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ABSTRACT
We investigate the efficiency of a quantum Carnot engine based on open quantum dynamics theory. The model includes time-dependent
external fields for the subsystems controlling the isothermal and isentropic processes and for the system–bath (SB) interactions control-
ling the transition between these processes. Numerical simulations are conducted in a nonperturbative and non-Markovian SB coupling
regime by using the hierarchical equations of motion under these fields at different cycle frequencies. The work applied to the total system
and the heat exchanged with the baths are rigorously evaluated. In addition, by regarding quasi-static work as free energy, we compute the
quantum thermodynamic variables and analyze the simulation results by using thermodynamic work diagrams for the first time. Analy-
sis of these diagrams indicates that, in the strong SB coupling region, the fields for the SB interactions are major sources of work, while
in other regions, the field for the subsystem is a source of work. We find that the maximum efficiency is achieved in the quasi-static case
and is determined solely by the bath temperatures, regardless of the SB coupling strength, which is a numerical manifestation of Carnot’s
theorem.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0107305

I. INTRODUCTION

In 1824, Carnot proposed a reversible heat engine (subse-
quently named the Carnot engine) that operates between a high-
temperature (hot) bath at temperature T1 and a low-temperature
(cold) bath at temperature T2, with gas used as a working medium.1
This heat engine performs the Carnot cycle, which consists of
four reversible processes: (i) isothermal expansion, (ii) isentropic
expansion, (iii) isothermal compression, and (iv) isentropic com-
pression. Here, heat Q1 is absorbed from the hot bath, and work
is produced during the isothermal expansion process; heat Q2 is
expelled to the cold bath, and some work is lost in the isothermal
compression process. The isentropic processes bridge the two
isothermal processes quasi-statically by lowering or raising the
temperature of the system to T2 or T1, respectively. The work is done
while adiabatically reducing the temperature, and the net heat gain
is equal to the work done, i.e., W = Q1 −Q2. Carnot proved that (a)
the thermal efficiency of this engine is the maximum that is possible
and that (b) this maximum efficiency is determined solely by the
temperatures of the heat baths (Carnot’s theorem). Moreover, in

the Carnot cycle, the relationship Q1/T1 −Q2/T2 = 0 is satisfied. To
elucidate the characteristic features of the Carnot cycle, a thermo-
dynamic work diagram (the P–V diagram) was later introduced by
Clapeyron.2 The work done by the system is represented by the area
enclosed by the curves in the P–V diagram.

In 1848, Thomson (later Lord Kelvin) established that the tem-
peratures appearing in the above formula should be regarded as
thermodynamic (or absolute) temperatures.3 In the 1850s, the foun-
dations of the second law of thermodynamics were established by
Clausius on the basis of Carnot’s result.4,5 This result was gener-
alized by Thomson and Clausius as ∮ dQ/T = 0, where T is the
temperature of the heat source and Q is the heat reversibly trans-
ferred to the system. In 1865, Clausius introduced the concept of
entropy, which is defined as dS = dQ/T, and expressed the second
law of thermodynamics for heat Q as ∮ dQ/T < ∮ dS = 0 in any
irreversible process.6 Entropy is an extensive variable that charac-
terizes the reversibility or irreversibility of thermal processes based
on the Carnot cycle, and its conjugate intensive variable is temper-
ature. The Carnot cycle was a key element in the construction of
thermodynamics.
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Recently, the advent of nanotechnology has led to thermody-
namic investigations being extended to the quantum regime,7–27 in
which the work and heat to be manipulated are quantized.28–39 How-
ever, such studies involve fundamental difficulties because the time
evolution of the main system (subsystem) is described by quantum
mechanics, while the thermal effects of the system are described
by macroscopic thermodynamics and statistical mechanics for the
equilibrium state. For example, in an investigation of isothermal
processes, we must explicitly treat the system–bath (SB) interactions
so as to maintain the subsystem in a state of thermal equilibrium
under the influence of an external force. Because the energy scale of
the SB interactions is comparable to the energy of the subsystem,
we must consider not only the subsystem but also the SB inter-
actions in a quantum-mechanically consistent manner. Moreover,
the quantum description of the heat bath is significant because the
subsystem and the bath are entangled (bathentanglement), partic-
ularly in the low-temperature case.40–43 In an adiabatic process, a
thermodynamic system with a large number of degrees of freedom
is usually assumed to be in an equilibrium state with a quasi-static
change in an extensive thermodynamic variable. However, an iso-
lated quantum subsystem cannot reach a thermal equilibrium state
of its own, and thus, its temperature cannot be uniquely defined
during adiabatic processes. Additionally, the definitions of thermo-
dynamic variables in a small subsystem, particularly extensive vari-
ables such as magnetization and strain, are not clear in the quantum
case.

