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Abstract

The predissociation dynamics of a molecular system under a strong laser field in the condensed phase is investigated by
direct numerical integration of the multi-state quantum Fokker-Planck equation. Numerical calculations of probe absorption
spectra driven by a strong pump pulse are presented, and discussed. The results show dynamical Stark splitting, but, in
contrast to the Bloch equations which contain an infinite-temperature dephasing, we find that at finite temperatures their
peaks have different heights even when the pump pulse is on resonance. Furthermore we observe the effect of the diabatic
coupling between excited and dissociative states as the peaks on the spectra. © 1998 Published by Elsevier Science B.V. All

rights reserved.

1. Introduction

Progress in ultrafast experimental techniques pro-
pel not only the linear but also the nonlinear spec-
troscopy, which provide a direct means for studying
nuclear dynamics in the condensed phase. Further
the laser techniques become to alow high intensity
and short pulse. One of the central questions is
whether the interaction between the high-intensity
electromagnetic field and the molecule gives rise to
new phenomena which do not occur under ** normal’”’
conditions, i.e. low intensities and large pulse dura
tions [1-4].

On the other hand, the predissociation, caused by
curve crossing between bound and dissociative states,
is interesting phenomenon. Photoinduced dissocia
tion and chemica reaction connect to this phe-
nomenon directly and are studied extensively [5-8].

In the previous study we calculated the pump-
probe spectra for displaced harmonic and Morse
oscillators system in the strong laser field using the

multi-state Fokker-Planck equation for a Gaussian-
Markovian noise bath [9,10]. The results showed the
effect of finite temperature as well as anharmonicity
of a potential, which would not be obtained from the
optical Bloch equation [11,12] or the stochastic Liou-
ville equation [13] approach. In this paper, we inves-
tigate the probe absorption spectra for a Morse po-
tentials system with a dissociative state in a strong
laser field. Our am is to observe the effect of
diabatic coupling between the excited and dissocia
tive states under the strong laser field.

2. Pump-probe spectroscopy

We consider a molecular system with electronic
states denoted by |j). The Hamiltonian of the sys-
temis

p .
Hs:m+2j:2k:|l>ujk(qu|- (1)
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Here, g is a nuclear coordinate strongly coupled to
the electronic state and p is its conjugate momen-
tum. The diagonal element U;(q) is the potential
surface of the jth electronic surface, and the off-di-
agonal element U, (q) with j=#k represents the
diabatic coupling between the jth and the kth states.
In this paper, we study a pump-probe experiment in
a three-level system with Morse potential surfaces
denoted by |g), |e) and |€) (Fig. 1). The transition
frequency between g and e is denoted by w,.. We
assume that the system is initially in the ground
equilibrium state p=|g>p,(gl, where p, is the
equilibrium distribution function of the ground po-
tential surface. In pump-probe experiment, the sys-
tem is subjected to two light pulses: a strong pump
and a weak probe whose frequencies and wave vec-
tors are denoted by (2,, k; and (2,, k,, respectively.
We assume that (2, and (2, are close to the elec-
tronic transition frequency between g and e. The
total Hamiltonian in the rotating wave approximation
is then given by

HA(t) — HS+ El(t)(eiklr—iﬂlhf_‘_ efik1r+iﬂltﬂl—)

+ Ez(t)(eikzr—i.(lzt“;—_'_ e—ik2r+i.(22ﬁ2—)’

(2)

where E;(t) and E,(t) are the temporal envelopes of
the pump and probe pulses, u = ule){gland u; =
ul gy <el are the dipole operators of pump pulse and
us = le){gand p; = ulg){el are ones of probe
pulse. In order to calculate probe absorption spectra,
we employed the following procedure [9,10]. First

le>

le"™>

Fig. 1. Potential surfaces of the displaced Morse oscillators system
with the dissociative state. The resonant frequency between |g)
and |e) is expressed by we.

we consider the evolution of the system subject only
to the pump field. The Hamiltonian is then given by

HAO(t) — HS+ El(t)(eiklr—i.()lﬁir_l_ efik1r+i!21ﬁ]j)_
(3

The corresponding solution of the Liouville equation
is denoted p°(t):
i

d | o 0
—0°(0) = =+ [HA(D.p°(D]. (4)

