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Assuming that the polarizability is a linear function of the nuclear coordinate, i.e.,a(q)5a01a1q,
we obtain analytical expressions of the~2n11!th-order signals and show that the leading order of
the signals~n.1! is proportional togn11, wheregn11 is the coefficient of the anharmonic potential
V(q)5g3q

3/3!1g4q
4/4!1•••. In other words, detection of the~2n11!th-order signal implies the

direct observation of the~n11!th-order anharmonicity within the approximation. Based on this fact
we discuss a possibility to detect the~n11!th-order anharmonicity directly from the~2n11!th-order
experiment. Calculations are made by using novel Feynman rules for the nonequilibrium multitime
correlation functions relevant to the higher-order off-resonant spectroscopy. The rules have been
developed by the authors and are presented compactly in this paper. With the help of a conventional
double-sided Feynman diagram, we draw physical pictures of higher-order off-resonant optical
processes. Representative calculations for CHCl3 of the fifth-, seventh-, and ninth-order optical
processes are presented and discussed. ©1997 American Institute of Physics.
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I. INTRODUCTION

Dynamics of intra- and intermolecular vibrational mod
in the condensed phase play a crucial role in various che
cal reactions. The extensive development of ultrafast pu
lasers has made it possible to measure spectroscopy o
low-frequency vibrational modes in real time. The tim
domain third-order techniques, such as femtosecond op
Kerr effect ~OKE!,1,2 and impulsive stimulated Raman sca
tering ~ISS!,3 have directly detected dephasing of the lo
frequency modes of liquids.

It is natural that experiments of higher nonlinear r
sponse are more selective. One of the examples is Ram
echo experiments4–7 related to the seventh order. Another
the two-dimensional off-resonant experiment related to
fifth-order nonlinearity.8–14 These experiments were carrie
out to separate the inhomogeneous and homogen
dephasing. In our previous paper15 we showed that off-
resonant fifth-order optical processes can also be use
separate effects of third-order anharmonicity~g3q

3/3!! of vi-
brational modes from the other effects, such as nonlin
coordinate dependence of polarization. In the present pa
we generalize our previous study of the fifth-order opti
process to the~2n11!th order and show that~2n11!th-order
off-resonant spectroscopy is useful to study the~n11!th-
order anharmonicitygn11.

We employ the multimode~anharmonic! Brownian os-
cillator model ~for a harmonic Brownian oscillator mode
see, for example, Refs. 16 and 17! to incorporate the intra-
and intermolecular modes in the condensed phase. The~2n
11!th-order off-resonant signal can be expressed by the m
ticommutator of the~n11!-time correlation function of the
polarizability. For example, the signal of the third-order~n
51! experiment such as ISS and OKE can be directly rela
to the two-time correlation function,R(3)}^[a(t),a(0)]&.
To calculate such multitime correlation functions for an a
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i-
e
the

al

-
n-

e

us

to

ar
er,
l

l-

d

-

harmonic system, we use the nonequilibrium generat
functional obtained in Ref. 18.

If we assume polarization is a linear function of th
nuclear coordinate, i.e.,a5a01a1q, the response function
are expressed as the multitime correlation function of co
dinates,^[q(t),q] &,^[q(t),q(t8)],q] &, etc. Here, the anhar
monicity plays a significant role, since correlation functio
of the multicommutator of coordinate higher than the th
order vanish for the harmonic potential or in the~harmonic!
Brownian particle system. In the real world, the anharmon
ity often becomes important. For example, the low-frequen
vibrational modes of water were found to have we
anharmonicity.19

We incorporate anharmonicity20 into the Brownian mo-
tion theory through Feynman diagrammatic technique,
done in our previous works.15,18,21In the present article, we
refine our Feynman diagrammatic technique in the fo
which we call the three-step Feynman rule. The conventio
Feynman diagram technique~for finite temperature or for
zero temperature! has only two steps:~1! draw Feynman dia-
grams and~2! obtain analytical expressions from the di
grams. Here, we deal with the nonequilibrium expectati
and the diagrammatic technique can be described by t
steps: ~1! draw simplified Feynman diagrams;~2! draw
specifiedFeynman diagrams; and~3! obtain analytical ex-
pression from the specified diagram.

In general, a single graph in this three-step method c
responds to a sum of many double-sided Feynm
diagrams.17 Thus, calculation is simpler in the three-ste
method. The physical picture from the three-step method
however, not as clear as that from the double-sided Feyn
diagrams; each double-sided Feynman diagram has on
one correspondence to the Liouville space path.17 Therefore,
we use the double-sided technique complementary in
present paper.
1687687/12/$10.00 © 1997 American Institute of Physics
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1688 K. Okumura and Y. Tanimura: The (2n11)th-order off-resonant spectroscopy
In Sec. II, we specify our model for the off-resona
experiment and define multicommutator correlation fun
tions which can be directly measured by the experiment
Sec. III, we give analytical expressions of the response fu
tions relevant to~2n11!th-order experiments by using th
three-step method, which is summarized as rules A, B,
C, with some examples in Appendix A. In Sec. IV, the co
ventional double-sided diagrams~corresponding to the ana
lytical expression obtained in Sec. III! are presented to un
derstand profiles of signals from physical picture. In Sec.
we take parameters from the OKE experiment
chloroform,2 carry out numerical calculations, and giv
physical interpretations of the results. In the final section,
discuss limitations and possible extentions of the pres
work.

