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Abstract

We study coupling mechanism of inter- and intramolecular modes of liquids by using a multi-mode Brownian oscillators
model. The coupling between modes comes into play through polarizability andror potential expanded with respect to
vibrational coordinates. We take into account these two causes of coupling and present analytical expressions for the Fourier
transform of the time-domain fifth-order Raman signal. We demonstrate a notable sensitivity of the Fourier-transformed
quantity to the coupling mechanism through numerical calculations for chloroform. q 1997 Elsevier Science B.V.

1. Introduction

w xThe fifth-order off-resonant spectroscopy has received considerable attention since the initial proposal 1 ,
Ž .because this two-dimensional 2D Raman spectroscopy has the potential to probe inhomogeneous dynamics in

w x w xthe condensed phase. Experimental 2–11 and theoretical 12–18 studies have been made to explore the
possibility to detect such heterogeneity. Until recently the experimental investigation had been limited to the
cases of the low frequency intermolecular vibrational modes of liquid molecules such as CS since they could2

not use pulses short enough to probe faster intramolecular vibrational dynamics in order to detect the weak
fifth-order signal. A novel heterodyne detection of 2D Raman spectroscopy has now become possible where

w xshorter pulses can be used to probe the intramolecular dynamics 10,11 .
To interpret the response due to such higher frequency modes, the 2D Fourier transform of the time-domain

2D Raman signal is useful. The Fourier-transformed results from the time-domain experiments have indicated a
w xsign of the coupling between inter- andror intramolecular modes in CS , CCl and CHCl liquids 10,11 . In2 4 3

the mixture of CCl and CHCl , the couplings between a mode of CCl and that of CHCl have been suggested4 3 4 3
w x11 . These results show that the Fourier-transformed results could be used to investigate the coupling
mechanism.
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Fig. 1. Pulse sequence and time variables for the fifth-order Raman experiment. The first femtosecond pulse pair excites Raman modes, the
second pulse pair after the delay time T causes further Raman interactions, and the final probe pulse after the delay T induces the signal.1 2

w xThe quantity observed in the time-domain experiment is a three-time response function 19 of the
polarizability a which can be expressed as

2i
Ž5. ² :R T ,T s a T qT ,a T ,a 0 , 1.1Ž . Ž . Ž . Ž . Ž .1 2 1 2 2ž /"

Ž .where T and T refer to the time intervals between pulses see Fig. 1 . It has been shown that, in order to have1 2
w Ž . 2a nonzero signal, one has to assume either nonlinear dependence of polarizability e.g., a Q sa Qqa Q1 2

x w Ž . 3 x w xfor a single mode Q or anharmonicity in the vibrational potential e.g., V Q sgQ 20 . Accordingly, modes
can couple with each other through two types of mechanism: polarizability-induced coupling and anharmonic

Žcoupling. The former is the coupling between modes through nonlinearity of a e.g., the cross term Q Q in1 2
.the expansion of a where Q ,Q are the vibrational coordinates . The latter is the one through anharmonic1 2

Ž . w 2 Ž .x Žcoupling in the vibrational potential V Q e.g., the anharmonic term Q Q in the expansion of V Q . See1 2
.Section 2 for detail.

In this paper we present analytical expressions for the fifth-order time-domain response and its Fourier
transform with the two types of coupling mechanism taken into account. From the expressions, we predict the
positions of peaks for weak damping modes and explicitly show that cross peaks cannot appear in the
mode-decoupled case: they originate from either polarizability-induced or anharmonic coupling. To demonstrate
a possibility to investigate the relative importance of the two mechanisms, we perform numerical simulations for
chloroform by using parameters extracted from the third-order experiment, and compare them with the

w xexperimental data obtained by Tokmakoff et al. 11 . The result shows a distinct sensitivity of the 2D Raman
response to coupling mechanism and gives some microscopic information on the mode–mode coupling.

