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Effects of the exciton-exciton coherence transfer �EECT� in strongly coupled molecular aggregates
are investigated from the reduced time-evolution equation which we have developed to describe
EECT. Starting with the nonlinear response function, we obtained explicit contributions from EECT
to four-wave-mixing spectrum such as photon echo, taking into account double exciton states, static
disorder, and heat-bath coupling represented by arbitrary spectral densities. By using the
doorway-window picture and the projection operator technique, the transfer rates between two
different electronic coherent states are obtained within a framework of cumulant expansion at high
temperature. Applications of the present theory to strongly coupled B850 chlorophylls in the
photosynthetic light harvesting system II �LH2� are discussed. It is shown that EECT is
indispensable in properly describing ultrafast phenomena of strongly coupled molecular aggregates
such as LH2 and that the EECT contribution to the two-dimensional optical spectroscopy is not
negligible. © 2007 American Institute of Physics. �DOI: 10.1063/1.2754680�

I. INTRODUCTION

Photosynthetic antenna complexes in purple bacteria
show nonequilibrium transport phenomena in ultrafast time
scales.1 Such ultrafast transfers are rationalized by utilizing
quantum mechanics ingeniously.2 Actually, while the Förster
theory provides a good description of excitation transfers
between monomers,3 exciton transfer theories beyond the
Förster theory had been needed and proposed.4–8 It is also
well known that the Redfield theory does not usually satisfy
the indispensable positivity condition,9–12 and that it has
some limitations in describing exciton transfers.7,12 In par-
ticular, for the population transfer process, the direct com-
parison of the Redfield theory with the exciton population
transfer �EPT� was performed, and it was concluded that the
two are different and the former has a certain limitation even
in describing EPT.7 Furthermore, as reported in Ref. 12, the
weak diagonal exciton-photon coupling approximation in-
voked in the Redfield theory is based on the notion that the
bath degrees of freedom with high frequencies are frozen and
that a typical transfer time scale should be longer than sev-
eral tens of femtoseconds. The latter condition may not be
satisfied in the cases of light-harvesting complexes because
the exciton transfer process is often very fast.

A variety of ultrafast nonlinear spectroscopic methods
have been used to elucidate the underlying physics of the
ultrafast transfer phenomena and their mechanisms. Previous
works assumed weak exciton-phonon couplings and paid at-
tention to comparatively slow population relaxation dynam-

ics. Meier et al. considered strong diagonal exciton-phonon
couplings by introducing the exciton basis, where the
system-bath interaction was represented by arbitrary spectral
densities.13 Since the diagonal exciton-phonon coupling was
treated nonperturbatively, the polaron formation and the
nuclear reorganization energies were properly incorporated.
However, due to the neglect of the off-diagonal exciton-
phonon coupling inducing exciton transfers, their theory can
be applied only to the case when the exciton migration is not
important. Such experiment and simulation studies on pe-
ripheral light harvesting complexes I and II �LH1 and LH2�
were performed by Fleming and co-workers, and they tried
to analyze the experimental data theoretically by introducing
spectral densities characterizing the diagonal exciton-phonon
coupling.14–16

One of the most important nonequilibrium phenomena in
molecular aggregates is EPT. Zhang et al. included the off-
diagonal exciton-phonon coupling perturbatively and ob-
tained the corresponding nonlinear response function allow-
ing them to numerically calculate the signals of LH2 antenna
complexes.17 Experimental studies on EPT were performed
later. The theory of Zhang et al. was found to be successful
for interpreting experimental data. Recently, the exciton
theory for a coupled multichromophore system was devel-
oped and shown to be useful in describing two-dimensional
electronic spectroscopy of the Fenna-Matthews-Olson light-
harvesting complex.18,19

Another critical nonequilibrium transfer that has not
been studied in detail is the exciton-excition coherence trans-
fer �EECT� between different electronic coherent states.
EECT occurs only within ultrafast time scales because of the
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instability of coherent states and could not be observed in
previous spectroscopic experiments, so that there have been
few efforts to study EECT. However, recent nonlinear optical
spectroscopy utilizing femtosecond laser pulses allows us to
detect such ultrafast dynamics in molecules. This motivated
us to derive a coupled integrodifferential equation for EECT
and to investigate an explicit contribution to the nonlinear
response function. Therefore, the principle goal of this work
is to develop a transport theory of both EPT and EECT pro-
cesses in strongly coupled multichromophore systems, in-
cluding effects of colored noise and its nonlinear response
function.

This paper is organized as follows. In Sec. II, we intro-
duce the Frenkel-exciton Hamiltonian in the site representa-
tion and recast it to the corresponding exciton representation.
The nonlinear response function including EECT processes
is discussed in Sec. III and expanded by using the projection
operator method in Sec. III A. We use the doorway-window
picture of the third-order response function in Sec. III B. The
time-evolution equation of the Green’s function for EECT is
presented in Sec. IV. The explicit doorway-window functions
and the Green’s function are given in Sec. V, and the second-
order cumulant expansion expressions are presented in Sec.
VI. In Sec. VII, an explicit kernel function of the Green’s
function of EECT is discussed. The analytical results of the
four-wave-mixing signal are given in Sec. VIII. The applica-
tion to the LH2 antenna system is presented in Sec. IX, and
numerically calculated signals are compared with the previ-
ous result reported by Zhang et al.17 The main results are
summarized in Sec. X.

II. EXCITON HAMILTONIANS

We consider a coupled multichromophore system con-
sisting of N two-level monomers.17,19,20 The Frenkel-exciton
Hamiltonian is given by

Ĥ = �
n

�nM̂n
†M̂n + �

m,n

m�n

JmnM̂m
† M̂n + �

m,n
qmn

�c�M̂m
† M̂n

+ Hph��qj�� , �1�

where M̂n
† and M̂n are the creation and annihilation operators

for the nth monomer excitation; Jmn denotes the coupling
constant between monomers m and n. We assume that the
system is coupled to the harmonic heat bath

Hph��qj�� = �
j
� pj

2

2mj
+

mj� j
2qj

2

2
	 . �2�

The coupling coefficient qmn
�c� is composed of the collective

bath coordinates, responsible for the monomer-phonon cou-
pling,

qmn
�c� = �

j

mj� j
2zj,mnqj . �3�

zj,mn is the coupling strength of the jth phonon to the excita-

tion variable M̂m
† M̂n. Note that zj,mn is proportional to the

product of wave functions of mth and nth excited chro-
mophores, �m�n

*.

We recast the Hamiltonian �Eq. �1�� consisting of N
well-separated manifolds to the corresponding exciton
representation.19 The third-order response function for four-
wave-mixing spectroscopy involves transitions among the
ground state �
0��, the single exciton states �
���, and the
double exciton states �
�̄��, as shown in Fig. 1. Thus, the
Hamiltonian �Eq. �1�� can be rearranged as

Ĥe = Ĥ0 + Ĥ1, �4�

where the nonperturbative term is

Ĥ0 = �
�

��B̂�
† B̂� + �

�̄

��̄Ŷ�̄
† Ŷ�̄ + �

�

q��
�c� B̂�

† B̂�

+ �
�̄

q�̄�̄
�c� Ŷ�̄

† Ŷ�̄ + Hph��qj�� �5�

and the perturbative term is

Ĥ1 = �
�,�

���

q��
�c� B̂�

† B̂� + �
�̄,�̄

�̄��̄

q�̄�̄
�c�Ŷ�̄

† Ŷ �̄. �6�

B̂�
† and B̂� are the exciton creation and annihilation operators

for the single exciton �, while the corresponding operators

for the double exciton �̄ are Ŷ�̄
† and Ŷ�̄, respectively. �� and

��̄ denote eigenenergies for the excitons � and �̄, respec-
tively. The exciton-phonon coupling makes the exciton
eigenenergies fluctuate by q��

�c� and q�̄�̄
�c� , and it also generates

exciton transfers by q��
�c� and q�̄�̄

�c�. Their explicit forms are
given in Ref. 19.

