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We develop a Feynman rule for energy-level diagrams emphasizing their connections to the double-sided
Feynman diagrams and physical processes in the Liouville space. Thereby, we completely identify such
diagrams and processes contributing to the 2D response function in the Brownian oscillator model. We classify
such diagrams or processes in quartets and numerically present signals separately from each quartet of diagrams
or Liouville-space processes. We find that the signal from each quartet is distinctly different from the others;
we can identify each peak in the frequency domain with a certain quartet. This provides the basis for analyzing
and assigning actual 2D peaks and suggests the possibility of Liouville-space path-selective spectroscopy. As
an application, we demonstrate an example in which two familiar homogeneous models of relaxation are
distinguished by the existence or nonexistence of certain peaks on the 2D map; the appearance or disappearance
of certain peaks is sensitive to the choice of coupling models. We also point out some confusion in the
literature with regard to the inclusion of relaxation effects.

I. Introduction

The use of ultrashort laser pulses to probe the properties of
molecules has been propelled by rapid advances in laser mea-
surement techniques.1 Recently, 2D vibrational spectroscopy has
been actively studied, where the spectral properties of multibody
correlation functions of polarizability (2D Raman spectros-
copy)2-19 or dipole moments (2D infrared spectroscopy)20-23

are measured. The 2D technique provides information about
the inter- and intramolecular interactions that cause energy
relaxations.24-28

Theoretically, optical responses of molecular vibrational mo-
tions have been studied mainly by either an oscillator model29

or an energy-level model.30 The oscillator model utilizes molec-
ular coordinates to describe molecular motions. This description
is physically intuitive since optical observables (dipole moments
or Raman polarizabilities) are also described by molecular
coordinates; the effects of relaxation, which are caused by inter-
actions of the coordinate with some other degrees of freedom,
are rather easy to include. As long as the potential is harmonic
or nearly harmonic, signals can be calculated analytically.2,6,31-35

On the contrary, the energy-level model employs the energy
eigenfunctions of a molecular motion but is physically equiva-
lent to the oscillator model. Accordingly, laser interactions are
described by transitions between the energy levels; the optical
processes, including the time ordering of laser pulses, are
conveniently described by diagrams such as Albrecht diagrams36

or double-sided Feynman diagrams.1 Although the inclusion of

relaxation processes from physical insight is less intuitive and
is restricted to some special cases, this model has the advantage
of identifying peak positions of the optical signal in the
frequency domain.37-40 The anharmonicity of potential and
nonlinear mode-mode coupling is also easily taken into
account. Phase-matching conditions, which chose a specific
Liouville path contribution by the configuration of laser beams,1

are also easy to take into account. In the oscillator model or
molecular dynamics simulations, the phase-matching condition
can be used only after calculating entire response functions.41

The rate of increase in the number of diagrams, however, with
the increase in laser interactions is more severe in the energy-
level model than in the oscillator model; this becomes a serious
practical problem for multidimensional spectroscopy, where
many laser interactions are included.6

In this paper, we try to bridge the two complementary models
by transferring some results obtained in the oscillator model to
the energy-level language. Although we lose simplicity (e.g.,
the small number of diagrams), we gain insight into the optical
processes; we can assign each peak to a certain set of optical
or Liouville-space processes. The resulting energy-level Fey-
nman rule for the oscillator system allows the inclusion of
relaxation in an ad hoc way. As an application, we compare
two system with different damping constants. This example
reveals that the existence of certain peaks in the 2D spectro-
scopic map sensitively depends on the relaxation model.

II. Interaction of Energy-Level Diagrams

We consider a molecular vibrational motion described by a
single molecular coordinateQ. In the energy-level representa-
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tion, the Hamiltonian is expressed as

where a and a† are the creation and annihilation operators,
respectively, and

for the system with massM. The energy levels of this harmonic
system are given byEn ) pΩn with Ωn ) (n + 1/2)Ω for which
we introduce the frequency differenceΩmn ) Ωm - Ωn. If the
system interacts with the laser fieldE(t), then it is governed by
the full Hamiltonian

whereµ is the dipole for infrared (IR) andR is the polarizability
for Raman spectroscopy. Both operators can be expanded as

We consider the response function

which is pertinent to 2D second-order IR (for nonisotropic
media) or 2D fifth-order Raman spectroscopy, wherex(t) is the
Heisenberg operator ofx for the noninteracting HamiltonianH0

and 〈O〉 ≡ Tr[F0O] with F0 ) e-âH0/Tr[e- âH0]. (When we
include the effect of dissipation at the level of the Hamiltonian,
H0 includes the bath Hamiltonian and the system-bath interac-
tion.) The operatorx stands forµ (IR) or R (Raman). The
generalization to the combined IR and Raman cases such as
〈[[µ(t3), µ(t2)], R(t1)]〉28, 42-44 will also be treated below.

R(2)(T1, T2) for the harmonic system can be expanded in terms
of Q by eq 4. The leading order is given as

where

with

A. Raman Spectroscopy.For the moment, we concentrate
on the Raman case (i.e.,〈[[R(t3), R(t2)], R(t1)]〉). Some of the
processes in eq 6 are represented by the energy-level (Albrecht-
like) diagrams in Figure 1. The differences from the original
Albrecht diagram are mentioned at the end of this section.
Before explaining the diagrams, let us review the rudiments of
possible transitions by operatorsQ andQ2; Q can cause a one-

quantum excitation or de-excitation whereasQ2 can result in a
two-quantum excitation or de-excitation in addition to a zero-
quantum transition. For example, from|0〉 f Q2|0〉 ∼ [(a†)2 +
aa†]|0〉, we see that by the action of the operatorQ2 the ground
ket state|0〉 can be converted into|0〉 (zero-quantum transition)
or |2〉 (two-quantum excitation). In the same way,〈2| can be
brought into 〈0| (two-quantum de-excitation) or〈2| (zero-
quantum transition).

In the diagrams, time runs from the left to the right. Each
pair of arrows stands for a Raman excitation. The pair with a
wavy arrow signifies the Raman induction decay (last interac-
tion). The first interaction occurs att1; the second, att2; and
the last, att3.

The full description of a quantum state at a certain time
requires both the bra state〈n| and the ket state|m〉; at any time
the state is fully specified by the Liouville state|m〉 〈n|. In the
diagrams, the excitation or de-excitation of thebra state is
expressed by a pair ofthin arrows whereas that of theketstate,
by thick ones. For example, the first interaction att1 of (i)
and (ii) is a two-quantum excitation of the ket state whereas
that of (iii) and (iv) is of the bra state.

