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ABSTRACT
Complex environments, such as molecular matrices and biological material, play a fundamental role in many important dynamic processes
in condensed phases. Because it is extremely difficult to conduct full quantum dynamics simulations on such environments due to their
many degrees of freedom, here, we treat in detail the environment only around the main system of interest (the subenvironment), while
the other degrees of freedom needed to maintain the equilibrium temperature are described by a simple harmonic bath, which we call a
quantum thermostat. The noise generated by the subenvironment is spatially non-local and non-Gaussian and cannot be characterized by
the fluctuation–dissipation theorem. We describe this model by simulating the dynamics of a two-level system (TLS) that interacts with a
subenvironment consisting of a one-dimensional XXZ spin chain. The hierarchical Schrödinger equations of motion are employed to describe
the quantum thermostat, allowing for time-irreversible simulations of the dynamics at arbitrary temperature. To see the effects of a quantum
phase transition of the subenvironment, we investigate the decoherence and relaxation processes of the TLS at zero and finite temperatures
for various values of the spin anisotropy. We observed the decoherence of the TLS at finite temperature even when the anisotropy of the XXZ
model is enormous. We also found that the population-relaxation dynamics of the TLS changed in a complex manner with the change in the
anisotropy and the ferromagnetic or antiferromagnetic orders of spins.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0074047

I. INTRODUCTION

Ensembles of molecular systems with competing interactions
have long been an important topic in physics, chemistry, and
biology. Such materials exhibit various intriguing behaviors. For
example, in a spin glass system or an amorphous solid, longtime
relaxation processes play a key role as the temperature falls, lead-
ing to a slowing down of the dynamic response. In supercon-
ducting qubits, the spin environment exhibits peculiar non-Ohmic
effects.1,2 As noise sources, these materials also have unique prop-
erties. In standard open quantum dynamics theories, thermal noise
is assumed to be Gaussian and uniformly distributed in space. The
noise is assumed to come from a heat bath described by an infi-
nite set of harmonic oscillators at finite temperature.2–6 The heat
bath is considered to be an unlimited heat source with infinite heat
capacity.7,8 However, the thermal noise from complex or frustrated
materials is typically non-Gaussian, and its temporal and spatial

correlations are non-uniform, although the ensemble average of the
noise has a Gaussian profile when the strength of each source of
noise is comparable, due to the central limit theorem.9 The noise
correlation is characterized by a simple function, for example, a
stretched exponential function.

These peculiar features of noise in complex environments have
been observed in single molecular spectroscopy using impurity
molecules as a probe.10–13 The spectral random walk of the tran-
sition energies of each molecule can be separately measured. Such
noise that depends on the location of the environment can also be
measured by muon spin spectroscopy, which is used to investigate
spin glass, superconductivity, and biological materials.14–19 The pos-
sibility of characterizing a spin bath through the decoherence of a
single qubit has also been suggested.20,21

Although problems of this kind are well established and are
experimentally measurable, theoretical investigations, in particular
in a quantum regime, are challenging due to the complexity of
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the environment. Although dynamics simulations have been con-
ducted to investigate the energy fluctuations of the environment,
they have been limited to classical or phenomenological cases using
a molecular dynamics simulation,22–24 a stochastic approach,11 or
the Metropolis Monte Carlo approach.13 If the environment is
an ensemble of harmonic oscillators, such approaches are useful
for characterizing the noise because the response function of the
noise is identical in both classical and quantum cases. However,
such characterization does not work for non-Gaussian and non-
local quantum noise because the fluctuation–dissipation theorem
(FDT) does not hold. As a result, conventional open quantum
dynamics theory is unable to elucidate the effects of complex
environments.

Because it is extremely difficult to conduct simulations of quan-
tum dynamics for complex environments with many degrees of free-
dom and where the heat capacity of the environment is required
to be infinity, the practical approach is to treat a part of the envi-
ronment around the main system of interest as a subenvironment.
The thermodynamic effects of the other degrees of freedom are
described using a simple harmonic bath, which we call a quantum
thermostat (QT). To use a heat bath as the thermostat, we use weak
subenvironment–bath coupling with a simple spectral distribution
function to suppress the dynamic aspects of the bath while main-
taining the temperature of the subenvironment. When there are
sufficiently many subenvironmental degrees of freedom and if we
keep the coupling strength of the thermostat weak, we should be
able to study the effects of a complex environment in a quantum-
mechanically consistent manner. We employ the hierarchical equa-
tions of motion (HEOM) to describe the thermostat, assuming that
the relation is based on the FDT for symmetric and antisymmet-
ric correlation functions of the noise operators, which is equiva-
lent to assuming that the harmonic heat bath is coupled to the
subenvironment.25–30

To demonstrate our approach, we employ a two-level sys-
tem (TLS) that interacts with a one-dimensional (1D) spin lattice.
Such systems have been investigated to enhance the performance
of quantum information processing.31 Moreover, molecular mag-
net systems32,33 and Josephson junction systems1,34 are described by
using this model. In the past, various forms of a 1D spin lattice, such
as the Ising,35,36 XY ,37–41 and XXZ42–44 models, have been inves-
tigated. Such spin-lattice systems, when isolated, exhibit quantum
phase transitions depending on the system parameters.45 For the
Ising and XY lattices, the spins are ordered (i.e., the magnetization
is finite) when the transverse magnetic field is small, while the spins
are disordered when the magnetic field becomes large. For an XXZ
lattice, the spins have ferromagnetic and antiferromagnetic phases
depending on the anisotropy. Between these quantum phases, there
is a critical region where the excitation spectrum is gapless.45 The
effects of such quantum phase transitions and critical regions on a
TLS have been extensively studied.

Here, we investigate a spin-lattice system, such as a heat bath,
using the QT described by the wavefunction-based hierarchical
Schrödinger equations of motion (HSEOM).46 By controlling the
temperature of the thermostat, we investigate the thermodynamic
aspects of a spin-lattice system in a practical way.

This paper is organized as follows. In Sec. II, we discuss the QT
described by the HSEOM. Then, in Sec. III, we introduce a subenvi-
roment described by the 1D XXZ chain. The results of the numerical

simulations of a TLS interacting with a 1D spin-lattice environment
are discussed in Sec. IV. Section V shows our concluding remarks.