II. FEYNMAN RULE FOR THE (2 n11)TH
CORRELATION FUNCTION

We consider a molecular system in the condensed ph
which is subject to electronically off-resonant pulses. T
off-resonant pulses can selectively probe only the electro
ground state dynamics. The effective Hamiltonian is giv
by

Heff5Ĥ~p,q!2 P̂E~r ,t !, ~2.1!

wherep andq stand for the momentum and coordinate of t
nuclear degrees of freedom, respectively. In this experim
the permanent electronic dipole does not play a role. Inst
only the induced dipole

P̂5âE~ t ! ~2.2!

is probed, whereâ is the polarizability. In the following we
consider the case in which the nuclear motion is described
a single mode. Generalization to the multimode case
straightforward~see Ref. 15!. We consider the ground stat
Hamiltonian coupled to an environment in the form

Ĥ~p,q!5
p2

2m
1
mv2

2
q21V~q!

1(
i51

N F pi22mi
1
miv i

2

2 S qi2 ciq

miv i
2D 2G . ~2.3!

The corresponding classical equation of motion ofq for this
Hamiltonian has the memory frictiong(t), which is com-
pletely specified by the bath parameters (ci ,mi ,v i). All in-
formation about the bath which is set by the parame
(ci ,mi ,v i) is concentrated on the quantityg(t) even in the
quantum treatment. Thus, we can parameterize the theo
terms ofg(t) instead of specifying all the values (ci ,mi ,v i).
In the following, we employ the Ohmic model assumingg(t)
5gd(t) whereg is a constant. This choice is allowed on
when we letN→`.

The variation of the polarizability with the nuclear coo
dinate is assumed to be
J. Chem. Phys., Vol. 106,
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â5a01a1q1
1

2!
a2q

21•••5(
i50

1

i !
a iq

i[(
i50

a i~q!.

~2.4!

The anharmonicity of the potential is given by

V~q!5
1

3!
g3q

31
1

4!
g4q

41•••

5(
i53

1

i !
giq

i[(
i53

Vi~q!. ~2.5!

The ~2n11!th-order off-resonant signal is expressed as8,15,17

I ~2n11!~T1 ,T2 ,...,Tn!5uR~2n11!~T1 ,T2 ,...,Tn!u2.
~2.6!

The response functions are defined through the multicom
tators:

R~3!~T1!5
i

\
^@a~T1!,a~0!#&, ~2.7!

R~5!~T1 ,T2!5S i\ D 2^@@a~T11T2!,a~T1!#,a~0!#&,

~2.8!

A ~2.9!

R~2n11!~T1 ,T2 ,••• ,Tn! ~2.10!

5S i\ D n^@•••@a~T11T21•••1Tn!,

a~T11•••1Tn21!#,•••a~T1!#,a~0!#&, ~2.11!

wherea(t) is the Heisenberg operator defined by the Ham
tonian Ĥ(p,q) in ~2.3!, or

a~ t !5eiĤ t/\âe2 iĤ t/\, ~2.12!

and the expectation implies

^•••&5Tr@e2bĤ•••#/Tr@e2bĤ#. ~2.13!

The response functions can be expressed by the sum of e
of the two types of connected Feynman diagram:

R~2n11!~T1 ,T2 ,••• ,Tn! ~2.14!

5( @ topologically distinct simplified diagrams#

~2.15!

5( @ topologically distinct specified diagrams#.

~2.16!

Here, the summation( implies the one over all possibl
diagrams. Detailed explanations are given in Appendice
and B with some examples. We have three types oftime
evolution operators, since we are calculating the expecta
values in the nonequilibrium system. These three operat

the real time evolution operator of the ket (e2 iĤ t/\), that of

the bra (eiĤ t/\), and the imaginary time evolution operato

(e2bĤ), are associated with theC1-path, C2-path, and
No. 5, 1 February 1997
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1689K. Okumura and Y. Tanimura: The (2n11)th-order off-resonant spectroscopy
C3-path, respectively, or with the unified time pa
C5C11C21C3 ~see Fig. 1!. In the conventional case22

where calculation of the expectation at the equilibrium is
main goal, only the imaginary time evolution operato

e2bĤ ~corresponding to theC3-path!, is required. Thus, the
propagators appearing in the rule for the finite tempera
always connect two points onC3 ~Matsubara Green func
tions!. On the contrary, we have the three pathsC1, C2, and
C3 in the present case of nonequilibrium expectation. Th
the propagators in this case connect arbitrarily two points
the unified time pathC5C11C21C3 . In other words, we
have a propagator matrixDi j ( i , j51,2,3). For convenience
we take the linear combinations of the four independent
ements,D ~21!, D ~22!, D ~23!, andD ~33!, of the 333 matrix.
This is why we have to add the extra~1,2,3! indices to the
conventional Feynman diagrams to obtain the specified
grams~see Appendix A!.

By use of the simplified diagram, we can grasp the m
contribution to the response function efficiently. Once a s
plified diagram is written down, we can readily obtain t
analytical expressions by way of the specified diagrams.
though calculations of the nonequilibrium expectation valu
are more complicated than those of the equilibrium ones,
three-step procedure presented here—obtaining simpl
diagrams, and then specified diagrams to derive the ana
cal expressions—greatly simplifies calculations.

III. RESPONSE FUNCTIONS OF THE ANHARMONIC
SYSTEM WITH THE LINEAR POLARIZABILITY

In the following, we employ the linear polarizability ap
proximation in a sense that

a5a01a1q, ~3.1!

and calculate the response function relevant to the~2n11!th-
order experiment. In this model, the response function
given as

FIG. 1. The unified time-pathC5C11C21C3 on the complext plane
~T→`!. C1 andC2 are along the real-time axis, whereasC3 is on the imagi-
nary axis.
J. Chem. Phys., Vol. 106,
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R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D na1
n11^@•••@q~T11•••1Tn!,

q~T11•••1Tn21!#,••• ,q~T1!#,q~0!#&. ~3.2!

