Eq. ~4.2! by moving black circles and the cross to the low
line. For example, the second diagram is obtained by mov
the leftmost circle to the lower line. Thus, we have 24 dia-
grams in total.

In the first diagram, the system is in the coherence s
No. 7, 15 August 1997
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u1&^0u in the T1 period, while it changes the state during t
T2 period in two ways:u0&^0u→u1&^0u and u2&^0u→u1&
3^0u.

By studying all the diagrams, we find that in theT1

period the system is in the coherence state while in theT2
se

q.

n

t

b
ha
in

ite

a

th

J. Chem. Phys., Vol. 107,
period it changes the state from a population state to a

herence state, or from a coherence state to another cohe

state.

The diagrams ofRNL are given by
~4.3!
as

lts

ere

In
of

ef.
In these diagrams, the white circle stands for the la
interaction through the nonlinear polarizabilitya2Q2. This
interaction changes the stateuv& into uv62& ~a†a†, etc.! or
does not change the state~aa†, etc.!.

The diagrams are classified into two types forRNL: In
one type, only the rightmost circle is white@corresponding to
the first diagram in Eq.~3.12!# and, in the other, only the
middle circle is white@corresponding to the second in E
~3.12!#. Each type has 23 diagrams in the harmonic case.

By studying all the 2323 diagrams, we find that during
the T1 period the system is in a coherence state, while
keeps either the population state or the coherence state i
T2 period.

Based on the above analysis, we expect that theT1 de-
pendences ofR(3), RAH, andRNL may have similar property
since in all cases the dynamics of the coherence stateu0&^1u
and u1&^0u is probed in theT1 period. In addition, we expec
that theT2 dependences ofRAH andRNL may look different.
Note that, however, the present analysis based on dou
sided diagram fails to include the effect of dissipation so t
the argument may be reasonable only in weak damp
cases.

In order to carry out numerical calculations, we rewr
the expressions of signals given in the previous section
dimensionless quantities. First, the dimensionless propag
f (t) is defined by

f ~ t !5
V

z
e2gt/2 sin zt. ~4.4!

Note here that the ‘‘frequency’’z is being allowed to be
complex to include over and underdamped motion. Then,
dimensionless third-order signal is given by,Ĩ (3)(T1)
[uR̃(3)(T1)u2, where

R̃~3!~T1![
\

a0
2 R~3!~T1!5ã 1

2f ~T1!1••• . ~4.5!

Here,
r

it
the

le-
t
g

in
tor

e

ãi5
a i

a0
S \

MV D i /2

. ~4.6!

The dimensionless spectral distribution is expressed

J̃~v![
\V0

a0
2

J~v!5Ṽã 1
2 ṽg̃

~ ṽ 22Ṽ2!21ṽ 2g̃ 2
1••• ,

~4.7!

where

Ṽ5V/V0 , g̃5g/V0 , ~4.8!

with V0 being an arbitrary unit of frequency.
The correction terms represented by ‘‘•••’’ in Eq. ~4.7!

were calculated in Ref. 23 in a different context. The resu
show that the correction terms approach to zero when~1! the
anharmonic parameter becomes smaller,~2! the damping
constantg/V becomes larger, or~3! the mode frequency
\Vb becomes larger~for a fixed temperature 1/b!. This
means that, even for low frequency modes in liquids wh
\V can be much less that 1/b, the correction term can be
negligible if the anharmonic parameter is small enough.
the following numerical calculations, we use several set
parameters. In all cases, including CHCl3 and CS2 cases be-
low, we have checked that the correction terms given in R
23 are small and negligible.

The largest contributions toR̃AH[\2RAH/a0
3 and R̃NL

[\2RNL/a0
3 are given by

R̃AH~T1 ,T2!52g̃3ã 1
3E

T1

T11T2
V dt f~T11T22t !

3 f ~ t2T1! f ~ t !, ~4.9!