In the Liouville space, the diagram (i) is interpreted as
follows. The system is initially in the ground (Liouville) state
|0〉 〈0|. The first interaction causes a two-quantum excitation
of the ket state,|0〉 〈0| f |2〉 〈0| at t1. The second interaction
causes a one-quantum de-excitation,|2〉 〈0| f |1〉 〈0| at t2. The
last shows a one-quantum de-excitation,|1〉 〈0| f |0〉 〈0| at t3.
As a whole, we denote this as

H0 ) pΩ(a†a + 1
2) (1)

Q ) x p
2MΩ

(a + a†) (2)

H(t) ) {H0 + µE(t) (IR)

H0 + RE(t)2 (Raman)
(3)

x ) x0 + x1Q + 1
2!

x2Q
2 + 1

3!
x3 Q3 + ‚‚‚ (4)

R(2)(T1, T2) ) θ(t3 - t2) θ(t2 - t1)〈[[x(t3),
i
p
x(t2)], i

p
x(t1)]〉

(5)

R(2)(T1, T2) ) ( i
p)2 x1

2x2

2
(R1 + R2 + R3) (6)

R1 ) 〈[[Q2(T1 + T2), Q(T1)], Q(0)]〉 (7)

R2 ) 〈[[Q(T1 + T2), Q2(T1)], Q(0)]〉 (8)

R3 ) 〈[[Q(T1 + T2), Q(T1)], Q2(0)]〉 (9)

{t3 - t2 ) T2

t2 - t1 ) T1
(10)

Figure 1. Energy-level diagrams ofR(2)(T1, T2) for Raman processes.

|0〉 〈0| 98
t1 |2〉 〈0| 98

t2 |1〉 〈0| 98
t3 |0〉 〈0| (11)
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The diagrams (ii)-(iv) are interpreted as follows:

Note here that a pair ofthin arrows always correspond to the
excitation or de-excitation of thebra state.

We define the population state by|n〉 〈n| and the coherence
state by|n〉 〈m| (n * m). We notice that, after the last interaction,
in all of the above four diagrams, the system is always in a
population state (|0〉 〈0| or |1〉 〈1|). In summary,a diagram does
not Vanish only when the final state is a population state
(Theorem 1). This corresponds to the trace operation in the
definition of the response function.

In this paper, we simplify the original Albrecht diagrams36

for comparison with the Liouville paths. The main differences
are the following: (1) we always use the same horizontal lines
regardless of ket or bra states, which is not the case in the
original Albrecht diagrams and (2) time always runs from left
to right in our representation whereas the directions for the bra
and ket states are the opposite in the original version. Our
representation is somewhat simpler in that a single diagram in
ours sometimes corresponds to several diagrams in the original
version.

B. IR and IR -Raman Spectroscopy.IR processes appear-
ing in the IR response function,〈[[µ(t3), µ(t2)], µ(t1)]〉, corre-
sponding to Figure 1(iv) is described in Figure 2; each quantum
transition is represented not by a pair of arrows but one arrow.
Note that Raman and IR processes can be equivalent theoreti-
cally at this level of description, although even orders of IR
processes, such as second-order IR signals, vanish except in
anisotopic media, such as adsorbed molecules on metallic sur-
faces.45 This situation can be overcome by mixing the IR and
Raman processes.42 By using narrow-band lasers (two IR exci-
tation pulses followed by one probe pulse that creates a Raman
signal), Zhao and Wright demonstrated such an experiment.28,44

As in IR-Raman spectroscopy, we consider the response
function 〈[[R(t3), µ(t2)], µ(t1)]〉, for example. A diagram corre-
sponding to Figure 1(iv) is shown in Figure 3; Raman and IR
transitions are represented by a pair of arrows and by one arrow,
respectively. Diagrams corresponding to the other IR-Raman
response function such as〈[[µ(t3), µ(t2)], R(t1)]〉 can be described
in a similar manner.

III. Energy-Level Diagram and Double-Sided Diagram

We can represent processes in the Liouville space in a differ-
ent way by the double-sided Feynman diagrams. The diagrams

in Figure 4 are the translations of the diagrams in Figures 1, 2,
or 3. In the double-sided diagrams, time runs from the left to
right (as in the energy-level diagram). However, there are always
two horizontal linessthe upper and lower lines. The former rep-
resents the ket state whereas the latter, the bra state. The single
circle stands for a one-quantum transition whereas the double
circle stands for a two-quantum transition. The quantum number
of the bra and ket states is denoted explicitly in the diagram.

It is noted that there are some differences in diagrammatic
notation among articles. For example, in some literature, the
quantum transition is not represented by circles but by arrows.
In another one, diagrams are rotated by 90° so that the time
runs from the bottom to the top.

In general, as seen below (section VI. A),the double-sided
diagram is conVenient for enumerating all possible diagrams
whereas the energy-leVel diagram is conVenient for understand-
ing the physical process.

IV. Feynman Rules for the Diagrams

We have introduced several ways to represent optical
processes as in Figures 1-4. It is emphasized here that the
interpretation in terms of the Liouville-space state|m〉 〈n| is
unique except for whatxk implies. Accordingly, we can develop
a universal rule to write down analytical expressions from
diagrams via the interpretations (such as eqs 11-14) in the
Liouville space; the derivation is a straightforward exercise in
elementary quantum mechanics and will be discussed elsewhere.
It can be summarized in the following way. We associate with
each interaction (originating from the interactionQk/k!) at a
certain time or each propagation for a certain period one of the
factors shown in Table 1 or 2: By multiplying all of the factors

Figure 2. Energy-level diagram ofR(2)(T1, T2) for IR processes.

Figure 3. Energy-level diagrams ofR(2)(T1, T2) for IR-Raman
processes,〈[[µ(t3), µ(t2)], R(t1)]〉.

|0〉 〈0| 98
t1 |2〉 〈0| 98

t2 |1〉 〈0| 98
t3 |1〉 〈1| (12)

|0〉 〈0| 98
t1 |0〉 〈2| 98

t2 |0〉 〈1| 98
t3 |0〉 〈0| (13)

|0〉 〈0| 98
t1 |0〉 〈2| 98

t2 |0〉 〈1| 98
t3 |1〉 〈1| (14)

Figure 4. Double-sided Feynman diagrams ofR(2)(T1, T2).

TABLE 1: Factors for Interaction

interaction (n g 0) factor

|m〉 f |m + n〉 (i/p)xk〈m + n| Qk| m〉/k!
|m〉 f |m - n〉 (i/p)xk〈m - n| Qk|m〉/k!

〈m| f 〈m + n| (-i/p)xk〈m| Qk|m + n〉/k!

〈m| f 〈m - n| (-i/p)xk〈m| Qk| m - n〉/k!

remark omit ( i/p for the last interaction

TABLE 2: Factors for Propagation

propagation (t g 0) factor

|m〉 〈n| for t e-iúmnt - Γmnt
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and inserting another factor of 1/2 to avoid double counting
(see Theorem 2 below), we obtain an analytical expression of
the corresponding diagram (Feynman rule). Here, we have
introduced úmn and Γmn (g0) to describe relaxation; the
difference in frequency, which was modified due to the
relaxation, is defined byúmn ) (m - n)ú whereas the relaxation
constantΓmn for the state|m〉 〈n| possesses the symmetric
property Γnm ) Γmn, which is a necessary condition for a
consistent theory (see the comment just below eq 21). Without
dissipation,úmn f Ωmn ) (m - n)Ω and Γmn f 0. In the
Brownian oscillator model with the damping constantγ, the

corrected frequencyú is given byú ) xΩ2-(γ/2)2.46,47 The
expression forΓmn in this model shall be discussed below.

