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Abstract

The predissociation dynamics of a molecular system under a strong laser field in the condensed phase is investigated by
direct numerical integration of the multi-state quantum Fokker-Planck equation. Numerical calculations of probe absorption
spectra driven by a strong pump pulse are presented, and discussed. The results show dynamical Stark splitting, but, in
contrast to the Bloch equations which contain an infinite-temperature dephasing, we find that at finite temperatures their
peaks have different heights even when the pump pulse is on resonance. Furthermore we observe the effect of the diabatic
coupling between excited and dissociative states as the peaks on the spectra. q 1998 Published by Elsevier Science B.V. All
rights reserved.

1. Introduction

Progress in ultrafast experimental techniques pro-
pel not only the linear but also the nonlinear spec-
troscopy, which provide a direct means for studying
nuclear dynamics in the condensed phase. Further
the laser techniques become to allow high intensity
and short pulse. One of the central questions is
whether the interaction between the high-intensity
electromagnetic field and the molecule gives rise to
new phenomena which do not occur under ‘‘normal’’
conditions, i.e. low intensities and large pulse dura-

w xtions 1–4 .
On the other hand, the predissociation, caused by

curve crossing between bound and dissociative states,
is interesting phenomenon. Photoinduced dissocia-
tion and chemical reaction connect to this phe-

w xnomenon directly and are studied extensively 5–8 .
In the previous study we calculated the pump-

probe spectra for displaced harmonic and Morse
oscillators system in the strong laser field using the

multi-state Fokker-Planck equation for a Gaussian-
w xMarkovian noise bath 9,10 . The results showed the

effect of finite temperature as well as anharmonicity
of a potential, which would not be obtained from the

w xoptical Bloch equation 11,12 or the stochastic Liou-
w xville equation 13 approach. In this paper, we inves-

tigate the probe absorption spectra for a Morse po-
tentials system with a dissociative state in a strong
laser field. Our aim is to observe the effect of
diabatic coupling between the excited and dissocia-
tive states under the strong laser field.

2. Pump-probe spectroscopy

We consider a molecular system with electronic
< :states denoted by j . The Hamiltonian of the sys-

tem is

p2

< : ² <H s q j U q k . 1Ž . Ž .Ý ÝS jk2 M j k
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Here, q is a nuclear coordinate strongly coupled to
the electronic state and p is its conjugate momen-

Ž .tum. The diagonal element U q is the potentialj j

surface of the jth electronic surface, and the off-di-
Ž .agonal element U q with j/k represents thejk

diabatic coupling between the jth and the k th states.
In this paper, we study a pump-probe experiment in
a three-level system with Morse potential surfaces

< : < : < X: Ž .denoted by g , e and e Fig. 1 . The transition
frequency between g and e is denoted by v . Weg e

assume that the system is initially in the ground
< : ² <equilibrium state rs g r g , where r is theg g

equilibrium distribution function of the ground po-
tential surface. In pump-probe experiment, the sys-
tem is subjected to two light pulses: a strong pump
and a weak probe whose frequencies and wave vec-
tors are denoted by V , k and V , k , respectively.1 1 2 2

We assume that V and V are close to the elec-1 2

tronic transition frequency between g and e. The
total Hamiltonian in the rotating wave approximation
is then given by

H t sH qE t e i k1 ry i V 1 tmqqeyi k1 rq i V 1 tmyŽ . Ž . Ž .A S 1 1 1

qE t e i k 2 ry i V 2 tmqqeyi k 2 rq i V 2 tmy ,Ž . Ž .2 2 2

2Ž .

Ž . Ž .where E t and E t are the temporal envelopes of1 2
q < :² < ythe pump and probe pulses, m sm e g and m s1 1

< :² <m g e are the dipole operators of pump pulse and
q < :² y < :² <m sm e gand m sm g e are ones of probe2 2

pulse. In order to calculate probe absorption spectra,
w xwe employed the following procedure 9,10 . First

Fig. 1. Potential surfaces of the displaced Morse oscillators system
< :with the dissociative state. The resonant frequency between g

< :and e is expressed by v .g e

we consider the evolution of the system subject only
to the pump field. The Hamiltonian is then given by

H 0 t sH qE t e i k1 ry i V 1 tmqqeyi k1 rq i V 1 tmy .Ž . Ž . Ž .A S 1 1 1

3Ž .