R̃NL~T1 ,T2!5ã 1
2ã2f ~T2!@ f ~T11T2!1 f ~T1!#, ~4.10!

where

g̃i5
gi

\V S \

MV D i /2

. ~4.11!
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2275K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
FIG. 3. The contour plots of the fifth-order signal from a weak damping mode withg/V50.1. The parameters (g̃3 ,ã2) are~0.01, 0!, ~0, 0.01!, ~0.01, 0.01!,
and ~20.01, 0.01! in ~a!, ~b!, ~c!, and~d!, respectively. The frequencyV is normalized to unity.
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Using these dimensionless expressions, we perform
numerical calculations for the Ohmic damping. The fift
order signals defined by Ĩ (5)(T1 ,T2)[uR̃AH(T1 ,T2)
1R̃NL(T1 ,T2)u2 are presented for a weak damping const
~Fig. 3! and for a strong damping constant~Fig. 4!. The case
where anharmonicity (g3) is much stronger than nonlinearit
(a2) is discussed by~a! AH case; the opposite case is di
cussed by~b! NL case. The cases where anharmonicity a
J. Chem. Phys., Vol. 107,
ed

t

d

nonlinearity are comparable are discussed by the two c
~c! and~d!, which are different in the relative sign ofg3 and
a2 .

In the weak damping case~Fig. 3!, the signals oscillate
with the frequency 2V alongT1 in all the cases~a!–~d!. This
is the same oscillation as that ofR(3)(T1), as clearly seen
from Eq. ~3.9!. This supports the conclusion drawn from th
double-sided Feynman diagrams that theT1 dependences o
No. 7, 15 August 1997



2276 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
FIG. 4. The contour plots of the fifth-order signal from a strong damping mode withg/V51.0. The other parameters are the same as in Fig. 3.
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R(3), RAH, andRNL are similar at least for weak damping
On the contrary, alongT2 , the signals in the case~a!–~d!

look rather different. In the case~a!–~d!, the signals along
T2 are superpositions of one, two, three, and three oscilla
~s! of the frequency 2V, respectively. The way of interfer
ence among these components in case~c! is opposite to that
in case~d! due to relative sign difference ofg3 anda2 . This
also supports the conclusion on theT2 dependences of th
signals drawn from the double-sided diagrams.

Under strong damping~Fig. 4!, the signals in the case
J. Chem. Phys., Vol. 107,
n

~a!–~d! show very different profile. In the AH case, the si
nal is distinctly asymmetric with respect toT1 andT2 axis,
while it is fairly symmetric in the NL case. Another featur
in the AH case is that the signal does not have initial r
along T1 axis within a certain range ofT2 ; it only decays
from a certain value alongT1 . On the other hand, the signa
rises initially, reaches a peak, and then shows decay a
both axis in the NL case. The signals in cases~c! and~d! can
be understood as superpositions of those in cases~a! and~b!.

In this way we have shown that two different system c
No. 7, 15 August 1997
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2277K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
produce identical third-order signals but rather differe
fifth-order signals.

V. SIGNALS FROM MULTIMODE SYSTEMS

A generalization to the multimode system is straightf
ward. The multimode Hamiltonian is given by Eq.~2.1! with

Hg~P,Q!5(
s

F Ps
2

2Ms
1

MsVs
2

2
Qs

21Vs~Qs!G
1(

s
(
i 51

N F ps,i
2

2ms,i
1

ms,ivs,i
2

2 S qs,i2
cs,i Qs

ms,i vs,i
2 D 2G .

~5.1!

Here,Qs andVs(Qs) are the coordinate of thesth mode and
the anharmonicity of the potential for thesth mode, respec-
tively. As in the single mode case, we employ the Ohm
dissipation model and we parameterize the theory in term
the damping constantgs instead of giving the values
(ms,i ,vs,i ,cs,i).

The anharmonicityVs is given by

Vs~Qs!5\VsS g̃3s

3!
Q̃s

31
g̃4s

4!
Q̃s

41••• D , ~5.2!

where the dimensionless coordinateQ̃s is defined byQs

5Q̃sA\/(MsVs).
In this HamiltonianHg(P,Q), all the modes~specified

by s! are assumed to be mutually independent. This assu
tion may be reasonable, particularly if the mode frequenc
Vs are well separated in magnitude.

For the polarizabilityaQ in Eq. ~2.1!, in addition to the
linear model defined byaQ5a0(11(sã1sQ̃s), we consider
two simple models:mode noncoupling modelandmode cou-
pling model.

In the mode noncoupling~MNC! model, the polarizabil-
ity is given by

aQ5a0(
s

exp@ ã1sQ̃s#2a0~Ns21!, ~5.3!

whereã1s is a dimensionless expansion parameter, andNs is
the number of modes. The modes in this system can
treated as independent with each other and the total resp
function is given by the sum of the response function
each mode. The response functions are given in Appendi

In the mode coupling~MC! model, we assume6,19

aQ5a0 expF(
s

ã1s Q̃sG . ~5.4!