By use of the three-step procedure presented in Appendi
the leading contribution is expressed as

R~5!~T1 ,T2!52S i\ D 3g3a1
3E

T1

T11T2
dtD~21 !~T11T2 ,t !

3D ~21 !~ t,0!D ~21 !~ t,T1!, ~3.3!

R~7!~T1 ,T2 ,T3!52S i\ D 4g4a1
4E

T11T2

T11T21T3
dt

3D ~21 !~T11T21T3 ,t !D
~21 !~ t,0!

3D ~21 !~ t,T1!D
~21 !~ t,T11T2!, ~3.4!

R~9!~T1 ,T2 ,T3 ,T4!52S i\ D 5g5a1
5E

T11T21T3

T11T21T31T4
dt

3D ~21 !~T11T21T31T4 ,t !

3D ~21 !~ t,0!D ~21 !~ t,T1!

3D ~21 !~ t,T11T2!

3D ~21 !~ t,T11T21T3!, ~3.5!

A

R~2n11!~T1 ,••• ,T4!

52S i\ D n11

gn11a1
n11E

T11•••1Tn21

T11•••1Tn
dt

3D ~21 !~T11•••1Tn ,t !D
~21 !~ t,0!D ~21 !~ t,T1!•••

3D ~21 !~ t,T11•••1Tn21!. ~3.6!

The specified diagram for the fifth order is explicitly given
Fig. 2. The temperature-dependent propagatorsD ~23! and
D ~33! do not appear in the above leading order calculati
they play roles in higher-order contributions.

In the Ohmic case the propagator is calculated as

FIG. 2. The specified diagram for the leading order ofR~5!.
No. 5, 1 February 1997
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1690 K. Okumura and Y. Tanimura: The (2n11)th-order off-resonant spectroscopy
D ~21 !~ t,s!5u~ t2s!
\

im z
e2g~ t2s!/2 sin z~ t2s!, ~3.7!

where

z5Av22g2/4. ~3.8!

Note here that by using the formula for odd-n ~and a similar
formula for even-n!,

sin x1 sin x2•••sin xn

5
~21!~n21!/2

2n21 (
e2561

(
e3561

••• (
en561

~21!e21e31•••1en

3sin~x11e2x21enx31•••1enxn!, ~3.9!

the integrations in Eqs. 3.3–3.6 can be readily perform
We use the result of this integration for the numerical cal
lations in Sec. V.

We stress here that the leading contribution is prop
tional to gn11 and thus the detection of the nonzeroI (2n11)

signal implies the direct observation of the~n11!th anhar-
monicity within the linear polarization approximation.

As seen from Eqs. 3.3–3.6, the range of the integra
is from T11•••1Tn21 to T11•••1Tn , namely, the time
integration is done for the periodTn , which indicates that the
signal is caused by the anharmonic interactionduring this
last period Tn and thus becomes zero forTn50.

IV. DOUBLE-SIDED FEYNMAN DIAGRAM AND
PHYSICAL PICTURE

Although the three-step Feynman rule simplifies cal
lations considerably, the physical picture of the diagram
pearing in the three-step technique may be less clear tha
double-sided Feynman diagram.17 In this section, we illus-
trate a physical picture of signals from nonlinear optical p
cesses by using the double-sided Feynman diagrams.
though the double-sided Feynman diagrams may be w
known in this field, to clarify our notations, in Appendix
we give explicit rules to draw the double-sided Feynm
diagrams of the leading order contributions to the~2n11!th-
order response function~see Figs. 3 and 4!.

Figure 4 shows a heuristic case where the vibratio
mode of the electronic ground state is described by only
levelsg0 andg1. We have~n11! black circles~laser inter-
actions! and a cross~anharmonic interaction! on the base
diagram.~If one considers higher-order correction of anh
monicity, one has more crosses.! In general, we have
2n1132(n12) topologically different diagrams at the lea

FIG. 3. The bare ladder diagram to create double-sided diagrams. The l
~upper! line stands for the real time evolution of the bra~ket! vector and
corresponds to theC22(C12) path.
J. Chem. Phys., Vol. 106,
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ing order. Note here that we have 2~n12! distinct segments
of the ladder: 2n segments corresponding to the peri
T1 ,••• ,Tn and the remaining four segments to both ends
the ladder.23 The three-step Feynman rule employed in t
previous section does not require us to take care eac
these large number of double-sided diagrams separately
stead we have only to deal with fewer~non-double-sided!
diagrams, although physical pictures from these diagra
may be less transparent than those from the double-s
ones. Therefore, we examine physical pictures with help
the double-sided diagrams.

Results~3.3!–~3.6! obtained by the three-step metho
suggest that the double-sided diagrams which contribut
them are only the ones having the cross either on the
segments corresponding to the last periodTn . Note that the
time integrations in our results~3.3!–~3.6! originate from the
anharmonic interaction~the cross! and the range of the inte
grations are equal toTn ~from T11•••1Tn21 to
T11•••1Tn!. All of the other double-sided diagram
@2n1132(n12)22n1132 in number# are exactly canceled
out. This fact suggests that the signal becomes weak w
the last periodTn is reduced and we expect a slow rise of t
signals as a function ofTn .

