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Assuming that the polarizability is a linear function of the nuclear coordinategi(q),= ¢+ @ q,

we obtain analytical expressions of tt#n+1)th-order signals and show that the leading order of

the signalgn>1) is proportional tog,,, 1, whereg, . ; is the coefficient of the anharmonic potential
V(q)=0g39%3!+g,q*4!+---. In other words, detection of th@n+1)th-order signal implies the

direct observation of thén+1)th-order anharmonicity within the approximation. Based on this fact

we discuss a possibility to detect ttret+ 1)th-order anharmonicity directly from th@n+1)th-order
experiment. Calculations are made by using novel Feynman rules for the nonequilibrium multitime
correlation functions relevant to the higher-order off-resonant spectroscopy. The rules have been
developed by the authors and are presented compactly in this paper. With the help of a conventional
double-sided Feynman diagram, we draw physical pictures of higher-order off-resonant optical
processes. Representative calculations for GHElthe fifth-, seventh-, and ninth-order optical
processes are presented and discussed19@Y American Institute of Physics.
[S0021-960607)50805-]

I. INTRODUCTION harmonic system, we use the nonequilibrium generating

) ) _ o functional obtained in Ref. 18.
Dynamics of intra- and intermolecular vibrational modes If we assume polarization is a linear function of the

in the copdensed phase p_Iay a crucial role in various chemi; ;clear coordinate, i.eq=ay+a,q, the response functions
cal reactions. The extensive development of ultrafast pulsg e expressed as the multitime correlation function of coor-
lasers has made it possible to measure spectroscopy of t%ates,([q(t),q]),([q(t),q(t’)],q]}, etc. Here, the anhar-

low-frequency vibrational modes in real time. The time- monicity plays a significant role, since correlation functions

domain thlrd—ordelrztechn'lques,_such.as femtosecond ODI'C%lf the multicommutator of coordinate higher than the third
Kerr effect(OKE),™” and impulsive stimulated Raman scat- order vanish for the harmonic potential or in ttf@rmonig

. 3 . . _
tering (ISS),” have directly detected dephasing of the low Brownian particle system. In the real world, the anharmonic-

frequency modes of liuids. ity often becomes important. For example, the low-frequency

It is natural that experiments of higher nonlinear re'vibrational modes of water were found to have weak
sponse are more selective. One of the examples is Raman-

echo experiments’ related to the seventh order. Another is anharm(_)mcnf.g o0 .

the two-dimensional off-resonant experiment related to the, We incorporate anharmonlcﬁ‘ymto the B_rownlan. mo-
fifth-order nonlinearity’=* These experiments were carried tion theory throqgh Feynm?g]ﬂdlagrammatm technlque, as
out to separate the inhomogeneous and homogeneo@9ne in our previous wgrk@: “In the present article, we
dephasing. In our previous papemwe showed that off- reﬂ_ne our Feynman diagrammatic technique in the f_orm
resonant fifth-order optical processes can also be used ¥hich we call the three-step Feynman rule. The conventional
separate effects of third-order anharmonicigyg®/3!) of vi- ~ Feynman diagram techniquéor finite temperature or for
brational modes from the other effects, such as nonlinea€r0 temperatujenas only two stepgl) draw Feynman dia-
coordinate dependence of polarization. In the present papedrams and(2) obtain analytical expressions from the dia-
we generalize our previous study of the fifth-order optical9rams. Here, we deal with the nonequilibrium expectation,
process to thé2n+1)th order and show th&2n+1)th-order and the diagrammatic technique can be described by three
off-resonant spectroscopy is useful to study ther1)th-  steps: (1) draw simplified Feynman diagrams(2) draw

order anharmonicitg,,. ;. specifiedFeynman diagrams; an@) obtain analytical ex-
We employ the multimodéanharmonig Brownian os- ~ pression from the specified diagram.
cillator model (for a harmonic Brownian oscillator model, In general, a single graph in this three-step method cor-

see, for example, Refs. 16 and)1® incorporate the intra- responds to a sum of many double-sided Feynman
and intermolecular modes in the condensed phase.(Ihe diagrams.’ Thus, calculation is simpler in the three-step
+1)th-order off-resonant signal can be expressed by the mumethod. The physical picture from the three-step method is,
ticommutator of the(n+1)-time correlation function of the however, not as clear as that from the double-sided Feynman
polarizability. For example, the signal of the third-order  diagrams; each double-sided Feynman diagram has one-to-
=1) experiment such as ISS and OKE can be directly relatedne correspondence to the Liouville space gaffiherefore,

to the two-time correlation functionR®«=([a(t),«(0)]). we use the double-sided technique complementary in the
To calculate such multitime correlation functions for an an-present paper.
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In Sec. Il, we specify our model for the off-resonant R 1 ) 1
experiment and define multicommutator correlation func- ~ @=aote1Q+ oy azq™+--=2, o7 a.Q'EiZO a;(q)
tions which can be directly measured by the experiment. In - - 2.4

Sec. lll, we give analytical expressions of the response func- o o

tions relevant to(2n+1)th-order experiments by using the The anharmonicity of the potential is given by
three-step method, which is summarized as rules A, B, and 1 1