The modes in this model are no longer independent and
interact with each other through radiation fields. Howev
we can calculate response functions rather easily even in
model, if we use the collective coordinateQ̃[(sã1sQ̃s as a
main variable in the calculation. For details and the expr
sions of the response functions in this model, see Appen
C.

Polarizability in both the MC and MNC models coin
cides with that in the linear model up to the linear term.~The
J. Chem. Phys., Vol. 107,
t
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linear terma0ã1sQ̃s shall be symbolically denoteda1 in the
following.! This is the reason two expressions of the thir
order R(3) in Appendix C are the same within the approx
mation. The difference between polarizabilities in the tw
models appears in the square term~denoteda2!; the MC
model has coupling terms such asQ̃1Q̃2 , while the MNC
does not. This is the reason the fifth-order signals in the
models are different from each other~see Appendix C!.

The fifth-order expressions for the multimode syste
can be classified into two parts as in the single mode c
one originating from nonlinearity and the other from anh
monicity. The former nonlinear contribution in the MC
model, calledRNLMC, is different from that in the MNC
model, calledRNL. The latter anharmonic contributions i
the two models are the same and are calledRAH.

The third-order expression involves the independent
rametersVs , gs , and ã1s ~see Appendix C!. RAH involves
the parameterg̃3s in addition to the third-order paramete
Vs , gs , and ã1s . On the other hand,RNL and RNLMC are
specified only by the the third-order parameters. This is
cause, in the MC and MNC models, the coefficient of t
second nonlinearity is determined byã1s . Thus from the
third-order experiment, we can determine the parame
Vs , gs , and ã1s , but we cannot determine the remainin
parametersg̃3s . The remaining parametersg̃3s should be de-
termined through the fifth-order experiment.

To demonstrate the results in the multimode case,
calculate the fifth-order signals for chloroform (CHCl3) and
for carbon disulfide (CS2) by using parameters obtaine
from third-order experiments. Validity of various assum
tions of the current theory will be discussed in the next s
tion.

The third-order experiment of CHCl3
3 can be well ex-

plained by the multimode Hamiltonian with three modes
shown in Fig. 5, where the parameters~in the unit @cm21#!
are given by

h151.17 V1539.00 g1577.0

FIG. 5. The third-order signals for CHCl3. The experimental data in Ref. 3
~solid line! are well simulated by the three-mode model~broken line!.
No. 7, 15 August 1997



2278 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
FIG. 6. The fifth-order signal of CHCl3 for the AH2 case. The graph in the right is the signal atT150.33@ps21#.
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h252.10 V25258.5 g2515.0 ~5.5!

h351.25 V35368.5 g3522.0.

Here, we have introduced the strength of the mode

hs5Vsã1s
2. ~5.6!

By using the above set of parameters, we calculate
compare the fifth-order signal of CHCl3 in two considerably
simple cases. In one case~AH2 case!, we assume tha
only the second modeV2 has anharmonicity (g̃31

5 g̃33 5 0, g̃32 Þ 0) and that the polarizability is linear@aQ

5a0(11(sã1sQ̃s)#. Since the value ofg̃32 determines only
the absolute magnitude of the signal and does not contri
to profile of the signal, here we set it to unity. In the oth
case~NL case!, we assume that all the modes are harmo
in the MNC model.

The fifth-order signalI (5)(T1 ,T2)5uR(5)(T1 ,T2)u2 in
the AH2 case is given in Fig. 6. The features of the signal
J. Chem. Phys., Vol. 107,
d

te
r
c

e

similar to those in Fig. 3~a! since only theV2 mode comes
into play in this model; the two plots in Fig. 6 compleme
the contour plot in Fig. 3~a!. Compared with the plots in Fig
6, the plots in Fig. 7 are quite complicated due to interf
ence of the three modes. The difference between the
cases are significant enough to be distinguished by exp
ments.

We next apply our result to carbon disulfide (CS2), for
which the fifth-order experiments have been do
extensively.7–9 As shown in Ref. 7, the third-order exper
ments on CS2 are well explained by the two-mode syste
specified by the parameters~in @cm21#!

hL51.00 VL512.9 gL543.0
~5.7!

hH52.20 VH539.2 gH563.7.