II. QUANTUM THERMOSTAT
A. System–subenvironment model coupled to a QT

We consider a main system (S) coupled to a subenvironment
(SE), expressed as

ĤS+SE = ĤS + ĤS−SE + ĤSE, (1)

where ĤS, ĤS−SE, and ĤSE are the Hamiltonians of the system,
system–subenvironment interaction, and subenvironment, respec-
tively. To take into account the time irreversibility and temperature
effects of the subenvironment, we introduce a QT described by the
Gaussian quantum noise operator Ω̂(t). The total Hamiltonian is
then expressed as

Ĥ′S+SE(t) = ĤS+SE − V̂SEΩ̂(t), (2)

where V̂SE is the subenvironment part of the noise interaction.
For bosonic noise, Ω̂(t) is characterized by the antisymmetric and
symmetric correlation functions that satisfy Kubo’s FDT as

⟨[Ω̂(t), Ω̂(0)]⟩Ω = −2i h̵∫
∞

0
dωJ(ω) sin(ωt) (3)

and

1
2
⟨Ω̂(t)Ω̂(0) + Ω̂(0)Ω̂(t)⟩Ω = h̵∫

∞

0
dωJ(ω) coth(

β h̵ω
2
) cos(ωt),

(4)

where J(ω) is the spectral distribution function (SDF), β ≡ 1/kBT
is the inverse temperature divided by the Boltzmann constant kB,
and ⟨. . .⟩Ω represents the expectation values of the noise trajecto-
ries. The antisymmetric correlation function that describes the dis-
sipation of the SE system is independent of temperature, whereas
the symmetric correlation function that describes the fluctuations
depends on the temperature. They are related through the FDT.
The total system approaches thermal equilibrium in the longtime
limit.25,27 Note that because of the function coth(βhω/2), the fluctu-
ations cannot be Markovian even if we choose a strictly Ohmic SDF,
J(ω) = γω.2 Thus, a non-Markov treatment of the noise is critical for
the quantum thermal state, especially for low temperatures.27–30

By taking the ensemble average with respect to Ω̂(t), the system
described by using Eqs. (1) and (2) is equivalent to the SE system
coupled to the harmonic heat bath (or the QT), described as

ĤQT = ∑
j
(

p̂2
j

2mj
+

1
2

mjω2
j x̂2

j ) − V̂SE∑
j

cjx̂j. (5)

The noise in the second term on the right-hand side of Eq. (2), Ω̂(t),
corresponds to the term ∑j cjx̂j in Eq. (5) with the SDF defined as
J(ω) ≡ ∑j [c

2
j /(2mjωj)]δ(ω − ωj).

There are two possible approaches for investigating the time
evolution of an S + SE system coupled to a QT. The first approach
handles the noise explicitly. We define the noise operator using a
sequence of stochastic operators, Ω̂(t) = {Ω̂1(t), Ω̂2(t), Ω̂3(t), . . . },
which satisfy Eqs. (3) and (4).27 Then, for different noise
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trajectories Ω̂j(t), we numerically integrate the quantum Liouville
equation, dρ̂S+SE(t; Ω̂j(t))/dt = −i[Ĥ′S+SE(t), ρ̂S+SE(t; Ω̂j(t))]/ h̵,
many times to accumulate the stochastic samples. The quantum
dynamics of the S + SE system are then investigated by averaging
over the samples as ρ̂S+SE(t) ∝ ∑j ρ̂S+SE(t; Ω̂j(t)). At a glance, this
approach looks similar to the classical (or semi-classical) Langevin
approach used in simulations of Brownian particles. In the Langevin
approach, the equation contains a friction term in addition to a
random modulation term, and the friction term is related to the
random modulation term through the FDT. The present equation
of motion, however, does not involve a friction term. Friction
appears through the antisymmetric correlation function of the
noise operator. Thus, to describe the effects of dissipation, the
noise is often defined using complex variables.47–50 Note that the
treatment of the quantum noise operator is not easy, especially
at low temperatures, as the symmetric correlation function has a
negative value shorter than the time scale of the inverse Matsubara
frequency.27,30 Thus, various stochastic equations of motion have
been derived in which a hierarchical structure is employed for the
dissipation part, while the fluctuation part is treated as noise.50–52

In the second approach, instead of utilizing a sequence of noise
operators, we use the equation of motion for the averaged density
operator, ρ̂S+SE(t) = ⟨ρ̂S+SE(t; Ω̂(t))⟩Ω. For a bosonic Gaussian bath,
this equation of motion is the same as the reduced HEOM.25–30 The
relation between the first approach and the second approach is sim-
ilar to the relation between the Langevin equation approach and the
Fokker–Planck equation approach in the classical case.

While the approaches based on the explicit treatment of the
noise and those based on the averaged density operator are identical
as long as the noise is bosonic Gaussian, the first has wider applica-
bility. For example, if we replace coth(βhω/2) with tanh(βhω/2),
we can generate fermionic noise, although the argument becomes
phenomenological. Extensions of the hierarchical stochastic
approach to non-Gaussian quantum noise have been proposed,53,54

in which higher-order correlation (or cumulant) functions to
determine the property of the noise are utilized.

B. Hierarchical Schrödinger equations of motion
In the present approach, it is necessary to treat large systems

with many degrees of freedom because the subenvironment, which
consists of numerous quantum states, is explicitly treated as ĤS+SE.
In a specific case, we could treat a spin bath by mapping it to a
bosonic bath using an effective noise correlation function,54 but this
is not possible in the current situation. In the conventional open
quantum dynamics theory for a system with N states, an N ×N
reduced density matrix has to be used for a time-irreversible process
described by a non-Hermitian propagator. However, the memory
required to calculate the density matrix elements is enormous. Here,
we adopt the HSEOM,46 whose scalability is similar to that of the
Schrödinger equation. In this formalism, the time evolution of the
left-hand side (ket vector) is computed from time 0 to t, and sub-
sequently, the time evolution of the right-hand side (bra vector) is
computed from time t to 0 along the contour in the complex time
plane. While conventional HEOM approaches for the reduced den-
sity operators use a set of exponential functions to describe the bath
correlation function, the HSEOM use orthogonal functions to main-
tain the stability of the equations of motion when moving along the

contour in the direction of decreasing time. When a special function
is chosen as a basis, while calculations at zero temperature become
easier, simulations for long times become difficult due to the increase
in the number of bases.55,56 By appropriately choosing functions for
the bath correlation function and the spectral density, we can take
advantage of an HSEOM method to conduct simulations without
needing a huge amount of computational memory.