C, with some examples in Appendix A. In Sec. IV, the con-  V(Q)= 31 930+ a0 g4+

ventional double-sided diagrantsorresponding to the ana- ' '

lytical expression obtained in Sec.)llare presented to un- 1 :

derstand profiles of signals from physical picture. In Sec. V, :243 7 94 5243 Vi(a). 2.9
we take parameters from the OKE experiment on

chloroform? carry out numerical calculations, and give The(2n+1)th-order off-resonant signal is expresseft'as’
physical interpretations of the results. In the final section, we 120D (T) Ty, T =R D(T, Ty, T %

discuss limitations and possible extentions of the present (2.6)
work.
The response functions are defined through the multicommu-
tators:
Il. FEYNMAN RULE FOR THE (2n+1)TH RI(T = - (T (T2 a(0 2
CORRELATION FUNCTION (T)=7 ([a(Ty),«(0)]), @7

We consider a molecular system in the condensed phase

12
i
(5) = —
which is subject to electronically off-resonant pulses. The RE(T1.T2) (ﬁ) ([La(T1+T2),a(T)],(0)]),

off-resonant pulses can selectively probe only the electronic (2.9
ground state dynamics. The effective Hamiltonian is given . 2.9
by : .

~ ~ R(2n+l)(Ter2a"' aTn) (21@

He=H(p,q) — PE(r,1), 2.1 .
i

wherep andq stand for the momentum and coordinate of the = g) ([ [Ty + Tyt 4+ Ty),
nuclear degrees of freedom, respectively. In this experiment,
the permanent electronic dipole does not play a role. Instead ~ a(Ty+-+-+T,_1)],--a(T1)],a(0)]), (2.1
only the induced dipole whereq(t) is the Heisenberg operator defined by the Hamil-

|5=&E(t) 2.2 tonianH(p,qA) in (2.3?, or

_ At A A=At
is probed, where is the polarizability. In the following we a=e «e ’ (212
consider the case in which the nuclear motion is described bgnd the expectation implies
a single mode. Generalization to the multimode case is _ P P
straightforward(see Ref. 15 We consider the ground state (-)=Trle " /T e, (2.13
Hamiltonian coupled to an environment in the form The response functions can be expressed by the sum of either

) ) of the two types of connected Feynman diagram:

~ p Mw 2
H(p.q)=5-+—5—a"+V(a) RCYD(T, Ty, o+, T) (2.14
+§ p_,2 miwi2 ( <q )2 2.3 =E [topologically distinct simplified diagrans
i=1 2mi 2 Gi m; w; ' ' (215)

The corresponding classical equation of motiorgdbr this
Hamiltonian has the memory friction(t), which is com-
pletely specified by the bath parametecs,(n; ,w;). All in- (2.1
formation about the bath which is set by the parametergiqre the summatiort implies the one over all possible
(ci,m;, ;) is concentrated on the quantigft) even in the  giagrams. Detailed explanations are given in Appendices A
guantum tregtment. Thus, we can parameterize the theory i, 4 B with some examples. We have three typegira
terms ofy(t) instead of specifying all the values;(m;,wi).  eyolution operators, since we are calculating the expectation
In the following, we employ the Ohmic model assumip@)  \51yes in the nonequilibrium system. These three operators,
v;kzlei(tv)vgv E?Lelof a constant. This choice is allowed only the real time evolution operator of the kee (H'"), that of

The variation of the polarizability with the nuclear coor- the bra €""), and the imaginary time evolution operator
dinate is assumed to be (e PH), are associated with th&,-path, C,-path, and

=E [topologically distinct specified diagrams
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Imt
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T1+ T 0

FIG. 1. The unified time-pattC=C,+C,+C; on the complext plane

(T—w). C, andC, are along the real-time axis, where@gis on the imagi- FIG. 2. The specified diagram for the leading ordeR.

nary axis.
R(2”+1)(T1,T2,”- T
H n
Cs-path, respectively, or with the unified time path :('_) T[T+ + Ty,
C=C,;+C,+C; (see Fig. 1 In the conventional ca$e h
where calculation of the expectation at the equilibrium is the Q(Tyt 4T ] ,a(TD1,a(0)]). 3.2

main goal, only the imaginary time evolution operator,

e AH (corresponding to th€-path, is required. Thus, the By use qf the thre_ze-s_tep_procedure presented in Appendix A,
propagators appearing in the rule for the finite temperaturé€ léading contribution is expressed as

always connect two points 083 (Matsubara Green func- i\3 T4,

tions). On the contrary, we have the three paths C,, and  R®)(T;,T,)= _(ﬁ) g3aff dtDC (T + Ty )