The corresponding solution of the Liouville equation
0Ž .is denoted r t :

d i
0 0 0r t sy H t ,r t . 4Ž . Ž . Ž . Ž .Ad t "

We next introduce a modified Hamiltonian which
includes only the negative frequency component of
the probe pulse E2

H X t 'H 0 t qE t eyi V 2 tmq. 5Ž . Ž . Ž . Ž .A A 2 2

The solution of the Liouville equation with this
XŽ .Hamiltonian will be denoted r t :

d i
X XX

r t sy H t ,r t . 6Ž . Ž . Ž . Ž .Ad t "

XŽ .If we expand r t to first order in the probe, we
obtain

P t f2 tr my r
X t yr 0 tŽ . Ž . Ž .� 4Ž .k 22

t X Xsyi d t E tŽ .H 2
y`

=
X Xyi V t y q2 ² :e m t ,m t q . . . . 7Ž . Ž . Ž .2 2

The above expression agrees with the intensity of the
probe absorption. We can thus calculate the probe
absorption with the frequency v by subtracting two2

solutions of the Liouville equation, which can be
expressed in the form

8
w xS v sy Im E vŽ . (2 2 2½p

=
Xi v t y 02d t e tr m r t yr t ,Ž . Ž .Ž .H 2 5

8Ž .

w xwhere E v is the Fourier transform of the probe2 2

field amplitude. This scheme can be applied to a
system driven by pump pulses of arbitrary number,
shape, and strength.
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3. Quantum Fokker-Planck equation for a multi-
state system interacting with a Gaussian-
Markovian noise bath

We now include an environment consisting of a
set of harmonic oscillators with coordinates x andn

momenta p . The interaction between the systemn

and the nth oscillator is assumed to be linear with a
coupling strength c The total Hamiltonian is thenn.

given by

H t sH tŽ . Ž .A

22 2p m v c qn n n n
q q x y .Ý n 2ž /2m 2 m vn n nn

9Ž .

The character of the heat-bath is specified by the
spectral distribution: All information about the bath
which is required for a reduced description of the
system dynamics, is contained in its initial tempera-
ture and its spectral density. We assume the Ohmic
dissipation with the Lorentzian cutoff,

Mz vg 2

J v s . 10Ž . Ž .2 22p g qv

With the assumption of the high temperature bath
b "g F 1, this spectral density represents a
Gaussian-Markovian noise where the symmetric cor-
relation function of the noise induced by the heat-
bath, is proportional to Mzg eyg trb. Thus, z and g

correspond to the friction and the relaxation time of
the noise, respectively. In this case, one can trace
over the heat-bath degrees of freedom and obtain the

w xequation of motion in the hierarchy form 14–16 .
The important point is that the restriction does not

Žinvolve the system characteristics frequencies which
y1 .can be small or large compared to b , but only a

high temperature requirement with respect to the
bath parameters, which is much easier to meet. In the

w xfollowing, we employ the Wigner distribution 17,18
defined by

W P , R ;tŽ .jk

`1
i P rr "s d r e r Ryrr2, Rqrr2;t .Ž .H jk2p " y`

11Ž .

For the nth member of hierarchy, W Žn., where j andjk

k represent diabatic states, the equation of motion is
w xexpressed as 19

E
Žn.W P , R ;tŽ .jkE t

P E 1 d P X

Žn.sy W P , R ;t yŽ . HjkM E R " 2p "

X XŽn.= X PyP , R ;t W P , R ;tŽ . Ž .Ý jm m k
m

X X) Žn.qX PyP , R ;t W P , R ;tŽ . Ž .m k jm

E
Žn. Žnq1.yngW P , R ;t q W P , R ;tŽ . Ž .jk jkE P

M E
Žny1.qnzg Pq W P , R ;t , 12Ž . Ž .jkž /b E P

Žand anchor equation for large N NgGv : v is the0 0
.characteristic frequency of the system

E
ŽN .W P , R ;tŽ .jkE t

P E 1 d P X

ŽN .sy W P , R ;t yŽ . HjkM E R " 2p "

X XŽN .= X PyP , R ;t W P , R ;tŽ . Ž .Ý jm m k
m

X X) ŽN .qX PyP , R ;t W P , R ;tŽ . Ž .m k jm

yNgW ŽN . P , R ;tŽ .jk

E M E
ŽN .qz Pq W P , R ;tŽ .jkž /E P b E P

M E
ŽNy1.qNzg Pq W P , R ;t . 13Ž . Ž .jkž /b E P

Here, z is the friction constant and

X P , R ;t s i d r e i P rr "U Ryrr2;t ,Ž . Ž .Hi j i j

X ) P , R ;t syi d r e i P rr "U Rqrr2;t 14Ž . Ž . Ž .Hi j i j

are the Fourier transform representation of the poten-
tial terms.
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4. Numerical calculation

We consider the displaced Morse potentials sys-
Žtem with the dissociative state defined by see Fig.