FIG. 1. Exciton level-structure of the Hamiltonian �Eq. �5��. 
0� is the
ground state, while 
�� means one of the one-exciton levels consisting of N
states. 
�̄� denotes one of the N�N−1� /2 two-exciton states. �� and ��̄ are
eigenenergies for the single and double excitons, respectively. The exciton
eigenenergies �� are numerically obtained by diagonalizing the first and
second terms of the Frenkel-exciton Hamiltonian �Eq. �1�� �Ref. 19�. Its
monomer excitation energies �m are specified by the Gaussian distribution
�Eq. �77��. For example, the characteristic eigenenergy of B850 chlorophylls

�̃m=11 710 cm−1 and the full width at half maximum �=2�log 2�̄m

=325 cm−1.
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III. NONLINEAR RESPONSE FUNCTION

Let us introduce the third-order response function, which
is indispensable in calculating four-wave-mixing signals
since it is directly related to spectroscopic observables. The
third-order response function can be written as21

R�3��t3,t2,t1� = i3 Tr�d̂Ĝ�t3�d̂�Ĝ�t2�d̂�Ĝ�t1�d̂�	̂00� , �7�

where the equilibrium density matrix in the ground state is
assumed to be

	̂00 = 
0�
exp�− 
Hph��qj���

Z

0
 , �8�

with 
=1/kBTB and the normalization constant Z; kB and TB

are the Boltzmann constant and the temperature, respec-
tively. The Liouville path propagator is defined by

Ĝ�t� � exp�− iL̂t� , �9�

with L̂X̂= �Ĥe , X̂�, and d̂� is the hyperoperator of dipole de-
fined by

d̂�X̂ � d̂X̂ − X̂d̂ �10�

for any operator X̂. The dipole operator within the exciton
representation has the form

d̂ = �
�

d��B̂� + B̂�
† � + �

�,�̄

d�,�̄�Ŷ�̄
† B̂� + B̂�

† Ŷ�̄� , �11�

where

d� = �
m

dm���m� �12�

and

d�,�̄ = �
m=1

N−1

�
n=m+1

N

��̄�m,n�����n�dm + ���m�dn� . �13�

Here, ���m� and ��̄�m ,n� represent the one-exciton and
two-exciton wave functions.

A. Projection operator expression

In order to calculate the third-order response function,
we have to formulate time evolutions of the diagonal and
off-diagonal density operators such as 	̂00��qj��, 	̂0���qj��,
	̂0�̄��qj��, 	̂����qj��, and 	̂��̄��qj��. It is useful to introduce
the projection operators as follows. The operator that extracts
the diagonal component of 	̂��qj�� is defined by

P�	̂ � 	̂�� Tr�qj�
�	̂��� , �14�

where the equilibrium density matrix in the �th exciton is

	̂�� = 
��
exp�− 
H���qj���

Z

�
 . �15�

Similarly, the operator giving rise to the ground state popu-
lation component is

P0	̂ � 	̂00 Tr�qj�
�	̂00� . �16�

The total operator is therefore given by

P = P0 + �
�

P�. �17�

We next define the complementary operator, which projects a
density matrix onto the manifold of off-diagonal compo-
nents,

Q � 1 − P . �18�

EPT processes are related to the P operator dynamics as
shown in Ref. 17, while, in this study, we shall focus on the
nonequilibrium dynamics extracted by Q.

Since P+Q=1, we have

Ĝ�t2� = �P + Q�Ĝ�t2��P + Q� �19�

=ĜPP�t2� + ĜPQ�t2� + ĜQP�t2� + ĜQQ�t2� , �20�

where ĜAB�t��AĜ�t�B. Explicit expressions of the above
terms are presented in Appendix A. In order to obtain them,

we divide the full Liouville operator L̂ into the perturbative
and nonperturbative contributions:

L̂ = L̂0 + L̂1. �21�

Substitution of Ĝ�t2� into Eq. �7� leads to

R�3��t3,t2,t1�

= i3 Tr�d̂ĜQQ�t3�d̂�ĜPP�t2�d̂�ĜQQ�t1�d̂�	̂00�

+ i3 Tr�d̂ĜQQ�t3�d̂�ĜPQ�t2�d̂�ĜQQ�t1�d̂�	̂00�

+ i3 Tr�d̂ĜQQ�t3�d̂�ĜQP�t2�d̂�ĜQQ�t1�d̂�	̂00�

+ i3 Tr�d̂ĜQQ�t3�d̂�ĜQQ�t2�d̂�ĜQQ�t1�d̂�	̂00� . �22�

We note that during t1 and t3, the density matrix is always in
a coherent state such as 	0�, 	0�̄, 	��, and 	��̄. Therefore,

only ĜQQ�t� appears during t1 and t3. To the lowest order of

L̂1, using the results in Appendix A, we have

R�3��t3,t2,t1�

= i3 Tr�d̂ĜQQ�t3�d̂�ĜPP
0 �t2�d̂�ĜQQ�t1�d̂�	̂00�

+ i3 Tr�d̂ĜQQ�t3�d̂�ĜQQ�t2�d̂�ĜQQ�t1�d̂�	̂00� , �23�

in terms of ĜQQ�t2� with ĜAB
0 �t�=A exp�−iL̂0t�B. The first

term in Eq. �23� becomes

i3 Tr�d̂ĜQQ�t3�d̂�ĜPP
0 �t2�d̂�ĜQQ�t1�d̂�	̂00� �24�

=R�3��t3,�,t1� , �25�

where R�3��t3 ,� , t1� is identical with the second and third
terms in Eq. �B9� of Ref. 17 and corresponds to Eq. �D7�
with t2=0 in Ref. 17. Thus, we will not consider the first
term of Eq. �23� in detail in the present study.

B. The doorway-window expression

The second term in Eq. �23�, which includes the EECT,
can be rewritten as
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R�3��t3,t2,t1�

= i3 �

,
�

Tr�d̂ĜQQ�t3�d̂�Q
Ĝ�t2�Q
�d̂
�ĜQQ�t1�d̂�	̂00�

�26�

=− i�

,
�

Tr�d̂ĜQQ�t3�d̂�Ĝ

��t2�d̂�ĜQQ�t1�d̂�	̂00� �27�

�− �

,
�

W
�t3�G̃

��t2�D
��t1� . �28�

It should be mentioned that all the single exciton coherence
transfers �SECTs� during t1 and t3 can be ignored, as shown
in Appendix B. 
 and 
� denote coherent states such as 	0�,
	0�̄, 	��, and 	��̄. In Eq. �28�, we introduced the doorway
function

D
��t1� � Tr�
�†d̂�ĜQQ�t1�d̂�	̂00� �29�

and the window function

W
�t3� � Tr�d̂ĜQQ�t3�d̂�	̂
� . �30�


�† in the doorway function is needed to generate 	̂
� in the
Green’s function. The Green’s function describing EECT, de-
fined as

Ĝ

��t2� � Q
Ĝ�t2�Q
�	̂
�, �31�

can be viewed as the conditional probability for the coherent
state to be in 
 at time t2 when it starts at 
� at time t2=0. We
further introduce

G̃
ˆ



��t2� � 
†Ĝ

��t2� �32�

since 
† is necessary to produce 	̂
 in the window function.