We next introduce a modified Hamiltonian which
includes only the negative frequency component of
the probe pulse E,

HA(t) = HA(1) + Ey(t) e %2jus . ()

The solution of the Liouville equation with this
Hamiltonian will be denoted p’(t):

) _
S/ = = M0 (0], (6)

If we expand p'(t) to first order in the probe, we
obtain

P(t) = 2tr{ uz (' (1) = p°(1))}
= —i[it dtE, (1)

xe [ g (),uf (D +.... (7)

The above expression agrees with the intensity of the
probe absorption. We can thus calculate the probe
absorption with the frequency w, by subtracting two
solutions of the Liouville equation, which can be
expressed in the form

S0 =~/ 2 m{Ef0]

X [dte et [ p; (p/(1) —p°(t))]},
(8)
where E,[ w,] is the Fourier transform of the probe
field amplitude. This scheme can be applied to a

system driven by pump pulses of arbitrary number,
shape, and strength.
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3. Quantum Fokker-Planck eguation for a multi-
state system interacting with a Gaussian-
Markovian noise bath

We now include an environment consisting of a
set of harmonic oscillators with coordinates x,, and
momenta p,. The interaction between the system
and the nth oscillator is assumed to be linear with a
coupling strength ¢, The total Hamiltonian is then
given by

H(t) = Ha(t)
PR M) c,g \?
*?[Zmﬁ 2 (X”_mwﬁ)l'
(9

The character of the heat-bath is specified by the
spectral distribution: All information about the bath
which is required for a reduced description of the
system dynamics, is contained in its initial tempera
ture and its spectral density. We assume the Ohmic
dissipation with the Lorentzian cutoff,

2
o) = oo (10
27 y2 + w?
With the assumption of the high temperature bath
Bhy < 1, this spectral density represents a
Gaussian-Markovian noise where the symmetric cor-
relation function of the noise induced by the heat-
bath, is proportional to M{y e~ ?'/B. Thus, { and vy
correspond to the friction and the relaxation time of
the noise, respectively. In this case, one can trace
over the heat-bath degrees of freedom and obtain the
equation of motion in the hierarchy form [14-16].
The important point is that the restriction does not
involve the system characteristics frequencies (which
can be small or large compared to 8~ 1), but only a
high temperature requirement with respect to the
bath parameters, which is much easier to meet. In the
following, we employ the Wigner distribution [17,18]
defined by

Wi (P, R;t)

=ﬂf°° dr e/ (R—1/2,R+1/2:t).
ar —

(11)

For the nth member of hierarchy, W™, where j and
k represent diabatic states, the equation of motion is
expressed as [19]

9
a—tV\/j<k“>(P,R;t)

P W(”) o R dpP’
= - — = 1 1t -
M R Mk ¢ ) fz h
X X[ Xim( P =P ROWR (P, RY)
m

+Xok(P =P RIOW (PRt |

F
—mWP(P.Rit) + W (P, Rit)

M a
P+——

+ndy 5P

W O(PLR),  (12)

and anchor equation for large N (Ny > w,: w, isthe
characteristic frequency of the system)

d
SW(PLRiE)

= aw(N) - 1 . dpP
e — I 1 |t - A 2
M oR ¥ ( ) ﬁ[27-rﬁ

X X[ Xim( P = PLRIOWRD (P Rit)

m
+ X (P = P RIOWN (P, Rit) |

~NyW(™(P,Rit)

d M 9 (N)
+§8—P P+Eﬁ Vij (P,R,t)
M d N1
+ Ny P+Eﬁ VV]f( )(P Rt) (13)

Here, ¢ is the friction constant and
X;j(P.R;t) =i [dreP/*U, (R=1/2;1),
Xij (P.Rit) = =i [dr &P /"U (R+r/2;t) (14)

are the Fourier transform representation of the poten-
tial terms.