We examined the mode noncoupling~MNC! and the
mode coupling~MC! models, in addition to the linear mode
FIG. 7. The fifth-order signal of CHCl3 for the NL case. The graph in the right is the signal atT150.33@ps21#.
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2279K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
by using this set of parameters and by changing remain
free parametersg̃3L and g̃3H . After a careful examination
we found that the MC model is the best of the three. With
a rather broad range of anharmonicityg̃3H /ã1H526 to 0
with g̃3L50, the MC model gives fairly reasonable fits to th
experimental result~Fig. 8!.

All the signals in Fig. 8 resemble the experimental
sults ~given in Fig. 10 of Ref. 9! in the following three
points: ~S1! the 2D signal decays asymmetrically in the tw
time variablesT1 andT2 . ~S2! alongT2 axis with fixedT1 ,
the signal first rises from zero, reaches a peak and then
cays with smaller time constant than that of the third-or
signal.~S3! slowest decay rate alongT1 axis is almost iden-
tical to that of third-order signal.

However, there are following two differences betwe
the experimental signal and the calculated signal in Fig
~D1! the experimental signal has no inertial rise along theT1

axis aroundT2502500@ fs# ~the signal atT150 has a non-
zero value!, while the calculated signal rises fromT1

50 @ fs# to the peak aroundT15120@ fs#. The ridge alongT2

axis ~aroundT15100– 200@ fs#! observed in the calculate
signals is not seen in the experimental signal.~D2! in the
experiment the slowest decay along theT2 axis is about three
times faster than that along theT1 axis, while in the calcu-
lated cases the former is faster but not three times faster
the latter.

The main characters of the strongly damped anharmo
contribution to the signal is that it has nonzero value atT1

50 and shows no inertial rise in a certain range ofT2 @see
Fig. 4~a!, for example# as has been observed in the expe
ments. We thus suspect that anharmonicity of theVH mode
plays some role in the fifth-order signal, although it is dif
cult to determine the qualitative ratiog3H /a1H as mentioned
before. ~Inclusion of the anharmonicity into the lower fre
quency modeVL deteriorates the fits.!

As seen above, the theoretical signals cannot perfectl
the experimental signal. Since the reasons for this have b
already discussed in the literature,7–9 we do not iterate them
here. It should be noticed that the difference between
analysis and previous ones is only inclusion of anharmo
ity which is assumed to be rather weak in the above and
can not be the fundamental reason for the discrepancy.

VI. DISCUSSION

In this section, we discuss validity of the assumptions
weak anharmonicity of the potential and of weak nonline
ity of the polarizability (a1@a2) in real substances. For in
tramolecular modes these assumptions may be reason
since the relevant value ofQ̃s is confined to a small region
around an equilibrium configuration. For low frequency i
termolecular modes, here we explain some more detai
taking the CS2 case as an example.

Since the third order signal can be well fitted by the tw
modesVL and VH , the following simple physical picture
has been employed in the literature~see, for example, Refs.
and 8!: By the first pair of pulses, molecules are excited d
to the strong~anisotropic! polarizability, and start to librate
J. Chem. Phys., Vol. 107,
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FIG. 8. The fifth-order signal of CS2 for the mode coupling~MC! model at
~a! g̃3H /ã3H50.0, ~b! g̃3H /ã3H523.0, ~c! g̃3H /ã3H526.0. to be com-
pared with Fig. 10 in Ref. 9.
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2280 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
in phase to the other excited molecules in the potential w
formed by surrounding molecules. This coherently exci
motion decay by the loss of the phase relations among
excited molecules. After this decay, the initial isotropic p
larizability can not be restored, because the molecules
cited by the first pair of pulses have perturbed their envir
ment, forming a net orientation. This anisotropic distributi
of molecular orientation finally decays by diffusion. This b
modal process may be observed by the final probe pu
From this point of view, theVH mode has its origin in the
coherently excited intermolecular librational motion and t
VL mode in the slowest bulk diffusive motion.

The fast librational motion may be influenced by t
local environment and thus be inhomogeneous, while the
fusive dynamics may be caused by a random process
thus be homogeneous. Accordingly, Tominaga and Yo
hara as well as Tokmakoff and Fleming simulated the sig
taking into the inhomogeneous effects for the higher f
quency mode~s!. However, it was found that the inhomog
neous effects are not so large in their analysis. This is
reason we employed homogeneous two modes here.