2. Model and analytical expressions for the 2D response

We consider the effective Hamiltonian of a molecular system irradiated with pairs of off-resonant pulses
which is given by

HsH qH qH , 2.1Ž .V VL B

where H , H , and H are, respectively, the Hamiltonian of the molecular vibrational motion, the laserV VL B

interaction, and the heat bath.
The Hamiltonian, H , is described by n oscillators with frequency V ’s;V s

n 2 2P M Vs s s 2H s q Q qV Q . 2.2Ž . Ž .ÝV sž /2 M 2sss1

Here, Q collectively denotes the coordinates Q ,Q , . . . . The oscillators are mutually coupled through the1 2

anharmonic potential,
g X XXss s

X XXV Q s Q Q Q q PPP , 2.3Ž . Ž .Ý s s s
X XX 3!s, s , s

3 Ž .X XX X XXwhere g 'E V Q rE Q E Q E Q is the coupling parameter and ‘‘ PPP ’’ denotes the higher-order expansionss s s s s
ŽX XXterms. Note that this third-order coupling Q Q Q is the simplest but nontrivial one the Q Q term, fors s s 1 2

.example, is trivial since it can be removed by changing the set of normal modes .
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The vibrational motion and the off-resonant pulses are coupled through the coordinate-dependent polarizabil-
Ž .ity a Q ;

2H sya Q E r ,t , 2.4Ž . Ž . Ž .VL

Ž .where we have employed the semiclassical approximation in which the electronic field E r,t is treated as
Ž .c-number while the polarizability a Q is a quantum-operator. The polarizability is generally expanded as

a Ž ssX .
2Ž s.

Xa Q sa q a Q q Q Q q PPP , 2.5Ž . Ž .Ý Ý0 1 s s s
X 2!s s, s

Ž s. Ž . Ž ssX . 2 Ž . Ž .Xwhere a , a 'Ea Q rE Q , and a 'E a Q rE Q E Q are parameters. Thus, a Q involves cross terms0 1 s 2 s s

such as a Ž12.Q Q .2 1 2

We take into account the effects of dissipation on vibrational modes by the harmonic heat bath Hamiltonian,

22 2n N p m v c Qs , i s , i s , i s , i s
H s q q y , 2.6Ž .Ý ÝB s , iž /2m 2 m vs , i s , i s , iss1 is1

where the conventional notation is employed. In the following we assume the Ohmic dissipation in which all the
Ž .bath parameters m ,v ,c for the sth mode are represented by the single parameter g . This g can bes, i s, i s, i s s

w xinterpreted as the strength of damping of the sth vibrational mode 21,22 .
Ž . Ž . Ž s.Under the assumption that the anharmonicity, V Q , and the nonlinear polarizability, a Q ya yÝ a Q ,0 s 1 s

Ž w x .are weak see Ref. 20 for detail , the time-domain fifth-order response is given by

RŽ5. T ,T sR qR , 2.7Ž . Ž .1 2 P A

where the polarizability-induced term R is the contribution proportional to a Ž s.a Ž s.a Ž ssX ., which vanishes if theP 1 1 2
Ž Ž . Ž s. .polarizability is assumed to be linear i.e., a Q sa qÝ a Q , and the anharmonic term R is the one0 s 1 s A

Ž .X XXproportional to g , which vanishes if the anharmonic coupling V Q is neglected. In Section 3, we considerss s

two limiting cases for a demonstration: the polarizability-induced coupling case where the fifth-order response is
Ž5.Ž . Ž5.Ž .given by R T ,T sR and the anharmonic coupling case where R T ,T sR . The actual profile of Eq.1 2 P 1 2 A

Ž .2.7 should be determined by the contribution from both terms.
w xThe polarizability-induced term R had already been derived in Refs. 1,20 under the assumption of theP

Ž ssX . Ž Ž s. .Ž Ž sX . . Ž .exponential polarizability where a ra s a ra a ra . The extension to a general case in Eq. 2.52 0 1 0 1 0
w xcan be done by using the Feynman rule on the unified time-path 20,22–26 . The result is

2i X XŽ s. Ž s . Ž ss . Žyq. Žyq. Žyq.
X XR s a a a D T D T qT qD T , 2.8Ž . Ž . Ž . Ž .ÝP 1 1 2 s 2 s 1 2 s 1ž / X" ss

Žyq.Ž .where the propagator D t is defined bys

"
Žyq. yg tr2sD t su t e sinz t , 2.9Ž . Ž . Ž .s siM zs s

Ž .where u t is the Heaviside’s step function and the frequency z is given bys

2 2(z ' V yg r4 . 2.10Ž .s s s

It should be noted here that the frequency z can take an imaginary value for the overdamped mode wheres
Ž . w x Ž .V -g r2. The derivation of Eq. 2.8 is parallel to that in Ref. 20 and we only note that Eq. 2.8 reduces tos s