To illustrate the physical picture more clearly, we r
strict ourselves to the system whose electronic ground s
is described by the two vibrational levelsg0 and g1. The
system is assumed to be initially in theg0 state. One of the
double-sided diagrams for the fifth, seventh, and ninth
sponse functions is depicted in Fig. 4. We shall call the sta
denoted byug0&^g0u and ug1&^g1u the vibrational population
states, andug0&^g1u and ug1&^g0u the vibrational coherence
states.

er

FIG. 4. Examples of the double-sided Feynman diagram forR~5!, R~7!, and
R~9! for the system with only two vibrational levelsg0 andg1. The black
circle stands for the interaction with a pair of pulses, while the cross re
sents the anharmonic interaction. There are 233234 diagrams~including
the one in the above! for R~5!. The other 23323421 diagrams can be ob-
tained by moving the black circles up or down and moving the cross
another time segment. However, the diagrams which do not have the c
at the last periodT2 all cancel with each other~see text!.
No. 5, 1 February 1997
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1691K. Okumura and Y. Tanimura: The (2n11)th-order off-resonant spectroscopy
Let us examine the first diagram in Fig. 4, which is o
representative diagram ofI ~5!. First, notice that the distanc
between the leftmost and the middle black circles isT1, and
that between the middle and the rightmost isT2. Then we
realize that the system is in the vibrational coherence sta
the periodT1, while in theT2 period the system goes from
the population to the coherence at the time of anharmo
interaction denoted by the cross. The above statement is
of all of the diagrams, in which the cross~anharmonic inter-
action! is on theT2 segment.

States for the each period are summarized in Tabl
Except for the last periodTn , the odd time periods detect th
dephasing processes while the even time periods detec
population relaxation. The last periodTn for even-n de-
scribes both the dephasing and the population, while tha
odd-n describes only the dephasing process.

From the above discussions we can make the follow
statements. First, since theT1 period describes the coheren
relaxation~or the dephasing processes!, it is natural that all
the signals resemble each other when plotted as a functio
T1 if the other time periods are fixed. Second, the tw
dimensional signals I (5)(T1 ,T2) and I ~9!~T1 ,T250,
T350,T4! may be similar since the double-sided diagrams
I ~9!~T1 ,T250, T350,T4! ~with T25T350! and I (5)(T1 ,T2)
are essentially the same, although the origins are very dif
ent since I (5)(T1 ,T2) and I ~9!~T1 ,T250, T350,T4! come
from the third- and fifth-order anharmonicities, respective
On the other hand, we can expect the two-dimensional

TABLE I. States during each periodTi in the signal for the~vibrational!
two-level system: the abbreviations coh. and pop. imply the coherence
the population states, respectively.

I ~5! I ~7! I ~9! I (2n11)

T1 coh. coh. coh. coh.
T2 pop.→coh. pop. pop. pop.
T3 * coh.→coh. coh. coh.
T4 * * pop.→coh. pop.
A A A A A

Tn * * * H coh.~n5odd!
pop.~n5even!→coh.
J. Chem. Phys., Vol. 106,
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nals I (5)(T1 ,T2) and I (7)(T1 ,T250,T3) not to resemble.
This is because in the last periodT2 of the diagram of
I (5)(T1 ,T2), the system goes from the population to the c
herence state~at the cross!, while in the last periodT3 of
I (7)(T1 ,T250,T3) the system remains in the coherence st
despite the anharmonic interaction.

For the multivibrational-level system or the oscillator
the coordinate representation~the Brownian oscillator
model!, the first periodT1 also detects the dephasing whi
the other periodsT2 ,••• ,Tn probe the mixture of the popu
lation relaxation and the dephasing process, and the ab
statements may be reasonable even in such a case.

One can express the physical pictures in another sc
matic way. Figure 5 shows such an example correspond
to the double-sided Feynman diagram of the fifth-order
sponse function presented in Fig. 4. In this type of diagr
the upper~lower! horizontal solid line stands for the vibra
tional population stateug1&^g1u(ug0&^g0u), while the horizon-
tal broken line implies the vibrational coherent stat
ug1&^g0u and ug0&^g1u. Time runs horizontally from left to
right. The system is initially in the ground stateug0&^g0u ~at
the left end in Fig. 5!. Then the first pair of laser pulses~E1

andE18! brings the system to the vibrational coherence sta
ug1&^g0u and ug0&^g1u. The second pair of pulses~E2 and
E28! brings the system back toug0&^g0u. Since we take into
account the anharmonic interaction after the second pai
pulses, which is denoted by the short arrow, the system

nd

FIG. 5. Different expression of the fifth-order diagram given in Fig. 4. T
lower solid line implies theg0 state while the upper theg1 state. The broken
line stands for the vibrational coherence state. The time runs from the le
the right.
FIG. 6. Signals of the off-resonant fifth-order spectroscopy as a function of the two delay timesT1 andT2 and of the last delay timeT2.
No. 5, 1 February 1997
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FIG. 7. Signals of the off-resonant seventh-order spectroscopy as a function of selected two delay timesT1 andT3 and of the last delay timeT3.
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change its state to the coherent one without laser interac
Thus, the final pulseE3 can induce the signalEs . From this
diagram, it is clear why the anharmonic interaction is ess
tial for the system to have a signal in the fifth-order optic
processes.

V. NUMERICAL SIMULATIONS

The profiles of signals expected from the physical p
tures in the previous section may be summarized in the
lowing statements:

~1! The ~2n11!th-order off-resonant signalsI (2n11) will
show slow rise as a function ofTn .