Such wavefunction-based approaches have also been developed
based on an explicit treatment of noise, including the stochastic
hierarchy of pure states,57–61 the stochastic Schrödinger equation,62

the stochastic Schrödinger equation with a diagonalized influence
functional along the contour in the complex time plane,63 and a
hierarchy of stochastic Schrödinger equations.64–69 Although the
formulation of the stochastic approaches is considerably simpler
than the HSEOM approach, it is not suitable for studying a system
with slow relaxation or a system subjected to a slowly varying time-
dependent external force because the convergence of the trajectories
is slow in the stochastic approaches. For this reason, here, we use the
HSEOM approach.

Technically, the HSEOM are not regarded as equations of
motion because they are not defined with the time t but with the
complex time contour 0→ t → 0. Thus, in the HSEOM approach,
we must repeat the full integration for t along 0→ t + Δt → 0 for dif-
ferent Δt, which is in contrast to the conventional HEOM approach.
We remove this difficulty by applying the method developed by Xu
et al.,70 which was originally developed to calculate higher-order
time correlation functions. The set of HSEOM we solve here are
expressed as follows (Appendix A):

∂

∂t
∣ϕn⃗(t)⟩ = −

i
h̵

ĤS+SE ∣ϕn⃗(t)⟩ +
K−1

∑
k=0

K−1

∑
k′=0

ηk,k′nk ∣ϕn⃗−e⃗k+e⃗k′
(t)⟩

−
i
h̵

V̂SE

K−1

∑
k=0

ck ∣ϕn⃗+e⃗k(t)⟩ −
i
h̵

V̂SE

K−1

∑
k=0

nkφk(0) ∣ϕn⃗−e⃗k(t)⟩,

(6)

∂

∂t
∣ψn⃗(t)⟩ = −

i
h̵

ĤS+SE ∣ψn⃗(t)⟩ −
K−1

∑
k=0

K−1

∑
k′=0

ηk,k′(nk + 1) ∣ψn⃗+e⃗k−e⃗k′
(t)⟩

−
i
h̵

V̂SE

K−1

∑
k=0

c∗k ∣ψn⃗−e⃗k(t)⟩

−
i
h̵

V̂SE

K−1

∑
k=0
(nk + 1)φk(0)∣ψn⃗+e⃗k(t)⟩. (7)

Here, the vector n⃗ = [n0, . . . , nK−1], which consists of non-negative
integers, is introduced to describe the non-Markovian effects
through the auxiliary wavefunctions (AWFs), ∣ϕn⃗(t)⟩ and ∣ψn⃗(t)⟩.
The vector, e⃗k, is the unit vector in the kth direction.

The density operator for the total spins (the main system and
the subenviroment) is defined as

ρ̂S+SE(t) = ∑
n⃗
∣ϕn⃗(t)⟩⟨ψn⃗(t)∣. (8)

The set {ck} in Eqs. (6) and (7) contains the expansion coeffi-
cients that describe the two-time correlation function of the bosonic
Gaussian bath, and K is the number of coefficients. We use Bessel
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functions to approximate the two-time correlation function of the
noise and evaluate {ck} using the Jacobi–Anger identity.71,72 The set
{ηk,k′} contains the derivative coefficients of the Bessel functions,
dJk(t)/dt = ∑k′ ηk,k′ Jk′(t).

We considered an Ohmic SDF with a circular cutoff,71,73

J(ω) = ζω
√

1 − (ω/ν)2, (9)

where ζ and ν are the coupling strength and cutoff frequency, respec-
tively. It has been reported that the numerical results obtained with
this cutoff exhibit similar behavior to the Ohmic case. If we choose
ν = γ and ζ = 2η/e (where e is the base of the natural logarithm),
under the condition ω0 ≪ γ, whereω0 is the characteristic frequency
of the system, then the SDF can be expressed as J(ω) = ηωe−∣ω∣/γ.46

Note that similar hierarchical Schrödinger-type equations have
been developed. The bath bosons were mapped in an appropriate
form, and the two-time reduced density matrices were calculated
rigorously.74

III. SPIN-LATTICE SUBENVIRONMENT
To demonstrate the capability of our approach, here, we con-

sider a TLS, described as

ĤS = −
h̵
2
ω0σ̂z

0, (10)

where ω0 is the excitation energy of the TLS for the eigenstate ∣±⟩.
The subenvironment of the 1D spin lattice is expressed as

ĤSE = −
h̵
2

J
N−1

∑
j=1
(σ̂x

j σ̂
x
j+1 + σ̂

y
j σ̂

y
j+1 + Δσ̂

z
j σ̂

z
j+1), (11)

where N, J, and Δ are the number of spins, the interaction strength
between neighboring spins, and the anisotropy, respectively. The
operators σ̂αj (α ∈ {x, y, z}) are the Pauli matrices, j = 0 represents
the TLS, and j ∈ [1, N] represents the jth spin in the spin lattice.

The XXZ model can be in one of the various quantum phases.45

When the anisotropy Δ > 1, it is in the ferromagnetic phase, whereas
it is in the antiferromagnetic phase when Δ < −1. Between those
states (−1 ≤ Δ ≤ 1), the excitation spectrum becomes gapless and the
lattice system is in the critical region. Although a large range of mod-
els have been considered for ĤSE, we adopt the XXZ model in this
paper with the open boundary condition.

For the interaction between the TLS and the spins in the spin
lattice, ĤS−SE, we consider (a) diagonal interactions (pure dephas-
ing)

ĤS−SE = −
h̵
2
ϵ0σ̂z

0

jM

∑
j=j1

σ̂z
j (12)

and (b) off-diagonal interactions

ĤS−SE = −
h̵
2
ϵ0
⎛

⎝
σ̂x

0

jM

∑
j=j1

σ̂x
j + σ̂

y
0

jM

∑
j=j1

σ̂y
j
⎞

⎠
. (13)

Here, the number of spins interacting with the TLS is denoted as
M (1 ≤M ≤ N) and ϵ0 is the coupling strength between the TLS
and the spins. The set {j1, . . ., jM} is the label for the spins in the
spin lattice coupling to the TLS, chosen from the integer set [1, N]

without duplication. In case (a), ĤS and ĤS−SE are commutable,
and therefore, the population of the TLS, ⟨+∣trSE{ρ̂S+SE(t)}∣+⟩ and
⟨−∣trSE{ρ̂S+SE(t)}∣−⟩, does not change over time, whereas the off-
diagonal elements, ⟨+∣trSE{ρ̂S+SE(t)}∣−⟩ and ⟨−∣trSE{ρ̂S+SE(t)}∣+⟩,
become decoherent. Here, trSE{} is the partial trace of the suben-
viroment, and ρ̂S+SE(t) = e−iĤS+SEt/ h̵ρ̂S+SE(0)eiHS+SEt/ h̵ is the density
operator at time t. In case (b), through the off-diagonal interac-
tions between the TLS and the spin lattice, thermal excitation and
population relaxation occur in addition to the decoherence of TLS.