C; in the present case of nonequilibrium expectation. Then Ty

the prqpaga?ors in this case connect arbitrarily two points on XD (1,000 (L, Ty), (3.3
the unified time pattC=C,+ C,+Cj;. In other words, we

have a propagator matri" (i,j=1,2,3). For convenience, , i\4 4 [T2tT2tTs

we take the linear combinations of the four independent eIR( (T, T, Te)=— (g) 94a1f

ementsD ", D7), D? andD®?, of the 33 matrix. Tt

This is why we have to add the extfa,—,3) indices to the XD T+ T,+T5,t)DC 1(1,0)

conventional Feynman diagrams to obtain the specified dia-

(=+) (=+)
grams(see Appendix A XDV (L TYDT (L T+ o), (39

By use of the simplified diagram, we can grasp the main i\5 Ty To+ Tat+ T,
contribution to the response function efficiently. Once a sSimR®(T,,T,,T3,T4)=— (ﬁ) g5a§J dt
plified diagram is written down, we can readily obtain the T1+ T2t Ts
analytical expressions by way of the specified diagrams. Al- XD (Ty+Tot TatTast)
though calculations of the nonequilibrium expectation values
are more complicated than those of the equilibrium ones, the XD (1,000 (t,Ty)
three-step procedure presented here—obtaining simplified * D, T14+T,)
diagrams, and then specified diagrams to derive the analyti- 12
cal expressions—greatly simplifies calculations. XD, T+ T+ Ty), (3.5
R(2n+l)(T1y"' T4
I1l. RESPONSE FUNCTIONS OF THE ANHARMONIC j\n+1 Ty+e 4T,
SYSTEM WITH THE LINEAR POLARIZABILITY = —(—) gn+1a2+lf dt
h Ti+e+Th g
In the following, we employ the linear polarizability ap- XD (T4 + T ) D (H,0D ) (t,Ty) -
proximation in a sense that ! " ’ T
XD, T+ +Thog). (3.6)
a=aot aiq, @D The specified diagram for the fifth order is explicitly given in

Fig. 2. The temperature-dependent propagafs® and
and calculate the response function relevant ta@me-1)th-  D®® do not appear in the above leading order calculation;
order experiment. In this model, the response function ighey play roles in higher-order contributions.
given as In the Ohmic case the propagator is calculated as
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FIG. 3. The bare ladder diagram to create double-sided diagrams. The lower gJo g1 Go G191 9o
(uppe) line stands for the real time evolution of the Kiet) vector and RO ! ' ' g '

corresponds to th€,-(C,-) path.
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where RO

gzm. (3.8) g0 90 0o Yo go 9Go 9o

. .. h Thn T3 T
Note here that by using the formula for oddand a similar
formula for evenn),

FIG. 4. Examples of the double-sided Feynman diagranRfdf R?, and

sin X1 sin Xot + -sin X R® for the system with only two vibrational levely, andg;. The black
circle stands for the interaction with a pair of pulses, while the cross repre-
(— 1)(n*l)/2 sents the anharmonic interaction. There at&2x4 diagrams(including
D — E E (—1)%tetFen the one in the aboyeor R®. The other 8x2x4—1 diagrams can be ob-
2" ep=*1 e3=*1 en=*1 tained by moving the black circles up or down and moving the cross to
another time segment. However, the diagrams which do not have the cross
X SIN(Xq+ €Xo+ €,X3+ *** + €,Xp), (3.9 atthe last period; all cancel with each otheisee text

the integrations in Egs. 3.3—3.6 can be readily performed.

We use the result of this integration for the numerical calcu- -
lations in Sec. V g ing order. Note here that we havén2-2) distinct segments

We stress here that the leading contribution is propor-Of the ladder: & segments corresponding to the period

tional tog,,..; and thus the detection of the nonzéf&" ") LET 'anzi‘”d the remaining four segments to both ef‘ds of
signal implies the direct observation of tkee+1)th anhar- the I_adde ' 'I;_he tzree-ste[;) Fe-‘/’?ma” rLtJIete?ployed n trf:e f
monicity within the linear polarization approximation. Previous section does not require us 1o ake care each o
As seen from Egs. 3.3-3.6, the range of the integratiorEhese large number of double-sided diagrams separately. In-
is from T+ +T,_; to T1+--'-+Tn namely, the time stead we have only to deal with few(anon—double-side)d
integration is done for the perio, , which indicates that the diagrams, although physical pictures from these diagrams

signal is caused by the anharmonic interactibning this may be less transparent than those from the double-sided
last period T, and thus becomes zero fof,=0 ones. Therefore, we examine physical pictures with help of
h .

the double-sided diagrams.

Results(3.3—(3.6) obtained by the three-step method
suggest that the double-sided diagrams which contribute to
them are only the ones having the cross either on the two

Although the three-step Feynman rule simplifies calcu-segments corresponding to the last perigd Note that the
lations considerably, the physical picture of the diagram aptime integrations in our result8.3)—(3.6) originate from the
pearing in the three-step technique may be less clear than tl@harmonic interactiofthe cros$ and the range of the inte-
double-sided Feynman diagrdrin this section, we illus- grations are equal toT, (from T,;+---+T,.; to
trate a physical picture of signals from nonlinear optical pro-T;+---+T,). All of the other double-sided diagrams
cesses by using the double-sided Feynman diagrams. AJl2"*1x2(n+2)—2""1x 2 in numbet are exactly canceled
though the double-sided Feynman diagrams may be welleut. This fact suggests that the signal becomes weak when
known in this field, to clarify our notations, in Appendix C the last periodr, is reduced and we expect a slow rise of the
we give explicit rules to draw the double-sided Feynmansignals as a function of,,.
diagrams of the leading order contributions to (Ba+1)th- To illustrate the physical picture more clearly, we re-
order response functiofsee Figs. 3 and)4 strict ourselves to the system whose electronic ground state

