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ABSTRACT
We investigate the optical response of a charge-transfer complex in a condensed phase driven by an external laser field. Our model includes
an instantaneous short-range Coulomb interaction and a local optical vibrational mode described by the Holstein–Hubbard (HH) model.
Although characterization of the HH model for a bulk system has typically been conducted using a complex phase diagram, this approach is
not sufficient for investigations of dynamical behavior at finite temperature, in particular for studies of nonlinear optical properties, where
the time irreversibility of the dynamics that arises from the environment becomes significant. We therefore include heat baths with infinite
heat capacity in the model to introduce thermal effects characterized by fluctuation and dissipation to the system dynamics. By reducing
the number of degrees of freedom of the heat baths, we derive numerically “exact” hierarchical equations of motion for the reduced density
matrix of the HH system. As demonstrations, we calculate the optical response of the system in two- and four-site cases under external electric
fields. The results indicate that the effective strength of the system–bath coupling becomes large as the number of sites increases. Excitation
of electrons promotes the conductivity when the Coulomb repulsion is equivalent to or dominates the electron–phonon coupling, whereas
excitation of optical vibrations always suppresses the conductivity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060208

I. INTRODUCTION

In various organic conductors, such as
bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF)1 and the
fullerides (salts of C60 anions),2 the interplay of on-site electron–
electron and on-site phonon–electron interactions plays a signifi-
cant role. Owing to the competition between these two interactions,
such materials exhibit a variety of distinct states in the antiferro-
magnetic (AF), charge-density-wave (CDW), spin-density-wave
(SDW), and superconducting (SC) phases. For a description of
the complex phase diagram of correlated electron systems, the
Holstein–Hubbard (HH) model has been introduced.3–11 This
model consists of electrons on a discrete lattice, with on-site
Coulomb repulsion between electrons and a local coupling of
electrons to longitudinal optical (LO) phonons. It is characterized

by the transfer integral th, the on-site Coulomb repulsion U,
the LO phonon frequency Ω, and the electron–phonon coupling
strength g.

For the half-filled HH model, when the Coulomb repulsion
U is much larger than the electron–phonon coupling g, two elec-
trons with opposite spin directions cannot occupy the same site and
electrons with up spin and those with down spin are aligned in an
alternating sequence in the Mott AF phase, whereas when g is much
larger than U, two electrons with opposite spin directions occupy
the same site with the aid of an LO phonon and bipolarons are
formed in the Peierls CDW phase. Then, between the AF and CDW
phases, the existence of a SC state is predicted, which is responsible
for the high-temperature SC state of alkali fullerides.12–14 The role of
phonons in the SC state of cuprates has also been investigated along
the same lines,15–20 and the HH model, despite its simplicity, does
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seem to represent a versatile approach for the investigation of these
materials.

Many numerical studies, based, for example, on exact diago-
nalization,21,22 the density matrix renormalization group (DMRG),23

and the quantum Monte Carlo (QMC) method,24–30 have been con-
ducted to reveal the thermodynamic properties of the HH model
at zero and finite temperatures. Most of these investigations have
focused on bulk systems, typically through the use of a complex
phase diagram, and with a few exceptions (see, e.g., Ref. 31), there
has been little exploration of the dynamical behavior of the HH
model. The recent discovery of SC-like properties initiated by opti-
cal pulses and observed at temperatures higher than the SC criti-
cal temperature Tc provides considerable motivation for dynamical
investigations of the HH model,32 as do the current efforts to achieve
room-temperature superconductivity with the aid of optical pulses,
in the context of which both theoretical33–40 and experimental41–43

investigations have already been conducted.
To investigate the dynamical behavior of an HH system, not

only the LO phonon modes but also the environmental degrees
of freedom have to be taken into account because the latter con-
trol the system temperature and the time scales of relaxation pro-
cesses of excited states through fluctuations and dissipation related
through the fluctuation–dissipation theorem. However, investiga-
tions of dynamics, in particular investigations of nonlinear optical
properties at finite temperature, have not been conducted thor-
oughly, even for a small cluster system.

In this paper, we develop an open quantum dynamics theory for
the HH model, in which the HH system is coupled to baths consist-
ing of surrounding atoms or molecules. Here, by an open quantum
dynamics theory, we mean a theory pertaining to a system that is
further coupled to bath systems that are modeled by infinite num-
bers of harmonic oscillators.44 Such system–bath models have been
employed for investigations of electron transfer45 and exciton trans-
fer processes46,47 of a molecular system, in particular for calculations
of the nonlinear optical spectrum. However, the effects of on-site
Coulomb repulsion between electrons, which plays an essential role
in charge transfer complexes, have not been investigated in any great
depth.

We derive hierarchical equations of motion (HEOM) for
the reduced density matrix of the HH system that can treat
non-Markovian and nonperturbative system–bath interactions at
finite temperature in a numerically “exact” manner.48–50 The
HEOM approach has been applied to the Holstein51–53 and
Peierls–Holstein54 problems. Photosynthetic systems have also been
investigated using this approach, and it has been shown that the
efficiency of the exciton transfer process exhibits a maximum in
the nonperturbative region of system–bath coupling,46 owing to the
quantum entanglement between the system and bath (bath entan-
glement).50 Using the HEOM approach, we can explore the possi-
bility of finding such a mechanism in this HH system. We illus-
trate our formalism by calculating the optical conductivity of the
one-dimensional HH model at finite temperature. In addition, by
applying time-dependent external fields, we calculate the optical
conductivity under highly nonequilibrium conditions. Because the
heat bath facilitates thermal dissipation and excitation in a thermo-
dynamically consistent manner, we can obtain reliable results under
such conditions, even when the molecular system described by the
HH model is very small.