Ž . w x Ž ssX . Ž Ž s. .Ž Ž sX . .Eq. C4 of Ref. 20 under the exponential assumption a ra s a ra a ra .2 0 1 0 1 0



( )K. Okumura, Y. TanimurarChemical Physics Letters 278 1997 175–183178

The anharmonic term R can be also derived by using the Feynman rule on the unified time-path and theA

result is

R s g X XX R X XX , 2.11Ž .ÝA ss s ss s
X XXss s

where

3
`i X XXŽ s. Ž s . Ž s . Žyq. Žyq. Žyq.

X XX X XXR sy a a a d t D T qT y t D t D tyT . 2.12Ž . Ž . Ž . Ž .Hss s 1 1 1 s 1 2 s s 1ž /" 0

Ž w x Ž . w xX XXThe derivation is again parallel to that in Ref. 20 . We note here that R reduces to C3 of Ref. 20 whenss s
X XX 3 .sss ss . Namely, the response of the single mode with the cubic anharmonicity Q is given by R .s sss

Although the above results are obtained through the Feynman rule on the unified time path, which includes
Ž . Ž .temperature effects, the expressions 2.8 and 2.11 do not depend on the temperature. This is because these

observables have a weak temperature dependence which can be safely neglected under the assumption of weak
expansion parameters. Temperature effects come into play in higher order corrections for the expansion
parameters such as g X XX , a Ž s., and a Ž ssX ., which can be confirmed by writing down the Feynman diagrams onss s 1 2

w xthe unified time path 20 .
w xThe plots presented in Refs. 10,11 are the absolute value of the 2D Fourier transform of the time-domain

2D Raman response defined by

` `
Ž5. iv T i v T Ž5.1 1 2 2R̃ v ,v s dT dT e e R T ,T . 2.13Ž . Ž . Ž .H H1 2 1 2 1 2

0 0

w xBy calculation parallel to that in Appendix B of Ref. 20 , we obtain convenient time-domain expressions in
Ž . Ž .Eqs. A.1 and B.1 . From these expressions we get the analytical expression for the Fourier-transformed

response,

˜Ž5. ˜ ˜R v ,v sR qR . 2.14Ž . Ž .1 2 P A

˜The polarizability-induced term, R , is calculated asP

3 Ž s. Ž sX . Ž ssX . 4a a a a yV V qGG y iG v y iGv yv v˜ ˜ ˜0 1 1 2 1n 2 n n n 1 2 1 2n
R̃ s y1 ,Ž .Ý ÝP 2 2 2 2 2 2 2

X2" G qV y2 iGv yv G qV y2 iG v yv˜ ˜ Ž . Ž .Xz z 1n 1 1 n 2 n n 2 2ss ns1s s

2.15Ž .
Ž s. Ž ssX . ˜where the dimensionless parameters a , a , and z are defined by˜ ˜1 2 s

XŽ s. Ž ss . 2a " a "X1 2Ž s. Ž ss .a ' , a ' , 2.16Ž .˜ ˜ )1 2 2(
Xa M V a M M V0 s 0 0 s s 0

and

z̃ sz rV , 2.17Ž .s s 0

Ž .where V is the unit of frequency which can be any value. The peak frequencies V ,V and the peak0 1n 2 n
Ž . Ž . Ž .X Xwidths G ,G are, respectively, linear combinations of g ,g and z ,z as explicitly given in Appendix A.n s s s s

Ž . Ž . Ž . Ž .As seen from Eq. 2.15 , peaks appear around at v ,v s "V ,"V , "V ,"V "V for a weak1 2 i j i i j
2 2w Ž . x(damping case In Eq. A.2 , z s V yg r4 ;V when g is small . This implies that, in addition to thes s s s s

Ž . Ž .diagonal and overtone peaks is j , we have cross peaks i/ j . The reason only v can be combination2
Ž .frequencies v s"V "V shall be explained in Section 3.2 i j