We consider that all the spins of the subenviroment are uni-
formly coupled to the QT as

V̂SE = h̵
N

∑
j=1
(σ̂x

j + σ̂
y
j ). (14)

IV. NUMERICAL RESULTS
For the initial state of the simulation, we use the ther-

mal equilibrium state of the subenviroment coupled to the QT
without the TLS–spin interactions. If the coupling between the
spin lattice and the QT is weak, the distribution approaches
the Boltzmann distribution of the spin lattice itself. For the
numerical calculations, we diagonalize the Hamiltonian of the
spin lattice as ĤSE∣n;αn⟩ = εn∣n;αn⟩, where αn is the label for the
degenerate eigenstates whose eigenenergy is εn. Then, the initial
state in the zero-temperature case is expressed as ρ̂S+SE(0) = (∣+⟩
+ ∣−⟩)(⟨+∣ + ⟨−∣)/2⊗∑α0

∣0;α0⟩⟨0;α0∣/∑α0
1, whereas that in the

finite inverse temperature case (finite β) is expressed as ρ̂S+SE(0)
= (∣+⟩ + ∣−⟩)(⟨+∣ + ⟨−∣)/2⊗∑n(∑αn

e−βεn ∣n;αn⟩⟨n;αn∣)/ZS+SE,
where ZS+SE = ∑n(∑αn

e−βεn).
To evaluate the density operator in the HSEOM approach,

we have to compute each αn element of the density operator at
time t from pure initial state ρ̂n,αn

S+SE(0) = (∣+⟩ + ∣−⟩)(⟨+∣ + ⟨−∣)/2⊗
∣n;αn⟩⟨n;αn∣/ZS+SE and then obtain ρ̂S+SE(t) = ∑n(∑αn

ρ̂n,αn
S+SE(t)).

For zero temperature, we can obtain ρ̂S+SE(t) by repeating the eval-
uation of ρ̂0,α0

S+SE(t) for different α0. The number of repeated calcu-
lations is the same as the degeneracy of the ground state and 2 for
Δ = ±2 and −1 and 14 for Δ = 1 for the spin lattice with N = 13.
For finite temperature, the number of states αn for n > 0 included
in the calculation of ρ̂S+SE(t) increases dramatically (up to 213 for
N = 13), which makes the computational cost very expensive. We,
thus, reduce the number of eigenstates to be considered using ZSE

= tr{e−βĤSE}, which keeps 99% of its absolute value. For βhω0 = 2,
the number of states reduces from 213 to 24, 90, 1260, and 150 for
Δ = −2, −1, 1, and 2, respectively. Note that this reduction in the
number of eigenstates applies only to the initial states of the density
operator ρ̂S+SE(t). We consider all the eigenstates in the following
calculations.

Because we evaluate the ket and bra vectors of the density oper-
ator separately, there are numerical errors in the commutators and
anticommutators for the conventional HEOM. Due to these errors,
the total population of spin states tr{ρ̂S+SE(t)} = ∑n⃗⟨ψn⃗∣ϕn⃗⟩ is
slightly smaller than 1. This error can be suppressed by normalizing
the calculated density operator as ρ̂′S+SE(t) = ρ̂S+SE(t)/tr{ρ̂S+SE(t)}.
Hereafter, we denote ρ̂′S+SE(t) as ρ̂S+SE(t).

We chose ω0 as the unit for the frequency and set ϵ0/ω0
= J/ω0 = 1. The number of spins in the spin lattice N is set to 13 or
15. The coupling strength of the thermostat is set to a weak value
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of h ζ = 0.01, and the cutoff frequency is set to ν/ω0 = 2. In the
numerical calculation, we truncate the AWFs of the HSEOM with
the condition ∑knk > 2. For zero temperature, βhω0 →∞. For low
temperatures, βhω0 = 2. We simulate the dynamics up to the times
tω0 = 50 and tω0 = 20, respectively. The number of Bessel functions
is 100 for βhω0 →∞ and 40 for βhω0 = 2.

In previous studies, all the spins of the lattice were coupled to
the TLS (M is set to N) with uniform coupling strength36–42 or site-
dependent coupling strength.44 The latter reflects the actual coupling
strength of the TLS–lattice interactions that depend on the location
of the TLS in the spin lattice.11–13 In this paper, we assume that the
TLS–spin interactions are highly localized, and we set M = 1 and j1
= (N + 1)/2 (the TLS is coupled only to the center spin of the spin
lattice for odd N).43

A. Characterizing the subenvironmental noise
First, we briefly examine the characteristics of the non-

Gaussian noise that arises from the spin subenviroment. In
the HSEOM approach, any correlation functions for the sys-
tem can be evaluated by applying the system operators at
each required time when conducting the time integration along
the contour.46 We then calculate the two-body and three-
body correlation functions of the spins in the spin lattice cou-
pled to the QT, Ajk(t) = ⟨[σ̂z

j (t), σ̂z
k(0)]⟩, Cjk(t) = ⟨σ̂z

j (t)σ̂z
k(0)

+ σ̂z
k(0)σ̂

z
j (t))⟩/2, and Dijk(t, t′) = ⟨σ̂z

i (t
′
)σ̂z

j (t)σ̂z
k(0)⟩ for the fixed

anisotropy Δ = 1 with the diagonal interaction, Eq. (12). Here, the
expectation value is defined as ⟨Ô(t)⟩ ≡ ∑n⃗⟨ψn⃗(t)∣Ô∣ϕn⃗(t)⟩. Note
that Dijk(t, t′) is also optically observable, for example, in two-
dimensional Raman spectroscopy.75

In Fig. 1, we depict the time evolution of the antisymmetric
correlation function of the central spin of the spin lattice A77(t) at
zero and finite temperatures. For conventional Gaussian noise, this
antisymmetric correlation function uniquely characterizes the dissi-
pation and is independent of temperature.27–30 In the present case,
however, we found that Ajk(t) does depend on temperature. Addi-
tionally, the noise is non-Gaussian, as can be seen from the three-
body correlation function D777(t, t′) illustrated in Fig. 2. This indi-
cates that the antisymmetric correlation function is not the unique
source that characterizes the dissipation, although the contribution
of D777(t, t′) is about 105 times smaller than the two-body contribu-
tion in Fig. 1. This is because the odd- and higher-order cumulant

FIG. 1. Antisymmetric correlation function A77(t) for the central spin in the 1D
XXZ spin lattice in arbitrary units at zero temperature (βhω0 →∞) and finite
temperature (βhω0 = 2).

