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Two-dimensional Raman spectra of atomic solids and liquids
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We calculate third- and fifth-order Raman spectra of simple atoms interacting through a soft-core
potential by means of molecular-dynamics (MD) simulations. The total polarizability of molecules
is treated by the dipole-induced dipole model. Two- and three-body correlation functions of the
polarizability at various temperatures are evaluated from equilibrium MD simulations based on a
stability matrix formulation. To analyze the processes involved in the spectroscopic measurements,
we divide the fifth-order response functions into symmetric and antisymmetric integrated response
functions; the symmetric one is written as a simple three-body correlation function, while the
antisymmetric one depends on a stability matrix. This analysis leads to a better understanding of the
time scales and molecular motions that govern the two-dimensional (2D) signal. The 2D Raman
spectra show novel differences between the solid and liquid phases, which are associated with the
decay rates of coherent motions. On the other hand, these differences are not observed in the linear
Raman spectra. © 2006 American Institute of Physics. [DOI: 10.1063/1.2131053]

I. INTRODUCTION

One important aspect of molecular vibrational spec-
troscopies is the ability to monitor ultrafast relaxation dy-
namics controlled by complex inter- and intramolecular
interactions.! Vibrational relaxations are in principle depen-
dent upon the configurations of atoms; therefore, we may
expect that the information about the local environments of
molecules can be obtained by analyzing changes in spectra
as functions of conditions such as phase, density, and tem-
perature. However, conventional lincar spectroscopy does
not reveal such changes because the large broadening caused
by damping and inhomogenity makes spectral peaks feature-
less. To conquer these difficulties, two-dimensional (2D) vi-
brational spectroscopies such as fifth-order Raman
spectroscopyzf4 and third-order infrared (IR) spectroscopysf9
have been proposed. In fifth-order Raman spectroscopy a
system is perturbed by two pairs of Raman pulses separated
by period #; and then probed after another period #,; whereas
in third-order IR spectroscopy a system is perturbed by three
IR pulses separated by periods 7, and 7, and then probed after
another period #;. These 2D spectroscopies enable us to
evaluate the detailed interrogation of the interactions and
configurations between molecules, because the contributions
to the signals from harmonic vibrational motions vanish in
multidimensional spectroscopies due to the fact that the
Gaussian integral is involve in three-body correlation func-
tion, i.e., {[[q(t,+1,),q(t;,)1,4(0)]) for the fifth-order Raman
processes, and the destructive interferences between vibra-
tional excitations in four-body correlation function, i.e.,
([lg(t;+12+13),q(t,+15)],4(1,)],4(0)]) for third-order IR
spectroscopy. A very large body of theoretical works on
2D Raman and IR spectroscopies have been devoted to the
study of inhomogenity,z’12 anharmonicity,lo’m’14 rotational
motion,15 vibrational dephasing,“’m_20 inter- and intramo-
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lecular interactions, nonlinear system-bath coupling,

conformal (:hange,24’25 initial condition,®?’ phase matching
conditions,” and chemical reactions.”’ Molecular-dynamics
(MD) simulations have been performed ranging from
liquids30_40 to more complex molecules such as
peptides.‘“*43

2D Raman spectroscopies are advantageous in studying
molecular dynamics in condensed phases because Raman
pulses can create instantaneous vibrational excitations on the
molecular system and their coherence can be detected by
spectroscopic means.* ™’ The sensitivities of the 2D spectra
to anharmonicity of the potential and the nonlinear depen-
dence of polarizability on nuclear coordinate have been theo-
retically demonstrated by the use of simple models and have
been clarified to some extent with the help of quantum Liou-
ville pathway treatments.”* " But most of these studies have
not yet provided helpful pictures of the processes giving rise
to particular spectral features in both experimental data®*
and MD simulations.**¢ Moreover, there has been little
guidance from theory on how to distinguish motions of sol-
ids and liquids based on these spectroscopies.