By definition, the propagation periodimplies the time
between two interactions. This excludes the periods fromtI to
t1 and fromt3 to tF in the diagrams in Figures 1-4 (or, say, in
eqs 11-14) because there is no interaction attI or tF; we
associate the unity for these special periods.

Let us apply our rule without relaxation (Γmn ) 0, úmn )
Ωmn) to a diagram or a Liouville-space path. As the first
example, we consider diagram (i) (of Figure 1 or 4). We have
only two separate propagation periods by definition. In the first
period fromt1 to t2, the system is in state|2〉 〈0|, and thus we
have the factor e-iΩ20(t2 - t1) whereas for the last period fromt2
to t3 the system is in state|1〉 〈0| and we have the factor e-iΩ10(t3
- t2); in total, we have the propagation factor e-iΩ20T1‚e-iΩ10T2,
where we have used relation 10. In addition, as the result of
the three interactions, we have other factors:

(Note here the relations eq 2 as well asa|n〉 ) xn|n - 1〉 and
a†|n〉 ) xn+1|n + 1〉). In summary, the process in eq 11 or
diagram (i) is given (with the extra factor of 1/2 associated with
the double counting) by

The process in eq 12 or diagram (ii) (of Figure 1 or 4) is
different from (i) only aftert3. Although the last interaction at
t3 is that for the bra state (expressed by the thin arrows and
different form (i)), the factors for this last interaction is the same
as that of (i) by the above Feynman rule; there is no sign
differences between the bra and ket states especially for the
last interaction. In summary we have

In general, we have the following theorem, which is related to
the double counting:The diagrams that are different only by
the side of the last interaction (bra or ket side) haVe the same
contribution (Theorem 2).

The process in eq 13 or in diagram (iii) can be estimated in
a similar manner by the above Feynman rule:

Note here the minus sign in front of i/p because of the
interactions on the bra state (thin arrows). Fromt1 to t2, the
system is in states|0〉 〈2| and|2〉 〈0| in (iii) and (i), respectively;
these two states are the complex conjugates of each other. From
t2 to t3, the state of (iii),|0〉 〈1|, is again in the complex-conjugate

state of (i),|1〉 〈0|. Accordingly, (iii) given above is the complex
conjugate of (i) (i.e., (iii)) (i)*). Diagrammatically, in (iii) of
Figure 1, all of the thick arrows in (i) are replaced by thin
arrows. In general,the complex-conjugate diagram is obtained
by interchanging all of the thick and thin arrows(Theorem 3).
In the double-sided Feynman diagrams, instead,the complex-
conjugate diagram is obtained by interchanging the circles on
the upper and lower lines(Theorem 3′).

Diagram (iv) is the complex-conjugate diagram of (ii) because
the thin and thick arrows are interchanged (i.e., (iv)) (ii)*).
We can also verify the relation (iii)) (iv) from the above
Feynman rule by reconfirming Theorem 2.

V. Temperature Effect and Initial State

In the above discussion, we have assumed that the system is
initially in the ground state,|0〉 〈0|, which is usually justified
for high-frequency vibrational modes at room temperature. For
high temperatures or low-frequency modes, however, excited
states|n〉 〈n| are initially populated according to the Boltzmann
factor. In general, we have to estimate all of the possible
processes assuming that the system is initially in the population
state|n〉 〈n| using the above-mentioned rule and then summing
with respect ton with the Boltzmann factor e-âEn/∑ne-âEn (where
En is the eigenvalue ofH0 in the case without dissipation); this
completes our Feynman rule.

Even if we take into account the contribution from the general
initial state |n〉 〈n|, however, in the (fully corrected) Ohmic
Brownian oscillator model, we still obtain the same result as
above as shown in the literature. This is the reflection of the
relation

whereX is some special combination of operators. (This could
be directly checked by laborious calculations using our Feynman
rule.) The fact thatR(2)(T1, T2) treated in this paper is
independent of the temperature, and thus we can obtain a finite
temperature result even if we assume that the system is initially
in the ground state, is by no means trivial but is established by
other calculation methods.6 This implies, for example, that the
dependence onn of the analytical expression corresponding to
Figure 5 cancels out with some other diagram. For damping
models other than the (fully corrected) Ohmic Brownian
oscillator model, our results presented below might be inter-
preted as a high-frequency approximation (i.e.,pΩ . kT.)

VI. Liouville-Space Quartet

The four diagrams (i)-(iv) in Figures 1 and 4 are a special
set in the sense that we can obtain the other three starting from
one of the quartets.

In the energy-level diagram, we obtain the second by
changing the last interaction by using one of the following rules
(depending on the last interaction of the starting diagram): (1)
the (last) ket excitation to a bra de-excitation, (2) the ket de-
excitation to a bra excitation, (3) the bra excitation to a ket
de-excitation, or (4) the bra de-excitation to a ket excitation.
The remaining two diagrams are the complex-conjugate dia-

Figure 5. General process corresponding to Figure 1(i)

i
p
x2

〈2|Q2|0〉
2

‚ i
p
x1 〈1|Q| 2〉 ‚ x1〈0|Q|1〉 ) ( i

p
p

2MΩ
x1)2

x2

(i) ) ( i
p)2 x1

2x2

2 ( p
2MΩ)2

e-i2ΩT1‚ e-iΩT2 (15)

(ii) ) (i) (16)

(iii) ) (- i
p)2 x1

2x2

2 ( p
2MΩ)2

ei2ΩT1 ‚ eiΩT2 (17)

〈n|X|n〉 ) 〈0|X|0〉 (18)
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grams of the previous two diagrams. (The conjugates are
obtained by interchanging the thin and thick arrows.)

In the double-sided diagram, the second diagram is obtained
by lowering or raising the last circle. The remaining two are
obtained by interchanging the lower and upper lines with circles.

As seen before, the corresponding analytical expressions of
(i)-(iv) have the relations (i)) (ii), (iii) ) (iv), and (i) )
(iii)* . The sum of the quartet is always real:

wheren ) i, ii, iii, or iv. Taking the real part of eq 15, we have
an expression for the quartet,

In terms of the interpretation in the Liouville space in eqs
11-14, all of the processes possess a common property: the
two-quantum coherence (|2〉 〈0| or |0〉 〈2|) is realized forT1

whereas the one-quantum coherence (|1〉 〈0| or |0〉 〈1|) is realized
for T2; we denote this as

This is reflected by the factor cos(2ΩT1 + ΩT2) in eq 20.
We notice that in the case with damping ifΓmn (and úmn)

were not symmetric thenVI could not be real; the symmetric
property ofΓmn is required for the response function to be real.

A. Quartet Representations: All Possible Quartets for
R(2)(T1, T2). We show six quartets R(1)-R(6) in Figure 6 in
the double-sided representation. The square brackets imply the
quartet; only one of the quartets is explicitly written in the
brackets. For example, R(1) of Figure 6 collectively stands for
(i)-(iv) of Figure 4.

In Figure 6, on the right side, 10 quartets in the energy-level
representation are given; some quartets in double-sided repre-
sentation correspond to not one but two quartets in the energy-
level representation. For example, R(1) contains contributions
I and I′ whereas R(3) contains only A2.