The remainder of the paper is organized as follows: In Sec. II,
we introduce the system–bath Hamiltonian for the HH model. In
Sec. III, we present the HEOM for the HH model. Section IV is
devoted to a presentation of the numerical results for two- and four-
site HH-plus-bath models. The optical conductivities of the equilib-
rium states and the steady states under external driving fields are
investigated. We conclude the paper in Sec. V.

II. MODEL
We consider a one-dimensional HH model described by

ĤS(t) = −∑
i,σ
(ti

heiA(t)ĉ†i,σ ĉi+1,σ +H.c.) +∑
i

U in̂i,↑n̂i,↓

+ ∑
i

gi
(n̂i,↑ + n̂i,↓)(b̂†

i + b̂i) +∑
i

Ωib̂†
i b̂i

− Eμ(t)∑
i
(b̂†

i + b̂i), (1)

where ĉi,σ and ĉ†i,σ are the annihilation and creation operators of
an electron at site i with spin state σ ∈ {↑, ↓}, b̂i and b̂†

i are the
annihilation and creation operators of an LO phonon at site i, and
ti
h, U i, gi, and Ωi are the transfer integral, on-site Coulomb repulsion,

electron–phonon coupling strength, and LO phonon frequency,
respectively, at site i. The functions A(t) and Eμ(t) are the time-
dependent external perturbations for electrons and LO phonons,
described by the vector potential and electric field; the static case is
given by A(t) = 0 and Eμ(t) = 0. Because we treat each site explicitly,
these parameter values can be site-dependent. For example, using a
machine learning approach, we can set a system-specific parameter
value targeting a specific complex molecular system.55 The probabil-
ity distribution of the electron is expressed as n̂i,σ = ĉ†i,σ ĉi,σ . Here and
in the rest of this paper, we set the reduced Planck constant and the
elementary charge equal to 1, i.e., h = e = 1.

In this study, we consider a case in which the LO modes are
coupled to intermolecular vibrations or other molecular degrees of
freedom, and we describe these degrees of freedom using a har-
monic heat bath. Because we can study only a small system with
a finite number of phonon modes associated with the system site,
the inclusion of the heat bath is important to maintain the stability
of the equations.53 Thus, we consider the situation in which each
LO oscillator interacts with a heat bath that gives rise to dissipa-
tion and fluctuation in the LO modes. The total Hamiltonian is then
expressed as

Ĥtot(t) = ĤS(t) + ĤI + ĤB. (2)

The bath Hamiltonian ĤB and the system–bath interaction ĤI are
expressed as

ĤB =∑
i,α
(

p̂2
i,α

2mi,α
+

1
2

mi,αω2
i,αx̂2

i,α), (3)

ĤI = −∑
i

V̂i∑
α

ki,αx̂i,α +∑
i

V̂2
i∑

α

k2
i,α

2mi,αω2
i,α

, (4)
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where p̂i,α, x̂i,α, mi,α, and ωi,α are the momentum, position, mass,
and frequency of the αth oscillator of the ith bath, respectively. The
system operator that represents the effects of the ith local heat bath
is given by V̂ i, and ki,α is the coupling constant for the interac-
tion between the system and the αth oscillator of the ith bath. The
second term in ĤI is a counterterm that compensates for the renor-
malization of the potential energy caused by the first term in ĤI .44

Depending on the situation, we may choose a local or nonlocal
system–bath interaction by the way in which we set V̂ i: For high-
frequency intramolecular vibrational modes, we consider the case
in which each LO oscillator is coupled to its own bath, which is
expressed as V̂ i = b̂†

i + b̂i, whereas for low-frequency intermolecu-
lar vibrational modes or phonon modes, we consider the case in
which multiple LO oscillators are coupled to a single global bath,
described as V̂ i → V̂0 = b̂†

0 + b̂0, with i being ignored in the summa-
tions in Eqs. (3) and (4). If necessary, we can further treat a nonlocal
heat bath described by V̂ ij between the ith and jth sites, which often
plays an important role in determining the efficiency of an energy
transfer process.54,55

The ith heat bath can be characterized by the spectral distribu-
tion function (SDF), defined by

Ji(ω) =
Ni

∑
α

k2
i,α

2mi,αωi,α
δ(ω − ωi,α). (5)

For the heat bath to be an unlimited heat source possessing an infi-
nite heat capacity, the number of heat bath oscillators N i is effec-
tively made infinite by replacing Ji(ω) with a continuous distribu-
tion. The counterterm of ĤI can then be rewritten in terms of the
reorganization energy λi = ∫

∞

0 dω Ji(ω)/ω as∑iλiV̂2
i .

Although we can reduce the number of phonon degrees of free-
dom by diagonalizing the LO phonon plus-bath degrees of freedom,
which leads to the Hubbard model with a Brownian-type heat bath,
as described in Refs. 45 and 54–59, here we treat the LO phonon
modes expressed in the eigenstate representation explicitly to reduce
the computational cost. In this way, we can investigate the case in
which the LO phonon modes are directly excited by a laser field
(see Sec. IV B 3). Moreover, if necessary, we can include an anhar-
monicity of the phonon modes by setting each excitation energy
of the phonon state separately without incurring any additional
cost.

III. HEOM FOR THE HH-PLUS-BATH SYSTEM
Our open quantum dynamics theory is constructed

on the basis of the reduced density operator, defined as
ρ̂(t) = trB{e−iĤtot(t)ρ̂tot(0)eiĤtot(t)}, where trB{} represents the
partial trace over the bath degrees of freedom.