( )K. Okumura, Y. TanimurarChemical Physics Letters 278 1997 175–183 179

˜The anharmonic term, R , is given byA

˜ ˜X XX X XXR s g R , 2.18Ž .˜ÝA ss s ss s
X XXss s

where

3 Ž s. Ž sX . Ž sXX . 4a V a a a˜ ˜ ˜0 0 1 1 1 n˜ ˜ ˜X XXR sy y1 F yF , 2.19Ž . Ž .Ý ž /ss s 1n 2 n
2˜ ˜ ˜X XX4" z z z ns1s s s

with the dimensionless parameter g X XX defined by˜ss s

1r23
X XXg "ss s

X XXg ' . 2.20Ž .˜ss s 3ž /X XX"V M M M V0 s s s 0

˜In the above we have introduced the auxiliary function F given bym n

Žm. Žm.G V Gy iv qV G y iv qV yV V qGG y iG v y iGv yv vŽ . Ž . Ž .0 2 n 1 1n m 2 0 n 1n 2 n m m 1 2 1 2
F̃ s ,m n 22 2 2 2 2 2 Žm. 2G qV G qV y2 iGv yv G q V y2 iG v yvŽ . Ž . Ž .0 0 n 1n 1 1 m 2 n m 2 2

2.21Ž .
Ž Žm.. Ž .where the peak frequencies V ,V ,V and the peak widths G ,G ,G are, respectively, linear combina-0 n 1n 2 n 0 m

Ž . Ž . Ž . Ž .X XX X XXtions of g ,g ,g and z ,z ,z as given in Appendix B. From Eqs. 2.19 and 2.21 , we expect to haves s s s s s
Ž . Ž . Ž . wpeaks around at v ,v s "V ,"V , "V ,"V "V for a weak damping case as in the polarizability1 2 i j i i j
Ž .xinduced term, Eq. 2.15 .

Ž . Ž .As mentioned before, the time-domain counterparts of the above expressions 2.15 and 2.19 are given in
w Ž . Ž .x Ž .Appendices A and B Eqs. A.1 and B.1 . The expression of the time-domain anharmonic term, Eq. B.1 , is

Ž .more convenient for the numerical simulations than Eq. 2.12 since it does not involve the time integration.
Ž . Ž . Ž Ž s. Ž ss. 2 .Finally we consider the case in which V Q s0 and a Q sa qÝ a Q qa Q r2q PPP . This0 s 1 s 2 s

wcase shall be called mode-decoupled case since there is no coupling between different modes. Notice that there
Ž . xare no cross terms such as Q Q in this form of polarizability a Q . In this case the response can be expressed1 2

by a simple summation of the contribution from each mode as
2i 2Ž5. Ž s. Ž ss. Žyq. Žyq. Žyq.R T ,T s a a D T D T qT qD T . 2.22Ž . Ž . Ž . Ž . Ž .Ž .Ý1 2 1 2 s 2 s 1 2 s 1ž /" s

Ž . Ž .The Fourier transformation of the response 2.22 is obtained from Eq. 2.15 by inserting the Kronecker’s delta
d X after the summation symbol with respect to s and sX. From this expression, we see that the peaks appearss

Ž . Ž . Ž . Ž .only around at v ,v s "V ,"V , "V ,"2V , "V ,0 for a weak damping case. This means that any1 2 i i i i i

cross peaks cannot appear in the mode-decoupled case.

3. Comparison with the experimental data

To demonstrate how coupling mechanisms affect on the 2D signal, we perform numerical simulations and
Ž .compare them with experimental data. Here, we consider chloroform whose low frequency Raman active

w xvibrational response is characterized by three modes. From the third-order off-resonant experiment 27 , we can
w xextract the following parameters almost uniquely 20 :

V g h1 1 1 39.0 77.0 1.17
V g h s 3.1Ž .258.5 15.0 2.102 2 2 ž /� 0 368.5 22.0 1.25V g h3 3 3
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˜< Ž . < Ž .Fig. 2. Contour plot of the absolute value, R v ,v , in a the polarizability-induced case. The two intramolecular modes V and V1 2 2 3

and their differences are shown in this figure.

w y1 x Ž s. 2
where the unit is cm . Here, h s a V . The lowest mode V can be ascribed to an intermolecular one˜Ž .s 1 s 1

while the other modes can be assigned to intramolecular modes.
˜Ž5.w x < Ž . <In Ref. 11 , the absolute value of Fourier-transformed response, R v ,v , of CHCl is plotted in the1 2 3

w y1 x w y1 xfrequency range v sy600;600 cm and v s0;600 cm . In the plot range, in addition to diagonal1 2
Ž . Ž .peaks positioned at v ,v s "V ,"V , we observe a few cross peaks. As mentioned in Section 2, these1 2 i i

cross peaks cannot be obtained from the mode-decoupled model and carry an important information on the
mode coupling mechanism.