IV. THE TIME-EVOLUTION EQUATION OF THE
GREEN’S FUNCTION

We start from the Liouville equation of the whole sys-
tem,

�	�t�
�t

= − iL̂	�t� . �33�

Using the projection operator method,22,23 we obtain

�Q	�t�
�t

= − iQL̂Q	�t� − QL̂�
0

t

d�e−i�t−��PL̂PL̂Q	���

− iQL̂e−itPL̂P	�0� . �34�

This equation can also be derived by interchanging P and Q
in Eq. �9� of Ref. 7. At time t2=0, the density matrix must be
in a coherent state for EECT, so that we can set P	�0�=0.
Equation �34� leads to

�Q	�t�
�t

= − iQL̂Q	�t� − QL̂�
0

t

d�e−i�t−��PL̂1PL̂1Q	���

�35�

=− iQL̂Q	�t� − �
0

t

d�QL̂1PL̂1Q	��� . �36�

Here, we used the formula L̂0P=PL̂0=0 and PL̂1P=0. To

zeroth order of L̂1, the above equation leads to

�Q	�t�
�t

= − iQL̂0Q	�t� . �37�

This gives the zeroth-order solution R�c��t3 , t2 , t1�, which is
identical to Eq. �B2� of Ref. 17.

On the order hand, in order to discuss EECT, we have to
treat the whole of Eq. �36�. The first term in Eq. �36� in-

volves a term that is first order of L̂1, which is linearly pro-
portional to qj. Consequently, the corresponding contribution
vanishes when the kernel function is calculated by statisti-
cally averaging with respect to the harmonic bath Hph. Fur-

thermore, the remaining part of the first term, −iQL̂0Q	�t�,
also vanishes �see Appendix B 4�. As a result, we can remove
the first term in Eq. �36�,

�Q	�t�
�t

= − �
0

t

d�QL̂1PL̂1Q	��� . �38�

Replacing the left Q with Q
 and 	�t� with e−iL̂tQ
�	�0�, Eq.
�38� can be rewritten as

�Q
e−iL̂tQ
�	�0�

�t
= − �

�
�

0

t

d�Q
L̂1PL̂1Q�e−iL̂�Q
�	�0� .

�39�

At last, the time-evolution equation of the Green’s function
is obtained as

�Ĝ

��t�

�t
= − �

�
�

0

t

d�Q
L̂1PL̂1Ĝ�
���� . �40�

From the definition of G̃
ˆ



��t� in Eq. �32�, we have

�G̃

��t�

�t
= �

�
�

0

t

d�K
�G̃�
���� , �41�

where the kernel function is found to be

K
� � − Tr�
†Q
L̂1PL̂1	̂�� . �42�

Due to the conservation of the total exciton number, we fi-

nally have the following time-evolution equation of G̃

��t�:

�G̃

��t�

�t
= �

�
�

0

t

d��K
�G̃�
���� − K��G̃

����� . �43�

One of the interesting observations in this section is that
the EECT kernel does not depend on time. This has origi-
nated from Eq. �34�, which is an equation of motion of the
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Q-projected density operator obtained rigorously by using
the projection operator technique. Unlike the case of the
P-projected density operator, Eq. �38� does not have a Liou-

ville space time-evolution operator in between L̂1 and PL̂1

operators. To make this more specific let us write the corre-
sponding equation of motion for the P-projected density op-
erator for the sake of direct comparison,

�P	�t�
�t

= − �
0

t

d�PL̂1e−i�t−��L̂0L̂1P	��� . �44�

The corresponding equation of motion for Q	�t� was
given in Eq. �38� by considering up to the second-order term

with respect to L̂1, where the Liouville space time-evolution
operator does not appear in this expression. This is different
from that of Redfield theory.7,24 However, one can under-
stand this difference by examining the underlying physical
processes hidden in Eqs. �38� and �44�. On the right-hand

side of Eq. �44�, L̂1P	��� represents a coherent state �off-
diagonal density matrix�, 
b����
a���
. Then, the time-
evolution operator acts onto this coherent state such as

e−i�t−��Ĥ0
b����
a���
ei�t−��Ĥ0. Since b�a, this is highly fluc-
tuating due to the bath degrees of freedom, and its correla-
tion time determines the time scale of the time-dependent
rate kernel for the population transfer process. On the other
hand, when we obtained Eq. �38�, we used the formula

L̂0P=PL̂0=0, which means that the diagonal density opera-
tor is commutative with the zero-order Hamiltonian, as it
should be by the definition of the P operator. Noting that

PL̂1Q	��� on the right-hand side of Eq. �38� is a population
state, any time-evolution operator acting on this, i.e.,

e−i�t−��L̂0PL̂1Q	���, vanishes except for the zero-order expan-

sion term of e−i�t−��L̂0, which is just one. Therefore, the kernel
for the Q-projected density operator does not depend on

time. As mentioned above, one can obtain the quantum mas-
ter equation from Eq. �44� for the population states. For the
Q-projected density matrix, we obtained Eq. �43� from Eq.
�38�. However, it is believed that Eq. �43� should not be
interpreted as a conventional Markov master equation but
just as a coupled integrodifferential equation. Therefore, K
�

in Eq. �42� is not a Markov rate constant in a conventional
sense. Note that the population state can be interpreted clas-
sically because it describes the probability of finding the sys-
tem to be in a given state. However, the coherent state has no
classical analog. That is to say, it is not possible to attempt to
directly connect the equation of motion for the Green’s func-
tion in Eq. �43�, which describes the coherent state evolution
in time, to a classical kinetic equation.

V. EXPLICIT EXPRESSIONS OF THE DOORWAY AND
WINDOW FUNCTIONS

In Sec. III B, to obtain Eq. �28�, we used the factoriza-
tion approximation to rewrite the total nonlinear response
function as a product of three ensemble-averaged functions
that depend on the three independent time variables. In the
present section, we will provide general expressions of the
doorway �preparation� and window �probing� functions in
terms of correlation functions of the exciton operators. The
doorway function in Eq. �29� can be written as an expanded
form,

D
��t1� = Tr�
�†PĜQQ�t1�P	̂00�

− Tr�
�†�ĜQQ�t1�P	̂00�P�

− Tr�
�†P�ĜQQ�t1�	̂00P��

+ Tr�
�†�ĜQQ�t1�	̂00P�P� . �45�

From the fact that 
� denotes a coherent state, Eq. �45� leads
to

D
��t1� = − �a����b���da�db� Tr��B̂a�
† B̂b��

†ĜQQ�t1�B̂a�
†

	̂00B̂b�� − �a����b���da�db� Tr��B̂a�
† B̂b��

†B̂a�
† ĜQQ�t1�	̂00B̂b��

+ �a��̄��b�0�
c�

dc�dc�a� Tr��Ŷa�
† B̂b��

†Ŷa�
† B̂c�ĜQQ�t1�B̂c�

†
	̂00�

+ �a�0�b��̄��
c�

dc�dc�b� Tr��B̂a�
† Ŷb��

†ĜQQ�t1�	̂00B̂c�B̂c�
† Ŷb�� , �46�

where we set 
�=a�b�, and the summation over 
� in Eq. �28� now corresponds to the summations over a�, b�, ��, ��, and �̄�.
Similarly, we obtain the window function