In this paper, to clarify the relationship between quantum
mechanics and statistical thermodynamics, we describe the results
of quantum simulations of a Carnot cycle on the basis of an
SB model. Although such investigations have been conducted in
the framework of open quantum dynamics theories, even for
strong SB coupling cases (e.g., for heat transport,44–58 heat engines
and refrigerators,59–79 entropy production,80–82 nonequilibrium
cases,19,83 and quantum information problems,84,85 in addition to
being applied as a context for the Jarzynski equality,86–88 fluc-
tuation theorems,89–94 and Maxwell’s demon95–97), fully quantum
investigations face difficulties because of the lack of a consistent
thermodynamic formulation for a thermal system described by a
Hamiltonian with external time-dependent perturbations.

Recently, it was shown that heat can be defined as the change in
the heat-bath energy.57,64 The key to investigating this problem is the
hierarchical equations of motion (HEOM) formalism, which enables
the evaluation of the internal energies of not only the subsystem,
but also the bath and the SB interactions, even in low-temperature,
non-Markovian, and nonperturbative conditions.40–43,98–100 We
show that, by introducing a time-dependent SB interaction,
thermal transitions between isothermal and adiabatic states can also
be investigated. By using HEOM to calculate the change in work and
bath energy applied to the entire system, the efficiency of the heat
engine under an arbitrary time-dependent external field can then be
evaluated without assumptions.101

To enable thermodynamic analysis, the thermodynamic
variables can be treated based on the SB model. For this pur-
pose, we adopt the minimal work principle for a total isolated
system, expressed as Wtot(t) ≥ ΔFtot(t), where Wtot(t) is the work
done by external fields and ΔFtot(t) is the change in free energy,
and define the “quasi-equilibrium” Helmholtz energy (qHE) as
ΔFtot(t) =Wqst

tot (t) with the system driven quasi-statically by

external fields. Although Wtot(t) cannot be evaluated within the
framework of regular open quantum dynamics theories (because
the number of degrees of freedom of the bath has been reduced),
we can evaluate this quantity indirectly using the hierarchical
elements in the HEOM formalism. This is because, in the HEOM
formalism, the higher hierarchical elements store information
about the higher cumulant of the bath coordinates, as previously
demonstrated.53,57,64,82,88 We then show that the Kelvin–Planck
statement (or heat engine statement) of the second law of thermo-
dynamics is only validated when we introduce a time-dependent
SB interaction that describes energy conservation for adiabatic
transitions.101

To this end, we extend previous research to verify Carnot’s
theorem using the HEOM approach. The Carnot engine is described
as a two-level subsystem (A) coupled with harmonic heat baths (B).
To control the isothermal process, we consider the external field
for the system (the isothermal driving field) and, to turn the hot
and cold baths on and off, we introduce two time-dependent SB
interactions (the adiabatic transition fields). We then investigate
the thermodynamic efficiency of the Carnot cycle under various
physical conditions. In addition, using the qHE formalism, thermo-
dynamic work diagrams of external forces (such as stresses) and
their conjugate variables (such as strains), similar to Clapeyron’s
P–V diagram,2 are introduced to analyze the work performed in the
system. This extension is useful for analyzing experimental results
in the quantum regime, where the quantized work and heat are to be
manipulated.28,29,31–38

The remainder of this paper is organized as follows: In Sec. II,
we introduce the SB Hamiltonian and the HEOM formalism. We
then describe the scheme used to calculate various thermodynamic
variables based on open quantum dynamics theory. In Sec. III,
we explain our model of the quantum Carnot cycle and present
simulation results under the isothermal driving and adiabatic transi-
tion fields. The conjugate properties of these variables are calculated
by regarding quasi-static work as free energy. Thermodynamic work
diagrams are presented as functions of these variables. Finally,
Sec. IV presents concluding remarks.