Thus it is natural that the librational motion be describ
by an anharmonic Brownian oscillatorVH . To justify the
description of diffusive motion byVL , it should be noted
that in the Brownian oscillator model a vibrational mode
not necessarily a physical vibrational mode; in an ov
damped case whereVs

2,gs
2/4, the third-order response func

tion ~in the harmonic case! can be expressed as a product
a rising function and a decaying function

R̃s
~3!~ t !5ã 1

2 Vs

2zs8
~12e2t/tRs!e2t/tDs, ~6.1!

where 1/tRs52zs8[2Ags
2/42Vs

2 and 1/tD5g/22zs8 . This
form with exponential rise constanttRs and decay constan
tDs has been widely used in previous studies of the th
order experiment~see, for example, Ref. 4!. In other words,
the Brownian oscillator model is a convenient mathemat
tool which can deal with a vibrational motion (Vs

2.gs
2/4)

and a diffusive motion (Vs
2,gs

2/4) in a unified way.
As considered above, the anharmonic Brownian osci

tor model seems to be a fairly reasonable modeling for
frequency modes in liquids. The assumption of weak non
earity of polarizability (a1@a2) also fits the above interpre
tation, is a mathematically simple assumption that is eas
handle, and thus can be a reasonable starting point of
theory. Accordingly, the assumption of weak nonlinear
has been successfully and widely used for CS2 in the
literature.4,7–9

In this study only the third-order anharmonicity~i.e.,
g3Q3! surfaces and it makes the leading order contribution
the fifth-order off-resonance signal in the linear-polarizat
approximation. Though the fourth-order anharmonicity~i.e.,
g4Q4! plays a minor role in the fifth-order experiments, it
possible to take into account such effects by a simple ge
alization of the present study. As shown in the separ
article,24 we can explore higher-order anharmonicity throu
higher-order experiments. For example, the effects of
J. Chem. Phys., Vol. 107,
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fourth-order anharmonicity can be lager than those of
third-order, in the seventh-order spectroscopy~related to the
four-time correlation function ^@@@a(t1),a(t2)#,a(t3)#,
a(t4)] &).24

The analysis in the present article was focused on
resonant measurements using optical pulses. Equivalen
periments can be carried out by using infrared pulses
probe the vibrational transitions.28 In such a case we shoul
replace the interactionE2(r ,t)aQ in the effective Hamil-
tonian Eq. ~2.1! by E(r ,t)mQ . Here, mQ is the transition
dipole moment. The present formulation can be adapted
this case by simply replacing the multitime correlation fun
tions of a(t) by the corresponding correlation function o
m(t). The advantages of the infrared experiment is, for
ample, that lower order nonlinearity is required@the infrared
photon echo~third-order! and the Raman echo~seventh-
order! experiments both measure the three-time respo
function# although ultrafast technology of infrared laser
not developed well. Despite the formal similarity of the of
resonant optical and the resonant infrared experiments,
information is complementary since the correlation functio
of a andm carry different information as was shown in th
water case.29

VII. CONCLUSION

In this paper, we derived the fifth-order nuclear respon
function for the fifth-order off-resonant experiments. The a
harmonicity of the vibrational modes was treated as per
bation. It is stressed here that the signal is sensitive to r
tive importance of the anharmonicity and the nonlineari
since both effects can be observed as the largest contribu
to the signal. On the other hand, the third-order signa
insensitive to neither anharmonicity nor nonlinear coordin
dependence of polarization, since the largest contribution
pends on neither the anharmonicity nor the nonlinearity.

Based on analytical expressions, double-sided diagra
and numerical calculations, we showed that anharmoni
and nonlinear coupling can produce identical third-order s
nals, but very different fifth-order signal, explicitly for
single mode system.

We also calculated the fifth-order two-dimensional s
nals for CHCl3 and CS2 using the spectral distribution ob
served in the third-order experiments such as ISS. We c
pared our results with experimental data on CS2 obtained by
Tokmakoff and Fleming, which indicates a sign of anharm
nicity in CS2.
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APPENDIX A: RESPONSE FUNCTIONS AND THEIR
GENERATING FUNCTIONAL

In this Appendix we introduce the generating functi
W(J) and show that the response functions can be gener
from W(J) through derivative byJ. Following arguments
are the basis of the Feynman rule on the unified time p
~UTP!. The derivation of the rule itself is given in Ref. 2
which relies on the arguments here.