If we adopt the Drude–Lorentz SDF expressed as

Ji(ω) =
ηiω
π

1
1 + (ω/γi)2 , (6)

then the time evolution of the reduced density operator is described
by the HEOM50 for the HH-plus-bath model as follows (see
Appendix A):

∂

∂t
ρ̂n⃗1 ,...,n⃗N (t) = −(iĤ×S (t) +

N

∑
i=1

K

∑
k=0

ni,kνi,k)ρ̂n⃗1 ,...,n⃗N (t)

−
N

∑
i=1
(iλi(V̂2

i )
×ρ̂n⃗1 ,...,n⃗N (t)

+ iV̂×i
K

∑
k=0

ρ̂n⃗1 ,...,n⃗i+e⃗k ,...,n⃗N (t)

+ iV̂×i
K

∑
k=0

ni,kci,kρ̂n⃗1 ,...,n⃗i−e⃗k ,...,n⃗N (t)

+ V̂ i
○ ηiν2

i,0

2
ρ̂n⃗1 ,...,n⃗i−e⃗0 ,...,n⃗N (t)). (7)

Here, the vector n⃗i = (ni,0, ni,1, . . . , ni,K) consists of non-negative
integers, and ρ̂0⃗,...,0⃗(t) corresponds to the reduced density operator.
The density operators whose vectors {n⃗i} involve positive integers
are referred to as the auxiliary density operators (ADOs). The sets
{ci,k} and {νi,k} are evaluated for the description of the real part of
the two-time correlation function of the heat bath, C′i(t), and the
quantity K is the number of expansion coefficients for C′i(t). The
number of sites is represented by N. The symbols × and ○ repre-
sent the commutator and anticommutator defined as Ô×● = [Ô, ●]
and Ô○● = {Ô, ●}, respectively. We set νi,0 = γi,0 to simplify the nota-
tion. The vector e⃗k is the unit vector of the kth element. To con-
duct numerical integrations, we set ρ̂n⃗1 ,...,n⃗N (t) = 0, where ∑i,k ni,k
> Nmax, to truncate the equations. The number Nmax is set suffi-
ciently large for the calculations to converge, and it may change
depending on the parameters of the system and bath. For an outline
of the derivation of the HEOM, see Appendix A.

We truncate the eigenstates of the LO phonon in the same man-
ner as the ADOs. That is, the eigenstates that satisfy ∑iσ n̂i,σ >MLO
are ignored, where MLO is an integer representing the LO cutoff
number. With a sufficiently large value of MLO, we obtain reliable
results because the populations in the higher eigenstates are almost
zero, owing to the rapid removal of the excess energy of the phonon
modes to the heat bath.

IV. NUMERICAL RESULTS
A. Equilibrium distribution

We can obtain the reduced thermal equilibrium state of the
total system (which is not the Boltzmann distribution of the main
system itself, owing to the contribution of the system–bath inter-
action) by numerically integrating Eq. (7) from a temporal initial
state to a time sufficiently long that all of the hierarchical elements
have reached a steady state.49,50,60,61 Although we can set any strength
and cutoff frequency of the system–bath interaction, described as
ηi and γi, with any form of V̂ i, here we limit our analysis to the
weak-coupling case to justify the description of the present model
in comparison with a case without a heat bath.

We set the transfer integral, on-site Coulomb repulsion,
electron–phonon coupling strength, and LO phonon frequency at
each site identically as ti

h = th, U i
= U, gi

= g, and Ωi
= Ω, respec-

tively, for all i. We choose the transfer integral th as the unit of
frequency. Then, for all calculations, we fix the LO phonon fre-
quency, the coupling strength between electrons and LO phonons,
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and the cutoff frequency of the heat bath as Ω/th = 2, g/th =
√

3.6,
and γi/th = 3. We choose these parameter values because the quan-
tum phase transition for the SC state has been reported under such
conditions.7,23 The inverse temperature divided by the Boltz-
mann constant kB is denoted by β = 1/kBT. We set βth = 1 (high-
temperature case) and βth = 4 (low-temperature case).

To examine the description of the HH-plus-bath model, we cal-
culate the expectation value of the system Hamiltonian, ⟨ĤS⟩, using
the steady solution of the HEOM62 and compare the result with the
value calculated from the Boltzmann distribution of the HH system,
in which the eigenenergies are evaluated by exact diagonalization.22

For this purpose, we consider a two-site HH model with param-
eter values U/th = 3, MLO = 5, and βth = 4. For the HH-plus-bath
model, we consider a local heat bath described by the interaction
V̂ i = b̂†

i + b̂i in the case of weak system–bath coupling described as
ηi = 0.001(i = 1, 2) with the ADO parameter values Nmax = 2 and
K = 2. We obtain ⟨ĤS⟩ = −5.00 for the HH-plus-bath model, which
agrees very well with the value ⟨ĤS⟩ = −4.94 obtained from diago-
nalization of the HH model. It should be noted that in the case of
strong system–bath coupling, the system energy calculated from the
steady-state solution of the HEOM for the HH-plus-bath model does
not agree with that calculated from the Boltzmann distribution of
the HH system, owing to the contribution of the energy from the
system–bath interaction.

B. Optical response
We now consider the optical response of the HH-plus-bath

system. While optical signals are, in general, formulated on the
basis of the optical dipole moment, here we consider an expec-
tation value of the optical current, ⟨ ĵ(t)⟩ = tr{ĵ(t)ρ̂(t)}, where
ĵ(t) = i∑i,σ(thei(A(t)+A′(t))ĉ†i,σ ĉi+1,σ −H.c.) is the current operator,
under a sufficiently weak probe excitation described by a time-
dependent vector potential A′(t). This consideration is with future
extensions to the bulk material in mind. The optical conductivity is
then defined as

σ[ω] =
1

E′[ω]∫
∞

0
dt eiωt

[⟨ ĵ(t)⟩ − ⟨ ĵ(t)⟩0], (8)

where ⟨⋅ ⋅ ⋅⟩0 is the current without the vector potential, which
implies A′(t) = 0. The quantity E′[ω] = iωA′[ω] is the electric field
that arises from the vector potential A′(t), where we denote the
Fourier transform of f (t) as f [ω] ≡ ∫

∞

−∞
dt eiωt f (t). In this paper,

we calculate the optical conductivity of the HH-plus-bath system for
two- and four-site cases with the parameter values listed in Table I.