II. THEORY
A. Model

We consider a subsystem A coupled to two heat baths at
high and low inverse temperatures β1 = 1/kBT1 and β2 = 1/kBT2
as the heat sources, where kB is the Boltzmann constant. The total
Hamiltonian is expressed as

Ĥtot(t) = ĤA(t) +
2

∑
k=1
(Ĥk

I (t) + Ĥk
B), (1)

where ĤA(t), Ĥk
I (t), and Ĥk

B are the Hamiltonians of the system, kth
SB interaction, and kth bath, respectively. We consider a two-level
system (TLS) defined as

ĤA(t) = −B(t)σ̂z + Eσ̂x, (2)

where B(t) is the isothermal driving field (IDF), E is the off-diagonal
coupling parameter, and σ̂α (α = x, y, or z) are Pauli matrices. In the
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case of a spin system, B(t) corresponds to the longitudinal magnetic
field, and E is the transverse electric (Stark) field. The Hamiltonian
representing the kth SB interaction and the kth bath is given by101

Ĥk
I (t) = Ak(t)V̂k∑

j
ck

j [b̂
k
j + (b̂

k
j )

†
] (3)

and

Ĥk
B =∑

j
h̵ωk

j [(b̂
k
j )

†b̂k
j +

1
2
], (4)

respectively, where V̂k is the system operator that describes the
coupling to the kth bath, and Ak(t) is the adiabatic transition field
(ATF), which is introduced to describe the operation of an adiabatic
wall between the system and the kth heat bath (e.g., the insertion
or removal of the adiabatic wall or attaching or detaching the quan-
tum system to/from the bath). Here, ωk

j , ck
j , b̂k

j , and (b̂ k
j )

† are the
frequency, coupling strength, and annihilation and creation opera-
tors for the jth mode of the kth bath, respectively.

Due to the bosonic nature of the baths, all bath effects on
the system are determined by the kth bath correlation function,
Ck(t) ≡ ⟨X̂k(t)X̂k(0)⟩B, where X̂k ≡ ∑jc

k
j [b̂

k
j + (b̂

k
j )

†
] is the collec-

tive coordinate of the kth bath and ⟨⋅ ⋅ ⋅⟩B represents the average
taken with respect to the canonical density operator of the baths.
The bath correlation function is expressed as

Ck(t) = ∫
∞

0
dω

Jk(ω)
π
[coth(

βkh̵ω
2
) cos(ωt) − i sin(ωt)], (5)

where Jk(ω) ≡ π∑j(c
k
j )

2δ(ω − ωk
j ) is the bath spectral density. The

real part of Eq. (5) is analogous to the classical correlation function
of the bath and corresponds to the fluctuations, while the imagi-
nary part corresponds to the dissipation. The fluctuation term is
related to the dissipation term through the quantum version of the
fluctuation–dissipation theorem.40,98 In this paper, we use the Drude
spectral density function, described as

Jk(ω) =
h̵γ2

kω
γ2

k + ω2 , (6)

where γk is the inverse noise correlation of the kth bath.

B. Hierarchical equations of motion
In the HEOM formalism, the set of equations of motion con-

sists of the auxiliary density operators (ADOs).40–43,98–101 Here,
we consider the case in which the bath correlation function,
Eq. (5), is written as a linear combination of exponential functions,
Ck(t) = ∑

Kk
l=0ζk

l e−νk
l ∣t∣, where νk

l , ζk
l , and Kk are the frequency,

strength, and cutoff integer value for the kth bath obtained from a
Padé spectral decomposition scheme to reduce the hierarchy size.102

The ADOs introduced in the HEOM are defined by ρ̂n⃗(t) with
a set of indices n⃗ = (n0

1, . . . , nK1
1 , n0

2, . . . , nK2
2 ), where nk

l represents
an integer value of zero or above. The zeroth ADO, ρ̂0⃗(t) with

0⃗ = (0, 0, . . . , 0), corresponds to the actual reduced density operator.
The HEOM for the IDF and ATFs is then expressed as101

∂

∂t
ρ̂n⃗(t) = (−

i
h̵

Ĥ×A(t) −
2

∑
k=1

Kk

∑
l=0

nk
l νk

l )ρ̂n⃗(t)

−
i
h̵

2

∑
k=1

Ak(t)
Kk

∑
l=0

nk
l Θ̂k

l ρ̂n⃗−e⃗ k
l
(t)

−
i
h̵

2

∑
k=1

Ak(t)
Kk

∑
l=0

V̂×k ρ̂n⃗+e⃗ k
l
(t), (7)

where e⃗ k
l is the (Kk + 1)-dimensional unit vector. We introduce a set

of fluctuation–dissipation operators as

Θ̂k
0 ≡ (

γk

βk
+

Km

∑
m=1

ζk
mγ2

k
βk

2γk

γ2
k − (ν

k
m)

2 )V̂×k −
ih̵γ2

k
2

V̂
○

k (8)

and

Θ̂k
l ≡ −

ζk
l γ2

k
βk

2νk
l

γ2
k − (ν

k
l )

2 V̂×k , (9)

where Ô ×P̂ = [Ô, P̂] and Ô○P̂ = {Ô, P̂} for arbitrary operators Ô
and P̂.