In this paper we carry out MD simulations to investigate
how the fifth-order response functions measured in 2D Ra-
man spectroscopy depend on temperature and thermody-
namic state. We have chosen the soft-core model for these
simulations because its scaling property allows us to discuss
the phase transition as a function of temperature.ﬂ’52 Note
that the soft-core potential has been used to model metallic
glasses with soft modes and has been one of the widely ac-
knowledged models explaining the so-called “boson peak.”53
We explore the use of the symmetric and antisymmetric ex-
pressions of the integrated 2D Raman response functions to
clarify the interpretation of the spectroscopic data. These
functions were originally introduced for an easy check of the
simulation results.”* We then project the 2D profiles onto two
kinds of one-dimensional (1D) maps: one is the fifth-order
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response functions on the #;=1, axis,’® and the other is the
antisymmetric integrated response function on the #; =1, axis.
Because these functions can be constructed from experimen-
tal data as well as simulation results, they will be valuable
for analyzing the effects of nonlinear dynamics, for instance,
resulting from anharmonicity of the potential. The results of
our MD simulations indicate that 2D Raman spectroscopy
can detect the change in the character of molecular motions
in different phases in a way that cannot be observed in third-
order Raman spectroscopy. On the other hand, the profile of
the 2D Raman signal is not sensitive to the temperature
changes as long as the system is in the same phase. More-
over, when the symmetric integrated response function,
which has the form of a simple three-body correlation func-
tion, is compared with the antisymmetric one which has the
form of a three-body correlation function including the sta-
bility matrix, it is realized what a critical role the stability
matrix plays in extracting dynamical information from the
fifth-order response function.

In Sec. II, we explain our model and simulation proce-
dures. In Sec. III, we introduce the symmetric and antisym-
metric integrated response functions and in Sec. IV we ana-
lyze the calculated signal with these functions. In Sec. V, we
discuss the temperature and phase effects on the signals. Fi-
nally, Sec. VI is devoted to concluding remarks.

Il. COMPUTATIONAL DETAILS OF RESPONSE
FUNCTIONS

We perform microcanonical MD simulations with a pe-
riodic boundary condition on a system with 108 spheres in-
teracting via a soft potential,51

o 6 r 4
U(r):s(—) +A<—> + B, (1)
o

r

where ¢ and o are the potential parameters, and the constants
A and B are chosen to connect the force and potential
smoothly at the cutoff r,. Thus A and B are given by
3/2ry[e(a/ry)®] and —5/2[e(0/ry)°], respectively. The mo-
lecular system is controlled by laser pulses. The optical re-
sponse of the system is then described by a correlation func-
tion of the polarizability. The total polarizability is treated
using a dipole-induced dipole (DID) model, which can be
expressed ag™°

I1(r) = E (a,m _ E ( a, o, _ 3(am . rmn(t))(rmn(t) . aﬂ))) ’

3 5
n#m rmn(t) rmn(t)

)

where ¢, is the molecular polarizability of atom m. The
second term is important because it possesses the informa-
tion on the configuration of the surrounding particles. The
third- and fifth-order response functions, be)c d(tl) and

Risb)c de f(tz,tl), which are associated with the 1D and 2D Ra-
man spectroscopies, respectively, are given as follows.”

R0 = (L0, TT 0D, G
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Ropedef(1211) = (5) (M (1) T O )] (4)

where I1,,(¢) is the ab tensor element of the polarizability at
time 1, |A,B|=AB-BA is the quantum commutator, and {- - -)
is an ensemble average over an equilibrium initial distribu-
tion. To relate these quantum expressions to their classical
analogs, it is helpful to rewrite the response functions
in terms of the canonical correlation functions. By using
Kubo’s identity,57

B
[ePH X] = e_'BHf dNeMI[X, H]e ™M (5)
0

where S=1/kT. The third- and fifth-order response functions
can be written as

sz:;J)cd(tl) == B(IL,(1);1L,4(0)), (6)

and

RG) gof(t2,11) = = BT (1) TL (O T (= 1))
= B2<Hef(_ tl) ;Hcd(o) ;Hah(t2)>
— BUILy(1)s [T g(O), I (= 1)1, (7)

where we introduced the canonical correlation functions de-
fined by

B .. .
f d\ tr{e PHM e MGL
0

(F;G)= - (8)
B tr{e P}
A A ; (A Ny A 1y A
f d\ f d\' tr{e PHM Ee WA~ NHGY
P 0 0
(E;F;G) = - ,
B tr{e P}
)
and
B A DN i A
d\ tr{e PHE[e M FeM G}
A A 0
(E;[F.G]) = - (10)
Btr{e Pt}
In the classical limit, the operators E and F commute with
M and we have *"*
ROdt1) = = B ()T (0)), (11)