We describe this substance by the mode-coupling model employed in the previous section: we consider the
two intramolecular modes V and V and analyze the coupling mechanism between these two modes.2 3
Ž . Ž .Inclusion of the lowest mode V is discussed in Section 4. We consider three cases of coupling: a1

Ž . Ž . Ž .polarizability-induced case, b intrinsic case 1, and c intrinsic case 2. In a we assume that the polarizability
Ž Ž ssX . Ž s. Ž sX .. w Ž . xhas the exponential form a sa a and the anharmonicity is zero V Q s0 so that origin of the all˜ ˜ ˜2 1 1

Ž . Ž . Žcross peaks is attributed to the polarizability. In b or c we assume that the polarizability is linear i.e.,
Ž . Ž s. . X XXa Q sa qÝ a Q and g is zero except that g sg sg sg or g sg sg sgso that0 s 1 s ss s 233 323 332 322 232 223

Ž . 2 2the source of the cross peaks is the intrinsic coupling V Q sgQ Q r2 or gQ Q r2. Here, g can be any value2 3 3 2

in our simulation, since it only determines the absolute intensities but does not change the profile; g is not
wimportant unless if the mixture of the two couplings is discussed. We do not consider the case where g issss

˜ 2< Ž . < Ž . Ž .Fig. 3. Contour plot of the absolute value, R v ,v , in b the intrinsic case 1, where V Q s gQ Q r2.1 2 2 3
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˜ 2< Ž . < Ž . Ž .Fig. 4. Contour plot of the absolute value, R v ,v , in c the intrinsic case 2, where V Q s gQ Q r2.1 2 3 2

3 Žnonzero since this introduces the purely cubic term Q which can not be the source for the cross peaks but fors
. xovertone peaks within the present approximation.

Ž . Ž .Contour plots of the responses in the three cases a – c are presented in Figs. 2–4. These plots exhibit
notable differences, suggesting a sensitivity of the 2D Raman response to coupling mechanisms. In all cases, v1

of the central position of each peak is one of the fundamental frequencies, that is, v s"V , or v s"V ,1 2 1 3

whereas v of the central position of each peak can be a combination of the fundamental frequencies such as2
Žv sV yV . The peaks along v s0 are irrelevant in the present simulations since the lowest V mode is2 3 2 2 1

.not taken into account – see Section 4. This is because the time evolution after the excitation of the
fundamental frequencies by the first pulse pair are being probed during the period T , whereas that after the1

excitation of combination frequencies, which is not possible until the irradiation of the second pulse pair, are
being probed during T . We stress here that all the peaks appearing in numerical results are observed at the2

Ž . Ž . Žpositions predicted from Eqs. 2.15 and 2.19 in Section 2. However, some of the predicted peaks have a
.small intensities and can not be seen in the contour plots.

w x Ž .By comparing these plots with the experimental result in Ref. 11 , we conclude that case b is the closest of
Ž . Ž . Ž .the three cases to the experiment. If the three cases a – c are compared, only in case b , the peaks along

v sV and that along v syV are, respectively, more distinctive as a whole than the peaks along1 3 1 3
Ž . w xv sV and that along v syV . This feature of b is also notable in the experimental data in Ref. 111 2 1 2

Ž .although the result in case b does not perfectly fit to the experimental data. These arguments indicates that the
coupling between the modes Q and Q observed in the experiment can be attributed to the Q Q2 term rather2 3 2 3

than the other two terms examined here.