TABLE I. System and bath parameter values for two- and four-site HH-plus-bath
models.

1. Equilibrium response
First, we consider the linear absorption spectrum evaluated

from Eq. (8) with A(t) = 0 and Eμ(t) = 0 in Eq. (1). In this case,
the optical conductivity is defined in terms of the linear response
function as63,64

σ[ω] =
i
ω
(⟨ ĵ d
⟩eq − ∫

∞

0
dt eiωtR(1)(t)), (9)

where

R(1)(t) = iθ(t)⟨[ ĵ p
(t), ĵ p

(0)]⟩eq, (10)

ĵ d
= th∑

i,σ
(ĉ†i,σ ĉi+1,σ +H.c.), (11)

ĵ p
= ith∑

i,σ
(ĉ†i,σ ĉi+1,σ −H.c.) (12)

are the linear response function and the diamagnetic and para-
magnetic current operators, respectively.65 Here, θ(t) is the step
function. For details of the derivation of Eq. (9), see Appendix B.

To compare the present results with those obtained previously
from the HH model without a heat bath, we consider a fast modula-
tion case with a weak system–bath interaction described as γi/th = 3
and ηi = 0.05(i = 1, 2). We then chose the on-site Coulomb repul-
sion as U/th = 1, 3, and 5 and the inverse temperature as βth = 1
and 4.

It should be mentioned that, in the case of a bulk HH sys-
tem without a heat bath, we observe continuous energy transition
bands. If the bulk system is a conductor, we observe the peak at
zero frequency. In the present two-site model, however, continu-
ous bands do not appear, owing to the finite number of eigenstates,
and the peak representing the conducting state appears at nonzero
frequency.

Figure 1 displays the low-frequency region of the real part of
the optical conductivity, Re{σ[ω]}, for the two-site HH-plus-bath
model. The peaks over the entire spectral region are presented in
Appendix C. In the low-temperature case βth = 4 (blue curves), the
electronic transition peaks are observed at 0.235, 0.073, and 0.202
for (a) weak (U/th = 1), (b) intermediate (U/th = 3), and (c) strong
(U/th = 5) Coulomb repulsion, respectively. In the weak-repulsion
case in Fig. 1(a), we also observe a peak at 0.019, which is due
to the Drude weight reflecting the sensitivity of the system to an
external vector potential. This peak appears even in the case of
an insulator.66,67 The appearance of this peak depends strongly on
the system size, and hence, the peak disappears as the system size
increases. Therefore, we shall not discuss this low-frequency peak
further here, and we focus our analysis only on higher transition
peaks. As Figs. 1(a)–1(c) indicate, the position of the transition peak
first decreases and then increases as a function of U. This tendency
agrees with the previous results obtained on the basis of the HH
model, as presented in Ref. 23 (note that the present parameter value
g =
√

3.6 is equal to the value λ = 3.6 in that paper). This implies that
the weak-repulsion case corresponds to a charge-ordered insulator,
whereas the strong-repulsion case corresponds to an AF insulator.
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FIG. 1. Real part of the optical conductivity Re{σ[ω]} for (a) weak (U/th = 1),
(b) intermediate (U/th = 3), and (c) strong (U/th = 5) Coulomb repulsion in
the low-temperature case βth = 4 (blue curves) and the high-temperature case
βth = 1 (red curves) calculated from Eq. (9). The LO phonon frequency and the

electron–phonon coupling strength are chosen as Ω/th = 2 and g/th =
√

3.6,
respectively. Each line shape is normalized such that the maximum peak in the
region 0 ≤ ω ≤ 0.3 is 1. The entire peak profiles are presented in Appendix C.

In the high-temperature case (βth = 1), the peak position for
intermediate Coulomb repulsion in Fig. 1(b) is blue-shifted, indi-
cating that the insulator-like behavior is enhanced. By contrast, the
peak positions in the small- and large-U cases in Figs. 1(a) and
1(c), respectively, are red-shifted. Although the present system is not
yet a conductor, the blue-shifted peak in the intermediate-repulsion
case does suggest the presence of the conductor–insulator phase
transition that is observed in a bulk HH system.

2. Effects of different forms of system–bath
coupling and of system size

In the above discussion, we considered the situation in which
each LO phonon mode is coupled to its own bath. Moreover, we
assumed that the system part of the system–bath interaction was a
linear function of phonon coordinate, as V̂ i = b̂†

i + b̂i ∝ q̂i, which
leads to population relaxation and excitation.49 This form of inter-
action has been used in studies of vibrational spectroscopy and elec-
tron transfer on the basis of a Brownian oscillator model.45,49,50,54–59

When the vibrational excitation energy becomes close to the ther-
mal excitation energy, this process becomes important. If the vibra-
tional excitation energy is much higher than the thermal excitation
energy, however, vibrational dephasing described by V̂ i ∝ q̂2

i plays
a significant role.68,69 Under such conditions, this interaction can
be approximated in a diagonal modulation form as V̂ i ≈ b̂†

i b̂i.49,50

In this subsection, we compare the different forms of interac-
tions for vibrational dephasing (V̂ i = b̂†

i b̂i) and vibrational relaxation
(V̂ i = b̂†

i + b̂i). Moreover, we examine the difference between the
local and nonlocal (V̂0 = ∑ib̂

†
i b̂i) system–bath interactions, as well

as the effects of system size.
In the following, we consider only a high-temperature case

(βth = 0.1) and set K = 0 and ci,0 = ηiγi/β to reduce the numerical
costs of integrating the HEOM. In the present case, owing to the
strong relaxation effects, it is not easy to apply Eq. (8) to calculate
the optical conductivity. Therefore, we evaluate this from Eq. (9).