As the temporal initial conditions, we consider the factorized
initial case,

ρ̂tot(0) = ρ̂A(0)
2

∏
k=1

e−βkĤ k
B

trB{e−βkĤ k
B}

,

where ρ̂A(t) = ρ̂0⃗(t) is the reduced density operator of the subsys-
tem. To obtain the bathentangled steady-state solution described as
ρ̂n⃗(t), we integrate the HEOM under the periodical external fields
until all of the hierarchy elements reach a steady state.

Using the zeroth member of the hierarchy ρ̂0⃗(t), the nonequi-
librium internal energy of the system (or the expectation value of the
system energy) at time t is evaluated as

Uneq
A (t) = trA{ĤA(t)ρ̂0⃗(t)}. (10)

The nonequilibrium internal energy of the kth SB interaction is then
expressed as57,64,82,88

Uneq
Ik
(t) = Ak(t)

Kk

∑
l=0

trA{V̂kρ̂e⃗ k
l
(t)}, (11)

where e⃗ k
l is the index for the first-order hierarchical member.

Using the HEOM formalism, we can evaluate the kth bath
energy as82,101
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∂

∂t
Uneq

Bk
(βk; t) = Ak(t)

Kk

∑
l=0

νk
l tr{V̂kρ̂e⃗l(t)} + A2

k(t)γ
2
ktrA{V̂2

kρ̂0⃗(t)}.

(12)

Because there is no external force applied to the bath, the kth bath
heat can be obtained by integrating the above equation as

QBk(βk; t) = ΔUneq
Bk
(βk; t), (13)

with ΔUneq
Bk
(βk; t) ≡ Uneq

Bk
(βk; t + δt) −Uneq

Bk
(βk; t), where δt is the

time step of the thermal process.
In this study, work is defined as the change in energy from

one state to another state under a time-dependent perturbation
expressed as

Wtot(t) = ∫
t+δt

t
dt′tr{

dĤtot(t′)
dt′

ρ̂tot(t′)}. (14)

Because there is no external field for the bath, we have Wtot(t)
=WA+I(t), where

WA+I(t) ≡WA(t) +WI1(t) +WI2(t). (15)

Using the HEOM, each component is evaluated as

WA(t) = ∫
t+δt

t
dt′ trA{

∂ĤA(t′)
∂t′

ρ̂0⃗(t
′
)} (16)

and

WIk(t) = ∫
t+δt

t
dt′

dAk(t′)
dt′

Kk

∑
l=0

trA{V̂kρ̂e⃗ k
l
(t′)}. (17)

By this definition, when Wtot(t) > 0, work is done from the outside
to the total system and is called “positive work.”

Using the above-mentioned equation, we can evaluate the kth
bath energy for Ak(t) > 0 more accurately than from Eq. (12) as

∂

∂t
Uneq

Bk
(βk; t) = −

∂

∂t
[Uneq

A (t) +Uneq
Ik
(t)] +

∂

∂t
[WA(t) +WIk(t)].

(18)

C. Quasi-equilibrium Helmholtz energy
and thermodynamic variables

Using the above definition of work with the HEOM, the effi-
ciency of the system driven by the IDF and ATFs can be evaluated
numerically and rigorously for any cycle speed. Nevertheless, we
concentrate our discussion to the quasi-static case and attempt
to quantify the quantum thermodynamic variables by comparing
the physical quantities calculated in the HEOM with the ther-
modynamic quantities evaluated in the qHE, as explained in the
following.