R e (12:11) = BT (1) OV (= 1))
= BT (1){T1(0). T1 (— 1)) }pp)
=— BUIL,(1,), Hcd(o)}PBHe_f(_ n)y, (12

where {- - }pg denotes the Poisson bracket producing stability
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matrices dpy(t,)/dq,(0) representing how large the deviation
of the momentum of atom k at time ¢, is caused by the slight
displacement of atom [ at time 0.** The significance of the
fifth-order measurement arises from the correlation function
including the stability matrix, since the stability matrix car-
ries the information on the interference of the particle trajec-
tories that cannot be obtained from the third-order measure-
ment.

There are two approaches to evaluate these signals using
MD simulations, the equilibrium approach32’35’36 and the
nonequilibrium approach.33’36 Here we adopt the former be-
cause it best reveals the importance of the stability matrix to
determine the nature of the fifth-order Raman response. In
the equilibrium approach, we first carry out the equilibrium
simulation, then evaluate the response function using the tra-
jectories of particles obtained from the simulations.

To carry out the simulation, we set e=1.0, o=1.0, and
m=1.0 without loss of generality, where m is the particle
mass. Because of the scaling property of the soft-core poten-
tial, temperature multiplied by the Boltzmann constant k7 is
chosen as a parameter with fixed density p=1.0. We use a
fourth-order symplectic integrator method with a time step of
0.01. The particles form a face-centered cubic (fcc) lattice
for kT=<0.19, and they behave like liquid for 0.19<kT.
There is also a body-centered cubic (bcc) phase around kT
=~().19, but the region of this phase is relatively narrow.”'?
Here we calculate the third- and fifth-order response func-
tions in the fcc solid and liquid phases. The MD simulations
start from a fcc configuration with double the targeted tem-
perature and cool the system by velocity rescaling at the rate
of 0.998 for each time step. After the kinetic energy of the
system reaches k7=0.001, we heat the system up to the tar-
geted temperature. In both cases, we sample over 60 000
trajectories by preparing different initial configurations to
calculate the response functions, and we use more than 3500
time steps to stabilize the kinetic energy. As the polarizability
is independent of momentum, only dp(z,)/dg(0) of the sta-
bility matrix element is calculated, which decreases to one-
fourth the computational cost of evaluating the full stability
matrices and reduces the memory requirements for sampling
trajectories.

lll. FIFTH-ORDER SYMMETRIC AND ANTISYMETRIC
INTEGRATED RESPONSE FUNCTIONS

As has been shown in many previous studies, the 2D
profiles of the fifth-order Raman signals are very sensitive to
the anharmonicity of the molecular dynamics and nonlinear
dependence of the polarizability. But interpreting the 2D pro-
files in terms of the underlying dynamics is difficult due to
the complex connection between the dynamics and spectros-
copy. Since the most significant and interesting contribution
to the fifth-order signals comes from the term with the sta-
bility matrix,* it is valuable and versatile if we can separate
it from the others. For this purpose, we utilize the symmetric
integrated response function introduced by Cao et al>* and
the antisymmetric integrated response function.

To simplify the following explanation, we choose z di-
rection for all tensors and afterward we omit the tensor no-
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tation. To make the symmetric form with respect to #; and 7,
from the fifth-order response function, we integrate Eq. (12)
with respect to ?,,

1 (1
W(ty 1, E,Ef RO (t,,¢")dt’
0

= — BIL(1)TL(O)TL(1))) - (TT(1x) TI(0)T1(0))]
+ (H(){T1(0), TL(= 1)) }pg)
= ({I1(z), I1(0)}pIL(= 1))
= ({I1(z), 11(0)}p11(0)). (13)