Figure 4 shows a heuristic case where the vibrationais described by the two vibrational levetg, and g;. The
mode of the electronic ground state is described by only tweystem is assumed to be initially in tigg state. One of the
levelsgy andg;. We have(n+1) black circles(laser inter- double-sided diagrams for the fifth, seventh, and ninth re-
actions and a crosqganharmonic interactionon the base sponse functions is depicted in Fig. 4. We shall call the states
diagram.(If one considers higher-order correction of anhar-denoted by g,){gdo| and|g,){g,| the vibrational population
monicity, one has more crossesdn general, we have states, andgo)(g,| and|g;){go| the vibrational coherence
2"*1x 2(n+2) topologically different diagrams at the lead- states.

IV. DOUBLE-SIDED FEYNMAN DIAGRAM AND
PHYSICAL PICTURE
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TABLE |. States during each periof, in the signal for the(vibrationa) , ,
two-level system: the abbreviations coh. and pop. imply the coherence and (Br, By)  (Ex Ej) (Es, Bs)
the population states, respectively.
1® Y | © |(2n+1)
T, coh. coh. coh. coh.
T, pop—coh. pop. pop. pop.
T, * coh—coh. coh. coh. N [ I I
T, * * pop—coh. pop. it il Hei -f ““““ r=--
: : : : : go
coh(n=o0dd)
Tn * * * pop(nzever)HCOh' FIG. 5. Different expression of the fifth-order diagram given in Fig. 4. The

lower solid line implies the, state while the upper the, state. The broken
line stands for the vibrational coherence state. The time runs from the left to
the right.

Let us examine the first diagram in Fig. 4, which is one
representative diagram . First, notice that the distance nals 1®)(T,,T,) and I")(T,,T,=0,T;) not to resemble.
between the leftmost and the middle black circle¥jsand  This is because in the last period, of the diagram of
that between the middle and the rightmosfTis Then we  1)(T;,T,), the system goes from the population to the co-
realize that the system is in the vibrational coherence state iherence statéat the crosg while in the last periodl; of
the periodT,, while in theT, period the system goes from I(7)(T1,T2=0,T3) the system remains in the coherence state
the population to the coherence at the time of anharmonidespite the anharmonic interaction.
interaction denoted by the cross. The above statement is true For the multivibrational-level system or the oscillator in
of all of the diagrams, in which the croganharmonic inter- the coordinate representatiofthe Brownian oscillator
action is on theT, segment. mode), the first periodT, also detects the dephasing while
States for the each period are summarized in Table Ithe other periodd,,--- ,T, probe the mixture of the popu-
Except for the last periodl,,, the odd time periods detect the lation relaxation and the dephasing process, and the above
dephasing processes while the even time periods detect tlstatements may be reasonable even in such a case.

population relaxation. The last periof, for evenn de- One can express the physical pictures in another sche-
scribes both the dephasing and the population, while that fomatic way. Figure 5 shows such an example corresponding
oddn describes only the dephasing process. to the double-sided Feynman diagram of the fifth-order re-

From the above discussions we can make the followingponse function presented in Fig. 4. In this type of diagram
statements. First, since tfig period describes the coherence the upper(lower) horizontal solid line stands for the vibra-
relaxation(or the dephasing procesgel is natural that all  tional population statég;)(d1|(|90){do|), while the horizon-
the signals resemble each other when plotted as a function ¢dl broken line implies the vibrational coherent states
T, if the other time periods are fixed. Second, the two-|g;){do| and|gy){(g;|. Time runs horizontally from left to
dimensional  signals 1°(T;,T,) and 19(T;,T,=0, right. The system is initially in the ground stdig)(g,| (at
T;=0,T,) may be similar since the double-sided diagrams otthe left end in Fig. & Then the first pair of laser pulség,
I<9>(T1,T2=O, T,=0,T,) (with T,=T5=0) andI®(T,,T,) andE;) brings the system to the vibrational coherence states
are essentially the same, although the origins are very diffetg,){go| and|gy){d;|. The second pair of pulse€&, and
ent sincel ®(T,,T,) and 19(T,,T,=0, T,=0T,) come E}) brings the system back {@,)(g|. Since we take into
from the third- and fifth-order anharmonicities, respectively.account the anharmonic interaction after the second pair of
On the other hand, we can expect the two-dimensional sigaulses, which is denoted by the short arrow, the system can

T1=0.1[ps] —
PAT,T)
5
~
s
e
0 005 01 015 02 025 03

T [ps]
FIG. 6. Signals of the off-resonant fifth-order spectroscopy as a function of the two delayTinaesi T, and of the last delay tim&,.
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T1=0.1[ps] —