The work for the total system satisfies the minimum work
principle, expressed as103–105

Wtot(β; t) ≥ ΔFtot(β; t), (19)

which corresponds to the second law of thermodynamics. For the
SB model, the above inequality has been verified numerically by
placing the real-time HEOM for work on the left-hand side and
the imaginary-time HEOM for the free energy on the right-hand
side.42,43,106 This is because, even when ĤA and ĤI are weakly
dependent on time, the steady-state solution of the HEOM is repre-
sented as the reduced density operator of the total equilibrium state,
expressed as trB{exp[−β(ĤA + ĤI + ĤB)]}.42,43 It is known that, for
a quasi-static process, the equality can be expressed within the level
of numerical accuracy as82,88,101

ΔFqst
tot(β; t) =Wqst

tot (β; t). (20)

Although the above equation holds for the total system, rather than
the reduced system, we can utilize the qHE by using the HEOM for-
malism because, through the use of the HEOM elements, we can
evaluate the total work of the system, as illustrated in Eqs. (14)–(17).
For each component, we also have ΔFqst

α (β; t) =Wqst
α (β; t) for

α = A, I1, and I2, where Wqst
α (β; t) is defined by Eqs. (16) and (17)

using the quasi-static solution of the HEOM, which is expressed as
ρ̂qst

n⃗ (t).
101

In the Carnot cycle, the subsystem interacts with a single bath at
a time. For external fields, such as the magnetic field B(t) and stress
Ak(t), we then have that ΔFqst

tot(β; t) = ΔFqst
A+I(β; t) for β = βk with

k = 1 or 2, where ΔFqst
A+I(βk; t) ≡ ΔFqst

A (βk; t) + ΔFqst
I_k(βk; t). Then, we

can define the conjugate variables, such as the magnetization and
strain, as101

Mqst
(βk; t) ≡ −

∂ΔFqst
A (βk; t)
∂B(t)

(21)

and

Dqst
k (βk; t) ≡ −

∂ΔFqst
Ik
(βk; t)

∂Ak(t)
. (22)

Thus, we can evaluate the above variables in terms of the state
described by the ADOs at time t as

Mqst
(βk; t) = trA{σ̂zρ̂0⃗(t)} (23)

and

Dqst
k (βk; t) = −

Kk

∑
l=0

trA{V̂kρ̂e⃗ k
l
(t)}. (24)

The change in the quasi-equilibrium Boltzmann entropy from time t
to t + δt can also be evaluated by differentiating the qHE with respect
to the kth bath inverse temperature βk as82
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ΔSqst
A+I(βk; t) ≡ kBβ2

k
∂ΔFqst

A+I(βk; t)
∂βk

, (25)

where we consider the case in which the subsystem interacts with the
kth bath at that time. A comparison of this definition with the von
Neumann entropy using the simulation results for the Carnot cycle
is given in Appendix B.

Note that Mqst
(β; t), Dqst

k (β; t), and ΔSqst
A+I(β; t) are state vari-

ables in the quasi-static state because they are uniquely determined
by the state specified by the quasi-equilibrium distribution at t and
are independent of the pathway of work. When the subsystem con-
sists of n noninteracting spins that are independently coupled to the
heat bath, the magnitudes of the above variables are proportional to
n. Thus, they are extensive properties, while B(t), Ak(t), and β are
intensive properties.

The quasi-static isothermal process at temperature Tk = 1/kBβk
is then expressed as

dΔFqst
A+I(βk; t) = −ΔSqst

A+I(βk; t)dTk −Mqst
(βk; t)dB −Dqst

k (βk; t)dAk.
(26)

III. QUANTUM CARNOT CYCLE
The conventional Carnot cycle consists of a system, described

by pressure P and volume V , that interacts with hot and cold baths.
Although isothermal processes can be easily described by changing
an external perturbation B(t), there are several difficulties in real-
izing the Carnot cycle, even theoretically, in a nanoscale quantum
system. For example, to conduct a microscopic investigation of the
Carnot cycle, the thermal work done by the insertion or removal of
the adiabatic wall must be included because, otherwise, the energy
conservation of the total system would be violated. Accordingly,
because a small isolated system cannot reach thermal equilibrium
by itself, an isentropic process cannot be achieved spontaneously
by turning off the heat bath. Finally, although the Carnot cycle has
been commonly characterized by the P–V diagram, in a small quan-
tum system, the definitions of extensive variables are unclear. As we
explained, the qHE provides the necessary means for analyzing the
simulation results of the quantum Carnot cycle obtained from the
HEOM approach.