~2! All profiles of I (2n11) ~for any integern! as functions of
theT1 period~with the other period fixed! will be similar
since the same dephasing process is probed during
riod T1 for anyn.

~3! All of the two-dimensional signals
I (514n)(T1,0,••• ,0,T514n) ~for any integern! as a func-
tion of two time variablesT1 andT514n will show simi-
lar profiles since the signals detect similar physical p
cesses, although the origins are quite different. In
same way the 2D signalsI (714n)(T1,0,••• ,0,T714n)
may resemble each other.
J. Chem. Phys., Vol. 106,
n.

n-
l

-
l-

e-

-
e

In the following, we present numerical results of th
analytical expressions given in Sec. III and examine
above statements. For simplicity we reduce the numbe
time variables by settingT250 for the seventh order and b
T25T350 for the ninth order. In this configuration o
pulses, the seventh- and ninth-order signalsI (7)(T1 ,T2
50,T3) and I ~9!~T1 ,T250, T350,T4! reduce to two-
dimensional spectroscopy.

To carry out calculations, we take the parameters fr
the OKE experiments on chloroform~CHCl3!. The vibra-
tional modes of this substance can be described by the
lowing three modes coupled to the Ohmic baths:2,15

V1539.00 g1577.0

V25258.5 g2515.0 ~5.1!

V35368.5 g3522.0,

where the unit of parameters is cm21. We assume that only
the third modeV3 has anharmonicity. The results forI ~5!,
I ~7!, and I ~9! are shown in Figs. 6–8. The features of t
signals can be summarized in the following way.

T1 dependence: If the last periodTn is fixed ~n52, 3,
and 4 forI ~5!, I ~7!, and I ~9!, respectively!, all the signals
I (5)– I (9) oscillates with the frequency 2V3 along theT1
FIG. 8. Signals of the off-resonant ninth-order spectroscopy as a function of selected two delay timesT1 andT4 and of the last delay timeT4.
No. 5, 1 February 1997
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axis. The envelopes of all the signals are monotonou
decreasing with time. AtT150, envelopes may take
nonzero value.
Tn dependence: If T1 is fixed, the signalsI ~5! and I ~9!

vibrate with frequencyV3 along theTn axis while I ~7!

with 2V3. The envelopes ofI ~5! and I ~9! are monoto-
nously decreasing with time, while that ofI ~7! peaks at
aroundT350.25. AroundT150, all of the envelopes
slowly rise from zero.

The reason the oscillations in the signals appear at the
quencyV3 and 2V3 is that we assumed that only theV3
mode of the chloroform has anharmonicity. The slow rise
smallTn supports the first statement~inferred from the ana-
lytical expressions!. The 2D signals in Figs. 6–8 exhibit os
cillation with the same frequency 2V3 in T1, which supports
our second statement~discussed from the double-sided di
grams!. The fact that the whole 2D profiles ofI ~5! andI ~9! are
similar, while they look rather different from the 2D profil
of I ~7!, confirms the third statement. The behavior of t
envelopes of the signal can be explained in the follow
way. First of all, sinceT1 andTn periods both contain the
dephasing processes~see Fig. 4!, the longer these period
are, the weaker the strength of oscillations become: thi
why all the envelopes decrease with time. The envelope
the I ~7! signal with fixedT1, however, has a peak. This
because we have the double-sided diagram in which theT3
period is rephased during theT1 period. In those types of the
diagram, theT1 period is in the stateug1&^g0u while theT3
period is in ug0&^g1u, or vice versa. One of these diagram
can be obtained by changing the diagram forR~7! in Fig. 4 by
lowering the rightmost and the second rightmost bla
circles ~laser interactions!. These diagrams are the origin o
the Raman-echo signal in appropriate models.5 In this model,
however, we cannot single out these type of diagrams by
phase matching condition. The remnant of this echolike
fect may be observed as a peak of theT3 envelope ofI ~7!.

VI. DISCUSSIONS

We presented the three-step Feynman rule for the n
equilibrium expectation or the multicorrelation function
The higher-order off-resonant signals were calculated i
compact analytical form by the rule. The physical picture
the signals was given with the help of the double-sided Fe
man diagrams. We carried out the numerical calculations
the analytical expressions using the parameters obta
from the experiment, and compared the results with phys
pictures obtained from the double-sided Feynman diagra

In this paper, we employ the linear polarization appro
mation a5a01a1q for simplicity. If we take into account
the higher-order terms, i.e.,a2q

21a3q
31•••, the profile of

the signal will be governed by the relative importance
them and the anharmonicity. Such a consideration has
ready been done15 in the case of the fifth-order signal, and
is also possible to include the nonlinearity of the polarizab
ity for the higher-order signals by using the three-step Fe
man diagram method.
J. Chem. Phys., Vol. 106,
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In this article we concentrated on off-resonant measu
ments using optical pulses. Corresponding experiments
also possible by using infrared pulses to probe the vibratio
transitions.24 In this case signals originate from the electr
dipole. Our theory can be used to study the case by repla
P̂ with the transition dipole momentm. In this type of ex-
periment, we measure the correlation function ofm(t) in-
stead ofa(t). Both experiments are complementary.
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APPENDIX A: THE THREE-STEP FEYNMAN RULE

In this Appendix, we present the three-step rule exp
itly by clarifying the definitions of thesimplified diagrams
andspecified diagramswith some examples. Derivation ca
be done from Eq.~B28!.