In Fig. 2, we present the calculated results of Re{σ[ω]} for
the independent-local (blue curve) and nonlocal (red curve) bath
coupling cases. The peaks in the nonlocal bath case are narrower
and not shifted in comparison with the peaks in the local bath case
because the interaction V̂0 = ∑ib̂

†
i b̂i contributes only indirectly to

energy relaxation, and the nonlocal heat bath enhances the intersite
quantum coherence among the phonon modes.

Next, we discuss the effects of system size. To reduce the com-
putational cost, we consider the nonlocal bath case only. In Fig. 3,
the blue and red curves represent the results with η = 0.05 in four-
site cases with open and periodic boundary conditions, respectively.
We set Nmax = 5 and MLO = 7, with the other parameter values being
the same as in Fig. 2. Note that we set slightly smaller values of MLO
to reduce the computational cost for the investigation of size effects;
we have verified that the line shapes for MLO = 9 and 7 are qualita-
tively the same in the two-site case (the results are not shown). For
reference purposes, we also re-plot here as the solid black curve the
two-site result depicted in Fig. 2. As these results indicate, the num-
ber of peaks is suppressed for a larger system. This is because we
consider the system part of the system–bath coupling in the form
V̂0 = ∑

N
i b̂†

i b̂i, and the number of system–bath couplings, which

FIG. 2. Optical conductivity Re{σ(ω]} in the local vibrational-relaxation case,
V̂ i = b̂†

i + b̂i , in which the LO mode of each site is modulated independently (blue

curve), and that in the nonlocal bath case, V̂0 = ∑i b̂
†
i b̂i , in which both of the

LO modes are coupled to a single bath (red curve). The Coulomb repulsion and
inverse temperature are set as U/th = 1 and βth = 0.1, and the other parameter
values are the same as in Fig. 1, except those for the ADOs.
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FIG. 3. Optical conductivity Re{σ[ω]} for diagonal system–bath coupling with
η = 0.05 for the two-site (N = 2) case (solid black curve) and for four-site (N = 4)
cases with open (blue curve) and periodic (red curve) boundary conditions. For
the purpose of illustration, we also depict the two-site case with stronger coupling
η = 1 (dashed black curve). The Coulomb repulsion and inverse temperature are
set as U/th = 1 and βth = 0.1. The other parameter values are the same as in
Fig. 1, except those for the ADOs. Note that owing to numerical error (marked
in the gray area), the four-site result with periodic boundary condition does not
approach zero at zero frequency.

determines the effective coupling strength for the system, increases
as the number of sites increases.

To confirm this, we depict the two-site result for the case of
large system–bath coupling (η = 1) as the dashed black curve in
Fig. 3; as η increases, the peaks in the high-frequency region are
suppressed, while those in the low-frequency region are merged and
enhanced. As the number of sites increases, the energy gap decreases
because of the increased number of eigenstates, which is reminiscent
of band theory. Thus, the lowest peak in the four-site case is red-
shifted in comparison with that in the two-site case. This tendency is
more pronounced for the periodic boundary condition than for the
open boundary condition because the effective size of the system is
larger in the former case.

3. Continuous wave response
Finally, we discuss the steady-state response under periodic

external electric fields. Here, we consider the case of off-diagonal
system–bath coupling (V̂ i = b̂†

i + b̂i) for (a) the electronic excitation,

A(t) = Aex cos(Ωext),
Eμ(t) = 0,

(13)

and (b) the LO phonon excitation,

A(t) = 0,
Eμ(t) = μEex cos(Ωext).

(14)

Under an external time-dependent perturbation, we cannot evalu-
ate the optical conductivity from Eq. (9) because there is no thermal
equilibrium state in this situation. We therefore simulate Eq. (8)
explicitly. For an external field A′(t) = Aprobeθ(t − ton), Eq. (8) is
expressed as (see Appendix B)

σ[ω] = −
1

Aprobe
∫

∞

0
dt eiω(t−ton)[⟨ ĵ(t)⟩ − ⟨ ĵ(t)⟩0]. (15)

For sufficiently small Aprobe (from 5 × 10−3 to 1 × 10−2), the optical
conductivity defined by Eq. (8) agrees with that defined by Eq. (9)
in the equilibrium case.70 Because of the prefactor e−iωton , the pro-
file of the optical conductivity changes depending on ton, but that
dependence is minor anyway, and so we ignore it in the following
discussion.

Here, we consider the high-temperature case (βth = 1) in order
to find signs of the photoinduced phase transition from the insula-
tor to conductor that is observed in bulk systems. When the HEOM
are integrated over a sufficiently long time, the system driven by
the periodic external fields in Eqs. (13) and (14) reaches a time-
dependent steady state. The transient behaviors as characterized
by the system energy are depicted in Fig. 4. In the present theory
of open quantum dynamics, the energy supplied by the external
fields dissipates to the heat bath, whose time-irreversible behav-
ior is characterized by the fluctuation–dissipation theorem, whereas
a wavefunction-based Schrödinger approach cannot properly treat
thermal effects characterized by a temperature.

In Fig. 5, we present the calculated optical conductivity under
the electronic excitation given by Eq. (13). For a bulk Hubbard sys-
tem, it has been reported that by tuning the frequency of the exter-
nal electronic field to the magnitude of Coulomb repulsion U, the
insulating Hubbard model becomes superconducting.36 Here, we
examine this behavior using the HH-plus-bath model.

For this purpose, we have to estimate the effective strength
of the Coulomb repulsion in the HH-plus-bath model. In con-
trast to the Hubbard model, this estimation is difficult for both
the HH and HH-plus-bath cases because the transition energies
are altered from the Hubbard case, owing to the contribution from
electron–phonon coupling. In the strong-repulsion case, however,
the electron–phonon contribution is minor, and we find that the
effective Coulomb repulsion can be evaluated from the peak posi-
tion of the optical conductivity, in the same way as in the two-site
Hubbard model (see Appendix C).