Then, by using the relations
1(~ i
3 f RO(ty,1")dt’ = BTL(1,)TL(0)TT(0))
0

= — ({I1(z), 11(0)}pI1(0)), (14)
and
{IL(2,), 11(0)}ppIL(- 15)) = (IL(22){11(0),IL(= #,)}pp),
(15)
we have the symmetric integrated response functions as
S(ta,1)) = W(tp,t)) — W(t,15)
= BIL()TIO)TI(= 1,)) + BTL(2) L(0)IT(0))
~ BLO)LLO)I(~1,)). (16)

Here, we also introduce its counterpart, the antisymmetric
integrated response function,

Alty 1)) = Wit 1)) + Wty 1)
= (I(1){11(0),11(~ #,) }p)
= (ILO){I1(0), I1(= #,)}pg)
+ ({I1(2,), T1(0) }pgI 1 (= 1,))
= ({IL(z,), 11(0)}pp1(0)). (17)

Although no special attention has previously been paid
to the antisymmetric integrated response function, we find
that it contains the key to analyzing liquid dynamics because
it isolates the contribution of the stability matrix from that of
the simple three-body correlation function. In the following,
we demonstrate this point by using the present model in the
solid and liquid phases. If the above expressions are de-
scribed with the normal mode, the last two terms in Egs. (16)
and (17) negate with the terms such as IT'IT'II [see Eq.
(23)]. Thus, the leading terms of the symmetric and antisym-
metric integrated response functions both involve TT"TI'TI".

As is evident from the definition, these functions satisfy
the relations,

S(ty, 1)) == S(11,1), (18)
and
A(ty,1)) = A(ty,1)). (19)

Moreover, the functions are orthogonal to one another,
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ffdtldtzA(tz,tl)-S(tz,t1)=0, (20)

which indicates that the information of the symmetric inte-
grated response functions is independent to that of the anti-
symmetric ones.

The symmetric integrated response function S(z,,7;) is
useful for self-consistent checks of numerical simulations,54
because it does not involve the stability matrix and its nu-
merical calculation is 1/N? times faster than that of the full
fifth-order response function. On the contrary, calculation of
the antisymmetric integrated response function A(z,,1,) re-
quires the same cost as calculation of the fifth-order response
function. But it contains the important information on coher-
ent molecular motions described by the stability matrix. It is
of importance to notice that although the present analysis is
based on the MD simulation, one can also construct the sym-
metric and antisymmetric integrated response functions from
experimental data. By utilizing these functions, one can
quantitatively discuss the effects of nonlinear dynamics, for
instance, from anharmonicity.

To illustrate the nature of these functions, we calculate
them from the soft-core model in the solid and liquid phases.
In Fig. 1, we plot the fifth-order response function
R®)(t,,1,), the symmetric and antisymmetric integrated re-
sponse functions, S(z,,¢,) and A(t,,1,), respectively, and the
derivatives of S(z,,t,) and A(t,,t,) with respect to f,,

R(SS)(lle) = 9S(ty,11)/ 01y, (21)
and
R,(qs)(tz,h) = dA(ty, 1))/ o1y, (22)

for kT=0.155 in the solid phase. To compare the contribu-
tions of the symmetric and antisymmetric components of the
fifth-order response function, in Fig. 2 we plot the diagonal
slices RO(t.1), RS (t.0)= dS(ty.1,)/ 1)<y ., and RY(1.1)
= A1)/ 30 ey, of  RO(1.1). RS(15.1)),  and
RO(1,,1)). Notice that R9(1y,1,) =R (t5,1))+ R (15, 1,).

The position of the peak appearing in R®)(1,,1,) is not
necessarily located on the #;=1, axis.” In fact, we can esti-
mate that the peak position in Fig. 1(a) is (f,1))
=(0.77,0.64) by using a parabolic interpolation. Analyzing
the fifth-order signal is difficult because 2D profiles of the
signals are usually featureless and the locations of their
peaks do not necessarily correspond to specific physical pro-
cesses. Although the profiles can be changed with the physi-
cal conditions, it is hard to choose which portions of the 2D
signals to make comparisons. Since the antisymmetric inte-
grated response function always exhibits a symmetric peak
along t,=t, axis and is sensitive to the physical conditions
due to the contribution from the stability matrix term, it is
more instructive to analyze the signals using it instead of the
fifth-order response function. In the following, we discuss
the parameter dependences of the 2D Raman signals with the
help of the antisymmetric integrated response function.