Six quartets R(1)-R(6) in Figure 6 exhaust all possible
contributions to the right-hand side of eq 6; there are 3 ways to
put in the double-quantum transition (double circle), and there
23 ways to position the three (including one double circle) circles
on the upper or lower line, which leads to 3‚23 double-sided
Feynman diagrams in total. These 3‚8 diagrams can be divided
into 6 quartets that have been shown. We understand here that
the double-sided diagram is conVenient for enumerating all
possible diagrams.

B. Estimation of Quartets. The analytical expression of
quartet II is given via our Feynman rule:

where the analytical expression in the square brackets has been
derived from the diagram explicitly drawn in the brackets in
Figure 6 (in the presence of dissipation). For example, the
propagators e-i2úT1 - Γ20T1 and e-iúT2 - Γ21T2 come from the
propagation of|2〉 〈0| and |2〉 〈1|, respectively.

In this way, we obtain the expression

where these labels (I, II, A, ...) correspond to those in Figure 6

and their analytical expressions are given as follows:

As for the derivation of this, we remark: (1) Quartets I′ and II′
cancel out because

and

(The numerical factor 1/4 can be understood from the first two-
quantum transition associated with〈0|Q2|0〉 ∝ 〈0|aa†|0〉 ) 1.)
(2) The sum A2+ A1 reduces to A. (The numerical factor for
A2 (or A1) can be estimated by noting the second two-quantum
transition 〈1|Q2|1〉 ∝ 〈1|aa† + a†a|1〉 ) 3 (or 〈0|Q2|0〉 ∝ 〈0|
aa†|0〉 ) 1)).

It is worthwhile to observe the relationships between analyti-
cal expressions and the symbolic interpretations of the remaining
quartets:

That is, we can associate the state|n〉 〈m| with únm andΓmn.
We note that, in principle, if we fully included the temperature

effect by our Feynman rule with tracking all of the possible
processes, then we could obtain the result given in Appendix B
of ref 37.

VII. Damping Models

We can confirm that the well-known result for the Ohmic
Brownian oscillator (BO) model (Ohmic implies that the system-

(i) + (ii) + (iii) + (iv) ) 4Re[(i)] ) 4Re[(n)] (19)

VI ) -
x1

2x2

2(MΩ)2
cos(2ΩT1 + ΩT2) (20)

|2〉 〈0| f |1〉 〈0| and |0〉 〈2| f |0〉 〈1| (21)

II ) 4Re[-( i
p)2( p

2Mú)2
‚

x1
2x2

2
‚ e-i2úT1 - Γ20T1‚ e-iúT2 - Γ21T2]

(22)

R(2)(T1, T2) ) I + II + A + B + C + D1 + D2 (23)

I ) -
x1

2x2

2(Mú)2
e-Γ20T1 - Γ10T2cos(2úT1 + úT2) (24)

II )
x1

2x2

2(Mú)2
e-Γ20T1 - Γ21T2cos(2úT1 + úT2) (25)

A ) -
x1

2x2

2(Mú)2
e-Γ10T1 - Γ10T2cos(úT1 + úT2)

(26)

B )
x1

2x2

2(Mú)2
e-Γ10T1 - Γ12T2cos(úT1 - úT2) (27)

C ) -
x1

2x2

2(Mú)2
e-Γ10T1 - Γ20T2cos(úT1 + 2úT2)

(28)

D1 ) - 1
4

x1
2x2

(Mú)2
e-Γ10T1 - Γ00T2cos(úT1) (29)

D2 ) 3
4

x1
2x2

(Mú)2
e-Γ10T1 - Γ11T2cos(úT1) (30)

I′ ) - 1
4

x1
2x2

(Mú)2
e-Γ00T1 - Γ10T2 cos(úT2)

II ′ ) 1
4

x1
2x2

(Mú)2
e-Γ00T1 - Γ01T2 cos(úT2)

A: |1〉 〈0| f |1〉 〈0| and |0〉 〈1| f |0〉 〈1| (31)

B: |1〉 〈0| f |1〉 〈2| and |0〉 〈1| f |2〉 〈1| (32)

C: |1〉 〈0| f |2〉 〈0| and |0〉 〈1| f |0〉 〈2| (33)

D1: |1〉 〈0| f |0〉 〈0| and |0〉 〈1| f |0〉 〈0| (34)

D2: |1〉 〈0| f |1〉 〈1| and |0〉 〈1| f |1〉 〈1| (35)
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bath coupling is in the bilinear form) is reproduced from eq 23
by setting

where|m| represents the absolute value ofm. Actually, in the
Brownian result, I+ II should be zero, which is true ifΓ21 )
Γ10, while D1 + D2 should be-2D1, which is true ifΓ11 )
Γ00; Γmn in eq 36 satisfies these requirements.

The cancellation of I and II is one of the features of the
Brownian result. Another feature is that the state|0〉 〈0| decays
with the relaxation constantγ, which is the same as that for|1〉
〈1|. These characteristics have provoked some controversy, as
mentioned below.

The relaxation constant for the same Ohmic model within
the lower-level approximation (i.e., at the level of Fermi’s golden
rule with a somewhat ad hoc approximation (see below)) is
given by refs 37 and 48

which is also simple but incompatible with the above two
requirements (Γ21 ) Γ10 andΓ11 ) Γ00). With this relaxation
constant, I and II survive, for example. (In addition, there is no
frequency shift (úmn f Ωmn) in this finite-order approximation.)

The frequency shift and appearance of the absolute value (|n
- m|), which is nonanalytic in the off-diagonal relaxation
constant, in eq 36, may correspond to the summation of an

Figure 6. All possible quartets forR(2)(T1, T2). The square brackets imply that four diagrams are collectively represented. For example, the first
diagram in the energy-level diagram for R(1) corresponds not only to (i) of Figure 1 (which is explicitly written in the brackets) but also to the other
three diagrams (ii)-(iv) of Figure 1.

Γnm ) {γ for |n〉 〈n|
|n - m|γ/2 for |n〉 〈m| (n * m)

(36)

Γmn ) n + m
2

γ (37)
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infinite number of diagrams. In the well-known result of the
Ohmic BO model,the bilinear coupling between the system-
bath is fully taken into account; this is the exact prediction from
a simple reasonable model, and we are concerned with the
relaxation offully dressed statesin the exact result of the BO
model. On the contrary, the relaxation constant in eq 37 is the
result of the same model but with the second-order (in coupling
strength) approximation. Nonetheless, in some contexts, the
second-order result has been favored whereas the full-order
result has been questioned.37,49

As we show below, we can distinguish the above two models
(36 or 37) by a 2D experiment by checking for the existence or
absence of certain peaks. In other words, whether the coherence
(off-diagonal) relaxation constant that depends only on the
quantum number difference (whereΓm+n,m ) Γn,0) and the level-
independent population relaxation are appropriate (as the first-
order picture) or not might be checked experimentally.