Therefore, in Fig. 5(c) in the strong-repulsion case (U/th = 5),
we apply an external electric field with frequency Ωex/th = 0.71 and
find that the peak shifts to the red by ∼0.11, which indicates that
the driven system is in the conducting state. This peak shift can be
attributed to η pairing, as in the Hubbard case.36

In the intermediate-repulsion (U/th = 3) and weak-repulsion
(U/th = 1) cases, the frequency of the main peak in Re{σ[ω]} does
not agree with that given by the effective Coulomb repulsion because

FIG. 4. Time evolution of the expectation value of ĤS under external electric fields
for (a) electric excitation and (b) LO phonon excitation.
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FIG. 5. Optical conductivity Re{σ[ω]} under the electronic excitation presented in Eq. (13) for (a) weak (U/th = 1), (b) intermediate (U/th = 3), and (c) strong (U/th = 5)
Coulomb repulsion. The gray curves represent the optical conductivity of the equilibrium states at high temperature (the same results as shown by the red curve in Fig. 1).
The amplitude Aex is set to 0.5.

of the contribution from the LO phonon interaction. Thus, the peak
does not shift, even when the frequency of the external field is tuned
to the dominant peak position, with Ωex/th = 0.75 (weak-repulsion
case) and Ωex/th = 0.63 (intermediate-repulsion case). We then vary
the resonant frequency Ωex to find out whether η pairing occurs in
the weak- and intermediate-repulsion cases, and we set Ωex/th = 0.3.
We display Re{σ[ω]} for the weak- and intermediate-repulsion
cases in Figs. 5(a) and 5(b), respectively. In the intermediate-
repulsion case, the peak is red-shifted from 0.13 to 0.05, while the
peak profile is similar to that in the strong-repulsion case: We find
that η pairing occurs in this situation, although estimation of the
effective Coulomb repulsion remains difficult. In the weak-repulsion
case, although a peak shift can be observed, the profiles of the two
peaks at 0.05 and 0.18 are different from those in Figs. 5(b) and 5(c).
This indicates the suppression of η pairing.

Although our system is small, we may conclude here that η pair-
ing, which plays a key role in the superconductivity of the Hubbard
system, is suppressed when the electron–phonon coupling becomes
stronger than the Coulomb repulsion, while superconductivity may
appear when the Coulomb repulsion is stronger or comparable to
the electron–phonon coupling, even when the HH system is coupled
to a heat bath.

In Fig. 6, we present the calculated optical conductivity under
the LO phonon excitation given by Eq. (14) for various values of the
laser frequency Ωex and Coulomb repulsion U. In all three cases with
different strengths of repulsion U, the position of the lowest peak

near ω/th = 0.2 does not change very much as a function of Ωex/th,
while the peak intensities are suppressed for Ωex/th = 2.5, which is
approximately the same as the effective resonant frequency of the
LO phonon mode under off-diagonal system–bath coupling. In this
case, the LO phonon mode is strongly excited by the external electric
field. As a result, a polaron is created, while electron transfer is sup-
pressed. This indicates that the LO phonon excitation does not lead
to photoinduced superconductivity.

To observe superconductivity with photoexcited phonons,
which has been reported in previous studies, it may be necessary to
include Coulomb repulsion between nearest-neighbor sites71–73 and
to change the distance between molecules.74

V. CONCLUDING REMARKS
In this paper, we introduced the HH-plus-bath model to inves-

tigate the effects of a short-range repulsive Coulomb interaction
and a local optical vibrational mode for the investigation of elec-
tron dynamics under nonequilibrium conditions. We employed the
HEOM formalism to simulate the dynamics of electrons described
by this model under various physical conditions for local and non-
local LO phonon–bath interactions in a numerically rigorous man-
ner. We calculated the optical conductivity at finite temperature by
integrating the HEOM and found that the present model exhibits
conductor-like behavior when the Coulomb repulsion and the
coupling strength between the electrons and the LO phonons are

FIG. 6. Optical conductivity Re{σ[ω]} under the LO phonon excitation presented in Eq. (14) for various values of the excitation frequency Ωex for (a) weak (U/th = 1), (b)
intermediate (U/th = 3), and (c) strong (U/th = 5) Coulomb repulsion. The inverse temperature is set as βth = 1. The black lines represent the optical conductivity of the
equilibrium states at high temperature (the same results as shown by the red curve in Fig. 1). None of the results are normalized. The amplitude μEex is set to 0.5.
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comparable. This finding agrees with previous results obtained for
an HH bulk system.

We then calculated the optical properties of the system under
continuous wave laser excitation. We found that the excitation of the
electrons promotes photoinduced conductivity when the Coulomb
repulsion is comparable to or larger than the electron–phonon
interaction, while the electrical properties do not change in the
region in which electron–phonon coupling plays a role. We found
that the excitation of LO phonons always suppresses the con-
ductivity. Although we restricted our analysis here to the case of
a steady-state response, there is no inherent restriction on the
dynamical simulation with the use of the HEOM. Thus, it is
straightforward to compute ultrafast nonlinear spectra, including
two-dimensional electronic-vibrational spectra, on the basis of the
present formulation.