<
<
=
S
IS

®y

0 0.2 0.4 0.6 0.8 1

T3 [ps]

FIG. 7. Signals of the off-resonant seventh-order spectroscopy as a function of selected two deldy tim&$; and of the last delay tim&;.

change its state to the coherent one without laser interaction. In the following, we present numerical results of the
Thus, the final puls&; can induce the signd,. From this  analytical expressions given in Sec. Il and examine the
diagram, it is clear why the anharmonic interaction is essenabove statements. For simplicity we reduce the number of

tial for the system to have a signal in the fifth-order opticaltime variables by settind@,=0 for the seventh order and by
T,=T3=0 for the ninth order. In this configuration of

pulses, the seventh- and ninth-order signa®(T,,T,
V. NUMERICAL SIMULATIONS =0Ty and 19(T,,T,=0, T4=0T,) reduce to two-
' . . . dimensional spectroscopy.

The profiles 0 f S|gnal§ expected from the. phy§|ca| PIC- 19 carry out calculations, we take the parameters from
ture_s in the previous section may be summarized in the fo'fhe OKE experiments on chloroforfCHCl). The vibra-
lowing statements: tional modes of this substance can be described by the fol-
lowing three modes coupled to the Ohmic batfi3:

processes.

(1) The (2n+1)th-order off-resonant signals®®"*1 will

show slow rise as a function df,. _ _
(2) All profiles of 12"* 1) (for any integem) as functions of 21=39.00 7,=77.0
the T, period(with the other period fixedwill be similar 0,=2585 y,=15.0 (5.1

since the same dephasing process is probed during pe-

riod T, for anyn. (3=368.5 7y3=22.0,

(3) All of the two-dimensional signals . -
(5+4n) . where the unit of parameters is ¢ We assume that only
I (T4,0,--+ ,0,T5, 4 (for any integem) as a func- he thi 2 h h o h its fol
tion of two time variables’; andT will show simi- the third modeQ; has an ar'mon|C|ty. The results for’,
L S+4n 17, and 1© are shown in Figs. 6—8. The features of the

lar profiles since the signals detect similar physical pro-_. . . :
cesses, although the origins are quite different. In theSlgnals can be summarized in the following way.
' 9 9 9 ' T, dependencelf the last periodT,, is fixed (n=2, 3,

: 7+4
same way btlhe 2?] S'ﬁnal$( HO(TL0: 0T 7 an) and 4 forl®, 17, and1®, respectively, all the signals
may resemble each other. 181 oscillates with the frequency(® along theT,
Ty1=0.1{ps] —

[T\, T,=0,T»=0,T4)

19%0.1,0,0,T,)

0 0.65 0:1 0.'1 5 0:2 0.25 0.3
Ty [ps]

FIG. 8. Signals of the off-resonant ninth-order spectroscopy as a function of selected two delaytiamekT, and of the last delay tim&,.
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axis. The envelopes of all the signals are monotonously In this article we concentrated on off-resonant measure-
decreasing with time. AT,=0, envelopes may take a ments using optical pulses. Corresponding experiments are
nonzero value. also possible by using infrared pulses to probe the vibrational
T, dependencelf T, is fixed, the signald® and1®® transitions* In this case signals originate from the electric
vibrate with frequency; along theT, axis while | @ dipole. Our theory can be used to study the case by replacing
with 2Q;. The envelopes of ® and 1® are monoto- P with the transition dipole momen. In this type of ex-
nously decreasing with time, while that bf’ peaks at periment, we measure the correlation function,dt) in-
around T5=0.25. AroundT;=0, all of the envelopes stead ofa(t). Both experiments are complementary.

slowly rise from zero.

The reason the oscillations in the signals appear at the frep-‘CKNOWLEDGMENTS

quency Q5 and ), is that we assumed that only th@, The authors greatly acknowledge K. Tominaga and K.
mode of the chloroform has anharmonicity. The slow rise forYoshihara for fruitful discussions. Financial support for this
small T,, supports the first stateme(inferred from the ana- work was partially provided by Grand-in-Aid for Scientific
lytical expressions The 2D signals in Figs. 6—8 exhibit os- Research from the Japan Ministry of Education, Science,
cillation with the same frequency2 in T, which supports  Sports, and Culture.

our second statemefdiscussed from the double-sided dia-
gramg. The fact that the whole 2D profiles of’ andl® are  APPENDIX A: THE THREE-STEP FEYNMAN RULE

similar, while they look rather different from the 2D profile In this Appendix, we present the three-step rule explic-
of 1", confirms the third statement. The behavior of theijty by clarifying the definitions of thesimplified diagrams
envelopes of the signal can be explained in the followingandspecified diagramwith some examples. Derivation can
way. First of all, sinceT; and T, periods both contain the pe done from Eq(B28).