J. Chem. Phys. 124, 024508 (2006)
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FIG. 1. (Color) (a) R®(1,1,), (b) S(t,1)), (¢) Atz 1), (d) RS (1,1,), and (e)
Rf)(tz,tl) at k7=0.155 in the solid phase. The peak position at (¢,,#;)
=(0.77,0.64) is denoted by a double circle in Fig. 1(a).

IV. SYMMETRIC AND ANTISYMMETRIC INTEGRATED
RESPONSE FUNCTIONS FOR NORMAL-MODE
ANALYSIS

In a normal-mode analysis, molecular motions are rep-
resented by an ensemble of oscillatory motions along the
nuclear coordinates.>**31485438 Thjg analysis is often useful
since it gives us access to the microscopic dynamics related
to a specific vibrational frequency.59 Since the fifth-order ex-
periments have the ability to measure anharmonic vibrational
motions through the stability matrix term, it is interesting to
observe how the symmetric and antisymmetric integrated re-
sponse functions contribute to the signals in the normal-
mode analysis.

When the polarizability is given in powers of a molecu-
lar coordinate as

H(7) =11(0) + IT" (¢(2) — ¢(0))
+511"(g(1) = q(0))* + -+, (23)
the third- and fifth-order response functions R®)(¢;) and
R®)(t,,1,) can be expressed as’

sin(wt;)

RO(1) =(II'I1' C"(1,)) = f dwp(w) (24)

k)
w
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FIG. 2. Diagonal slices (t=1,=t,) from the signals depicted in Fig. 1:
R®(¢,1) (solid curve), Rgs)(t,t) (dotted), and Rf)(t,t) (dashed).

RONty,1,) = ("TI'TT' C"(1,)(C"(1)) + C"(t, + 1))

(1)2

Ocfdwp(w)sin(wtz)(sin(a)tl)+sin(cu(t1+t2)))
(25)

where C"(t)=sin(wf)/ . We then obtain the following results
on r=t 1= t2,

S(t,1) =0, (26)

sin’(wr)

A(t,t)Mfdwp(w) . (27)

(x)3

Since S(z,t) gives zero, we substitute R(SS)(t,t) and RS)([,I)
for S(¢,¢) and A(z,1),

. 2 _ w

R(Ss)(t,t) . f dop(o) sin (oot)(io2 cos( t))’ (28)
.2

R§(1.1) J duop(ay SISO 1) (29)

RO(t,1), R(SS)(t,t), and Rf)(t,t) can be expressed in terms of
RON(1) as

RO(1,1) f ldt(6R(3)(3t)+4R(3)(2t)—2R(3)(t)), (30)
0

RO(1,1) o f di(-3R¥(31) + 4RP21) + R¥(1),  (31)
0

RO(1,1) o f [ dt(ORP(31) = 3R(1)). (32)

0

Thus, by comparing Rgs)(t,t) and Rgs)(t,t) calculated from
the fifth-order response functions with | 6dt(—3R(3)(3t)
+4RPD(20)+R¥(1)) and [{dt(ORP(31)-3R(r)), we can
easily estimate the contribution from the anharmonic dy-
namical terms resulting from the stability matrix and the va-
lidity of the normal-mode expressions. In Fig. 3, we compare
RO(t,1), R(SS)(t,t), and Rf)(t,t) with their expressions in

>
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terms of R®)(¢) under the normal-mode assumption. Figure
3(a) clearly shows us that the normal-mode expressions fail
to predict the fifth-order response functions even in the short-
time region. However, if we focus on Fig. 3(b), we see that
the normal-mode expressions for the symmetric integrated
response functions are valid in the region 7=<0.10. The
normal-mode analysis can describe the accurate dynamics in
the short time,58 which is consistent with the results of the
symmetric integrated response functions. One of the reasons
for the large deviation at t=0.10 can be deduced from
Brownian motion theory. When the function C"(¢) is ex-
pressed by

e~ sin(Nw? — 141)

") = (33)

Vo? = /4
in the Brownian oscillator model,2 the quantities calculated
from the fifth-order response function decay more rapidly
than the predictions using the third-order response function.
On the other hand, in Fig. 3(c), Rf)(t,t) deviates from
[1dt(ORP(31)-3R3) (1)) even for r<0.10, which indicates
that the anharmonic contribution from the stability matrix
{II'TI'TI" (9g(t,)/ Ip(0))g(—t,;)) plays an important part in the
antisymmetric integrated response function. Moreover, the
deviation of the fifth-order response function from the
normal-mode expression shown in Fig. 3(a) is mainly caused
by the antisymmetric part.