W
�t3� = ��a��bdadb Tr�B̂b
†ĜQQ�t3�B̂a	̂ab� + ��a��b�

ā

daādbā Tr�B̂b
†ŶāĜQQ�t3�Ŷā

†B̂a	̂ab� − ��a��bdadb Tr�B̂aĜQQ�t3�	̂abB̂b
†�

− ��a��b�
ā

daādbā Tr�Ŷā
†B̂aĜQQ�t3�	̂abB̂b

†Ŷā� + ��̄a�0b�
c

dcdca Tr�B̂cĜQQ�t3�B̂c
†Ŷa	̂ab�

+ �0a��̄b�
c

dcdcb Tr�Ŷb
†B̂cĜQQ�t3�B̂c

†	̂ab� − ��̄a�0b�
c

dcdca Tr�B̂c
†ŶaĜQQ�t3�	̂abB̂c�

− �0a��̄b�
c

dcdcb Tr�B̂c
†ĜQQ�t3�	̂abŶb

†B̂c� , �47�
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with 
=ab. The summation over 
 in Eq. �28� corresponds
to the summations over a, b, �, �, and �̄. The above door-
way and window functions can be rewritten as

D
��t1� = D����
L �t1� + D����

L �− t1� + D�̄�
L �t1� + D�̄�

L†�− t1�

�48�

and

W
�t3� = W��
L �t3� − W��

L �− t3� + W�̄�̄
L �t3� − W�̄�̄

L �− t3� ,

�49�

respectively. Here, the auxiliary functions in Eqs. �48� and
�49� are defined as

D����
L �t1� � − �a����b���da�db� Tr�B̂b�B̂b�

† B̂a�B̂a�
† �t1�	̂00� , �50�

D�̄�
L �t1� � �a�0�b��̄��

c�

dc�dc�b�Tr�B̂a�
† �− t1�Ŷb��− t1�Ŷb�

† �− t1�

�B̂c��− t1�B̂c�
†

	̂00� , �51�

W��
L �t3� � ��a��bdadb Tr�B̂b

†B̂a�t3�	̂ab�

+ ��a��b�
ā

daādbā Tr�B̂b
†ŶāŶ ā

†�t3�B̂a�t3�	̂ab� �52�

=��a��bdadb Tr�B̂bB̂b
†B̂a�t3�B̂a

†	̂00�

+ ��a��b�
ā

daādbā Tr�B̂bB̂b
†ŶāŶ ā

†�t3�B̂a�t3�B̂a
†	̂00� ,

�53�

W�̄�̄
L �t3� � ��̄a�0b�

c

dcdca Tr�B̂cB̂c
†�t3�Ŷa�t3�	̂ab�

+ �0a��̄b�
c

dcdcb Tr�Ŷb
†B̂cB̂c

†�t3�	̂ab� �54�

=��̄a�0b�
c,c�

dcdca Tr�B̂cB̂c
†�t3�Ŷa�t3�Ŷa

†B̂c�B̂c�
†

	̂00�

+ �0a��̄b�
c,c�

dcdcb Tr�B̂c�B̂c�
† ŶbŶb

†B̂cB̂c
†�t3�	̂00� , �55�

where we used the following relations: 	̂��= B̂�
† 	̂00B̂�, 	̂�̄0

=��Ŷ�̄
† B̂�B̂�

†	̂00, and 	̂0�̄=��	̂00B̂�B̂�
†Ŷ�̄.

VI. THE SECOND-ORDER CUMULANT EXPANSION

In this section, using the second-order cumulant approxi-
mation method, we present analytical expressions for the
doorway and window functions. The exciton annihilation op-
erator in the Heisenberg representation can be expanded as

B̂���� = e−i��� exp+�− i�
0

�

d��q��
�c� ����� �56�

�e−i����1 − i�
0

�

d��q��
�c� ����

− �
0

�

d���
0

��
d��q��

�c� ����q��
�c� ����� . �57�

The conjugate operator can be expanded accordingly. Insert-
ing the above expanded expressions into Eq. �50�, we have

D����
L �t1� = − �a����b���da�db�e

i�a�t1 exp�− ga�a��− t1�� ,

�58�

where the exciton line shape function g���t� is

g���t� � �
0

t

d���
0

��
d��
q��

�c� ����q��
�c��0�� �59�

=�
−�

� d�

2�

1 − cos �t

�2 coth

��

2
C�����

+ i�
−�

� d�

2�

sin �t − �t

�2 C����� . �60�

Following Ref. 19, the exciton spectral density is given
as

C����� �
1

2
�

−�

�

dt exp�i�t�
�q��
�c� �t�,q��

�c��0��� �61�

= �
m,n,k,l

���m���
* �n����k���

*�l�Cmn,kl��� , �62�

where the monomer spectral density is defined as

Cmn,kl��� �
1

2
�

−�

�

dt exp�i�t�C̃mn,kl�t� . �63�

Here, C̃mn,kl�t�= 
�qmn
�c��t� ,qkl

�c��0���. The statistical average

…� is integrated over exp�−
Hph��qj��� /Z. As shown in Ref.
17, we find


B̂���4�B̂�
†��3�B̂���2�B̂�

† ��1��

= ei��3−�4���+i��1−�2���exp�− g����4 − �3�

+ g����4 − �2� − g����4 − �1�

− g����3 − �2� + g����3 − �1� − g����2 − �1�� �64�

and


B̂���4�B̂�
†��3�Ŷ�̄��3�Ŷ�̄

† ��2�B̂���2�B̂�
† ��1��

= ei��3−�4���+i��2−�3���̄+i��1−�2���

�exp�− g����4 − �3� + g��̄��4 − �3� − g��̄��4 − �2�

+ g����4 − �2� − g����4 − �1� + g��̄��3 − �2�

− g����3 − �2� + g����3 − �1� − g�̄�̄��3 − �2�

+ g�̄���3 − �2� − g�̄���3 − �1�

+ g�̄���2 − �1� − g����2 − �1�� . �65�

From these results, one can deduce that the window function
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in Eq. �53� can be written in terms of the exciton line shape
functions, that is,

W��
L �t3� = ��a��bdadbe−i�at3 exp�− gaa�t3��

+ ��a��b�
ā

daādbāe−i�at3+i�āt3 exp�− gāā�− t3�

+ gāa�− t3� + gāa�t3� − gaa�t3�� . �66�

It is interesting to note that the doorway and window func-
tion components that are associated with the two-exciton co-
herent state, i.e., the last two terms in Eqs. �48� and �49�, are
not important, as well be shown in the following section.