4. Discussion

In the present analysis of chloroform, we have not presented the numerical results where all the the three
modes are included; we have performed such three-mode calculations and we have determined to show the case

Ž .of two modes V and V instead of three because of the following reasons. First, the inclusion of the V2 3 1
Ž . Ž .mode without coupling to the other two modes merely add a peak around v ,v s 0,0 . Second, when the1 2

Ž .V mode is coupled with the other modes, new peaks appear on the v axis v s0 and intensities of the1 2 1

peaks on the v axis are rather changed. However, if we subtract these peaks on the axes, the relative intensities1

and the profiles of the residual peaks off the axes are similar to the ones obtained here, when the coupling
between V and V or V is weaker than that between V and V ; this weak coupling between V and V1 2 3 2 3 1 2

wor V can be expected in the present case where V yV -V yV . These features have been confirmed by3 3 2 2 1
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Ž . Ž . xnumerical calculations and can be also understood from Eqs. 2.15 and 2.19 . Third, our main purpose of this
paper is to demonstrate sensitivity of our expressions to the coupling mechanism rather than to make a perfect
fitting; in the simpler model, discussion can be made simple and clear. Thus, we excluded the V mode from1

our analysis although it is not difficult to include the V mode in addition to the V and V modes.1 2 3

The reproduction of the cross peaks in our simulation is reasonable but is not perfect. There is much room for
improvement of our fitting, such as inclusion of higher order coupling terms, which may introduce an explicit

Ž .temperature dependence. For example, the feature found in case b which is common to the experimental data
Ž .discussed in Section 3 might be observed even in the polarizability-induced model, if we increase the

Ž33. 2 Ž .magnitude of coefficient a of the Q term in the expansion of polarizability a Q . We leave such2 3

improvements for a future study.
In conclusion, we present an analytical expression for the 2D Raman response with two coupling

mechanisms taken into account, from which we can predict the position of peaks. Numerical estimation of the
expression shows a distinct sensitivity of the signal to relative importance of the two coupling mechanisms. This
clearly demonstrates that 2D Raman responses and their expressions presented in this paper can be a powerful
tool in investigating the coupling mechanism. Comparison with the experimental data on chloroform gives some
information on the microscopic coupling mechanism.
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Appendix A. Expression for the polarizability-induced term of the time-domain 2D response

Ž .The polarizability-induced part of the fifth-order response function, R , in Eq. 2.15 can be cast into theP
Ž w x.following form the derivation is parallel to that in Appendix B of Ref. 20 :

3 Ž s. Ž sX . Ž ssX . 4a a a a˜ ˜ ˜0 1 1 2 n yG T yG T1 n 2R s y1 e cos V T qV T , A.1Ž . Ž . Ž .Ý ÝP 1n 1 2 n 22
X2" ˜ ˜ Xz zss ns1s s

where

g r2 z X zG V V s s s1 11 21

Xg r2 yz zG V V s s s2 12 22
XGsg r2, s . A.2Ž .s

X X Xg qg r2 z z qzG V V Ž .s s s s s3 13 23� 0 � 0
X X XG V V g qg r2 yz z yzŽ .4 14 24 s s s s s

Appendix B. Expression for the anharmonic term of the time-domain 2D response

Ž .X XXThe anharmonic part of the fifth-order response function, R , in Eq. 2.12 can be cast into the followingss s
Ž w x.form in the case of T ,T )0 the derivation is parallel to that in Appendix B of Ref. 20 :1 2

3 s sX sXX
4a V a a a˜ ˜ ˜0 0 1 1 1 n

X XXR sy y1 F yF , B.1Ž . Ž . Ž .Ýss s 1n 2 n
2 ˜ ˜ ˜X XX X XX ns14" g z z zss s s s s
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X XX X XXwhere g has the dimension of the coupling parameter g and defined byss s ss s

1r2X XX 3M M M Vs s s 0
X XXg '"V . B.2Ž .ss s 0 3ž /"

The auxiliary function F is given bym n

yG T1yG mT2e
Žm. Žm.F s V cos V T qV T qG sin V T qV T , B.3Ž .Ž . Ž .m n 0 n 1n 1 2 n 2 0 1n 1 2 n 22 2G qV0 0 n

where

G G G G0 1 2 X XX X X XXyg qg qg r2 g r2 g qg r2 g r2Ž . Ž .s s s s s s s
Ž1. Ž2.V V V V X XX X X XXyz yz qz yz yz qz z01 11 21 21 s s s s s s s
Ž1. Ž2.

X XX X X XXV V V V yz qz qz z z qz zs . B.4Ž .02 12 22 22 s s s s s s s

Ž1. Ž2. X XX X X XXyz qz yz z z yz zV V V V s s s s s s s03 13 23 23 � 0� 0
Ž1. Ž2. X XX X X XXyz yz yz yz yz yz zs s s s s s sV V V V04 14 24 24
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