In order to calculate response functions, we consider
system given in Eq.~2.1! with artificial external sources a
E(r ,t)50. The source is introduced for calculational conv
nience and shall be set to zero at the end. The time evolu
operator and the initial density matrix in the presence of
artificial external fieldJ[(J1 , J2 , J3) are given by

KJa~ t2 ,t1!5Te2~ i /\!*
t1

t2 dt@Hg~P,Q!2Ja~ t !Q# ~a51,2!,

rJ35Te2~1/\!*0
\b dt@Hg~P,Q!2J3~ t !Q#, ~A1!

whereT is the time-ordering operator, which reorders ope
tors according to the time associated with the operators.
nonequilibrium generating functionalW(J) for the con-
nected~or cumulant! response function is then defined by

e~ i /\!W~J!5Tr @rJ3@KJ2~`,0!#†KJ1~`,0!#. ~A2!

Here, Tr means the trace over both the system (Q) and the
bath (qi) coordinates. The three operators,KJ1(`,0),
@KJ2(`,0)#†, andrJ3, correspond to the real time evolutio
of the ket, that of the bra, and the imaginary time evolut
for the initial state, respectively. These three time evolutio
are, respectively, associated with theC1-, C2-, andC3-path
in Fig. 2.

Introducing the time ordering operatorTC on the unified
time pathC5C11C21C3 , which reorders operators alon
the arrow shown in Fig. 2, we have

e~ i /\!W~JC!5Tr @TC e2~ i /\!*C dt @Hg2JC~ t ! Q##, ~A3!

whereJC(t)5Ja(t) if t is on Ca (a51,2,3).
We employ simple notations for derivative operators

]1~ t ![
\

i

]

]J1~ t !
,

]2~ t ![2
\

i

]

]J2~ t !
.

Note that we add the minus sign for]2 in the above, but it
should be removed if we replaceW(J) with W(JC) in the
following expressions sincedC(t2 ,t28)52dC(t22t28) @ t2 ,t28
PC2#.

We can show
J. Chem. Phys., Vol. 107,
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^Q~ t2!Q~ t3!Q~ t1!&c

[^Q2Q3Q1&2^Q2Q3&^Q1&2^Q3Q1&^Q2&

2^Q2Q1&^Q3&12^Q2&^Q3&^Q1&

5]1~ t1!]2~ t2!
1

2
@]1~ t3!1]2~ t3!#

i

\
W~J!U

J50

, ~A4!

for t3.t2.t1 , whereQ(t i) is denoted byQi . In the above
we have setJ50 after performing the derivatives in order t
recover the original system.

In general the expectation of the multicommutator
equal to the cumulant expectation. For example, we hav

^@@Q3 ,Q2#,Q1#&c5^@@Q3 ,Q2#,Q1#&, ~A5!

andR(5) can be expressed as

R~5!~T1 ,T2!5S i

\ D 2

^@@a~T11T2!,a~T1!#,a~0!#&c .

Note here the last subscriptc is the difference from the pre
vious definition ofR(5).

Thus, from relations similar to Eq.~A4! and from the
definition

]~1 !~ t ![
\

i

]

]J1~ t !
1

\

i

]

]J2~ t !
,

]~2 !~ t ![
1

2 S \

i

]

]J1~ t !
2

\

i

]

]J2~ t ! D ,

we have

R~5!~T1 ,T2!5S i

\ D 2

@a]1~0!a]1~T1!2a]1~0!a]2~T1!

2a]2~0!a]1~T1!1a]2~0!a]2~T1!#

3a]~2 !~T11T2!

i

\
W~J!U

J50

, ~A6!

where

a]~ t !5a01a1]~ t !1 1
2a2@]~ t !#21••• . ~A7!

In the same way we have the expression for the respo
functionsR(3), RAH, andRNL in terms ofW(J)

R~3!~T1!5
i

\
a1

2]~1 !~0!]~2 !~T1!
i

\
W~J!U

J50

, ~A8!

RAH~T1 ,T2!5S i

\ D 2

a1
3]~1 !~0!]~1 !~T1!

3]~2 !~T11T2!
i

\
W~J!U

J50

, ~A9!
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RNL~T1 ,T2!5S i

\ D 2

a1
2a2@]~1 !~0!]~1 !~T1!]~2 !~T11T2!

1]~1 !~0!]~1 !~T1!]~2 !~T1!

1]~1 !~0!]~2 !~0!]~1 !~T1!#

3]~2 !~T11T2!
i

\
W~J!U

J50

. ~A10!