.1 ;

2yaŽRyD .1� 4U R sE 1ye ,Ž .g g e

2yaŽRyD .2� 4U R sE 1ye q"v ,Ž .ee e g e

U X X R sE ey2 aXŽRyD 2 .q"v ,Ž .e e e g e

U X R sA 15Ž . Ž .ee

where E a and D are the dissociation energy, thee, j

curvature of the potential and the displacement, re-
spectively. The excited state e is coupled diabati-
cally to the dissociative state by constant force.

Hereafter, we employed the dimensionless coordi-
nate and momentum defined by rsR Mv r" and( 0

p s P 1rM" v , respectively, where v( 0 0
XXs U R rM . The displacement and curvature ofŽ .( g g

the potential, D , D , a, etc. are also measured in1 2

this unit. We set E s3649.5 cmy1, as0.6361 ande

D s40.598 as the ground state of Cs molecule1 2
w x20,21 , which has been studied by a variety of
spectroscopic experiments. The fundamental fre-
quency is then given by v s38.7 cmy1. We calcu-0

late probe absorption spectra for the displacement
D s43.598. For the dissociative state, the parame-2

ters were chosen to be aX s0.6361 and As300
cmy1, respectively. We have used the value of fric-
tion zs0.16 cmy1, the inverse correlation time
gs4.8 cmy1, and the initial temperature Ts300 K,
which satisfies the condition b "gs0.023<1.

We first calculate the initial equilibrium state by
integrating the equation of the motion from time
tsyt to ts0 with the temporally initial condi-i

tion,

Ž0. 2W p ,r ;y t sexp yb "v p r2qU r ,Ž . Ž .Ž .g g i 0 g g

W Žn. p ,r ;y t s0. 16Ž . Ž .g g i

Ž .Note that Eq. 16 is the equilibrium state of the
system itself, but, it is not the equilibrium state of
the total system, since it neglects the system-bath
initial correlation, but we can obtain to ‘‘true’’ equi-
librium state at ts0, if we set t for a sufficientlyi

longer time than the characteristic time of the system
w x15 .

The numerical integration of the kinetic equations
was performed by using second-order Runge-Kutta
method for finite difference expressions of the mo-
mentum and the coordinate space. The size of grid
was chosen to be 70=501 in the mesh range y17
-p-17 and 33-r-78. We have taken into ac-
count Ns11 hierarchy elements for W Žn.. We cal-
culate the pump-probe spectra by integrating the

Ž . Ž .equation of motion 12 and 13 instead of the
Liouville equation following the procedure explained
in Section 2.

We assume that pump and probe pulses are
Gaussian

2E t su exp y trt ,Ž . Ž .1 1 1

2 2E t su exp y tyt rt , 17Ž . Ž . Ž .2 2 2

with resonance central frequencies, i.e., V sV s1 2
< :v We measure the transition between the g andg e.

< :e states only. The pulse durations were taken to be
t s700 fs and t s30 fs and the time delay was1 2

varied between tsy2.0 ps and ts1.0 ps, i.e., the
pump and the probe pulse are overlapped. The pump
intensity was mu s4.77 THz and the probe was1

weak mu s1.59 GHz. Considering ideal gas with2

pressure of 1 atm at 300 K, they are equivalent to
3.14=106 Wrm2 and 1.05=103 Wrm2, respec-
tively, for the dipole moment ms1 Debye.