dephasing processésee Fig. 4, the longer these periods We represent theimplified Feynman diagrams propor-
are, the weaker the strength of oscillations become: this i§onal to

why all the envelopes decrease with time. The envelope of
the 17 signal with fixedT;, however, has a peak. This is
because we have the double-sided diagram in whichlthe i
period is rephased during tfg period. In those types of the
diagram, theT, period is in the statég;)(go| while the T,
period is in|gy)(g,|, or vice versa. One of these diagrams
can be obtained by changing the diagramRéYP inFig. 4by  A. Rules for simplified diagrams
lowering the rightmost and the second rightmost black
circles (laser interactions These diagrams are the origin of
the Raman-echo signal in appropriate modétsthis model,
however, we cannot single out these type of diagrams by the
phase matching condition. The remnant of this echolike ef-
fect may be observed as a peak of thgenvelope ofl *).

n+1

ae- 11 giki=1,2,++;1,=0,1,2; ")
-1 o3 J

in the following manner. Here; corresponds to the order in
the jth-order anharmonicitg;q’.

Al. Prepare n+1 white circles corresponding to
@y, o, g . The white circle corresponding
to o; from whichi lines emerge shall be called the
ith-order external point.

A2. Prepard; black circles(j>3) corresponding to the
jth-order anharmonicityV;(q). The black circle
corresponding td/;(q) from whichj lines go out
shall be called thgth-order internal point. Note
here that the total number of internal poirits the
black circle$ in the diagram iv =13+1,+-+- . The
internal points are also calleckrtices

A3. Draw all possible connected diagrams by linking
these internal and external points by lifpsopaga-
torg). A connected diagram is the one in which ar-
bitrary two points are connected directly or indi-
rectly through lines.

VI. DISCUSSIONS

We presented the three-step Feynman rule for the non-
equilibrium expectation or the multicorrelation functions.
The higher-order off-resonant signals were calculated in a
compact analytical form by the rule. The physical picture for
the signals was given with the help of the double-sided Feyn-
man diagrams. We carried out the numerical calculations of
the analytical expressions using the parameters obtained
from the experiment, and compared the results with physicalf one cannot make a connected diagram out of the external
pictures obtained from the double-sided Feynman diagramaand internal points prepared in A1 and A2, it suggests that

In this paper, we employ the linear polarization approxi-the contribution of this order is zero. By use of the simplified
mation a=ay+a4q for simplicity. If we take into account Feynman diagram we can single out nonzero contributions to
the higher-order terms, i.eq,q°+ a3q>+---, the profile of  the response functions. Analytical expressions for the simpli-
the signal will be governed by the relative importance offied Feynman diagrams are given in E§28).
them and the anharmonicity. Such a consideration has al- Each simplified Feynman diagram can be expressed by
ready been dorfgin the case of the fifth-order signal, and it specifiedFeynman diagrams. The specified diagram is the
is also possible to include the nonlinearity of the polarizabil-simplified one with(+,—,3) indices and time variables at-
ity for the higher-order signals by using the three-step Feyntached to all the internal and external points and given in the
man diagram method. following manner.
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B. Rules for specified diagrams C2. Associatey; with theith-order external point which
B1. Attach n+1 time variables 0:1,T1+ TZ!H - Carriesl the time Variab|9T1+T2+ cee +Tn and
T,+T,+:--+T, to then+1 external points in an whosei lines are all labeled *. _
arbitrary way. C3. Associate—ig,/(4'#) with the kth-order internal
B2. Attachv time variables,,t,,--- ,t, to thev inter- point which has 2+1 number of lines labeled
nal points in an arbitrary way. “+" and (remaining k—2j —1 number of lines la-
B3. Attach the “+” or “ —” index to each line emerg- beled “—.” _ _ _ .
ing from an external point. An odd number oft*" C4. Associate—g;/A with the ith-order internal point
must be attached to the lines from a single external whosei lines are all Iabelelg)“S.”,
point, except the external point labeled  C5. Associate the propagatBX™(t,t') [I,m=-+,—3]
T,+T,+---+T, in B1. To all the lines from this to a line whose extremities are nameldt) and
special external point the+" indices must be at- (m,t"). _ _
tached. As a result, thigh-order external point in a C6. Integrate the product of all factors described in the
diagram has p+1 lines labeled “-” and i —2j — 1 above over the internal time variablgst,,--- ,t,.
lines labeled “+”, or hasi lines all labeled “-,” The range of integration for an internal point whose
where 3 +1 stands for an odd number apdan be lines are all labeled “3” is from O toB#. All the
an any integer from zero t6 —1)/2. other internal points are integrated from Octo
B4. Attach the index “3” to all lines emerging from an C7. The contribution of the diagram is obtained by the
internal point, or attach the index+" or “ —" to quantity obtained in C6 multiplied byif#)"/S,
each line from an internal point. One must attach an where the symmetry numb&is the product of the
odd number of “+” to the lines from a single in- line symmetry numbeg, and the vertex on&, of
ternal point, but cannot attach “3” and +” the diagram.