We represent thesimplifiedFeynman diagrams propor
tional to

)
i51

n11

aki
•)
j53

gj
l j~ki51,2,•••; l j50,1,2,••• !

in the following manner. Here,l j corresponds to the order i
the j th-order anharmonicitygjq

j .

A. Rules for simplified diagrams

A1. Prepare n11 white circles corresponding to
ak1

,ak2
,••• ,akn11

. The white circle corresponding
to ai from which i lines emerge shall be called th
i th-order external point.

A2. Preparel j black circles~j.3! corresponding to the
j th-order anharmonicityVj (q). The black circle
corresponding toVj (q) from which j lines go out
shall be called thej th-order internal point. Note
here that the total number of internal points~or the
black circles! in the diagram isv5 l 31 l 41••• . The
internal points are also calledvertices.

A3. Draw all possible connected diagrams by linkin
these internal and external points by lines~propaga-
tors!. A connected diagram is the one in which a
bitrary two points are connected directly or ind
rectly through lines.

If one cannot make a connected diagram out of the exte
and internal points prepared in A1 and A2, it suggests t
the contribution of this order is zero. By use of the simplifi
Feynman diagram we can single out nonzero contribution
the response functions. Analytical expressions for the sim
fied Feynman diagrams are given in Eq.~B28!.

Each simplified Feynman diagram can be expressed
specifiedFeynman diagrams. The specified diagram is
simplified one with~1,2,3! indices and time variables at
tached to all the internal and external points and given in
following manner.
No. 5, 1 February 1997
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B. Rules for specified diagrams

B1. Attach n11 time variables 0,T1 ,T11T2 ,••• ,
T11T21•••1Tn to then11 external points in an
arbitrary way.

B2. Attachv time variablest1 ,t2 ,••• ,tv to thev inter-
nal points in an arbitrary way.

B3. Attach the ‘‘1’’ or ‘‘ 2’’ index to each line emerg-
ing from an external point. An odd number of ‘‘1’’
must be attached to the lines from a single exter
point, except the external point labele
T11T21•••1Tn in B1. To all the lines from this
special external point the ‘‘2’’ indices must be at-
tached. As a result, thei th-order external point in a
diagram has 2j11 lines labeled ‘‘2’’ and i22 j21
lines labeled ‘‘1’’, or has i lines all labeled ‘‘2,’’
where 2j11 stands for an odd number andj can be
an any integer from zero to~i21!/2.

B4. Attach the index ‘‘3’’ to all lines emerging from an
internal point, or attach the index ‘‘1’’ or ‘‘ 2’’ to
each line from an internal point. One must attach
odd number of ‘‘1’’ to the lines from a single in-
ternal point, but cannot attach ‘‘3’’ and ‘‘1’’
~‘‘ 2’’ ! at the same time to the lines from a sing
internal point. It follows that thei th-order internal
point in a diagram has 2j11 lines labeled ‘‘2’’ and
i22 j21 lines labeled ‘‘1,’’ or has i lines all la-
beled ‘‘3,’’ where 2j11 stands for an any odd num
ber from one toi .

Note here that the diagram which contains the followi
lines vanishes and thus can be excluded from the follow
discussions.

b1. Line whose extremities are ‘‘1’’ and ‘‘ 1’’ ~propa-
gators connecting ‘‘1’’ and ‘‘ 1’’ !.

b2. Line whose extremities are ‘‘1’’ and ‘‘3.’’
b3. Line whose extremities are~2,t! and ~1,t8! where

t,t8. ~The propagator connecting ‘‘2’’ and ‘‘ 1’’ is
causal.!

It can be shown that a simplified Feynman diagram is
pressed as the sum of all possible specified diagrams
tained by the above rule which are topologically distin
from each other. Namely, we have

A simplified diagramG5( @topologically distinct

specified diagrams derived from the simplified diagramG#.

~A1!

The analytical expression for a specified Feynman d
gram is obtained from Eq.~B28! as follows.

C. Rules for analytical expressions

C1. Associateai /4
j with the i th-order external point

which has 2j11 number of lines labeled ‘‘1’’ and
~remaining! i22 j21 number of lines labeled ‘‘2.’’
J. Chem. Phys., Vol. 106,
l
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C2. Associateai with the i th-order external point which
carries the time variableT11T21•••1Tn and
whosei lines are all labeled ‘‘2.’’

C3. Associate2igk/(4
j\) with the kth-order internal

point which has 2j11 number of lines labeled
‘‘ 1’’ and ~remaining! k22 j21 number of lines la-
beled ‘‘2.’’

C4. Associate2gi /\ with the i th-order internal point
whosei lines are all labeled ‘‘3.’’

C5. Associate the propagatorD ( lm)(t,t8) @l ,m51,2,3#
to a line whose extremities are named (l ,t) and
(m,t8).

C6. Integrate the product of all factors described in t
above over the internal time variablest1 ,t2 ,••• ,tv .
The range of integration for an internal point who
lines are all labeled ‘‘3’’ is from 0 tob\. All the
other internal points are integrated from 0 to`.

C7. The contribution of the diagram is obtained by t
quantity obtained in C6 multiplied by (i /\)n/S,
where the symmetry numberS is the product of the
line symmetry numberSL and the vertex oneSV of
the diagram.

To help understand the above rules, we present sev
examples. First, consider the two-time response function

R~3!~T1!5
i

\
a1
2^@q~T1!,q~0!#&

1
i

\
a1a2^@q

2~T1!,q~0!#1@q~T1!,q
2~0!#&

1
i

\
a2
2^@q2~T1!,q

2~0!#&1••• . ~A2!