VII. EXPLICIT EXPRESSIONS OF THE KERNEL
FUNCTION

We derive here the explicit form of the kernel function in
Eq. �42�. It can be reexpressed as

K
� = − ��� Tr��B̂�
† B̂��†Q��Ĥ1�PĤ1	����

+ ��� Tr��B̂�
† B̂��†Q���PĤ1	���Ĥ1�

+ ��� Tr��B̂�
† B̂��†Q��Ĥ1�P	��Ĥ1��

− ��� Tr��B̂�
† B̂��†Q���P	��Ĥ1�Ĥ1� , �67�

where we set 
=�� and �=�� on the right-hand side. The
summation over � in Eq. �43� now corresponds to the sum-
mations over � and �. Note that � and � represent one-
exciton states and that the kernel function �Eq. �42�� vanishes
for 
= �̄0 or 0�̄. The proof is given in Appendix C. There-
fore, we can ignore all the contributions from the double
exciton coherence transfer processes. That is to say, D�̄�

L �t1�
in Eq. �51� and W�̄�̄

L �t3� in Eq. �55� do not play any role.
Substituting the perturbative Hamiltonian �Eq. �6�� into the
kernel function, we obtain

K
� = − ��� Tr��B̂�
† B̂��†q��

�c�B̂�
† B̂�q��

�c�B̂�
†B̂�	���

+ ��� Tr��B̂�
† B̂��†q��

�c�B̂�
† B̂�	��q��

�c�B̂�
†B̂��

+ ��� Tr��B̂�
† B̂��†q��

�c�B̂�
† B̂�	��q��

�c�B̂�
†B̂��

− ��� Tr��B̂�
† B̂��†	��q��

�c�B̂�
†B̂�q��

�c�B̂�
† B̂�� �68�

=− ���
q��
�c�q��

�c�� + ���
q��
�c�q��

�c��

+ ���
q��
�c�q��

�c�� − ���
q��
�c�q��

�c�� . �69�

The above kernel function does not depend on time, so that
the Green’s function obeying Eq. �43� evolves with the con-
stant rates K
�. The constancy of the EECT rate kernel func-
tion originated from Eq. �36�. This fact has not been reported
before because former studies only considered EPT; note that
the rate kernel for EPT are, in general, time dependent. This
difference is due to the distinct characteristics of the
Q-projection operator from those of the P-projection opera-
tor.

VIII. NONLINEAR RESPONSE FUNCTION AND FOUR-
WAVE-MIXING SPECTROSCOPY

In impulsive three-pulse experiments, the incoming field
is approximated as

E�r, t̃� = E1��t̃ − �td − t − T − ����eik1·r−i�1t̃ + e−ik1·r+i�1t̃�

+ E2��t̃ − �td − t − T���eik2·r−i�2t̃ + e−ik2·r+i�2t̃�

+ E3��t̃ − �td − t���eik3·r−i�3t̃ + e−ik3·r+i�3t̃� , �70�

provided the rotating-wave approximation is invoked. Here,
Ei denotes the ith pulse amplitude and td is the detection
time. We will focus on a specific four-wave-mixing experi-
ment where the signal is detected at time td= t in the direction
ks=−k1+k2+k3, which is called photon echo.25 The corre-
sponding third-order polarization21

P�3��r,t,T,�� = �
0

�

dt3�
0

�

dt2�
0

�

dt1R�3��t3,t2,t1�

�E�r,t − t3�E�r,t − t3 − t2�

�E�r,t − t3 − t2 − t1� �71�

leads to

P�3��r,t,T,�� = Pks

�3��t,T,��ei�−k1+k2+k3�·rei��1−�2−�3�t, �72�

where

Pks

�3��t,T,�� � R�3��t,T,��E1E2E3e−i�1�t+T+��+i�2�T+t�+i�3t.

�73�

We can specify the Liouville paths which contribute to the
above R�3��t ,T ,�� �see Fig. 2�. The two contributions associ-
ated with the Liouville paths �a� and �b� in Fig. 2 to
R�3��t ,T ,�� are

− i �
�,�,��,��

d�d�ei��t exp�− g���− t��

�G̃�������T�d��d��e
−i���� exp�− g�������� �74�

and

i �
�,�,��,��,�̄

d��̄d��̄e−i��t+i��̄t exp�− g�̄�̄�− t�

+ g�̄��− t� + g�̄��t� − g���t��G̃�������T�d��d��e
−i����

�exp�− g�������� , �75�

respectively. G̃

��T� with 
=�� and 
�=���� can be calcu-
lated by the time-evolution equation �Eq. �43�� with the ker-

nel function �Eq. �69�� and the initial conditions G̃

��0�
=�
,
�.

IX. AN APPLICATION TO THE MOLECULAR
AGGREGATE: B850 LH2 SYSTEM

We shall specifically consider the B850 LH2 system
consisting of 18 B850 chlorophylls in a cyclic aggregate. We
compared our results with those of Zhang et al., where only
EPT was taken into account.
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It is well known that this cyclic aggregate has two kinds
of nearest-neighbor intermolecular interactions; that is, the
two coupling strengths between adjacent B850 chlorophylls
in LH2 are −273 and −291 cm−1, as determined in Ref. 26.
For numerical calculations, we assume that the disorder of
monomer excitation energy is specified by a Gaussian distri-
bution,

f��m� = exp�−
��m − �̃m�2

�̄m
2 � , �76�

with the characteristic eigenenergy of B850 chlorophylls

�̃m=11 710 cm−1 and the full width at half maximum �

=2�log 2�̄m=325 cm−1. We further assume that the collec-
tive phonon variables acting on different monomers are sta-
tistically uncorrelated and have the same spectral density,
that is,

Cmn,kl��� = �mn�kl�mkC��� . �77�

In the present work, we use the spectral density of an over-
damped Brownian oscillator,11

C��� = 2�
��B

�2�B
2 + 1

, �78�

which generates the exponentially decayed correlated noise
with the relaxation time �B=130 fs. The parameter �
=600 cm−1 corresponds to the nuclear reorganization energy
and is related to the overall exciton-phonon coupling
strength. All the calculations in this section will be per-
formed with TB=300 K. It is confirmed that the homoge-

neous and inhomogeneous parameters, �=600 cm−1 and �
=325 cm−1, can quantitatively reproduce the experimental
linear absorption linewidth.14

Substitution of Eq. �78� into Eq. �69� leads to


q��
�c�q��

�c�� = �
m

���m���
*�m����m���

*�m�
qmm
�c� qmm

�c� � �79�

=�
m

���m���
*�m����m���

*�m�g̈mm�0� , �80�

with the monomer line shape function

gmn�t� � �
0

t

d���
0

��
d��
qmm

�c� ����qnn
�c��0�� �81�

=�
−�

� d�

2�

1 − cos �t

�2 coth

��

2
Cmm,nn���

+ i�
−�

� d�

2�

sin �t − �t

�2 Cmm,nn��� . �82�

Now, the Green’s function describing EECT processes in
Eqs. �74� and �75� can be obtained by numerically solving
the time-evolution equation �Eq. �43�� with K
� values ob-
tained from Eq. �80�. It should be mentioned that, in contrast
to EPT, the EECT Green’s function is always real since the
kernel function is real. We next provide numerically calcu-
lated spectroscopic signals including EECT. All the results
have been averaged over 3000 realizations of the static dis-
order, which is sufficient for the short-time signals. All the
spectroscopic signals are scaled in order that the maxima
become unity.

A. Time-resolved echoes „TREs…

First of all, the two-dimensional �2D� time-resolved echo
signals I1�t1 , t2 , t3�= 
R�3��t3 , t2 , t1�
2 with respect to t1 and t3

are plotted in Fig. 3. Figures 3�a� and 3�b� are the time-
resolved echo �TRE� signals with and without the EECT
contribution, respectively. The latter signal corresponds to
the results of Zhang et al.17 Note that both TRE spectra are
diagonally elongated since �B, �, and TB we used in the cal-
culation correspond to slow modulation of heat-bath modes.
However, the latter is more elongated than the former. This is
because EECT additionally included in the former case gen-
erates the fast decaying coherent state evolutions. Appar-
ently, the EECT process should not be ignored to quantita-
tively describe the TRE signal within ultrafast time scales.