In Fig. 2, we show the pump-probe spectra for the
strong pulse excitation. The solid lines denote the
spectra in the present predissociation case. To see the
effects of the dissociative state, we also display the
same results without the dissociative state which

w x Ž .were given in Ref. 10 the dashed lines . We set
^ vsvyv . The spectrum at tsy2.0 ps isg e

similar to the linear absorption spectrum, since the
pump is weak and its effects are small at this early
stage. The vibronic side-band peaks are observed in
the probe absorption spectrum corresponding to vari-
ous vibronic absorption-emission processes. The peak
about y380 cmy1 is attributed to the movement of
the wavepacket during nonimpulsive probe detection.
The curves at tsy1.5 and tsy1.0 ps show the
dips about 0 cmy1 caused by the unbalance between
the population and the coherent contribution of an
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ŽFig. 2. Pump-probe spectra for a strong excitation mu s4.771
. Ž . Ž .THz for different pulse delays t ps . The solid dashed lines

Ž .show the spectra for the system with without diabatic coupling
case. We set ^ v s v y v .g e

Ž . w xabsorption spectrum the coherent dips 22 . In the
Ž .previous case dashed lines , when the pump pulse

becomes stronger, the coherent dips are broadened.
Each vibronic transition shows a Stark splitting whose
magnitude is given by the proper Rabi frequency

22(DV s Dv q mE t , where Dv is theŽ .Ž .nm nm 1 nm

energy difference between the nth vibrational state
of U and the mth vibrational state of U . Theg g ee

Ž .Stark peak of the origin Dvs0 , which corre-
sponds to the zero vibronic line then splits to the
blue and to the red. At tsy1.0 ps the spectrum
shows many peaks in comparison with the non-dis-
sociative case depicted by the dashed line. This is
understandable through the following argument. The
diabatic coupling between the e and eX states causes
the additional vibrational levels to the excited states
around the energy at the crossing point. Since the
laser interacts only between the g and e states, such
additional levels are dark for the laser excitation.
Therefore at the beginning of the pump excitation

Ž .t-y1.5 ps , these dark levels do not play any
role, and the probe absorption in the displaced Morse

Ž .oscillators dashed lines and the displaced Morse
Ž .oscillators with the dissociative state case solid lines

show similar results. At time t)y1.0 ps, if the
dissociative state is exist, some population in the e
state transfers into the dark levels through the dia-
batic coupling as predissociation. Such reduction of
population in the e states induces the additional
excitation from the g to e state, which appears as
many new peaks in the absorption spectra. For ts1.0
ps, the pump excitation becomes weak enough and
the structure of vibronic bands is recovered.

Fig. 3 shows the time-evolution of the wavepack-
Ž . Ž . Ž .X Xets W p,r;t , W p,r;t , and W p,r;t . In eachg g ee e e

< : Ž .figure, the upper one is for e the excited state ,
< X: Ž .the middle one is for e the dissociative state , and

< : Ž .the lower one is for g the ground state . At
tsy1.5 ps when the pump pulse is weak, the
wavepacket is close to the shape of the ground
equilibrium state. Since we considered the Gaussian
Ž .non impulsive laser excitation, the wavepacket goes
up and down between the ground and excited state
potentials through the laser interaction, therefore the
shape of the ground state wavepacket is also changed.
For tsy1.0 ps, the population of the excited state
increases due to the strong pump pulse, and the
population transfer from the g to e state takes place
more quickly than that of the non-dissociative state
case. The wavepacket created in the e state is forced
by the potential and moves in the positive coordinate
direction. At the tsy0.5 ps the wavepacket reaches

Ž .and passes the curve crossing point about rs52 .
Although we have used a coordinate independent
diabatic coupling, the transition mainly takes place in
the vicinity of the curve crossing point, and the eX

population suddenly increases when the e state
wavepacket passes the crossing point. This is be-
cause of the potential difference between e and eX

Ž . < Ž . Ž . <X Xstates dU r s U r yU r . The off-diagonalee e e

elements W X and W X are highly oscillatory func-ee e e

tions of time at positions far from the curve crossing
Ž . X Xpoint, where dU r is large. Thus, W can be largee e

Ž .only near the crossing point, where dU r is small
w x19 . After passing the crossing point, the transferred
wavepacket starts to move in the eX state potential
surface. Since the wavepacket in the eX potential is
not stable, the wavepacket in the eX state quickly
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Ž < :. Ž < :. Ž < X:.Fig. 3. The time-evolution of the wavepackets of the ground g , excited e and dissociative e states for strong pump excitation. In
< : < X: < :each figure, the upper one is for e , the middle one is for e , and the lower one is for g .