Following rule A, the term proportional toa1
2 is readily given

by the simplified diagrams

(A3!

where we consider theg3 andg4 anharmonicities explicitly
and draw up to the second order in these anharmonicitie

By applying rule B, the above simplified diagrams c
be translated into the specified diagrams

(A4!

where all the time indices are omitted. Then analytical e
pressions are readily obtained from rule C. For instance,
No. 5, 1 February 1997
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1695K. Okumura and Y. Tanimura: The (2n11)th-order off-resonant spectroscopy
~A5!

(A6!

Note the line symmetry factorSL is 2 in Eq.~A6!.
Second, consider the two-time response function:

R~5!~T1 ,T2!5S i\ D 2a1
3^@@q~T11T2!,q~T1!#,q~0!#&

1S i\ D 2a1
2a2^@@q2~T11T2!,

q~T1!#,q~0!#12 terms&1••• . ~A7!

By use of rules A and B, the terms proportional toa1
2a2 are

written down as

(A8!

Third, we consider the three-time response funct
R(7)(T1 ,T2 ,T3). Following rule A, the simplified diagram
are given as

(A9!

Here, the labels above each diagram show the order of
diagram.

APPENDIX B: ANALYTICAL EXPRESSION FOR THE
SIMPLIFIED DIAGRAM

By introducing the nonequilibrium generating function
W(J), we obtained Eq.~A6! of our previous paper15:

R~5!~T1 ,T2!5S i\ D 2@ā~]1~0!!ā~]1~T1!!2ā~]1~0!!

3ā~]2~T1!!2ā~]2~0!!ā~]1~T1!!

1ā~]2~0!!ā~]2~T1!!#

3ā~]~2 !~T11T2!!
i

\
W~J!uJ50 , ~B1!

where
J. Chem. Phys., Vol. 106,
n

he

ā~]~ t !!5a01a1]~ t !1
a2

2!
@]~ t !#21••• . ~B2!

Introducing the sign factor

sgn$ i n%5~21! i11 i21•••1 i n2n, ~B3!

and the time variables

s150,

s25T1 ,

s35T11T2 ,

A
sn115T11T21•••1Tn , ~B4!

we can generalize the above expression to the form

R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D n (
i151

2

(
i251

2

••• (
i n51

2

sgn$ i n% ā~] i1~s1!!

3ā~] i2~s2!!•••ā~] i n~sn!!ā~]~2 !~sn11!!
i

\
W~J!U

J50

.

~B5!

By expanding the polarizabilityā we have

R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D n (
j 151

`

(
j 251

`

••• (
j n1151

` a j 1

j 1!

a j 2

j 2!
•••

a j n11

j n11!

3 (
i151

2

(
ı251

2

••• (
i n51

2

sgn$ i n% ] i1
j 1~s1!] i2

j 2~s2!•••] i n
j n~sn!

3@]~2 !~sn11!#
j n11

i

\
W~J!U

J50

. ~B6!

Notice here that we have dropped the contribution fromj l50
since j l50 corresponds to thec-number part of the polariz-
ability a0 and we are considering the expectation values
multicommutator of the polarizability.

By mathematical induction with respect ton we have
No. 5, 1 February 1997
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a j 1

j 1!

a j 2

j 2!
•••

a j n

j n!
(
i151

2

(
i251

2

••• (
i n51

2

sgn$ i n% ] i1
j 1~s1!

3] i2
j 2~s2!•••] i n

j n~sn! ~B7!

5a j 1
~12 !~]~s1!!a j 2

~12 !~]~s2!!•••a j n
~12 !~]~sn!!, ~B8!

where

a i
~12 !~]~ t !!5

a i

i !
@]1

i ~ t !2]2
i ~ t !# ~B9!

5a i (
j50

2 j11, i
1

22 j
@]~1 !~ t !#2 j11

~2 j11!!

3
@]~2 !~ t !# i22 j21

~ i22 j21!!
. ~B10!

Thus, we arrive at

R~2n11!~T,T2 ,••• ,Tn!

5S i\ D n (
j 151

`

(
j 251

`

••• (
j n1151

`

a j 1
~12 !~]~s1!!

3a j 2
~12 !~]~s2!!•••a j n

~12 !~]~sn!!

3ā j n11
~]~2 !~sn11!!

i

\
W~J!U

J50

. ~B11!
ly

th

fo

J. Chem. Phys., Vol. 106,
By applying the method explained in Appendix A in Ref. 2
@see Eq.~A7! in Ref. 21#, we have

R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D ne]/]wD]/]weV@w# (
j 151

`

(
j 251

`

•••

3 (
j n1151

`

a j 1
~12 !~w~s1!!a j 2

~12 !~w~s2!!•••

3a j n
~12 !~w~sn!!ā j n11

~w~2 !~sn11!!uw50,conn. ~B12!

As specified below,~]/]w!D~]/]w! is the second-order de
rivative operator with respect to the three variablesw~1!,
w~2!, andw3, andV[w],a i

(12)(w(t)),ā i(w
(2)(t)) are poly-

nomial function~al!s of the three variables. The operatio
uw50 in Eq. ~B12! implies settingw50 after performing the
derivatives ofw. This operation corresponds to the Wic
contraction and we can resort to diagrammatic techniq
Only the operations corresponding to connected diagrams
kept in Eq. ~B12!, as implied by conn. at the end of th
equation.

The derivative operator is given by
]

]w
D

]

]w
5E

0

`

dtE
0

`

ds
]

]w~2 !~ t !
D ~21 !~ t,s!