V. TEMPERATURE DEPENDENCE

We discuss the response functions in the solid and liquid
phases at different temperatures. In Fig. 4(a), we depict the
third-order response functions R®)(¢) for k<T=0.215 and 0.20
in the liquid phases and for k7=0.155 and 0.14 in the solid
phases.60

The profiles of the third-order signals in Fig. 4(a) are
similar but their decay times are slightly different for differ-
ent temperatures. Under three approximations, the Gaussian
decaying correlation, the lattice gas model, and the Weeks-
Chandler-Anderson scheme, the third-order response func-
tion in the short-time region is expressed as®!

2
R0 o exp<— t;)

where 7, the decay time, relates to temperature of the system
via

(34)

T T2, (35)

Equation (34) indicates that the positions of the first peaks in
third-order response functions are proportional to 7-'2. In
Fig. 4(b) we plot the peak positions obtained from the simu-
lations as a function of temperature. The peak positions are
dependent on temperature and if the phases are different, the
gradients are different. The calculation of the gradients of the
peak positions as a function of temperature, however, re-
quires high-accuracy measurements that it seems to be diffi-
cult to observe the difference from experimental means.
Now we discuss the fifth-order signals. The fifth-order
response functions R®)(1,,1,) are shown in Fig. 5. To illus-
trate the difference between solid and liquid phases, we also
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FIG. 3. (a) R¥(z,) (solid line) and [{d{(6R(31)+4R™)(2r)-2RP)()) (dot-
ted line), (b) RY(z,7) (solid line) and [idr(~3R®(31)+4R(21)+R)(1))
(dotted line), and (c) R{(z,1) (solid line) and [4dt(9R®(31)~3RP) (1)) (dot-
ted line) at kT=0.155 in the solid phase. In each figure, the intensities of the

solid lines are normalized at the first peak and the dotted lines are scaled so
that their derivatives are same as those of solid lines near r=0.

plot R®)(¢,1) for different temperatures as 1D maps in Fig. 6.
There are differences between Figs. 5(a) and 5(b) in the lig-
uid phases and Figs. 5(c) and 5(d) in the solid phases for
11,=0.2 and 1,=0.2. Figure 6 clearly shows that the phase
change leads to a change of the spectral decay rates espe-
cially for £=0.15, while the temperature change has a lim-
ited effect as long as the system is in the same phase.

J. Chem. Phys. 124, 024508 (2006)
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FIG. 4. (a) The third-order response functions RO)(¢) are depicted for kT
=0.215 (solid line), 0.20 (dotted line) in liquid phases, and kT=0.155
(dashed line), 0.14 (dot-dash line) in solid phases. The intensities are nor-
malized. (b) Peak positions of the third-order response functions as a func-
tion of temperature.

Although we can observe differences in the fifth-order
response functions between different phases, it is more con-
venient to employ the symmetric integrated response func-
tion S(,,t;) and the antisymmetric one A(#,,#;) so as to see
the effects of the stability matrices. In Figs. 7 and 8, we
depict these functions. The diagonal elements of the antisym-
metric integrated response functions A(z,¢) are also plotted in
Fig. 9. While we observe similar tendencies among the re-
sults of S(,,7;) in Figs. 7(a)-7(d), we see the clear difference
among the results of A(t,,7,) in the liquid and solid phases in
Figs. 8(a)-8(d) in 7;,=0.2 and £,=0.2 and Fig. 9 in ¢
=(.15. Although we cannot do longer simulations due to the
limitations to our computational power, we may expect the
bigger and clearer differences in the decay rates in the anti-
symmetric response functions to appear in the longer-time
region. The sensitivity of A(#,,¢,) and insensitivity of S(¢,,#;)
to the phase change result from the stability matrix which
reveals deviations from harmonic motion as the interference
between the trajectories. The antisymmetric integrated re-
sponse functions, which can be obtained from experimental
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0.3