Ž .moves to the positive tsy0.5 ps and then goes
Ž .out from the edge of potential ts0.0 ps . Compare

with the non-dissociative case, at ts0.0 ps, the
positive momentum parts of the wavepackets on g

and e are small due to predissociation. For ts0.0,
0.5 and 1.0 ps, the populations on g and e states
slightly decreases and increases because of Rabi
flopping, and the wavepackets oscillate on each po-



( )Y. Maruyama, Y. TanimurarChemical Physics Letters 292 1998 28–3434

tential surfaces. After the pump pulse is vanished,
those wavepackets will reach to the thermal equilib-
rium state of each potential surface after long time.

5. Conclusion

In this paper we calculate the pump-probe spectra
and nuclear dynamics for a displaced Morse oscilla-
tors system with the dissociative state by using
multi-state quantum Fokker-Planck equation for a
Gaussian Markovian bath. The results show interplay
between vibronic transitions and dynamical Stark
splitting, and denote the effect of diabatic coupling
between bound and dissociative states. In compari-
son with the spectra in displaced Morse oscillators,
when the pump pulse is strong, many peaks appear
on the spectra in the predissociation case, because of
the reduction of population in the e state through the
diabatic coupling. The time evolution of the
wavepacket shows the interplay of the predissocia-
tion and laser excitation in a dissipative environment.

Acknowledgements

We thank Professor S. Mukamel for useful dis-
cussions. Financial support for this work was par-
tially provided by the US-Japan International Scien-
tific Research Program from Japan Society of Pro-

Ž .motion of Science JSPS , and by Grand-in-Aid for
Scientific Research from the Japan Ministry of Edu-

cation, Science, Sports, and Culture. The numerical
calculations were performed at the computer centers
of Institute for Molecular Science.

References

w x Ž .1 A.D. Bandrauk, M.L. Sink, J. Chem. Phys. 74 1981 1110.
w x Ž .2 M. Shapiro, H. Bony, J. Chem. Phys. 83 1985 1588.
w x3 C. Wunderlich, H. Figger, T.W. Hansch, Chem. Phys. Lett.¨

Ž .256 1996 43.
w x Ž .4 P. Schwendner, F. Seyl, R. Schinke, Chem. Phys. 217 1997

233.
w x Ž .5 M.S. Child, R. Lefebvre, Chem. Phys. Lett. 55 1978 213.
w x6 M.S. De Vries, N.J.A. Van Veen, M. Hutchinson, A.D. De

Ž .Vries, Chem. Phys. 51 1980 159.
w x Ž .7 H. Guo, J. Chem. Phys. 99 1993 1685.
w x Ž .8 Y. Wang, C.X.W. Qian, J. Chem. Phys. 100 1994 2707.
w x Ž .9 Y. Tanimura, S. Mukamel, J. Phys. Soc. Jpn. 63 1994 66.

w x Ž .10 Y. Tanimura, Y. Maruyama, J. Chem. Phys. 107 1997
1779.

w x Ž .11 B.R. Mollow, M.M. Miller, Ann. Phys. 52 1969 464.
w x Ž .12 P.L. Knight, P.W. Milonni, Phys. Rep. 66 1980 21.
w x Ž .13 H. Tsunetsugu, E. Hanamura, J. Phys. Soc. Jpn. 55 1986

3636.
w x Ž .14 Y. Tanimura, R. Kubo, J. Phys. Soc. Jpn. 58 1989 101.
w x Ž .15 Y. Tanimura, P.G. Wolynes, Phys. Rev. A43 1991 4131.
w x Ž .16 Y. Tanimura, P.G. Wolynes, J. Chem. Phys. 96 1992 8485.
w x Ž .17 E. Wigner, Phys. Rev. 40 1932 749.
w x Ž .18 R. Kubo, J. Phys. Soc. Jpn. 19 1964 2127.
w x Ž .19 Y. Tanimura, S. Mukamel, J. Chem. Phys. 101 1994 3049.
w x20 M. Raab, G. Honing, W. Demetroder, C.R. Vidal, J. Chem.¨

Ž .Phys. 74 1985 4370.
w x21 W. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W.

Ž .Demtroder, W. Muller, J. Chem. Phys. 82 1985 5354.¨ ¨
w x22 P. Meystre, M. Sargent III, Elements of Quantum Optics,

Ž .2nd ed. Springer, New York, 1991 .