]

]w~1 !~s!
1
1

2 E
0

`

dtE
0

`

ds
]

]w~2 !~ t !
D ~22 !~ t,s!

]

]w~2 !~s!

1E
0

`

dtE
0

b\

dt
]

]w~2 !~ t !
D ~23!~ t,t!

]

]w3~t!
1
1

2 E
0

b\

dtE
0

b\

dt8
]

]w3~t!
D ~33!~t,t8!

]

]w3~t8!
, ~B13!
ly
a-
where the propagatorsD ( lm)[ l ,m5(1,2,3)] are defined
through the two-time correlation functions for the bilinear
coupled and harmonic system. Equation~B12! @or Eq. ~B28!
below# with this expression for]/]wD]/]w is the origin of
rules C5 and b1–b3. If we introduce the cumulant part of
autocorrelation functionC(t1 i t)

C~ t1 i t!5^q~0!q~ t1 i t!&bilinear, ~B14!

where 0,t ,b\. Then the propagators are expressed as
lows:

D ~23!~ t,t!5C~ t1 i t!, ~B15!

D ~22 !~ t,s!5S~ t2s!, ~B16!

D ~21 !~ t,s!522iu~ t2s!A~ t2s!, ~B17!

D ~33!~t,t8!5u~t2t8!C~ i t2 i t8!1u~2t1t8!

3C~2 i t1 i t8!, ~B18!
e

l-

whereS andA are the real and imaginary part, respective
(C5S1 iA). In the case of Ohmic dissipation, the correl
tion function is explicitly given by

C~ t1 i t!52a1e
2l1~ t1 i t!1a2e

2l2~ t1 i t!2G~ t1 i t!,
~B19!

where

aj5
\

4mz S 11coth
ibl j

2 D , ~B20!

G~x!5
g

mb (
n52`

` unnue2unnux

~v21nn
2!22g2nn

2 , ~B21!

with l15g/21i z, l25g/22i z, (z5Av22g2/4), and
nn52pn/b\.

The polynomial ofw originating from the polarizability
is given by
No. 5, 1 February 1997
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ak
~12 !~w~ t !!5ak (

j50

2 j11,k
1

4 j

3
@w~1 !~ t !#2 j11

~2 j11!!

@w~2 !~ t !#k22 j21

~k22 j21!!
,

~B22!

ā i~w~2 !~ t !!5
a i

i !
@w~2 !~ t !# i . ~B23!

From these expressions and Eq.~B12! @or Eq. ~B28! below#,
we can understand rules B1, B3, C1, and C2 by noting
fact that each term in these polynomialsak

(12)(w(t)) or
ā(w (2)(t)) is the origin of an external point and the defin
tion of time variablessi in Eq. ~B4!.

The polynomial ofw corresponding to anharmonicity i
expressed as

V@w#5(
i
Vi@w#, ~B24!

where

Vı@w#5Vi
~12 !@w#2Vi

~3!@w#. ~B25!

Here,

Vk
~12 !@w~ t !#52

gk
k!

i

\ E
0

`

dtF S w~1 !~ t !

2
1w~2 !~ t ! D k

2S 2
w~1 !~ t !

2
1w~2 !~ t ! D kG

52
i

\
gkE

0

`

dt (
j50

2 j11,k
1

4 j
@w~1 !~ t !#2 j11

~2 j11!!

3
@w~2 !~ t !#k22 j21

~k22 j21!!
, ~B26!

and

Vk
~3!@w~ t !#52

gk
k!

1

\ E
0

b\

dt@w3~ t !#
k. ~B27!

We can understand rule B2, B4, C3, C4, and C6 from th
expressions forV with Eq. ~B12! or Eq. ~B28! below by
noting the fact that each term in these polynomi
Vk
(12)[w(t)] or Vk

(3)[w(t)] is the origin of an internal point.
We thus obtain the expression for the simplified diagr

~contribution to the response function! proportional to

)
i51

n11

aki
•)
j53

gj
l j

in the following form

S i\ D ne~]/]w!D~]/]w!)
j53

~Vj@w#! l j (
$kn11%

ak1
~12 !~w~s1!!

3ak2
~12 !~w~s2!!•••akn

~12 !~w~sn!!

3ākn11
~w~2 !~sn11!!uw50,conn., ~B28!
J. Chem. Phys., Vol. 106,
e

e

s

from which Rules A, B, and C can be derived. Here, t
summation($kn11% implies the summation over all possib
permutation ofk1 ,k2 ,••• ,kn11.

APPENDIX C: THE DOUBLE-SIDED FEYNMAN
DIAGRAM

We give the rules to draw double-sided diagrams for
response functions to clarify our notations.

D. Rules for double-sided diagrams

D1. Prepare the ladder~diagram! with ~n11! steps. The
separation of the steps areT1 ,T2 ,••• ,Tn ~Fig. 3!.
The upper solid line stands for the time evolution
ket ~C1 path! and the lower one for that of bra~C2
path!.

D2. Place a black circle at either the upper or lower e
of each steps. This corresponds to the laser inte
tion a1E

2(t)q, and absorbs or emits one quantu
~a or a†!. Here,a anda† stand for the creation and
annihilation operator of the vibrational mod
[q}(a1a†)].

D3. Place a single cross on either the upper or low
solid line ~body of the ladder!. This stands for the
anharmonic interactiongn11q

n11 and absorbs or
emits quanta where the number of quanta goes in
out per one interaction can be an any number fr
zero @corresponding toa(n11)/2(a†)(n11)/2, etc.# to
n11 @(a†)n11, etc.#.
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