A. Case under factorized assumption
Before presenting the computational results, we will first illus-

trate the B–M diagram under the assumption that the free energy
of the TLS is determined by the partition function of the isolated
TLS with Markovian and extremely weak SB interactions (factor-
ized assumption). Thus, from F0

A(β; t) = − ln tr{exp[−βĤA(t)]}/β,
we have

F0
A(β; t) = −

1
β

ln[2 cosh(β
√

B2(t) + E2)]. (27)

The conjugate variable M0
A(βk; t) ≡ −∂F0

A(βk; t)/∂B at the inverse
temperature βk is then evaluated as

M0
A(βk; t) =

B(t)
√

B2(t) + E2
tanh(βk

√
B2(t) + E2). (28)

The entropy can also be evaluated by differentiating F0
A(β; t) with

respect to β as

S0
A(β; t) = kB{ln[2 cosh(β

√
B2(t) + E2)]

− β
√

B2(t) + E2 tanh(β
√

B2(t) + E2)}. (29)

This value agrees with the von Neumann entropy defined by
Eq. (B1) because the subsystem is isolated.

Under the factorized assumption, we can depict the B–M dia-
gram for the isothermal process B(t): (i) B1 → B2 and (iii) B3 → B4
for any form of B(t). To set up the isentropic processes (ii) B2 → B3
and (iv) B4 → B1, we must satisfy the condition (see Appendix A)

Bb =

¿
Á
ÁÀ
(

βa

βb
)

2

(B2
a + E2) − E2, (30)

where βa and βb are the inverse temperatures of the baths before and
after the adiabatic process for (a, b) = (ii, iii) or (iv, i); otherwise,
entropy would be generated. In the conventional Carnot cycle, the
isentropic process is regarded as a temperature-changing process,
in which the internal energy changes spontaneously under adiabatic
conditions. In the present case, the subsystem is isolated and the
internal energy does not change without an external field. More-
over, the definition of the temperature during the isentropic process
is not clear because the system is microscopic and isolated except for
the initial and final states at βa and βb. Thus, instead of assuming
a spontaneous change, we actively control the external field (IDF)
using Eq. (30) to realize the temperature change between βa and βb
in the isentropic processes.

As in the Carnot cycle, the parameters B1 and B2 can take
any values, but they must satisfy the relation B1 < B2 to ensure
that the work done by the cycle is positive. In Fig. 1, we depict
the B–M diagram for B1 =

√
15/2 and B2 =

√
7/2 with β1/β2 = 2.

In comparison with the P–V diagram for an ideal gas, the B–M
diagram has the opposite rotational direction. This is because an

FIG. 1. (a) B–M diagram of the Carnot engine driven by B(t) with E = 0.5 eval-
uated under the factorized assumption, i.e., FA(t) = −ln trA{exp[−βHA(t)]}/β.
Here, the blue and red curves represent the cold (β2 = 1.0) isothermal expan-
sion and hot (β1 = 0.5) isothermal compression processes, while the purple and
orange curves represent the hot isentropic expansion and cold isentropic com-
pression processes, respectively. The cycle starts from the red arrow and evolves
in a counterclockwise fashion over time (heat engine). (b) T–S diagram under the
same condition as (a).
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ideal gas is described by dU = TdS − PdV , whereas here we have
dU = TdS + BdM [see Eqs. (A2)–(A5)]. Thus, this cycle is described
as (i) isothermal compression, (ii) isentropic compression, (iii)
isothermal expansion, and (iv) isentropic expansion, which is the
opposite of the P–V case. The area enclosed by the curves corre-
sponds to the work, but a counterclockwise cycle represents positive
work, which is also the opposite of the P–V case.

B. Cases for nonperturbative and non-Markovian
conditions
1. Simulation details

We now simulate the Carnot engine by using our model,
which includes both the IDF and the ATFs. We compute Wtot(t)
=WA+I(t) for various cycle frequencies Ω, and then analyze the
characteristics of the engine in the quasi-static case by using ther-
modynamic variables defined by the qHE, ΔFqst

A+I(t) =Wqst
A+I(t). As

explained in the factorized case, to realize the isentropic processes,
we must change the IDF after removing or before attaching the heat
bath, as described by (ii) and (iv). In addition to the regular four
Carnot processes (i)–(iv), we must explicitly treat four additional
processes that represent (i′) removing and (iv′) attaching the hot
bath and (ii′) attaching and (iii′) removing the cold bath.