FIG. 2. Real part of the three-body correlation function for the central spin in the 1D
XXZ spin lattice, D777(t, t′), in arbitrary units at zero temperature (βhω0 →∞).
The time t′ is fixed as t′ = 10. Note that the present three-body result is about 105

times smaller than the two-body results in Fig. 1.

expansion terms of the noise correlation function contribute to the
dynamics of the TLS.9,76

Next, we discuss the validity of the FDT for the present non-
Gaussian case. Thus, we consider the Fourier transforms of the sym-
metric and antisymmetric correlation functions. Considering the
time symmetry of Cjj(t) and Ajj(t), they can be defined as

Cjj[ω] = 2∫
∞

0
dt cos ωt Re{⟨σ̂z

j (t)σ̂
z
j (0)⟩}, (15)

Ajj[ω] = 4∫
∞

0
dt sin ωt Im{⟨σ̂z

j (t)σ̂
z
j (0)⟩}. (16)

Note that, as can be seen from Eqs. (3) and (4), if the noise is
Gaussian, the above functions satisfy the FDT, expressed as

Cjj[ω] =
1
2

coth(
β h̵ω

2
)Ajj[ω]. (17)

In Fig. 3, we depict C77[ω] and A77[ω]/2 at zero temperature
(βhω0 →∞). To compute these correlation functions, we replace
the upper bound of the Fourier integrals, ∞, with a finite time
T = 50. As a result, there is an artifact in the low-frequency region of
the spectra,ω/ω0 ≃ 0. Hence, we focus on the high-frequency region.
There are various peaks corresponding to the different intersite
spin–spin interactions. The peak intensities of C77[ω] and A77[ω]/2,
however, do not agree at zero temperature [coth(βhω/2) → 1] due
to the non-Gaussian nature of the noise. This indicates the break-
down of the FDT. Because the noise perturbation from the TLS–spin
interaction is weak in the present case, as the amplitude of the three-
body correlation function indicated, and because the FDT is formu-
lated within second-order perturbation theory, the discrepancy for
the FDT is not significant.

Finally, we examine the noise–noise correlation between dif-
ferent spin sites. We depict A67(t) and C67(t) in Fig. 4. The noise at
each site is strongly correlated because we assume that the single QT
is coupled to all the spins in the lattice and that the spins strongly
interact with each other, as expressed in Eq. (11). The correlations
are not easy to characterize, however, because they are controlled by
complex spin–spin interactions that often undergo a phase transi-
tion at different temperatures. Because all the noise is generated in a
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FIG. 3. Fourier transforms of the symmetric and antisymmetric correlation func-
tions, C77[ω] and A77[ω]/2, in arbitrary units at zero temperature (βhω0
→∞).

quantum-mechanically consistent manner, the present model is use-
ful for a rigorous investigation of quantum noise that arises from a
complex environment.

For details of the correlation functions with and without the
QT, see Appendix B.

B. Dissipative effects of the QT
To characterize the dynamics of the TLS, we introduce the

Loschmidt echo, defined as43

L(t) = ∣⟨+∣ρ̂S(t)∣−⟩∣2

∣⟨+∣ρ̂S(0)∣−⟩∣2
. (18)

Here, ρ̂S(t) is the reduced density operator for the TLS,

ρ̂S(t) = trSE{ρ̂S+SE(t)}

= ∑
n⃗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⟨ψu
n⃗(t)∣ϕ

u
n⃗(t)⟩ ⟨ψ

l
n⃗(t)∣ϕ

u
n⃗(t)⟩

⟨ψl
n⃗(t)∣ϕ

u
n⃗(t)⟩ ⟨ψ

l
n⃗(t)∣ϕ

l
n⃗(t)⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19)

The superscripts u and l in Eq. (19) represent the upper and lower
halves of the AWFs (we treat the operators in such a way that
Ô = ÔS ⊗ ÔSE).

FIG. 4. Symmetric and antisymmetric correlation functions for the intersite spins,
C67(t) and A67(t), in arbitrary units at zero temperature (βhω0 →∞).

FIG. 5. Loschmidt echo L(t) of a TLS that diagonally interacts with the subenvi-
ronment (spin lattice) in the absence (isolated, blue) and presence (+ boson bath,
red) of the thermostat.

First, we discuss the role of the QT when the TLS diagonally
interacts with the spin-lattice subenviroment. Here, the population
of the TLS does not change, so we do not present the results of
the population relaxation. In Fig. 5, we depict the Loschmidt echo
with and without the QT. These two results agree in the short-time
region. However, the echo peaks appear repeatedly in the case with-
out QT (isolated case), while the recursive echo peaks decay quickly
in the case with QT due to the dissipation that arises from the QT.

C. Pure dephasing
In Figs. 6(a) and 6(b), we display the Loschmidt echo L(t) of

a TLS that diagonally interacts with the spin lattice (pure dephas-
ing) at (a) zero temperature and (b) finite temperature for various

FIG. 6. Loschmidt echoL(t) of a TLS that diagonally interacts with the spin lattice
(pure dephasing) at (a) zero temperature (βhω0 →∞) and (b) finite temperature
(βhω0 = 2) for Δ = 1 (red), −1 (blue), and −2 (green). The inset displays the case
for Δ = 2.
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values of the spin anisotropy Δ. With weak TLS–spin interactions,
the Loschmidt echo decays quickly when the XXZ spin-lattice system
is in the critical region (∣Δ∣ ≤ 1).36 This is because the spins can be in
different states without changing energy due to the highly degener-
ate spin states. Fast decoherence is then observed for Δ = ±1 at zero
temperature [Fig. 6(a)], as reported previously for isolated systems.43

For the finite temperature in Fig. 6(b), the decoherence for Δ = ±1 is
faster than that in Fig. 6(a) due to the relaxation that arises from the
thermostat.

For isolated XXZ systems, the Loschmidt echo never decays for
Δ > 1.43 This is also true for a zero-temperature QT, as illustrated
in the inset of Fig. 6(a) for Δ = 2, because the ferromagnetic order of
the spins is not altered by this weak QT interaction. At finite temper-
ature, as illustrated in the inset of Fig. 6(b), the thermal fluctuation
becomes large, and thus, the echo decays gradually.