Y. Maruyama, Y. Tanimura / Chemical Physics Letters 292 (1998) 28—34 31

4, Numerical calculation

We consider the displaced Morse potentials sys-
tem with the dissociative state defined by (see Fig.
1);

_ _ 2
Uyg(R) = E{1—e *R-Pv}7
Uoo(R) =Ef1- e 2R 2 1 i,

Uge(R)
U (R)=A (15)

_ —24d(R-D
=E.e ( 2)+hwge

where E, a and D; are the dissociation energy, the
curvature of the potentlal and the displacement, re-
spectively. The excited state e is coupled diabati-
cally to the dissociative state by constant force.
Hereafter, we employed the dimensionless coordi-
nate and momentum defined by r = R/Mw,/% and

p = P\/l/Mh w,, respectively, where o,
= /Ugg(R) /M. The displacement and curvature of

the potential, D,, D,, a, etc. are also measured in
this unit. We set E, = 3649.5 cm™?, a= 0.6361 and
= 40.598 as the ground state of Cs, molecule
[20,21], which has been studied by a variety of
spectroscopic experiments. The fundamental fre-
quency is then given by w, = 38.7 cm~*. We cacu-
late probe absorption spectra for the displacement
D, = 43.598. For the dissociative state, the parame-
ters were chosen to be & =0.6361 and A= 300
! respectively. We have used the value of fric-
tion {=0.16 cm™!, the inverse correlation time
v=4.8cm™!, and theinitial temperature T = 300 K,
which satisfies the condition B4y = 0.023 < 1.

We first calculate the initial equilibrium state by
integrating the equation of the motion from time
t= —t; to t=0 with the temporally initial condi-
tion,

W(p.r;—t) = exp[ B(fiwop?/2 + Ugg(r))],
WP (p.r;i—t)=0. (16)

Note that Eqg. (16) is the equilibrium state of the
system itself, but, it is not the equilibrium state of
the total system, since it neglects the system-bath
initial correlation, but we can obtain to **true’’ equi-
librium state at t =0, if we set |t;| for a sufficiently

longer time than the characteristic time of the system
[15].

The numerical integration of the kinetic equations
was performed by using second-order Runge-Kutta
method for finite difference expressions of the mo-
mentum and the coordinate space. The size of grid
was chosen to be 70 X 501 in the mesh range — 17
<p<17 and 33 <r < 78. We have taken into ac-
count N = 11 hierarchy elements for W™, We cal-
culate the pump-probe spectra by integrating the
equation of motion (12) and (13) instead of the
Liouville equation following the procedure explained
in Section 2.

We assume that pump and probe pulses are
Gaussian

E((t) = 0,0p] — (t/7,)7],

E,(t) = 6,exp| — (t— )% /73], (17)

with resonance central frequencies, i.e.,, 2, = (), =

.. We measure the transition between the lg> and
|e> States only. The pulse durations were taken to be

=700 fs and 7, =30 fs and the time delay was
varied between 7= —2.0 psand 7= 1.0 ps, i.e, the
pump and the probe pulse are overlapped. The pump
intensity was w6, =4.77 THz and the probe was
weak ub,= 159 GHz. Considering ideal gas with
pressure of 1 atm at 300 K, they are equivalent to
3.14 X 105 W/m? and 1.05 X 10® W/m?, respec-
tively, for the dipole moment w = 1 Debye.

In Fig. 2, we show the pump-probe spectra for the
strong pulse excitation. The solid lines denote the
spectrain the present predissociation case. To see the
effects of the dissociative state, we also display the
same results without the dissociative state which
were given in Ref. [10] (the dashed lines). We set
A ®=w— wg. The spectrum at 7= —2.0 ps is
similar to the Imear absorption spectrum, since the
pump is weak and its effects are small at this early
stage. The vibronic side-band peaks are observed in
the probe absorption spectrum corresponding to vari-
ous vibronic absorption-emission processes. The peak
about —380 cm™? is attributed to the movement of
the wavepacket during nonimpulsive probe detection.
The curves at 7= —1.5 and 7= — 1.0 ps show the
dips about 0 cm™?! caused by the unbalance between
the population and the coherent contribution of an
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Fig. 2. Pump-probe spectra for a strong excitation ( u6, = 4.77
THz) for different pulse delays = (ps). The solid (dashed) lines
show the spectra for the system with (without) diabatic coupling

case. We set A w = 0 — wgye.