FIG. 5. (Color) The classical fifth-order response functions R®)(t,,1,) for the
cases (a) kT=0.215, (b) kT=0.20 in the liquid phase and (c) k7=0.155, (d)
kT=0.14 in the solid phase. The intensity of each plot is normalized at the
first peak.

data as well as simulation results by following the procedure
explained in Sec. III, are more valuable than the symmetric
ones, because the former allow us to estimate the contribu-
tion from the stability matrix directly.

V1. CONCLUSIONS

Using the MD simulation, we calculated the third- and
fifth-order Raman signals of atomic solids and liquids de-
scribed by the soft-core potential. To analyze these signals
quantitatively and to reveal the effect of the stability matrix,
we have decomposed the fifth-order response function into
the symmetric and antisymmetric integrated response func-

L GUESLIES IRSLIE SR SRIRELELN BRI ERINID NARORIREY SLERSRERN BN}
= -

1.0

0.8

0.6

NS EPETEES B

0.4

Response Function

0.2

BN L B B S B AN BN SN S NNLANLENL SN BN

L

00 | FEES FEEE BTTTS STTTS BTETE N i
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time

FIG. 6. The diagonal elements R®)(z,7) are illustrated for kT'=0.215 (solid
line), 0.20 (dotted line) in the liquid phase and k7=0.155 (dashed line), 0.14
(dot-dash line) in the solid phase. The intensity of each plot is normalized at
the first peak.

J. Chem. Phys. 124, 024508 (2006)

-1 0 1

FIG. 7. (Color) The symmetric integrated response functions S(,,7;) are
plotted as two-dimensional contour maps for the cases (a) at k7=0.215 and
(b) at kT=0.20 in liquid phase and (c) at kT=0.155 and (d) at k7=0.14 in
solid phase. The intensity of each figure is normalized at the first peak.

tions; the symmetric one has the form of the simple three-
body correlation function, while the antisymmetric one also
includes contributions from the stability matrix. The latter
cannot be expressed accurately in terms of normal-mode ex-
pressions even in the short-time region, where the symmetric
integrated response function can be. This fact indicates that

-1 0 1

FIG. 8. (Color) The differences of the antisymmetric integrated response
functions A(z,,1,) are plotted as two-dimensional contour maps for the cases
(a) at kT=0.215 and (b) at k7=0.20 in liquid phase and (c) at k7=0.155 and
(d) at kT=0.14 in solid phase. The intensity of each plot is normalized at the
first peak.
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FIG. 9. The diagonal elements A(z,t) are illustrated for k7=0.215 (solid
line), 0.20 (dotted line) in liquid phase and k7=0.155 (dashed line), 0.14
(dot-dash line) in solid phase. The intensity of each plot is normalized at the
first peak.

the anharmonic contributions which are missing in the
normal-mode expressions give rise to an important effect on
the fifth-order signals.

It is shown that the change between liquid and solid
phases causes a minor effect on the third-order signals, while
it causes dramatic differences in the fifth-order signals. The
antisymmetric integrated response functions show prominent
changes as a result of the phase transition, whereas the
change in the symmetric one is modest. The difference be-
tween the symmetric and antisymmetric integrated response
functions results from the sensitivity of the stability matrix to
the nonlinear dynamics, because the stability matrix reveals
the deviation from the harmonic motion as the interference
between the trajectories. This result suggests the advantage
of using the antisymmetric integrated response functions
rather than the fifth-order response functions for analysis.
Such features are, however, unable to be revealed within the
frame work of the normal-mode analysis, since it neglects
the effects from the anharmonicity described by the stability
matrix.

Since we can always construct the symmetric and anti-
symmetric integrated response functions not only from
the simulation results but also from the experimental data,
these functions will be valuable and versatile tools for ana-
lyzing the effects of nonlinear dynamics upon the fifth-order
signals.
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