An isolated spin-lattice system is in the antiferromagnetic phase
for Δ < −1. Although the echo signal does not decay in the perfectly
antiferromagnetic regime for Δ→ −∞, it decays for finite Δ < −1.43

This holds even when the spin lattice is coupled to the thermostat, as
illustrated in Figs. 6(a) and 6(b).

Because the ground state becomes highly degenerate with the
change ∣Δ∣ = 1 + δ for δ → 0 (here, δ is an infinitesimal), the profile
changes significantly for ∣Δ∣ = 1. This change at Δ = 1 is similar to
the first-order phase transition, while the change Δ = −1 is moderate
because the ground-state energy and its derivatives with respect to Δ
are continuous.45

D. Population relaxation
Next, we display the Loschmidt echo L(t) and the ground-state

population ⟨+∣ρ̂S(t)∣+⟩ for a TLS that off-diagonally interacts with

FIG. 7. Loschmidt echo L(t) for a TLS that off-diagonally interacts with the spin
lattice (population-relaxation case) at (a) zero temperature (βhω0 →∞) and (b)
finite temperature (βhω0 = 2).

the spin lattice (population-relaxation case) for various values of the
spin anisotropy Δ at (a) zero and (b) finite temperatures in Figs. 7
and 8, respectively.

In comparison with the pure dephasing (diagonal interaction)
in Figs. 6(a) and 6(b), the recurrence interval of the echo peaks
in Figs. 7(a) and 7(b) becomes longer in the population-relaxation
case (off-diagonal interaction) when the XXZ spin lattice is not
in the critical region (i.e., ∣Δ∣ > 1). This is due to the difference
in coherence between the TLS and the subenvironment. For pure
dephasing, coherences such as ⟨σ̂x

0σ̂
z
j1
⟩ are enhanced, whereas for the

population-relaxation case, coherences such as ⟨σ̂y
0σ̂

x
j1
⟩ and ⟨σ̂y

0σ̂
y
j1
⟩

are enhanced. Here, we focus on the difference in the direction of
the spin at j1. The coherence of the TLS develops in the z direc-
tion in the former case, whereas it develops in the x and y direc-
tions for the latter. When Δ is large, the contribution from σ̂z

j σ̂z
j+1

becomes dominant in Eq. (11). Under this condition, the coherence
between the TLS and the spin lattice in the z direction is not sup-
pressed, while that in the x and y directions is suppressed due to the
conversion of this coherence to higher-order correlations, for exam-
ple, ⟨σ̂y

0σ̂
y
j1
σ̂z

j1+1⟩. This difference changes the recurrence interval
time.

WhenΔ = ±1, the recurrence interval of the echo peaks changes
slightly because all the spin–spin interaction terms in Eq. (11) con-
tribute equally, which leads to delocalization of the coherences in all
directions in the spin lattice.

In Figs. 8(a) and 8(b), we depict the time evolution of the
population. Due to the energy relaxation from the TLS to the
subenviroment, the ground-state population grows as a function of
time.

FIG. 8. Ground-state population ⟨+∣ρ̂S∣+⟩ for a TLS that off-diagonally interacts
with the spin lattice (population-relaxation case) at (a) zero temperature (βhω0
→∞) and (b) finite temperature (βhω0 = 2).
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Apart from the contribution of the equilibrium population,
⟨+∣ρ̂S(t →∞)∣+⟩, the population relaxation is faster in the critical
case (Δ = ±1) than when Δ = ±2. In both the pure-dephasing and
population-relaxation cases, the relaxation process was enhanced
in the critical region. A prominent difference in the population
dynamics is observed between the zero and finite temperatures when
Δ = −2, as the spin lattice is in the antiferromagnetic phase.

E. Size effects of the subenviroment
Finally, we discuss the size effects of the spin lattice. Figures 9

and 10 display the time evolution of the Loschmidt echo and the
population in the pure-dephasing and population-relaxation cases
for 13-spin (black curves) and 15-spin (blue curves) lattices. In
Figs. 9 and 10, the 13-spin results for Δ = 1 in Figs. 6(a), 7(a), and
8(a) are replotted for reference. In the pure-dephasing case in Fig. 9,
the calculated results for the 13-spin and 15-spin Loschmidt echoes
are qualitatively the same up to time tω0 = 20, after which a dif-
ference arises in that the echo in the 15-spin case exhibits slower
recursive motion (Tω0 ≃ 30) than in the 13-spin case (Tω0 ≃ 25) due
to the size effects of the quantum revival.

In the population-relaxation case in Fig. 10, the time evolu-
tion of the echo signals matches only up to tω0 ≃ 7. Furthermore,
the Loschmidt echo decays faster in the 15-spin case than in the
13-spin case. These differences are due to the different mechanisms
of decoherence and population relaxation, as known from photon
echo measurements in ultrafast nonlinear spectroscopy.

While we observe good agreement of the Loschmidt echo sig-
nal up to time tω0 = 20 in the 13- and 15-spin cases, we found that
the rephasing echo peaks around tω0 = 25–30. This is an artifact
of the lattice size. This peak can be suppressed by either increas-
ing the lattice size or increasing the QT coupling strength. In the
population-relaxation case, the energy relaxation, as well as the
dephasing, occurs during the time evolution, and the effects of the
thermostat are much larger than for pure dephasing. Therefore,
the Loschmidt echo in Fig. 10(a) decays as the population of the
excited state decreases, as can be seen from Fig. 10(b). The signal
in the 15-spin case decays faster than in the 13-spin case because,
in the present model, all the spins in the lattice are coupled to the
thermostat and the effective coupling strength becomes stronger
as the spin system becomes larger. Although the time evolution of
the population is qualitatively the same in the longtime regime, the

FIG. 9. Loschmidt echo L(t) of a TLS that diagonally interacts with the spin lat-
tice (pure dephasing) consisting of 15 spins. The inverse temperature and spin
anisotropy are set as βhω0 →∞ and Δ = 1, respectively. The Loschmidt echo
for Δ = 1 in the 13-spin case in Fig. 6(a) is replotted for reference.

FIG. 10. (a) Loschmidt echo L(t) and (b) ground-state population ⟨+∣ρ̂S∣+⟩ of a
TLS that off-diagonally interacts with the spin lattice (population-relaxation case)
consisting of 15 spins. The temperature and anisotropy are set as zero (βhω0
→∞) and Δ = 1, respectively. The Loschmidt echo and the ground-state pop-
ulation for Δ = 1 in the 13-spin case in Figs. 7(a) and 8(a) are replotted for
reference.

amplitude of the oscillations in the short-time regime (tω0 ≃ 10) is
larger in the 13-spin case.