In the present work, we limited our analysis to a small sys-
tem with a specific parameter set focusing on the role of local
electron–phonon interactions. Because electron transfer is a long-
range effect, an extension of the present investigation to a larger
system would provide deeper insight, in particular, with regard to
studies of superconductivity. Thus, to make the present approach
more useful, further computational efforts need to be made to
treat larger systems that consist of many sites, for example, by
employing the hierarchical Schrödinger equations of motion75 and
the tensor-train method.76–79 Such investigations are left for future
work. Nevertheless, we believe that the present results elucidate
the key features of the HH model under thermal conditions with
regard to the fundamental nature of strongly correlated electron
systems.
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APPENDIX A: DERIVATION OF THE HEOM
FOR THE HH-PLUS-BATH SYSTEM

In this appendix, we construct the HEOM for the HH-
plus-bath system. The reduced density operator of the system,
ρ̂(t) = trB{e−iĤtott ρ̂tot(0)eiĤtott}, is expressed in the coherent state
representation of the path integral as

⟨ξ, α∣ρ̂(t)∣ξ′, α′⟩ = ∫ D2ξ D2ξ′ ∫ D2αD2α′ ∫ d2ξid
2ξ′i

× ∫
d2αi

πN
d2α′i
πN eiSS(ξ,α;t)

⟨ξi, αi∣ρ̂(0)∣ξ′i , α′i⟩

× e−iSS(ξ′ ,α′ ;t)F(α, α′; t). (A1)

Here, the electronic states are described as a set of Grassmann num-
bers ξ = (ξ1,↑, ξ1,↓, ξ2,↑, . . . , ξN,↓), and ∣ξ⟩ is the eigenstate of fermions
(electrons) in the coherent state representation. The LO phonons are
described as a set of complex numbers α = (α1, α2, . . . , αN), and ∣α⟩

is the eigenstate of bosons (LO phonons) in the coherent state rep-
resentation. The functional SS(ξ, α; t) is the action of the system and
is given by

SS(ξ, α; t) = ∫
t

0
dt′[i{ξ∗(t′) ⋅ ξ̇(t′) +

1
2
[α∗(t′) ⋅ α̇(t′)

− α̇∗(t′) ⋅ α(t′)]}

− (HS(ξ, α; t′) +∑
i

λiV2
i (αi; t′))], (A2)

and HS(ξ, α; t′) and V i(αi; t) are the path-integral representations of
ĤS and V̂ i. The influence functional F(α, α′; t) is evaluated as49,60,61

F(α, α′; t) =∏
i

exp(−∫
t

0
dt′∫

t′

0
dt′′ V×i (αi, α′i ; t′)

× [C′i(t
′
− t′′)V×i (αi, α′i ; t′′)

− iC′′i (t
′
− t′′)Vi

○
(αi, α′i ; t′′)]). (A3)

The hyper-operators are defined as V×i (αi, α′i ; t) ≡ Vi(αi; t)
− Vi(α′i ; t) and V i

○
(αi, α′i ; t) ≡ V i(αi; t) + V i(α′i ; t). The real and

imaginary parts of the bath correlation functions of the ith heat bath,
C′i(t) and C′′i (t), are expressed using the SDF as

C′i(t) = ∫
∞

0
dω Ji(ω) coth(

βω
2
) cos ωt, (A4)

C′′i (t) = ∫
∞

0
dω Ji(ω) sin ωt, (A5)

where β is the inverse temperature divided by the Boltzmann con-
stant, β = 1/kBT. By using the Drude–Lorentz SDF in Eq. (6), the
reorganization energy and the two-time correlation function of the
heat bath are characterized by the parameters ηi and γi, as λi = ηiγi/2,
C′i(t) = ci,0e−γi ∣t∣ +∑kci,ke−νi,k ∣t∣, and C′′i (t) = sgn(t)ηiγ2

i e−γi ∣t∣/2. The
parameters {ci,k} and {νi,k} are determined by a Matsubara spec-
tral decomposition scheme80 and a Padé spectral decomposition
scheme.81 In this paper, we use the [N − 1/N] Padé spectral decom-
position scheme.

To obtain differential equations in time, we consider the time
derivative defined as

∂

∂t
ρ̂(t) ≡ ∫ d2ξ d2ξ′ ∫

d2α
πN

d2α′

πN ∣ξ, α⟩

× lim
Δt→0

⟨ξ, α∣ρ̂(t + Δt)∣ξ′, α′⟩ − ⟨ξ, α∣ρ̂(t)∣ξ′, α′⟩
Δt

× ⟨ξ′, α′∣. (A6)

The details of the evaluation of the right-hand side of Eq. (A6) are
described in Refs. 48–50, 60, and 61. The auxiliary density operators
(ADOs) presented in Eq. (7) are defined as
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⟨ξ, α∣ρ̂n⃗1 ,...,n⃗N (t)∣ξ
′, α′⟩ = ∫ D2ξ D2ξ′ ∫ D2αD2α′ ∫ d2ξi d2ξ′i ∫

d2αi

πN
d2α′i
πN

×
N

∏
i=1
{[∫

t

0
dt′′e−νi,0(t−t′′)

(−ici,0V×i (αi, α′i ; t′′) −
ηiν2

i,0

2
V○(αi, α′i ; t′′))]

ni,0

×
K

∏
k=0
(∫

t

0
dt′′ e−νi,k(t−t′′)

[−ici,kV×i (αi, αi; t′′)])
ni,k

}

× eiSS(ξ,α;t)
⟨ξi, αi∣ρ̂(0)∣ξ′i , α′i⟩e

−iSS(ξ′ ,α′ ;t)F(α, α′; t), (A7)

in which the zeroth-order term ρ̂0⃗,...,0⃗(t) corresponds to Eq. (A1).