The derivative operators appearing in Eqs.~A8!–~A10!
correspond to external points in the specified diagrams.
example, two 1-points and one 2-point in the first diagram
Eq. ~3.12! come from the derivative operator] (1)(0)
] (1)(T1)] (2)(T11T2)] (2)(T11T2) in Eq. ~A10!.

APPENDIX B: ANALYTICAL EXPRESSION FOR
RAH(T1 ,T2)

To perform the integration overt in Eq. ~3.13!, we first
use the formula

sin x1 sin x2 sin x3

52
1

4 (
e2 ,e3561

e2e3 sin~x11e2x21e3x3!. ~B1!

The result of the integration is given by

RAH~T1 ,T2!52g3a1
3@F~T1!2F~T11T2!#, ~B2!

where

F~ t !5
1

4~Mz!3 (
i 51

4

~21! i
e2g~T21t !/2

g2/41~zai !
2

3H g

2
sin@z~ait1bi !#1zai cos@z~ait1bi !#J .

~B3!

Here, (a1 ,a2 ,a3 ,a4)5(1,21,23,21) and (b1 ,b2 ,b3 ,b4)
5(T2 ,T2, 2T11T2, 2T11T2).

APPENDIX C: RESPONSE FUNCTIONS FOR
MULTIMODE SYSTEMS

In this Appendix, we give expressions for response fu
tions for the multimode Hamiltonian. The largest contrib
tions to R(3)(T1) and to the counterparts ofRAH and RNL

~introduced in the single mode case! are presented below
under the assumptionã1s!1.

In the mode noncoupling~MNC! model, the response
functions are given by the sum of the response functions
each modes as mentioned before

R~3!~T1!5(
s

a0
2

\
ã 1s

2 f s~T1!, ~C1!

R~5!~T1 ,T2!5RAH~T1 ,T2!1RNL~T1 ,T2!, ~C2!

where
J. Chem. Phys., Vol. 107,
or
n

-
-

or

RAH~T1 ,T2!52
a0

3

\2 (
s

g̃3sã 1s
3 E

T1

T11T2
Vs dt

3 f s~T11T22t ! f s~ t2T1! f s~ t !, ~C3!

RNL~T1 ,T2!5
a0

3

\2 (
s

ã 1s
2 ã2s

3 f s~T2!@ f s~T11T2!1 f s~T1!#. ~C4!

Here, ã2s[ã 1s
2 and the dimensionless propagatorf s(t) is

given by

f s~ t !5
Vs

zs
e2gst/2 sin zst ~C5!

with zs5AVs
22gs

2/4.
In the mode coupling~MC! model, the response func

tions are expressed as

R~3!~T1!5
a0

2

\
f MC~T1!, ~C6!

R~5!~T1 ,T2!5RAH~T1 ,T2!1RNLMC~T1 ,T2!, ~C7!

where the functionf MC is given by

f MC~ t !5(
s

ã 1s
2 f s~ t !, ~C8!

andRNLMC, which is equivalent to the homogeneous limit
Eq. ~4.17! in Ref. 6, is given by

RNLMC~T1 ,T2!5
a0

3

\2 f MC~T2!@ f MC~T11T2!1 f MC~T1!#.

~C9!

As mentioned in text, the third-order response functi
and the fifth-order signalRAH are the same in the two mode
within the approximation. Note thatR(3) in Eq. ~C1! and Eq.
~C6! as well asRAH in Eq. ~C2! and Eq.~C7! are the same.
The spectral distribution in the two models of polarizabili
is then given by

J~v!5
a0

2

\ (
s

hsvgs

~v22Vs
2!21v2gs

2 , ~C10!

where the strength of the mode is defined byhs5Vsã 1s
2 .

As suggested in text, the expression forRNLMC(T1 ,T2)
given in the above is obtained easily by introducing into t
Hamiltonian the source termJa (s ã1sQ̃s in which the
sourceJa (a51,2,3) is coupled to a collective variableQ̃
[(s ã1sQ̃s . Then derivation ofRNLMC becomes straightfor-
ward and, here, we only note that the propagator of t
collective variable is given by

(
s

a1s
2 Ds

~21 !~ t !52 i f MC~ t !, ~C11!

since the source for the collective modes can be re-expre
asJa (s a1sQs wherea1s5ã1sA(MsVs)/\.
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