In realistic situations, it is impossible for a spin lattice or any
other subenvironment, whether small or large, to exist in isolation.
Thus, it is essential to consider some kind of heat source for the
subenvironment, as we do in the present paper. Because the QT
indirectly and intricately influences the subenvironment, sufficient
care must be taken in modeling from an environment with infinite
degrees of freedom to a subenvironment with a QT.

V. CONCLUDING REMARKS
In this paper, we introduced a subenvironment system cou-

pled to a QT to describe the dynamics of a system in a complex
non-Gaussian environment in a quantum-mechanically consistent
manner. To accurately simulate the dynamic and thermal aspects of
the complex environment in the framework of the present approach,
the coupling strength between the subenvironment and QT must
be weak and there must be many subenvironmental degrees of
freedom. We employed the wavefunction-based HSEOM method
to handle the large number of subenvironmental degrees of free-
dom and the effects of the QT in a numerically rigorous manner.
While the thermal noise that arises from the QT is Gaussian, the
noise generated from the subenvironment is non-Gaussian. Thanks
to the HSEOM formalism, we can accurately treat the quantum
entanglement between the subenvironment and the QT. Moreover,
because we are simulating the subenvironmental degrees of freedom
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explicitly, we can treat the quantum entanglement between the main
system and the subenvironment + QT precisely.

To demonstrate our approach, we simulated the time-
irreversible dynamics of a TLS that interacts with a 1D XXZ
spin-lattice system coupled to a QT. We found that the decoher-
ence is enhanced when the spin subenvironment is in the critical
region, even at finite temperature, for both the pure-dephasing and
population-relaxation cases. The significant difference between the
isolated system and the present system is that the Loschmidt echo
decays at finite temperature even when the spin lattice is out of the
critical region. We showed that the noise generated from the spin
lattice is non-Gaussian and non-local. Moreover, this noise does
not satisfy the FDT, while the steady-state solution with this noise
is the thermal equilibrium state of the total system, as the HSEOM
approach guarantees. Further work to find the relation between fluc-
tuations and dissipation of the non-Gaussian and non-local noise
should be conducted by evaluating the higher-order cumulant of
the noise correlation function. Along this direction, it should also
be interesting to examine the effects of fermionic Gaussian noise by
replacing coth(βhω/2) in Eq. (4) with tanh(βhω/2). The effects of
multiple QTs, which may suppress the quantum coherence of the
subenviroment, should also be examined.77

Introducing a QT may be regarded as a realistic approach
to describing the inherent dissipative features of a spin lattice or
any other subenvironment. We found, however, that the quantum
coherence of the subenviroment system is spatially correlated in a
relatively wide region, and thus, we need to consider the largest
number of degrees of freedom that we can handle numerically. For
a simulation of a 20-spin system using our computer program for
the HSEOM, we need about 130 gigabytes of RAM. Such computa-
tions should be facilitated by advances in formulations and hardware
such as a graphics processing unit and massively parallel comput-
ers. Extending the present method to larger systems will be a future
challenge.
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APPENDIX A: DERIVATION OF HSEOM

Instead of treating the thermal noise as a random variable, here,
we introduce a harmonic heat bath as a noise source in a spin system
described by using Eq. (1). The total Hamiltonian is4–6

Ĥtot = ĤS+SE + ĤQT. (A1)

Here, we assume that all the spins in the spin lattice are coupled to
the single harmonic bath.

The matrix elements ⟨n∣ρ̂S+SE∣m⟩ are evaluated with a path
integral along the contour in the following form:

⟨n∣ρ̂S+SE∣m⟩ =∫
dz′i
N ∫

dzi

N ∫
dz′f
N ∫

dzf

N
× ∫

C=zi→z f→z′f→z′i
D[z̃(⋅) ]ϕ∗n(zf , t)ϕm(z′f , t)

× exp[
i
h̵∫C

dτLS+SE(˙̃z, z̃; τ)]F(z̃)

× ⟨zi∣ρ̂S+SE(0)∣z′i ⟩, (A2)

where LS+SE(˙̃z, z̃; τ) is the Lagrangian for the spin system in terms
of the boson-coherent, fermion-coherent, spin-coherent, and dis-
placement representations (the normalization factor N depends on
the representation of z). The number of degrees of freedom for the
bosonic heat bath are reduced to the influence functional along the
contour, F, whose form is expressed below. The contour (path) inte-
gral, ∫ Cdτ (∫CD[z̃(⋅)]), is realized with the aid of the projection
operator, ϕ∗n(zf , t)ϕm(z′f , t) = ⟨n∣zf ⟩⟨z′f ∣m⟩, and z along the contour
is represented by z̃.

The influence functional can be obtained analytically
because of the harmonicity of the heat bath. By means of the
two-time correlation function of the bosonic heat bath, α(t)
= h̵∫

∞

0 dωJ(ω)[coth(β h̵ω/2) cos ωt − i sin ωt], the influence
functional can be expressed as follows:28,29

F(z̃) = exp[−
1
h̵2∫C

dτ∫
C′

dτ′VSE(z̃; τ)α(τ − τ′)VSE(z̃; τ)]. (A3)

Here, C′, along which the integration over τ′ is carried out, is the
contour C up to τ.

If the Ohmic spectral density has a circular cutoff, as in Eq. (9),
then the imaginary part of the bath correlation function defined by
α(t) = α′(t) − iα′′(t) can be analytically evaluated as follows:73

α′′(t) = c1J1(νt) + c3J3(νt), (A4)

where c1 = c3 = πh ζν2
/8. In the high-temperature limit, β→ 0,

the real part of the bath correlation function reduces to α′(t)
= πζν(J0(νt) + J2(νt))/2β. This indicates that the circular cutoff is
suitable for constructing the HSEOM.