Note that if the system has some sort of anharmonicity such
as the anharmonicity of potential29 or the nonlinear system-
bath coupling50 then the relaxation constants do not followΓ21

) Γ10 and so forth, even when we take into account higher-
order system-bath interactions. Then the number of Liouville
paths involved in the optical processes increase dramatically,
especially when the system-bath interaction is very strong.
Also, if the laser-molecular interaction is much shorter than
the time duration of the system-bath interactions, then one has
to regard the relaxation rate as a function of time (i.e.,Γnm(t)).
In such case, the equation-of-motion approach is more appropri-
ate than the diagrammatic approaches, although it requires
computationally expensive calculations.50-55

We comment on the confusion in the literature with regard
to the Redfield theory, one example of which is eq 37. The
Redfield theory without the rotational wave approximation
(RWA) is equivalent to the Fokker-Planck equation.51-55 The
time-evolution operator in the Liouville space from state
|k, l〉〉 ≡ |k〉 〈l| to 〈〈i, j| ≡ 〈i|‚‚‚|j〉 is then expressed as
〈〈i, j|e- i(Ĥ×-Γ̂)t|k, l〉〉, whereĤ× is the quantum Liouvillian and
Γ̂ is the damping operator (Redfield operator). In an energy-
level representation,|k, l〉〉 is the eigenfunction of the Hamil-
tonian but not the eigenfunction ofΓ̂, which makes it diffi-
cult to evaluate this propagator. However, one sometimes
reads the damping constant directly from the Redfield tensor
elementsΓijkl and incorporates them in the propagator as
〈〈i, j|e-i(Ĥ×-Γijkl)t|k, l〉〉, which cannot be justified from the
coordinate representation model.37,48 Accordingly, this ad hoc
methodology possesses a flaw in the sense that the theory thus
obtained does not converge to analytical perturbative results such
as those obtained by the Brownian oscillator model. It is possible
to evaluate effective tensor elementΓijkl

(eff) by solving the
equation of motion such as the Fokker-Planck equation with
linear and nonlinear system-bath interactions,50-55 but the
calculated results are quite different from the Redfield tensor
elements.50

VIII. Multimode System

Extension to the multimode system, whose characteristic
modes are represented by{Qs}, {Ms}, and{γs}, is straightfor-
ward.22,33,39,56We expand the dipole or polarizability operator
as

and we denote the Liouville state by

where {ns} ) (n1, n2,‚‚‚) is the quantum number of the
corresponding mode. Hereafter, we use the notation in which
|ns, ns′〉 〈ms, ms′| stands for the state where the modess ands′
are in the states|ns〉 〈ms| and |ns′〉 〈ms′|, respectively. For
example,|0, 1〉 〈2, 3| means that the first and second modes
are in the ground and first excited ket states while they are in
the second and third excited bra states, respectively.

The factor (in the Feynman rule) for the transition is well
explained by example. The transition

caused by the operator (Q(1))2Q(2) is associated with the factor

whereas the transition (again caused by (Q(1))2Q(2))

is associated with the same factor with the minus sign. If the
above transition occurs at the last time, however, we have to
omit the factori/p as in the single-mode case.

Note here that a transition of the type

cannot occur at once, but

can occur; bra and ket excitation can never occur simultaneously,
that is, the simultaneous multitransition can occur exclusively
for the ket state or for the bra state.

The time propagation factor of each mode in the state (|n〉
〈m|)s during a (positive) time durationt is given by e-i(n - m)Ωst

for the harmonic system without dissipation.
In the multimode case, the diagram explicitly written in the

square brackets labeled D2 in Figure 6 represents either a single-
mode process

wheres implies no time propagation, or a two-mode process

which is explicitly shown in the square brackets labeled D2 in
Figure 7. In other words, in the multimode case, quartet D2 in
Figure 6 represents the quartets displayed in Figure 8.

By using the above rules in the multimode case, we see that
the propagator of the process in eq 45 is given by e-iΩsT1 ‚ e-i(Ωs

- Ωs′)T2 because|1, 0〉 〈0, 0| propagates forT1 and |1, 0〉 〈0, 1|
propagates forT2. The remaining interaction factors are

x ) x0 + ∑
s

x1
(s)Q(s) +

1

2!
∑
s,s′

x2
(ss′)Q(s)Q(s′) + ‚‚‚ (38)

|{ns}〉 〈{n′}| ) (|n1〉 〈n1′|)1‚‚‚(|ns〉 〈n′s|)s‚‚‚ (39)

|0, 0〉 〈0, 0| f |2, 1〉 〈0, 0| (40)

1
3!

‚ i
p

(x3
(112) + x3

(121) + x3
(211)) 〈2, 1|(Q(1))2Q(2)|0, 0〉 )

1
2!

‚ i
p
x3

(112)x2
p

M1Ω1 x p
M2Ω2

|0, 0〉 〈0, 0| f |0, 0〉 〈2, 1| (41)

|0, 0〉 〈0, 0| f |1, 0〉 〈1, 0| (42)

|0, 0〉 〈0, 0| f |1, 1〉 〈0, 0| (43)

{|1〉 〈0| f |1〉 〈1| (modes)
s f s (modes′) (44)

{|1〉 〈0| f |1〉 〈0| (modes)
s f |0〉 〈1| (modes′) (45)

1
2!

‚ i
p
x1

(s)〈1, 0|Q(s)|0, 0〉 ‚ (- i
p)x1

(s′)〈0, 0|Q(s′)|0, 1〉

‚(x2
(ss′) + x2

(s′s))〈0, 1|Q(s)Q(s′)|1, 0〉
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(and the factor 1/2 is included to avoid double counting). Taking
into account the other elements of the quartets, we obtain the
total contribution D2 of Figure 6 in the multimode case in the
form

where css′ is 1 and 3/2 fors * s′ and s ) s′, respectively.
Comparing this with diagrams, we learn that we should associate
|ns, ns′〉 〈ms, ms′| with Ωnsms

(s) + Ωns′ms′

(s′) . These four quartets
correspond to four diagrams in Figure 8 (in the dissipationless
case).

In this way (now taking into account the effect of dissipation),
we have

where the prime in the expression,∑
s,s′

′ implies that the terms

with s ) s′ are excluded in the sum. Here, each term is given
by with

Figure 7. Two-mode processes. There are no counterparts to I′, II ′, A1, and D1.