We conduct numerical simulations for the TLS coupled to
two bosonic baths at different temperatures by using the HEOM
approach. Here, we consider the equally spaced stroke period τ.
Thus, the cycle period and frequency are T = 8τ and Ω = π/4τ,
respectively (see Table I and Fig. 2). Throughout this paper, we fix
the system parameter as E = 0.5 and the bath parameters as β1 = 0.5,
β2 = 1.0, γ ≡ γ1 = γ2 = 1.0, and A0 = 0.1,

√
0.1, or

√
3.0, where

A0 ≡ A1 = A2 is the maximum strength of A1(t) and A2(t). We
choose the truncation number of the hierarchy, representing the
depth of the HEOM computation, as N = 8 for A0 =

√
3.0 and

N = 6 for the other cases. A Padé spectral decomposition scheme
is employed to obtain the expansion coefficients of the noise cor-
relation functions.102 We set the number of Padé frequencies to
K1 = K2 = 4. We integrate Eq. (7) from the temporal initial state

TABLE I. Cycle of the IDF [B(t)] and the hot and cold ATFs [A1(t) and A2(t)] for
an eight-stroke Carnot engine. Because we explicitly treat the bath removal and bath
attachment processes of hot and cold baths denoted by (i′)–(vi′), the cycle consists of
eight strokes. Here, the stroke intervals are equally spaced and described as τ. Thus,
the cycle period is T = 8τ. The parameters B1 and B2 can take any values, while B3

and B4 are determined from Eq. (30). We set B1 =
√

15/2, B2 =
√

7/2, B3 = 1/2,
and B4 =

√

3/2.

B(t) A1(t)/∣A1∣ A2(t)/∣A2∣

(i) B1 + (B2 − B1)t/τ 1 0
(i′) B2 1 − (t − τ)/τ 0
(ii) B2 + (B3 − B2) (t − 2τ)/τ 0 0
(ii′) B3 0 (t − 3τ)/τ
(iii) B3 + (B4 − B3) (t − 4τ)/τ 0 1
(iii′) B4 0 1 − (t − 5τ)/τ
(iv) B4 + (B1 − B4) (t − 6τ)/τ 0 0
(iv′) B1 (t − 7τ)/τ 0

FIG. 2. Time profiles of B(t), A1(t), and A2(t) for the eight-stroke Carnot cycle
depicted as functions of Ωt, where Ω = π/4τ. The profile of B(t) consists of
the red, purple, blue, and orange solid lines, corresponding to isothermal and
isentropic processes (i)–(iv), and the red, purple, blue, and orange dashed lines,
corresponding to the bath removal and bath attachment processes of hot and cold
baths (i′)–(vi′). The profiles of A1(t) and A2(t) consist of the orange dashed, red
solid, and red dashed lines, and the purple dashed, blue solid, and blue dashed
lines, corresponding to the bath attachment, operation, and removal processes
(vi′), (i), and (i′), and (ii′), (iii), and (iii′), for the hot and cold baths.

until the simulation cycle reaches the steady state with the time-
dependent fields by using the fourth-order Runge–Kutta method
with a time step of δt = 1.0 × 10−2. The various thermodynamic
variables can then be evaluated from the HEOM elements.

To reduce the computation time, we set ρ̂n⃗ to zero for the
elements N1 > 1 and N2 > 1 in τ ≥ 100, where Nk = ∑

Kk
l=0nk

l . This
treatment is valid because the ADOs of the hot bath are negligibly
small by the time the bath is restored to the system; the ADOs
decay exponentially in time after the baths are removed from the
system.

2. Thermal efficiency
We now investigate the efficiency of the engine, which is signif-

icant in the characterization of the Carnot cycle. The total work and
heat from the hot bath per cycle, Wtot and QB1 , are obtained from
Eqs. (12), (13), and (15)–(17). The efficiency is then evaluated as

ε =
Wtot

QB1

. (31)

Figure 3(i) displays the efficiency ε as a function of Ω for (a)
the weak (A0 = 0.1), (b) intermediate (A0 =

√
0.1), and (c) strong

(A0 =
√

3.0) SB coupling cases. For any A0, the efficiency converges
to the Carnot limit εC = 1 − βH/βC (which is 0.5 in the present
case) for the quasi-static case Ω→ 0, providing a manifestation of
Carnot’s theorem.