(* =) at the same time to the lines from a single  To help understand the above rules, we present several
internal point. It follows that theth-order internal  examples. First, consider the two-time response function:
point in a diagram hasj2-1 lines labeled *-" and @) i,

i—2j—1 lines labeled “+,” or hasi lines all la- R™(Ty) =5 a([a(T1),a(0)])

beled “3,” where 2j +1 stands for an any odd num-

ber from one ta. [
. . . . e a105([0%(T1),9(0)]+[a(T1),4%(0)])
Note here that the diagram which contains the following

lines vanishes and thus can be excluded from the following i
discussions. +- a3([q2(T1),q%(0) )+~ . (A2)

bl. Line whose extremities are+” and “ +" (propa-
gators connecting +” and “ +").
b2. Line whose extremities are+" and “3.”
b3. Line whose extremities afe-,t) and (+,t') where i, B
t<t'. (The propagator connecting"’ and “ +" is F((o(T), ¢(O)]) = o—0 + OQQ * < )
causal).

It can be shown that a simplified Feynman diagram is ex-

pressed as the sum of all possible specified diagrams ob- + CP + 8 +0—@—w+~~,
tained by the above rule which are topologically distinct o o o °

from each other. Namely, we have

Following rule A, the term proportional ta? is readily given
by the simplified diagrams

(A3)

where we consider thg; and g, anharmonicities explicitly

and draw up to the second order in these anharmonicities.

A simplified diagramI'= >, [topologically distinct By applying rule B, the above simplified diagrams can
be translated into the specified diagrams

specified diagrams derived from the simplified diagrBin %a%([q(Tl),q(o)]>= S Q - +©_ .

(A1) Tt

The analytical expression for a specified Feynman dia- 33 M-
gram is obtained from EqB28) as follows. + 393 + @- + 383 * +§_
o0 OodI—0  o——3eZ—0  O0—FeZ

N \ +

T

oo +L N- o 4 o LN S
A A

C. Rules for analytical expressions

C1. Associateq;/4' with the ith-order external point (A4)
which has 2+1 number of lines labeled +” and  where all the time indices are omitted. Then analytical ex-
(remaining i —2j —1 number of lines labeled+.” pressions are readily obtained from rule C. For instance,
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B8 = taint(m), (AS) a(() = ag+ @yd(t)+ 52 [0+ (B2)

1é i o Introducing the sign factor
& Q o =550 (~590) [ DT - 0)DC e - D) ) ;

-+ - +

(A6)

quin}:(_1)i1+i2+--'+infn, (BB)
Note the line symmetry factd®, is 2 in Eq.(A6).
Second, consider the two-time response function:
i\2 and the time variables
R<5><T1.T2):(5 a([[a(T1+T2),a(Tp1,a(0)])
i\ 2
+(i|€ afa([[g*(T1+Ty), :;'Io',l

a(Ty1,a(0)]+2 termg+--- . (A7) S3=T1+T,,

By use of rules A and B, the terms proportionaldfr, are
written down as Snt1=Ty+ Tt -+ Ty, (B4)

(%) ofao([[¢*(1y + T3),¢(T1)], ¢(0)] + 2 terms) = E< F

ps) OTi+ T2
:T1+T20<+T1D< .
+00 00
(A8)

n2 2 2
Third, we consider the three-time response function =(%) E E 2 sgni a_(ail(sl))
R()(T,,T,,T3). Following rule A, the simplified diagrams 171 =t =t

we can generalize the above expression to the form

R(2”+1)(T1,T2,”- T

are given as _ — — [
X a(d(2)) " a(d; (Sn))a(d' ) (Sns1)) 7 W(J)
atgs ajazgs ofas ool J=0
R(7)=X +< +< et ] 4o (BS)
(A9) . o —
By expanding the polarizabilityy we have
Here, the labels above each diagram show the order of the
diagram.
R(2”+1)(T1,T2,”' Th)
APPENDIX B: ANALYTICAL EXPRESSION FOR THE :(i_)n R ERi B LT
SIMPLIFIED DIAGRAM hl == 55 0 i e
By introducing the nonequilibrium generating functional 22 2 . . .
W(J), we obtained Eq(A6) of our previous papér: XilEzl |22:1 -~-iE:l sgni ‘9fi(51)5f§(32)"'5f:(3n)
i\ 2 .
I — — — C
R®(T,Ty)= g) [@(91(0))a(91(T1)) — a(d1(0)) X[I ) (Sns )Pt 2 W), (B6)
J=0

X a(dx(Ty)) = a(d2(0))a(d1(T1))

+a(32(0) a(7(T1)] Notice here that we have dropped the contribution fipr0
sincej,=0 corresponds to the-number part of the polariz-
ability «y and we are considering the expectation values of
multicommutator of the polarizability.

where By mathematical induction with respect towe have

Xa(d (T +T9) 3 W)lyo,  (BD)
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Chl ajz ain 2 2 2 j
L U P e e inzzl S9N, 9, (51
X 92(85)"+ 3}"(sp) (B7)
=af"(a(s)al] (d(sy) el T Nlsy),  (BB)
where
+— a; . .
al " 7(a() = 5 [A4(t) = p(1)] (89)
2iti<i 4 [o(F(1)]2I+2
=a 2 2% (50
[a(—)(t)]i—Zj—l
T(-2-Dr (B10
Thus, we arrive at
R(Z'Hl)(T,Tz,--- T
" -
= g) > X 2 el asy)
j1=1 jp=1 In+1=
aj) (d(s)) e’ T (a(sy))
_ i
Xaj (8 (spr1))z W) (B12)
J=0

p J -
a9 f9<,0 J dtf 98 G Ot mp(“()

oo

D(— 3)(t 7)