Is) -fsse-Γ20
(s)T1 - Γ10

(s)T2 cos(2úsT1 + úsT2) (48)

II s) fsse-Γ20
(s)T1 - Γ21

(s)T2 cos(2úsT1 + úsT2) (49)

A2ss′ ) -fss′ e-Γ10
(s)T1 - Γ10

(s′)T2 cos(úsT1 + ús′T2) (50)

Bs) fsse-Γ10
(s)T1 - Γ12

(s)T2 cos(úsT1 - úsT2) (51)

Bss′ ) fss′ e-Γ10
(s)T1 - Γ01

(s′)T2cos(úsT1 - ús′T2) (52)

Cs) -fsse-Γ10
(s)T1 - Γ20

(s)T2cos(úsT1 + 2úsT2) (53)

Css′ ) -fss′ e-Γ10
(s)T1 - (Γ10

(s) + Γ10
(s′))T2 (54)

× cos(úsT1 + (ús + ús′)T2) (55)

D1s) -1
2

fsse-Γ10
(s)T1 - Γ00

(s)T2cos(úsT1) (56)

D2s) 3
2

fsse-Γ10
(s)T1 - Γ11

(s)T2cos(úsT1) (57)

D2ss′ ) fss′ e-Γ10
(s)T1 - (Γ10

(s) + Γ10
(s′))T2 (58)

× cos(úsT1 + (ús - ús′)T2) (59)

D2 ) 4∑
s,s′

Re[-
1

2
css′ ( i

p)2

x1
(s)x1

(s′)x2
(ss′)

× p
2MsΩs

p
2Ms′Ωs′

e-iΩsT1 e-i(Ωs - Ωs′)T2] (46)

R(2)(T1, T2) ) ∑
s)1,2

(Is + II s + Bs + Cs + D1s + D2s)

+ ∑
s,s′

A2ss′ + ∑
s,s′

′(Bss′ + Css′ + Dss′) (47)
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We observe the following: (1) Iss′ and II ss′ always cancel out
whereas Is and IIs cancel out only if

(2) The sum (A1+ A2)s is given by lettings′ f s in A2ss′. (3)
When we use

the above expression reduces to the result of the fully corrected
Brownian oscillator model. If we employ the model with the
relaxation constant

then this leads to a different result; one of the feature is the
survival of the single-mode terms Is and IIs.

IX. Feynman Rule in Frequency Domain

In the frequency domain, we study the quantity

The frequency domain expression is obtained by using the above
propagators in the frequency domain (or, instead, directly by
the Fourier transformation of eq 47). The general propagating
factor in the multimode case, e- ΓT1 - iΩT1 ‚ e-Γ′T2-iΩ′T2, is, in
the frequency domain, replaced by

The expression of eq 47 in the frequency domain is given in
the Appendix.

X. Two-Dimensional Signal from Each Liouville-Space
Quartet

In this section, we present 2D signals from each Liouville-
space quartet separately in the fully corrected Brownian oscil-
lator model. In the frequency domain, since the signal is a
complex number, we show the absolute value of the signal. In
the time domain, the signal is real, which is directly shown.

A. Frequency Domain. A1. Single Mode (Weak Damping).
Figure 9 shows signals from the system with a single mode (Ω
) 1, γ ) 0.1, in arbitrary units). Signals from each Liouville
space quartet are shown separately. We can interpret each peak
in the following way. The process represented by|n〉 〈m| f

|n′〉 〈m′| implies that the system is in state|n〉 〈m| for T1 and
|n′〉 〈m′| for T2. Then, we assignΩnm andΓnm for T1 andΩn′m′
andΓn′m′ for T2. This can be symbolically written as

Actually, the process|n〉 〈m| f |n′〉 〈m′| corresponds to the peak
at (ω1, ω2) ) (Ωnm, Ωn′m′) with the widths in theω1 and ω2

axes given byΓnm andΓn′m′, respectively. This results from the
expression in eq 65 and can be confirmed numerically as we
see below.

We note here that we need not consider the contributions
from quartets I and II because they cancel each other in the
fully corrected Brownian oscillator model.

Quartets A ) A1 + A2. This is symbolized by|1〉 〈0| f
|1〉 〈0| and its complex conjugate|0〉 〈1| f |0〉 〈1|. The former
process can be symbolically written as

This suggests a diagonal peak (ω1, ω2) ) (Ω, Ω) whose widths
in theω1 andω2 directions areγ/2; this peak shows a symmetric
pattern with respect to the two axes, which can be seen in the
contour plot in Figure 9. With the complex conjugate process
|0〉 〈1| f |0〉 〈1|, we associate

Figure 8. Quartets represented by quartet D of Figure 6.

Figure 9. Contour plot of the signal from the system with a single
mode with weak damping. The upper four plots correspond to the
separate contributions from each Liouville-space quartet. The bottom
plot is the sum of them (i.e., the total signal).

fss′ )
x1

(s)x1
(s′)x2

(ss′)

2MsúsMs′ús′
(60)

Γ10
(s) ) Γ21

(s) (61)

Γnn
(s) ){γs/2 for |ns〉 〈ns|

|ns - ms|γs/2 for |ns〉 〈ms| (ns * ms)
(62)

Γmn
(s) ) n + m

2
γs (63)

∫0

∞
dω1 ∫0

∞
dω2 eiω1T1 + iω2T2R(2)(T1, T2) (64)

i
ω1 - Ω + iΓ

‚ i
ω2 - Ω′ + iΓ′ (65)

|n〉 〈m| f |n′〉 〈m′| w {(Ωnm, Ωn′m′)
(Γnm, Γn′m′)

(66)

|1〉 〈0| f |1〉 〈0| w {(Ω10, Ω10)
(Γ10, Γ10)

w {(Ω, Ω)
(γ/2, γ/2)

(67)

|1〉 〈0| f |1〉 〈0| w {(Ω01, Ω01)
(Γ01, Γ01)

w {-(Ω, Ω)
(γ/2, γ/2)

(68)
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Namely, quartet pair A corresponds to two symmetric diagonal
peaks at (ω1, ω2) ) ((Ω, Ω.) (See the top left plot of Figure
9.)

Quartet B. Symbolically, the association is as follows:

Its complex conjugate is

Namely, we have two symmetric diagonal peaks at (ω1,ω2) )
((Ω, -Ω). (See the top right plot of Figure 9.)

Quartet C. In a similar way, from the association

and its conjugate, we should have two significant overtone peaks
at (ω1, ω2) ) ((Ω, 2Ω) whose width in theω1 direction is
one-half of that in theω2 direction; the peak is elongated in the
second axis, as can be seen in the contour plot in Figure 9.
(See the middle left plot of Figure 9.)

Quartet D ) D1 + D2. From the associations

and their complex conjugates, we should have two significant
elongated axial peaks at (ω1, ω2) ) ((Ω, 0). (See the middle
right plot of Figure 9.)

The total signal displayed at the bottom of Figure 9 shows
eight significant peaks; now that we know from which Liouville-
space path each peak originates,we can assign each peak with
distinct LiouVille-space pathsby the data in Table 3.

In Figure 9, we notice that peaks from quartets C and D are
elongated in the second axis. This point is also understood in
the above argument, from which we have Table 4.

A2. Double Modes (Weak Damping).Figure 10 shows
signals from the system with two weak damping modes (Ω1 )
1, γ1 ) 0.1Ω1, Ω2 ) 0.5, γ2 ) 0.1Ω2, in arbitrary units, with
the assumption thatx1

(s), x2
(ss′) and,Msús are all independent of

mode indices (s and s′)). Signals from each Liouville-space
quartet are shown separately. We can interpret each signal in
the following way.