B. Photon echo peak shift „PEPS…

The photon echo peak shift �PEPS� was shown to be
useful in measuring correlation amplitude between the two
electronic coherent states during t1 and t3.25 The time-
integrated photon echo signal is given as

I2�t1,t2� = �
0

�


R�3��t3,t2,t1�
2dt3. �83�

The PEPS of LH2 was experimentally measured by Jimenez
et al.,14 and Zhang et al.17 compared their numerically cal-

FIG. 2. Double-sided Feynman diagrams representing four-wave-mixing
photon echo Liouville paths. The exciton-exciton coherence transfer �EECT�
occurs during the time interval T between second and third pulses. The
diagram �a� includes only single exciton states, while �b� contains the double
exciton state.
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culated PEPS with the experiment. Here, including the
EECT contribution to the photon echo signal, we calculated
the PEPS of LH2 and directly compared it with experimental
data as well as with our numerical result without EECT �see
Fig. 4�. As can be seen in Fig. 4, the calculated PEPS with

EECT is in an excellent agreement with the experiment. It
should be noted that the PEPS with EECT decays faster than
that without EECT. This result can be understood by suggest-
ing that the EECT during t2 can induce decoherence
�memory loss� of the multiple quantum coherent states cre-
ated by the field-matter interactions.

C. Two-dimensional photon echo

We next calculate the two-dimensional photon echo
spectrum by taking the double Fourier transformation of the
time-resolved photon echo signals. Figures 5�a� and 5�b� de-
pict the real parts of the 2D Fourier-transformed spectra with
and without the EECT contribution, respectively. The latter
signal corresponds to the results of Zhang et al.17 Here, the
definition of the 2D Fourier-transformed spectrum is

I3��1,t2,�3� = �
0

� �
0

�

exp�i�1t1�exp�− i�3t3�

�R�3��t3,t2,t1�dt1dt3. �84�

In both cases, the real part of the 2D Fourier-transformed

FIG. 3. �Color� The time-resolved echo �TRE� signals 
R�3��t3 , t2 , t1�
2 vs t1

and t3 with t2=100 fs with �a� and without �b� the EECT contribution. The
fact that �b� is more elongated than �a� illustrates that EECT generates the
fast decaying coherent state evolutions.

FIG. 4. Photon echo peak shifts �PEPSs� estimated from the time-integrated
photon echo signals �Eq. �83�� with respect to t2. The numerically calculated
PEPSs with and without EECT are compared with the experimental results.
The experimental data are measured in Ref. 14. The direct comparison
shows that EECT is essential in accounting for the experimental data.

FIG. 5. �Color� �a� Real part of the 2D photon echo spectrum I3��1 , t2 ,�3�
in Eq. �84� at t2=100 fs. The horizontal and vertical axes are �1

−�̃m cm−1 and �3−�̃m cm−1, respectively. Here, �̃m=11 710 cm−1, given
in Eq. �76�. �b� The same as in �a�, but without EECT. The width along the
antidiagonal axis of �a� is broader than that of �b�. This means that the
decoherence �memory loss� of multiple quantum coherent states is another
source of homogeneous dephasing process. EECT can cause the rapid dif-
fusion of frequencies.

075101-9 Ultrafast exciton-exciton coherent transfer in light-harvesting system J. Chem. Phys. 127, 075101 �2007�

Downloaded 15 Aug 2007 to 130.54.50.111. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



spectrum is diagonally elongated, indicating an inhomoge-
neous distribution �diagonal disorder� of the site energies.
Secondly, the width along the antidiagonal axis of Fig. 5�a� is
broader than that of Fig. 5�b�. This means that the decoher-
ence of multiple quantum coherent states is another source of
a homogeneous dephasing process. In other words, EECT
can cause the rapid diffusion of frequencies. We call this
frequency diffusion hopping dephasing in order to distin-
guish it from the usual pure dephasing, which is due to static
disorder and perturbative diagonal system-bath couplings.
The difference between the two is discussed in Sec. X.

Examining the absolute magnitude of 2D Fourier-
transformed spectra shown in Figs. 6�a� and 6�b�, one can see
clear evidence of the EECT contribution. In general, the di-
agonal disorder makes the 2D spectrum diagonally
elongated.27 However, as shown in the present studies, the
2D correlation spectrum at an early time can be less diago-
nally elongated due to the decoherence of multiple quantum
coherent states, i.e., hopping dephasing.

X. DISCUSSION AND SUMMARY

In order to study the exciton-exciton coherence transfer
�EECT� in strongly coupled molecular aggregates, we have
developed a reduced time-evolution equation of EECT using
the projection operator technique. Focusing on the Q space
spanned by the set of coherent states, we have analyzed the
nature of EECT by solving the integrodifferential equation
for EECT. The relevant kernel was found to be determined
by the cross correlation of the fluctuating coupling strengths
induced by the system-bath interactions. We also obtained its
explicit contribution to the nonlinear response function for a
four-wave-mixing spectroscopy, e.g., photon echo. The door-
way and window functions describing the preparation of
population and coherent states and probing their time evolu-
tions, respectively, were theoretically derived, and, particu-
larly, the coherent state evolutions in the Q space were prop-
erly taken into consideration in this paper. As expected, it
was shown that EECT plays a significant role in a strongly
coupled molecular aggregate such as LH2.

Despite the fact that there already exist a number of
theoretical works tackling the time-dependent optical re-
sponses of light-harvesting complexes, most of them have
ignored contributions from EECT processes due to its ul-
trafast �approximately subpicosecond� nature.28 As shown in
this paper, EECT plays an important role in describing ul-
trafast transfer and decoherence phenomena in less than a
few hundred femtoseconds. As an example, the short-time
decaying pattern of the photon echo peak shift from LH2
was found to be critically dependent on the time scale of the
EECT processes, as demonstrated in Fig. 4.

As emphasized in this paper, EECT involves coherent
processes, contributes to the ultrafast spectroscopic signal,
and appears as a rapid hopping dephasing inducing addi-
tional line broadening in the 2D photon echo spectrum. It
should be noted that the hopping dephasing induced by
EECT differs from the conventional pure dephasing. The lat-
ter makes the amplitude of a given coherent state monotoni-
cally decrease in time, whereas EECT can have a backward
transfer process since EECT involves hopping among
strongly correlated close coherent states. Because of rapid
hopping motions among such close coherent states induced
by the exciton-phonon interactions, only the hopping dephas-
ing can destroy the quantum coherence rapidly. Theoreti-
cally, we showed that the EECT process cannot happen dur-
ing � and t periods because the corresponding kernel
functions averaged over the phonon degrees of freedom van-
ish �Appendix B�, whereas the pure dephasing is critical in
describing � and t dependencies of a nonlinear response
function. Nevertheless, since we have fully included diago-
nal disorder effects as well as diagonal exciton-phonon cou-
plings, our results contain effects of pure dephasing. Since
the diagonal exciton-phonon coupling is treated nonperturba-
tively, the nuclear reorganization energy is properly incorpo-
rated in the present theory.