APPENDIX B: DERIVATION OF OPTICAL
CONDUCTIVITY FOR EQUILIBRIUM STATE

Here, we illustrate the derivation of the optical conductiv-
ity for equilibrium systems, where external fields are set to zero:
A(t) = Eμ(t) = 0. We omit the superscript i from ti

h, U i, gi, and Ωi

for the sake of simplicity. The current operator is defined as the
functional derivative of the Hamiltonian with respect to the vector
potential,

ĵ(t) = −
δĤS(t)
δA′(t)

= i∑
i,σ
(theiA′(t)ĉ†i,σ ĉi+1,σ −H.c.). (B1)

For sufficiently small A′(t), we have ĵ(t) ≃ ĵ p
− ĵdA′(t). In the same

way, the system Hamiltonian is expanded as

ĤS(t) ≃ −∑
i,σ
(thĉ†i,σ ĉi+1,σ +H.c.) +∑

i
Un̂i,↑n̂i,↓

+ ∑
i

g(n̂i,↑ + n̂i,↓)(b̂†
i + b̂i) +∑

i
Ωb̂†

i b̂i

− ĵ pA′(t)

= Ĥ0
S − ĵ pA′(t). (B2)

The total density operator for Ĥtot is then expressed in the frame-
work of first-order perturbation theory for A′(t) as

ρ̂tot(t) = ρ̂eq
tot + i∫

t

−∞

dt′ G0(t − t′)[ĵ p, ρ̂eq
tot]A

′
(t′). (B3)

Here, G0(t)Ô = e−iĤ0
tottÔeiĤ0

tott is the time evolution operator without
the perturbation defined as Ĥ0

tot ≡ Ĥ0
S + ĤI + ĤB. The expectation

value of the current is then expressed in terms of the linear response
function as63,64

⟨ ĵ(t)⟩ = tr{ĵ(t)ρ̂eq
tot(t)}

= ⟨ ĵ p
⟩eq − ⟨ ĵd

⟩eqA′(t) + ∫
t

−∞

dt′R(1)(t − t′)A′(t), (B4)

where R(1)(t) = iθ(t)⟨[ĵ p
(t), ĵ p

(0)]⟩eq is the response function
expressed in terms of the time-dependent current operator, defined

as ĵ p
(t) = eiĤ0

tott ĵ pe−iĤ0
tott , and ⟨Ô⟩eq = tr{Ôρ̂eq

tot} is the expectation
value in the equilibrium state. Without external fields, the current
does not flow and we have ⟨ ĵp

⟩eq = 0.
Fourier expressions of ⟨ ĵ(t)⟩, A′(t), and R(1)

(t) are expressed
as ⟨ ĵ[ω]⟩, A′[ω], and R(1)

[ω], respectively. Equation (B4) is then
expressed as

⟨ ĵ[ω]⟩ = −(⟨ ĵd
⟩ − R(1)[ω])A′[ω].

Because the optical conductivity is defined as σ[ω] = ⟨ ĵ[ω]⟩/E′[ω],
and because the Fourier transform of the electric field
E′(t) = −∂A′(t)/∂t is expressed as E′[ω] = iωA′[ω], we obtain
Eq. (9).

The optical conductivity is a response under external pertur-
bation. Thus, we exclude the equilibrium contribution ⟨ ĵp

⟩eq as in
Eq. (9) and the steady-state contribution ⟨ ĵ(t)⟩0 as in Eq. (8). For
the direct evaluation of Eq. (8), we introduce an artificial damp-
ing factor ϵ in the Fourier transform of the vector potential, as
A′[ω] = ∫

∞

−∞
dt e(iω+ϵ)tA′(t). Equation (8) is then modified and

takes the following form:

σ[ω] =
1

(iω + ϵ)A′[ω]∫
∞

0
dt eiωt

[⟨ ĵ(t)⟩ − ⟨ ĵ(t)⟩0]. (B5)

When we set A′(t) = Aprobeθ(t − ton), we obtain A′[ω]
= −Aprobee(iω+ϵ)ton/(iω + ϵ). By substituting this into Eq. (B5),
we obtain Eq. (15) for ϵ→ 0.

APPENDIX C: ENTIRE PROFILES OF OPTICAL
CONDUCTIVITY PRESENTED IN FIG. 1

Figure 7 presents all of the peak profiles of optical conduc-
tivity calculated from Eq. (9) for (a) weak (U/th = 1), (b) inter-
mediate (U/th = 3), and (c) strong (U/th = 5) Coulomb repulsion
in the low-temperature case βth = 4 (blue curves) and the high-
temperature case βth = 1 (red curves). The bath parameters are given
by γi/th = 3 and ηi = 0.05(i = 1, 2). To conduct numerical calcu-
lations, we choose MLO = 9, Nmax = 2, and K = 2 for βth = 4, and
K = 1 for βth = 1. The low-frequency part, which is important for
characterizing the conductivity, is presented in Fig. 1.

We find that while the peak positions in the high-frequency
regions do not change very much, regardless of the temperature,
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FIG. 7. Same results as in Fig. 1, but with all of the peaks depicted.

FIG. 8. Eigenenergies of half-filled two-site Hubbard model.

those in the low-frequency region are temperature-dependent, as
discussed in Sec. IV B 1. This is because these low-frequency peaks
arise from the energy gap between the highest occupied and lowest
unoccupied molecular orbitals (HOMO and LUMO). To illustrate
this point, we consider the half-filled two-site Hubbard model whose
eigenenergies are given by E0 = U[1 −

√
1 + (4th/U)2]/2, E1 = 0,

E2 = U, and E3 = U[1 +
√

1 + (4th/U)2]/2. Here, E1 corresponds to
the triplet state, whereas the others correspond to the singlet states.
The eigenenergies are depicted in Fig. 8 as functions of U. Because
the total spin number Ŝ2

= [∑i(n̂i,↑ − n̂i,↓)/2]2 is conserved in our
calculations, transitions between the singlet and triplet states do not
occur.

In the low-temperature case (βth = 4), almost all populations
are in the ground state. Thus, the major peak is due to the E0 → E2
transition. In the large-U region, the energy gap between these states
is approximately U, while the effects from the LO phonons are
minor: Thus, in this region, the effective Coulomb repulsion can
be estimated from the position of the maximum peak. Because the
contribution of the LO phonons becomes larger when the Coulomb
repulsion becomes smaller, the peak position and profile are not easy
to predict, as explained in Fig. 5. The side peak around 0.5 in the
strong-repulsion case also results from the contribution of the LO
phonons. The side peak around 1 originates from the oscillations of
the LO phonons.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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