By using special (and orthogonal) functions characterized by
the differential equations dφk(t)/dt = ∑k′ ηk,k′φk′(t) for the two-
time correlation function of the bosonic heat bath and then since
α(t) = ∑k ckφk(t), we can derive the HSEOM in the following
form:46

∂

∂s
∣Φn⃗(s; n′i)⟩ = ∓

i
h̵

ĤS+SE∣Φn⃗(s; n′i)⟩

±
K−1

∑
k=0

K−1

∑
k′=0

ηk,k′nk∣Φn⃗−e⃗k+e⃗k′
(s; n′i)⟩

∓
i
h̵

V̂SE

K−1

∑
k=0

ck∣Φn⃗+e⃗k(s; n′i)⟩

∓
i
h̵

V̂SE

K−1

∑
k=0

nkφk(0)∣Φn⃗−e⃗k(s; n′i)⟩. (A5)
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Here, we restrict the number of special functions to K and approx-
imate the differential equations and two-time correlation func-
tion. The vector n⃗ = [n0, . . . , nK−1], which consists of non-negative
integers, distinguishes the AWFs. It is given in the following
form:

∣Φn⃗(s; n′i)⟩ = ∑
n,ni

∣n⟩∫
dz
N
⟨n∣z⟩∫

dzi

N ∫
z̃(τ(s))

z̃(τ(0))
D[z̃(τ(⋅))]

× {θ(t − s) + θ(s − t)ϕ∗n(zf , t)ϕm(z′f , t)}

×
K−1

∏
k=0
(−

i
h̵∫

s

0
ds′′

dτ(s′′)
ds′′

φk(τ(s) − τ(s
′′
))VSE(z̃, τ(s′′)))

nk

× exp[
i
h̵∫

s

0
ds′

dτ(s′)
ds′

LS+SE( ˙̃z, z̃, τ(s′))]F(s, VSE)

× ⟨zi∣ni⟩⟨ni∣ρ̂S(0)∣n′i⟩. (A6)

The vector e⃗k is the unit vector in the kth direction. In Eq. (A6), θ(t)
is the step function, and the influence functional along the contour
F(s, VSE) is defined as follows:

F(s, VSE) = exp[−
1
h̵2∫

s

0
ds′

dτ(s′)
ds′ ∫

s′

0
ds′′

dτ(s′′)
ds′′

× VSE(z̃, τ(s′))
K−1

∑
k=0

ckφk(τ(s
′
) − τ(s′′))VSE(z̃, τ(s′′))].

(A7)

We have introduced the time variable τ(s) for 0 ≤ s ≤ 2t, defined as

τ(s) ≡
⎧⎪⎪
⎨
⎪⎪⎩

s, 0 ≤ s ≤ t,
2t − s, t ≤ s ≤ 2t.

(A8)

The HSEOM expressed in Eq. (A5) have a disadvantage that
each line integral is carried out independently, and calculations for
the time evolution of reduced density matrices are time-consuming.
We remove this limitation by applying the method developed by Xu
et al.70 We utilize that the matrix elements ⟨n∣ρ̂S+SE∣m⟩ are described
by the following equation after appropriate truncation of the AWFs:

⟨n∣ρ̂S+SE∣m⟩ = ⟨⟨Φ∣eΛlt ∣m⟩⟨n∣eΛut
∣Φ⟩⟩, (A9)

where the operators Λu and Λl correspond to the upper and lower
signs on the right-hand side of Eq. (A5), respectively. The vec-
tor ∣Φ⟩⟩ = [∣Φ0⃗(s = 0)⟩ = ∣ψ⟩, ∣Φe⃗0(s = 0)⟩ = 0, . . .] is the vector in
which the AWFs are aligned. Here, we consider the initial states,
ρ̂S+SE(0) = ∣ψ⟩⟨ψ∣. In terms of the vectors, ∣Φ(t)⟩⟩ = eΛut

∣Φ⟩⟩ and
∣Ψ(t)⟩⟩ = eΛ

†
l t
∣Φ⟩⟩, we derive the modified HSEOM, in which the

computation time is linear with t, as Eqs. (6) and (7).

APPENDIX B: CORRELATION FUNCTIONS
WITH AND WITHOUT A QT

In this appendix, we discuss the difference in the correla-
tion functions for the lattice spins with and without the QT. The
anisotropy is fixed as Δ = 1. In Fig. 11, the antisymmetric corre-
lation functions A77(t) for (a) a TLS + spin lattice + QT (ϵ/ω0
= 1, h ζ = 0.01, βhω0 →∞, blue), (b) a TLS + spin lattice (ϵ/ω0 = 1,

FIG. 11. Antisymmetric correlation function A77(t) for the central spin in a 1D XXZ
spin lattice in arbitrary units. The blue, red, and green curves are for (a) a TLS
+ spin lattice + QT, (b) a TLS + spin lattice, and (c) an isolated spin lattice.
The curve (a) is replotted from Fig. 1 for βhω0 →∞. We cannot define the
temperature in cases (b) and (c) because those systems do not couple with
the QT.

h ζ = 0, red), and (c) an isolated spin lattice (ϵ/ω0 = 0, h ζ = 0, green)
are depicted. We found that the interactions with the TLS and with
the QT suppress the oscillatory amplitude of the correlation func-
tion. The frequencies of oscillation in cases (a), (b), and (c) are
almost the same, indicating that the characteristic feature of the
two-body correlation function of the central spin is predominantly
determined by the spin-lattice system.

Figure 12 displays the real part of the three-body correla-
tion function D777(t, 10) for (a) a TLS + spin lattice + QT (ϵ/ω0
= 1, h ζ = 0.01, βhω0 →∞, blue), (b) a TLS + spin lattice (ϵ/ω0
= 1, h ζ = 0, red), and (c) an isolated spin lattice (ϵ/ω0 = 0, h ζ = 0,
green). The parameters ϵ0, ζ, and β are the same as in Fig. 11.
For the isolated spin lattice (c), the three-body correlation func-
tion is almost zero. This arises from the isotropy of the XXZ spin
lattice. By introducing TLS–spin lattice coupling (ϵ0/ω0 ≠ 0), the
isotropy is broken and the amplitude of the three-body correla-
tion function increases in time. This indicates that the TSL con-
tributes to the properties of the three-body correlation function
D777(t, t′) rather than the spin-lattice system. This tendency is oppo-
site to that for a two-body correlation function. The oscillatory

FIG. 12. Real part of the three-body correlation function D777(t, t′) for the central
spin in a 1D XXZ spin lattice in arbitrary units. The time t′ is fixed as t′ = 10.
The blue, red, and green curves are for (a) a TLS + spin lattice + QT, (b) a TLS
+ spin lattice, and (c) an isolated spin lattice. The curve (a) is replotted from Fig. 2.
We cannot define the temperature for (b) and (c) because those systems do not
couple to the QT.
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frequencies of the two-body and three-body correlation functions
are also different.
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