absorption spectrum (the coherent dips) [22]. In the
previous case (dashed lines), when the pump pulse
becomes stronger, the coherent dips are broadened.
Each vibronic transition shows a Stark splitting whose
magnitude is given by the proper Rabi freguency
MO, = Aw2, + (uEy(t))?, where Aw,, is the
energy difference between the nth vibrationa state
of Uy, and the mth vibrational state of U,. The
Stark peak of the origin (Aw=0), which corre-
sponds to the zero vibronic line then splits to the
blue and to the red. At 7= —1.0 ps the spectrum
shows many peaks in comparison with the non-dis-
sociative case depicted by the dashed line. This is
understandable through the following argument. The
diabatic coupling between the e and € states causes
the additional vibrational levels to the excited states
around the energy at the crossing point. Since the
laser interacts only between the g and e states, such
additional levels are dark for the laser excitation.
Therefore at the beginning of the pump excitation

(r< —15 ps), these dark levels do not play any
role, and the probe absorption in the displaced Morse
oscillators (dashed lines) and the displaced Morse
oscillators with the dissociative state case (solid lines)
show similar results. At time 7> —1.0 ps, if the
dissociative state is exist, some population in the e
state transfers into the dark levels through the dia-
batic coupling as predissociation. Such reduction of
population in the e states induces the additional
excitation from the g to e state, which appears as
many new peaks in the absorption spectra. For = 1.0
ps, the pump excitation becomes weak enough and
the structure of vibronic bands is recovered.

Fig. 3 shows the time-evolution of the wavepack-
ets Wy ( p,1;t), Wee( p,r;1), and W, (p,r;0). In each
figure, the upper one is for |e) (the excited state),
the middle one is for |€') (the dissociative state), and
the lower one is for |g) (the ground state). At
7= —15 ps when the pump pulse is weak, the
wavepacket is close to the shape of the ground
equilibrium state. Since we considered the Gaussian
(non impulsive) laser excitation, the wavepacket goes
up and down between the ground and excited state
potentials through the laser interaction, therefore the
shape of the ground state wavepacket is also changed.
For = —1.0 ps, the population of the excited state
increases due to the strong pump pulse, and the
population transfer from the g to e state takes place
more quickly than that of the non-dissociative state
case. The wavepacket created in the e state is forced
by the potential and moves in the positive coordinate
direction. At the 7= — 0.5 ps the wavepacket reaches
and passes the curve crossing point (about r = 52).
Although we have used a coordinate independent
diabatic coupling, the transition mainly takes place in
the vicinity of the curve crossing point, and the €
population suddenly increases when the e state
wavepacket passes the crossing point. This is be-
cause of the potential difference between e and €
states SU(r) = |U,(r) — Uy (r)l. The off-diagonal
elements W,, and W, are highly oscillatory func-
tions of time at positions far from the curve crossing
point, where §U(r) is large. Thus, W, can be large
only near the crossing point, where §U(r) is small
[19]. After passing the crossing point, the transferred
wavepacket starts to move in the € state potentia
surface. Since the wavepacket in the € potentid is
not stable, the wavepacket in the € state quickly
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Fig. 3. The time-evolution of the wavepackets of the ground (|g)), excited (|e)) and dissociative (|€ )) states for strong pump excitation. In
each figure, the upper one is for |e), the middle one is for |€'), and the lower oneis for |g) .

moves to the positive (= —0.5 ps) and then goes and e are small due to predissociation. For 7= 0.0,
out from the edge of potential (= 0.0 ps). Compare 0.5 and 1.0 ps, the populations on g and e states
with the non-dissociative case, at 7= 0.0 ps, the dlightly decreases and increases because of Rabi
positive momentum parts of the wavepackets on g flopping, and the wavepackets oscillate on each po-
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tential surfaces. After the pump pulse is vanished,
those wavepackets will reach to the thermal equilib-
rium state of each potential surface after long time.

5. Conclusion

In this paper we calculate the pump-probe spectra
and nuclear dynamics for a displaced Morse oscilla-
tors system with the dissociative state by using
multi-state quantum Fokker-Planck equation for a
Gaussian Markovian bath. The results show interplay
between vibronic transitions and dynamical Stark
splitting, and denote the effect of diabatic coupling
between bound and dissociative states. In compari-
son with the spectra in displaced Morse oscillators,
when the pump pulse is strong, many peaks appear
on the spectrain the predissociation case, because of
the reduction of population in the e state through the
diabatic coupling. The time evolution of the
wavepacket shows the interplay of the predissocia-
tion and laser excitation in a dissipative environment.
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