T og >(t) (7<Ps( o

where the propagator® (™[I, m=(+,—,3)] are defined

K. Okumura and Y. Tanimura: The (2n+1)th-order off-resonant spectroscopy

By applying the method explained in Appendix A in Ref. 21
[see Eq(A7) in Ref. 21], we have

R(2n+l)(Tl,T2,“'
B i
T\

X Z o (s af) e(sy)

in+1=1

Th)

n o0 o0
e(?/&(pD(?/(?(peV[(p] 2
j1=1jp=1

o ey (67 (Sh1)]p=0comn  (BL2)

As specified below(dldp)D (dldp) is the second-order de-
rivative operator with respect to the three variablgd’,
¢, and es, andV[e], o (e(t)),ai(¢ (1)) are poly-
nomial functiofal)s of the three variables. The operation
|0 in Eq. (B12) implies settinge=0 after performing the
derivatives of ¢. This operation corresponds to the Wick
contraction and we can resort to diagrammatic technigue.
Only the operations corresponding to connected diagrams are
kept in Eq.(B12), as implied by conn. at the end of this
equation.

The derivative operator is given by

L (9
J dtf dsa = )()D (ts) =s)

,Bﬁ Bh Jd
D33 ,
f f dr’ asogw (7)) Ga(r)

(B13)

whereS andA are the real and imaginary part, respectively

through the two-time correlation functions for the bilinearly (C=S+iA). In the case of Ohmic dissipation, the correla-

coupled and harmonic system. Equati@1i2) [or Eq.(B28)
below] with this expression fov/deDdlde is the origin of

rules C5 and b1-bg3. If we introduce the cumulant part of the

autocorrelation functiolC(t+i7)

C(t‘HT):<q(O)Q(t+i7')>bilineara (B14)

where 6<r <p#. Then the propagators are expressed as fol-

lows:
D3(t,7)=C(t+in), (B15)
D™ 7)(t,5)=S(t—s), (B16)
D )(t,5)=—2i(t—s)A(t—s), (B17)
DCI(7,7)=6(7—7)C(ir—i7" )+ 0(—7+7')
XC(—ir+ir'), (B18)

tion function is explicitly given by

C(t+in)=—ae Mt g,e M atHD_T(t4j7),
(B19)
where
= 1+ coth 2N B20
aj—4—m§ + cot T , ( )
N S L (B21)
X - H
,B . (0*+ Vﬁ)z—yzvﬁ
With N=y2+il, N=y2—il, ({=w?’—%4), and

v,=2mn/Bh.
The polynomial ofe originating from the polarizability
is given by
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2j+1<k 1
A Ne)=a 2 5

[oP(D]PF [ (k8!
2j+1! (k=2j—1)!

(B22)

@l M) =T e O], (823

From these expressions and Eg12) [or Eq.(B28) below],

we can understand rules B1, B3, C1, and C2 by noting the

fact that each term in these polynomial§™ ((t)) or

from which Rules A, B, and C can be derived. Here, the
summationXy . 1, implies the summation over all possible
permutation ofk; Ky, - ,K,1 1.

APPENDIX C: THE DOUBLE-SIDED FEYNMAN
DIAGRAM

We give the rules to draw double-sided diagrams for the
response functions to clarify our notations.

D. Rules for double-sided diagrams

D1. Prepare the laddédiagram with (n+1) steps. The
separation of the steps afg,T,,--- ,T,, (Fig. 3.
The upper solid line stands for the time evolution of

a(¢' (1)) is the origin of an external point and the defini- ket (C, path and the lower one for that of br€,

tion of time variabless; in Eq. (B4).

The polynomial ofe corresponding to anharmonicity is

expressed as

Vigl=2 Vilel, (B24)
where
Vile]=Vi* o] - V¥ ¢]. (B25)
Here,
Vi et)= - f dt (mw“(t))k
kl 2 Jo 2

(+) k
(Lo

2j+1<k i
J 1 [QD(+)(t)]2J+1

i o
o, a % @ @

¢T3t

k—2j—-1)1 " (B26
and
1 (st
VWlem=- g [ dtesn (B827)

path.

D2. Place a black circle at either the upper or lower end
of each steps. This corresponds to the laser interac-
tion a;E?(t)q, and absorbs or emits one quantum
(a ora’). Here,a anda' stand for the creation and
annihilation operator of the vibrational mode
[q>(a+ah)].

D3. Place a single cross on either the upper or lower
solid line (body of the ladder This stands for the
anharmonic interactiony,,,,q"*! and absorbs or
emits quanta where the number of quanta goes in or
out per one interaction can be an any number from
zero [corresponding ta("" 1’2" ("t 172 etc] to
n+1[(ah"*?, etc].
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