Top-Left Plot of Figure 10. Two-mode quartet A2 in Figure
7 is associated with

and its complex conjugate; this quartet produces the four cross
peaks at (ω1, ω2) ) ((Ω1, Ω2), ((Ω2, Ω1). The remaining four
diagonal peaks at (ω1, ω2) ) ((Ω1, Ω1) and((Ω2, Ω2) originate
from single-mode quartets A2 and A1 in Figure 6, which
corresponds to the process

and its conjugate. The widths in theω1 andω2 directions for
the peak at (ω1, ω2) ) ((Ωs, Ωs′) are Γ10

(s) and Γ10
(s′), respec-

tively. In the fully corrected BO model, they areγs/2 andγs′/2,
respectively. Although there exists the effect of interference,
the relative width is consistent with this indication. For example,
this is the reason that the peaks at (1, 0.5) and (0.5, 1) are
elongated in theω1 andω2 axes, respectively. In summary, in
the fully corrected BO model, the positions of peaks and two
component of width are given by

Top-Right Plot of Figure 10. Single-mode quartet B in
Figure 6 and two-mode quartet B in Figure 7 are associated

|1〉 〈0| f |1〉 〈2| w {(Ω10, Ω12)
(Γ10, Γ12)

w {(Ω, -Ω)
(γ/2, γ/2)

(69)

|1〉 〈0| f |2〉 〈1| w {(Ω01, Ω21)
(Γ01, Γ21)

w {(-Ω, Ω)
(γ/2, γ/2)

(70)

|1〉 〈0| f |2〉 〈0| w {(Ω10, Ω20)
(Γ10, Γ20)

w {(Ω, -2Ω)
(γ/2, γ)

(71)

D1: |1〉 〈0| f |0〉 〈0| w {(Ω10, Ω00)
(Γ10, Γ00)

w {(Ω, 0)
(γ/2, γ)

(72)

D2: |1〉 〈0| f |1〉 〈1| w {(Ω10, Ω11)
(Γ10, Γ11)

w {(Ω, 0)
(γ/2, γ)

(73)

TABLE 3: Peak Positions for Quartets

quartet
peak positions in
(ω1, ω2) plane

A (Ω, Ω), (-Ω, -Ω)
B (Ω, -Ω), (-Ω, Ω)
C (Ω, 2Ω), (-Ω, -2Ω)
D (Ω, 0), (-Ω, 0)

TABLE 4: Peak Widths for Quartets

quartet
width of peaks

for (ω1, ω2)

A, B (γ, γ)
C, D (γ, 2γ)

Figure 10. Contour plot of the signal from the system with two weakly
damped modes.

{|1〉 〈0| f s (modes)
s f |1〉 〈0| (modes′) w {(Ω10

(s), Ω10
(s′))

(Γ10
(s), Γ10

(s′))
(74)

{|1〉 〈0| f |1〉 〈0| (modes)
s f s (modes′) (75)

A2/A1(single mode):{((Ω1, Ω1) with (γ1/2, γ1/2)
((Ω2, Ω2) with (γ2/2, γ2/2) (76)

A2 (two mode):{((Ω1, Ω2) with (γ1/2, γ2/2)
((Ω2, Ω1) with (γ2/2, γ1/2) (77)
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with

The single-mode quartet produces the four diagonal peaks in
the top-right plot whereas the two-mode quartet produces the
four cross peaks. The widths in the two directions for the
diagonal peaks are given by (Γ10

(s), Γ12
(s′)) whereas those for the

cross peaks are given by (Γ10
(s), Γ12

(s′)). In summary, we have

Middle-Left Plot of Figure 10. Single-mode quartet C in
Figure 6 and two-mode quartet C in 7 are associated with

The single-mode quartet produces the four overtone peaks in
the middle-left plot whereas the two-mode quartet produces the
four cross peaks. In summary, we have

Middle-Right Plot of Figure 10. Single-mode quartets D1
and D2 in Figure 6 are associated with

whereas two-mode quartet D2 in 7 is associated with

The single-mode quartet produces the four axial peaks in the
middle-right plot whereas the two-mode quartet the four cross-
peaks. In summary, we have

Note here that in the fully corrected BO model we haveΓ00
(s) )

Γ11
(s) so that the widths from single-mode quartets D1 and D2

are the same as in the above.
The total signal is displayed at the bottom of the Figure;we

can assign each peak with distinct LiouVille-space paths or
energy-leVel diagrams(as in Figure 8).

B. Time Domain.Figure 11 shows the contour plots of peaks
from each quartet for a single over-damped mode system (Ω
) 2π, γ ) 6π). Each quartet contributes to the total signal in
a rather different way. This suggests the possibility of Liouville-
space-path selective spectroscopy.

XI. Signals from the Brownian Oscillator Model and the
Redfield-Type Model

In Figure 12, we compare results from two models: (1) the
Brownian oscillator (BO) model (the system-bath interaction
is fully taken into account), where we use eq 36 and (2) the
Redfield-type model (RT), where we use eq 37 with the
replacementús f Ωs (no frequency shift).

Top. The right plot from the RT model has extra peaks on
the left (BO) at (ω1, ω2) ) ((2, 1). They originate from the
survival of quartets I and II in Figure 6.

Middle. On the left plot (BO), there exist extra peaks at
(ω1, ω2) ) ((1, - 1). These correspond to single-mode quartet
B in Figure 6. For this process, the relaxation constants
associated with theω2 axis,Γ12, in BO and RT are given byγ
and 3γ, respectively; the relaxation in RT is much faster, which
explains the disappearance of the peaks. The peaks at (ω1,
ω2) ) ((0.5, - 0.5) survive because these peaks come not
only from the single-mode process B but in this case the peaks
from quartets I and II also overlap with those from other
quartets.

Bottom. On the right plot (RT), there exist extra peaks at
(ω1, ω2) ) ((0.3, 0.6). They corresponds to the survival of I
and II in Figure 6.

In summary, the detailed situation depends on the parameters.
However, they have one thing in common: the difference
between the models is manifested in the existence or absence
of certain peaks. The numerical results given above are all in
the weak damping regime (γ ≈ 0.1Ω). The weak effect
nonetheless affects the existence and absence of certain peaks.
This is because the damping constants have a direct bearing on
the cancellation mechanism of certain processes. Note that the
situation is completely different forweakpotential anharmo-
nicity or nonlinear polarizability. Such weak effects, on the
contrary, do not involve delicate cancellation mechanisms.
(Although the difference between the left and right plots in
Figure 12 seems to be small on a whole, if we concentrate on
peaks that appear in one model but disappear in another model,
we notice that the peak intensity can be fairly strong compared
with that of other dominant (stable) peaks even though the
damping constant used there is weak. The difference between
models thus can be fairly strong, although they might be
obscured by other effects.)