We have found that the transition rate kernel function of
EECT is independent of time, which is not the case for EPT.
Furthermore, since the kernel function of EECT has direct
linear dependency on �, which determines the overall mag-

FIG. 6. �Color� �a� Absolute magnitude of the 2D photon echo spectrum
I3��1 , t2 ,�3� in Eq. �84� at t2=100 fs. The horizontal and vertical axes are

�1−�̃m cm−1 and �3−�̃m cm−1, respectively. �b� The same as �a�, but with-
out EECT. The 2D correlation spectrum at an early time can be less diago-
nally elongated due to the decoherence of multiple quantum coherent states,
i.e., hopping dephasing.
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nitude of spectral density and is linearly proportional to the
fluorescence Stokes shift, the photon echo peak shifts includ-
ing EECT were found to be more sensitive to the homoge-
neous dephasing parameter than those without EECT. This
indicates that the parameter � determining the homogeneous
line-broadening process is an important factor for both EPT
and EECT in a molecular aggregate and also in determining
their relative weights. It is well known that conventional
EPT rate constants are determined by the extent of overlap
between probability densities of two different exciton
states7,19,29 as well as the spectral density at �� jk, which is
the energy gap between the jth and kth exciton states. As also
seen in the detailed balance condition, there is a temperature
dependent factor of exp�−�� jk /kBTB�, which indicates that
the EPT rate is exponentially temperature dependent. In
other words, the population transfer rate kernel depends on
the time-dependent fluctuating bath-mode correlation func-
tion that is exponentially dependent on thermal energy, kBTB.
Indeed, as we discussed in Sec. IV, highly fluctuating coher-
ent states appear in the population transfer process due to its
coupling to the bath degrees of freedom. This fact implies
the more sensitive temperature dependency of the EPT ker-
nel function. On the other hand, the EECT kernel function is
less susceptible to TB since the Boltzmann factor does not
appear in the expression for the EECT rate function.

Finally, we would like to mention a few limitations of
the present theory which arise from few approximations in-
voked in the present theoretical work. By introducing the
thermal averaging of the doorway and window functions
separately, we neglected the long-time correlation of the
system–heat bath interaction modes during the propagation
time T. Similarly, the rate kernel function was obtained by
taking separate ensemble averages of Eq. �B17� to obtain Eq.
�43� over the harmonic heat-bath modes. We assumed that
the spectral densities of all chromophores are identical and
uncorrelated to each other, but in the future it may be desir-
able to use nonuniform and correlated spectral densities. Ad-
ditionally, an anharmonicity of heat-bath modes, nonlinear
system-bath couplings, and instability of a coherent state
might not be negligible. By far, the most challenging issue is
to develop a nonperturbative way to include EECT contribu-
tion to the nonlinear response function in the future.11,30
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APPENDIX A: EXPLICIT EXPRESSIONS OF Ĝ„t2…

We have the following identity:22,23

Ĝ�t2� = exp�− i�L̂0 + L̂1�t2�

= e−iL̂0t2 − i�
0

t2

dte−iL̂0�t2−t�L̂1e−iL̂0t

− �
0

t2

dt��
0

t�
dt�e−iL̂0�t2−t��L̂1e−iL̂0�t�−t��L̂1e−iL̂t�.

�A1�

Using the useful formulas L̂0P=PL̂0=0, PL̂1P=0, and PQ
=QP=0, we find

ĜPQ�t2� = − i�
0

t2

dtPe−iL̂0�t2−t��P + Q�L̂1�P + Q�e−iL̂0tQ

�A2�

�− i�
0

t2

dtPe−iL̂0�t2−t�PL̂1Qe−iL̂tQ � O�L̂1� �A3�

to the lowest order of L̂1. In the third equation, we added L̂1

in the last exponential function of the integrand, which is the
same assumption made in Ref. 22. Similarly, we have

ĜQP�t2� = − i�
0

t2

dtQe−iL̂0�t2−t��P + Q�L̂1�P + Q�e−iL̂0tP

�A4�

�− i�
0

t2

dtQe−iL̂�t2−t�QL̂1Pe−iL̂0tP � O�L̂1� �A5�

and

ĜPP�t2� = Pe−iL̂0t2P − �
0

t2

dt��
0

t�
dt�Pe−iL̂0�t2−t��

��P + Q�L̂1�P + Q�e−iL̂0�t�−t��

��P + Q�L̂1�P + Q�e−iL̂t�P �A6�

�Pe−iL̂0t2P − �
0

t2

dt��
0

t�
dt�Pe−iL̂0�t2−t��

�PL̂1Qe−iL̂�t�−t��QL̂1Pe−iL̂0t�P � O�L̂1
2� . �A7�

The above equations become exact when we consider an
exciton system consisting of only two monomers. This is
because QL1Q=0 holds for such a system.

APPENDIX B: SINGLE EXCITON COHERENCE
TRANSFER IN MOLECULAR AGGREGATES

The SECT is discussed in this Appendix. It will be
shown that the SECT contributions vanish as long as the heat
bath is a collection of harmonic oscillators and the exciton-
phonon coupling coefficients linearly depend on heat-bath
coordinates.
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1. Projection operator expression

With the unit operator P+Q operating on Ĝ�t1� and

Ĝ�t3�, we have

Ĝ�t1� = �P + Q�Ĝ�t1��P + Q� �B1�

=ĜQQ�t1� �B2�

and

Ĝ�t3� = �P + Q�Ĝ�t3��P + Q� �B3�

=ĜQQ�t3� . �B4�

It should be mentioned that during t1 and t3, the density
matrix is in a coherent state off-diagonal density matrix such
as 	̂0�, 	̂0�̄, and 	̂��̄. Thus, we only need to consider the

elements of QQ in Eqs. �B2� and �B4�. Substitution of Ĝ�t1�
and Ĝ�t3� into Eq. �7� leads to

R�3��t3,t2,t1� = i3 Tr�d̂ĜQQ�t3�d̂�ĜPP�t2�d̂�ĜQQ�t1�d̂�	̂00� + i3 Tr�d̂ĜQQ�t3�d̂�ĜPQ�t2�d̂�ĜQQ�t1�d̂�	̂00�

+ i3 Tr�d̂ĜQQ�t3�d̂�ĜQP�t2�d̂�ĜQQ�t1�d̂�	̂00� + i3 Tr�d̂ĜQQ�t3�d̂�ĜQQ�t2�d̂�ĜQQ�t1�d̂�	̂00� . �B5�

To the second order with respect to L̂1, we have

R�3��t3,t2,t1� = i3 Tr�d̂ĜQQ
0 �t3�d̂�ĜPP

0 �t2�d̂�ĜQQ�t1�d̂�	̂00� + i3 Tr�d̂ĜQQ
0 �t3�d̂�ĜQQ

0 �t2�d̂�ĜQQ�t1�d̂�	̂00�

+ i3 Tr�d̂ĜQQ�t3�d̂�ĜPP
0 �t2�d̂�ĜQQ

0 �t1�d̂�	̂00� + i3 Tr�d̂ĜQQ�t3�d̂�ĜQQ
0 �t2�d̂�ĜQQ

0 �t1�d̂�	̂00� . �B6�

It is noted that the EECT processes during t2 were discussed in the main text and that the zeroth-order terms in Eq. �B6�,
i3 Tr�d̂ĜQQ

0 �t3�d̂�ĜPP
0 �t2�d̂�ĜQQ

0 �t1�d̂�	̂00� and i3 Tr�d̂ĜQQ
0 �t3�d̂�ĜQQ

0 �t2�d̂�ĜQQ
0 �t1�d̂�	̂00� were already studied in detail in

Ref. 17.

2. The doorway-window picture

Equation �B6� can now be rewritten as, in terms of the doorway and window functions,

R�3��t3,t2,t1� = i3 �

,
�

Tr�d̂ĜQQ
0 �t3�d̂�ĜPP

0 �t2�d̂�Q
Ĝ�t1�Q
�d̂
�	̂00� + i3 �


,
�

Tr�d̂ĜQQ
0 �t3�d̂�ĜQQ

0 �t2�d̂�Q
Ĝ�t1�Q
�d̂
�	̂00�

+ i3 �

,
�

Tr�d̂Q
Ĝ�t3�Q
�d̂
�ĜPP

0 �t2�d̂�ĜQQ
0 �t1�d̂�	̂00� + i3 �


,
�

Tr�d̂Q
Ĝ�t3�Q
�d̂
�ĜQQ

0 �t2�d̂�ĜQQ
0 �t1�d̂�	̂00� �B7�

=− i�

,
�

W

a�t3,t2�G̃

�

S �t1� − i�

,
�

W

b�t3,t2�G̃

�

S �t1� − i�

,
�

G̃

�
S �t3�D
�

a �t2,t1� − i�

,
�

G̃

�
S �t3�D
�

b �t2,t1� , �B8�

where 
 and 
� denote the coherent states such as 	0� and
	��̄. In Eq. �B8�, we introduced the doorway functions

D
�
a �t2,t1� � Tr�
�†Q
�d̂

�ĜPP
0 �t2�d̂�ĜQQ

0 �t1�d̂�	̂00� ,

�B9�

D
�
b �t2,t1� � Tr�
�†Q
�d̂

�ĜQQ
0 �t2�d̂�ĜQQ

0 �t1�d̂�	̂00�

�B10�

and the window functions

W

a�t3,t2� � Tr�d̂ĜQQ

0 �t3�d̂�ĜPP
0 �t2�d̂�	̂
� , �B11�

W

b�t3,t2� � Tr�d̂ĜQQ

0 �t3�d̂�ĜQQ
0 �t2�d̂�	̂
� . �B12�


�† is necessary to generate the state 	
� in the following

Green’s function Ĝ

�
S �t3�. The Green’s function, which re-

flects SECT, corresponds to the matrix element of ĜQQ�t�,

Ĝ

�
S �t� � Q
Ĝ�t�Q
�d̂

�	̂00 = Q
Ĝ�t�Q
�	̂
�. �B13�

This means the conditional probability for the coherent state
to be in 
 at time t when it starts at 
� at time t=0. We
further introduce, in Eq. �B8�,

G̃
ˆ



�
S �t� � 
†Ĝ

�

S �t� �B14�

in order to cancel the state 	
 in the above W

a�t3 , t2� and

W

a�t3 , t2� and to include the left P in the third and fourth

terms of Eq. �B7�

3. The time-evolution equation of the Green’s
function

Since at time t1=0 and t3=0, the density matrix must
have a coherent state, the time-evolution equation of the
Q-projected density matrix �Eq. �34�� leads to
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�Q	�t�
�t

= − iQL̂Q	�t� − �
0

t

d�QL̂1PL̂1Q	��� . �B15�

Replacing the left Q with Q
 and 	�t� with e−iL̂tQ
�	�0�, Eq.
�B15� gives

�Q
e−iL̂tQ
�	�0�

�t
= − i�

�

Q
L̂Q�e−iL̂tQ
�	�0�

− �
�
�

0

t

d�Q
L̂1PL̂1Q�e−iL̂�Q
�	�0�

�B16�

At last, we can derive the time-evolution equation of the
SECT Green’s function,

�Ĝ

�
S �t�

�t
= − i�

�

Q
L̂Ĝ�
�
S �t�

− �
�
�

0

t

d�Q
L̂1PL̂1G�
�
S ��� . �B17�

In terms of G̃
ˆ



�
S �t� in Eq. �B14�, we obtain

�G̃

�
S �t�

�t
= �

�

K
�
a G̃�
�

S �t� + �
�
�

0

t

d�K
�
b G̃�
�

S ��� , �B18�

with the kernel functions

K
�
a � − i Tr�
†Q
L̂	�� �B19�

and

K
�
b � − Tr�
†Q
L̂1PL̂1	�� . �B20�

4. Explicit calculations of the rate kernel
functions

We derive explicit forms of the rate kernel functions
�Eqs. �B19� and �B20��. The rate kernel functions can be
expressed as

K
�
a = − i������ Tr��B̂�

† B̂��†Q��Ĥ0	���

+ i������ Tr��B̂�
† B̂��†Q��	��Ĥ0�

− i��� Tr��B̂�
† B̂��†Q��Ĥ1	���

+ i��� Tr��B̂�
† B̂��†Q��	��Ĥ1� �B21�

and

K
�
b = − ��� Tr��B̂�

† B̂��†Q��Ĥ1�PĤ1	����

+ ��� Tr��B̂�
† B̂��†Q���PĤ1	���Ĥ1�

+ ��� Tr��B̂�
† B̂��†Q��Ĥ1�P	��Ĥ1��

− ��� Tr��B̂�
† B̂��†Q���P	��Ĥ1�Ĥ1� , �B22�

where we set 
=�� and �=�� on the right-hand side. The
summation over � in Eq. �B18� now corresponds to the sum-
mations over � and �. We note that during the intervals t1 and

t3, ��=0�, �0, �̄�, and ��̄. Substituting the nonperturbative
and perturbative Hamiltonians �Eqs. �5� and �6�� into the
kernel function �Eq. �B21��, we obtain

K
�
a = − i����

��

Tr��B̂�
† B̂��†q��

�c�B̂�
† B̂�	���

+ i����
��

Tr��B̂�
† B̂��†	��q��

�c�B̂�
†B̂��

= − i���
q��
�c�� + i���
q��

�c�� . �B23�

The first and second terms in Eq. �B21� vanish because they
are canceled by each other. We emphasize that K
�

a results in
zero as long as we adopt the harmonic bath and the coupling
constant q��

�c� is proportional to qj due to Eq. �3�. It can be
said that if any contribution from SECT appeared, we could
indicate that the heat-bath oscillators are not harmonic, or
that the exciton-phonon coupling is not linearly proportional
to the bath coordinates.

We next discuss PĤ1	�� and P	��Ĥ1 in K
�
b of Eq.

�B22� and find that they vanish. This is because the coherent
states during t1 and t3 include only 	0�, 	��̄, and their con-

jugates, and Ĥ1 in Eq. �6� cannot create the density matrix
which does not vanish after the P operator.

Finally, we have the time-evolution equation of the
Green’s function as

�G̃

�
S �t�

�t
= 0, �B24�

which shows that G̃

�
S �t� is zeroth order of L̂1. We therefore

conclude that no exciton coherence transfer occurs during t1

and t3. In other words, R�3��t3 , t2 , t1� in Eq. �B6�
results in i3 Tr�d̂ĜQQ

0 �t3�d̂�ĜPP
0 �t2�d̂�ĜQQ

0 �t1�d̂�	̂00�
+ i3 Tr�d̂ĜQQ

0 �t3�d̂�ĜQQ
0 �t2�d̂�ĜQQ

0 �t1�d̂�	̂00�, which have
been already calculated in Ref. 17. We will not calculate and
show any explicit forms of the doorway and window func-
tions appearing in Eqs. �B9�–�B12�. It is also unnecessary to
give the application to a four-wave-mixing experiment.

APPENDIX C: THE KERNEL FUNCTION FOR THE
DOUBLE EXCITON STATE

The kernel function �Eq. �42�� for the two-exciton state
can be expressed as

K
� = − �0� Tr�
†Q
Ĥ1�PĤ1	̂����

+ �0� Tr�
†Q
�PĤ1	̂���Ĥ1�

+ �0� Tr�
†Q
Ĥ1�P	̂��Ĥ1��

− �0� Tr�
†Q
�P	̂��Ĥ1�Ĥ1� , �C1�

The summation over � in Eq. �43� now corresponds to the
summations over � and �. Note that the above � in the upper
line and � in the lower line mean two-exciton states. The
above kernel function vanishes since P is operated after one

coherence transfer by Ĥ1. We emphasize that Ĥ1 in Eq. �6�
cannot make any population state even if it is operated at 	̂�̄0

and 	̂0�̄.
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