If the system exhibits a nonweak anharmonicity of potential
or nonlinear system-bath coupling, as mentioned before, then
there may be peaks at similar positions, as predicted by the

D1/D2 (single mode):{((Ω1, 0) with (γ1/2, γ1)
((Ω2, 0) with (γ2/2, γ2)

(89)

D2 (two mode):{((Ω1, Ω1 - Ω2) with (γ1/2, (γ1 + γ2)/2)
((Ω2, Ω2 - Ω1) with (γ2/2, (γ1 + γ2)/2)

(90)

{|1〉 〈0| f |1〉 〈2| (modes)
s f s (modes′) w {(Ω10

(s), Ω12
(s′))

(Γ10
(s), Γ12

(s′))
(78)

{|1〉 〈0| f s (modes)
s f |0〉 〈1| (modes′) w {(Ω10

(s), Ω01
(s′))

(Γ10
(s), Γ01

(s′))
(79)

B (single mode):{((Ω1, -Ω1) with (γ1/2, γ1/2)
((Ω2, -Ω2) with (γ2/2, γ2/2) (80)

B (two mode):{((Ω1, -Ω2) with (γ1/2, γ2/2)
((Ω2, -Ω1) with (γ2/2, γ1/2) (81)

{|1〉 〈0| f |2〉 〈0| (modes)
s f s (modes′) w {(Ω10

(s), Ω20
(s′))

(Γ10
(s), Γ20

(s′))
(82)

{|1〉 〈0| f |1〉 〈0| (modes)
s f |1 〈0| (modes′) w {(Ω10

(s), Ω10
(s) + Ω10

(s′))

(Γ10
(s), Γ10

(s) + Γ01
(s′))

(83)

C (single mode):{((Ω1 2Ω1) with (γ1/2, γ1)
((Ω2, 2Ω2) with (γ2/2, γ2)

(84)

C (two mode):{((Ω1, Ω1 + Ω2) with (γ1/2, (γ1 + γ2)/2)
((Ω2, Ω2 + Ω1) with (γ2/2, (γ1 + γ2)/2)

(85)

{|1〉 〈0| f |0〉 〈0| (modes)
s f s (modes′) w {(Ω10

(s), Ω00
(s′))

(Γ10
(s), Γ00

(s))
(86)

{|1〉 〈0|〉 f |1〉 〈1| (modes)
s f s (modes′) w {(Ω10

(s), Ω11
(s))

(Γ10
(s), Γ11

(s))
(87)

{|1〉 〈0| f |1〉 〈0| (modes)
s f |0〉 〈1| (modes′) w {(Ω10

(s), Ω10
(s) - Ω10

(s′))

(Γ10
(s), Γ10

(s) + Γ01
(s′))

(88)
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Redfield-type model. Such a mechanism, however, affects not
only the existence of these peaks but also the entire profile of
the signals, which involves different Liouville paths. The careful
study of the signal in the frequency domain shall be the critical
test of the Redfield-type model.

XII. Concluding Remarks

We stated an interpretation of the energy-level diagrams in
the Liouville space and summarized the relationships between
several diagrammatic representations. We emphasized that all
of the diagrammatic representations reduce to unique interpreta-
tions in Liouville space, by which we can write down analytical
expression by a Feynman rule.

We have given examples in which each Liouville process
makes a distinctly unique contribution to a 2D signal; the
selective detection of quantum processes by ultrafast spectros-
copy might be possible. (For example, if we use multicolor 2D
spectroscopy to study high-frequency vibrational modes, then
we might utilize the phase-matching condition.41) By a suitably
prepared spectroscopic configuration, we might be able to
concentrate on a certain quantum process that allows a simpler
analysis and a more quantitative understanding. Such Liouville-
space-path selective spectroscopy might be promising. This
situation reminds us of an analogy (although the principles
might be quite different) in which the photon echo can be
distinguished from the pump-probe via a phase-matching
condition; we could differentiate spectroscopic methods by the
peaks they produce.

An Energy-leVel diagram is useful in interpreting the physical
process but only after confirming that the diagram makes a
nonzero contribution possibly by another method. For example,
in the (fully corrected) Brownian oscillator model, we can

assume that the initial state of the diagram is the ground state
because we know that other initial states result in the same
contribution from a separate calculation. Another example is
the cancellation of I by II in Figure 6.

In this respect, the diagram in the field-theoretical context,
for example, which was introduced in ref 6, has some
advantages. The number of diagrams to be considered is
considerably smaller, and an analytical expression is obtained
much more simply; in the case ofR(2)(T1, T2), we have to
consider only two diagrams, each being given by the product
of two certain propagators, because the cancellation is always
automatically taken into account in this method and, in addition,
quartets are summed from the beginning in a simpler form.
However, this conceals physical processes in the Liouville space.

If the initial temperature of the system is higher than the
excitation energy of the vibrational levels (as in the case of low-
frequency modes) or if the nonlinearity of the dipole or Raman
transitions is important,6,13,15then we have to include a number
of Liouville paths, especially in higher-order spectroscopy; the
assignment of the peaks to some Liouville paths becomes
nontrivial.

As for models of relaxation, we have considered only the
system that is bilinearly coupled to the bath. We constructed
the Feynman rule by starting from the rule in the case without
damping, and then we replaced the propagator so that it causes
damping with an appropriate choice of the relaxation parameters
Γmn. One may think that the set{Γmn} is an arbitrary set of
parameters to fit experimental data; in the case of vibrational
spectroscopy, however,Γmn’s have to satisfy certain universal
relationships; for example, they have to satisfy the detailed
balance condition. In addition, the validity of the rotating wave

Figure 11. Contour plot of the signal from the system with a single
over-damped mode.

Figure 12. 2D signal from the two models. Top: single mode,Ω1 )
1. Middle: two modes,Ω1 ) 1, Ω2 ) 0.5. Bottom: two modes,Ω1 )
1.2, Ω2 ) 0.3. Depending on the parameters, the difference between
the models is manifested in the existence or nonexistence of diagonal
peaks.
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approximation (RWA) and the Markovian approximation as-
sociated with the second-order perturbation of the system-bath
interaction might become questionable in vibrational spectros-
copy; the characterization of the relaxation processes by simple
rate constants such asT1 and T2 might not work. Note here
that, although there are some restrictions, one can calculate the
signals without using such approximations for the Brownian
model, even in the anharmonic case.6,31,35,52To verify the con-
sistency of the theory, it is important to compare the results
from energy-level models and the Brownian motion model,
where the latter is based upon a microscopic picture for
damping.

To demonstrate how approximations for relaxation processes
can change the results, we presented the 2D signals from the
Redfield-type model and (full-order) Brownian oscillator model,
and we observed that two models give peaks at different posi-
tions, even for weak damping. This, in turn, suggests a high
sensitivity of 2D spectroscopy to damping models. This situation
is in good contrast with cross peaks associated with mode
coupling of an anharmonic or nonlinear origin, where they have
to be fairly strong to be observable when diagonal peaks due
to other effects are present. On the contrary, the cancellation
mechanism is subtle, and thus, a weak damping effect can cause
a drastic difference.

One of the purposes of our paper is to bridge the two
complementary approaches of the coordinate-based and energy-
level-based models. The results give us a useful interpretation
of the coordinate-based model in the energy-level language. We
should note, however, that this interpretation becomes precise
only in the weak damping limit. Nonetheless, we believe that
it is useful to have a common interpretation for the two
approaches in certain situations.
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Appendix: Expression for R(2)(ω1, ω2)

2R(2)(ω1, ω2) is given by eq (47) with each term expressed
as

where

Note Added after ASAP Posting.This article was posted
ASAP on 5/20/2003. Changes were made to eqs 47, 55, and
58. The correct version was posted on 6/26/2003.
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