Figure 3(ii) displays the efficiency as a function of the SB
coupling strength A0 for the three values of Ω indicated by the
colored dashed lines in Fig. 3(i). When A0 is small, the thermal
excitation is weak and a longer time is required for equilibration.
Conversely, when A0 is very large, the efficiency decreases due to
the strong relaxation: the heat bath suppresses the kinetic motion
relating to the heat flow.57,64,82 Thus, for a fixed value of Ω, the
efficiency reaches a maximum in the intermediate region where
A0 is neither large nor small. This feature has been observed in
various quantum transport problems, such as exciton transfer107

and chemical-reaction problems,108 and is known in the classical
case as the Kramers turnover problem. As Ω becomes smaller and
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FIG. 3. (i) Efficiencies of the quantum Carnot engine calculated as a function of Ω
for different SB coupling strengths: (a) A0 = 0.1 (blue curve with square markers),
(b) A0 =

√

0.1 (green curve with circular markers), and (c) A0 =
√

3.0 (red curve
with triangular markers). (ii) Efficiencies of the quantum Carnot cycle as a function
of A0 at the frequencies Ω/2π = 1.25 × 10−3 (blue dashed curve), 2.5 × 10−4

(green dashed curve), and 6.25 × 10−5 (red dashed curve) marked with black
circular data points. The corresponding Ω is indicated by the dashed line for each
frequency in (i).

approaches the quasi-static limit, the A0 dependence of the efficiency
is suppressed and the results approach the Carnot limit, as can be
seen from Fig. 3(i).

3. B–M and A–D diagrams
Under the quasi-static condition, we can employ a thermody-

namic description of the system because the variables defined from
the qHE by Eqs. (21) and (22) become the state variables.82,88,101

By comparing these thermodynamic variables with the physical
quantities calculated by HEOM, we can quantitatively verify the qHE
description of quantum thermodynamics.

In Fig. 4, we depict the results for the IDF, hot ATF, and cold
ATF as the (1) B–M, (2) A1–D1, and (3) A2–D2 diagrams in the
quasi-static case for the (a) weak, (b) intermediate, and (c) strong
SB coupling cases. In these diagrams, the bath removal processes
(i′) and (iii′) and bath attachment processes (ii′) and (iv′) are rep-
resented as dashed curves. The trajectories of the work diagram
are periodic and closed because M, D1, and D2 are the state vari-
ables. The area enclosed by each diagram corresponds to negative
work when evolving in a counterclockwise fashion over time, and to
positive work when evolving in a clockwise fashion. We have numer-
ically confirmed that WA+I(β; t), evaluated as the areas surrounded
by the trajectories of the diagrams, agrees with WHEOM

A+I (t) calculated
from the HEOM (see Table II).

In the case of weak and intermediate SB coupling in Figs. 4(2a),
4(2b), 4(3a), and 4(3b), the positive work done by the hot ATF
and the negative work done by the cold ATF are approximately
equivalent and almost cancel each other out. Thus, the total work
is predominantly determined by the work done by the IDF, as
illustrated in the B–M diagram. In the cases of weak and intermedi-
ate coupling, the profiles in Figs. 4(1a) and 4(1b) thus become similar
to that in the factorized assumption case in Fig. 2.

In the cases of strong coupling in Figs. 4(1c)–4(3c), because the
SB interaction includes contributions from both the subsystem side
and the bath side, the profiles in the A–D and B–M diagrams change
significantly. If this TLS is regarded as a spin system, B(t) corre-
sponds to the excitation energy of the spin. Then, as B(t) increases,

FIG. 4. (1) B–M, (2) A1–D1, and (3) A2–D2 diagrams for the quasi-static processes
with E = 0.5 in (a) the weak SB coupling case (A0 = 0.1), (b) the intermediate SB
coupling case (A0 =

√

0.1), and (c) the strong SB coupling case (A0 =
√

3.0).
In (1), the B–M diagrams, the red and blue curves represent the (i) hot (β1 = 0.5)
isothermal compression and (iii) cold (β2 = 1.0) isothermal expansion processes,
whereas the purple and orange curves represent the (ii) isentropic compression
and (iv) isentropic expansion processes, respectively. The cycle starts from the red
arrow and evolves in a counterclockwise fashion over time (heat engine). In (2),
the A1–D1 diagrams, the red and orange dashed curves represent (i′) removing
and (iv′) attaching the hot bath, whereas in (3), the A2–D2 diagrams, the purple
and blue dashed curves represent (ii′) attaching and (iii′) removing the cold bath.
The cycles in the A1–D1 and A2–D2 diagrams start from the red and blue arrows
and evolve in clockwise and counterclockwise fashions over time (refrigerator and
heat engine), respectively.

the spin becomes aligned with the ground state, so the magneti-
zation M(β; t) increases. Because the SB interaction with V̂ = σ̂x
excites the spin, an increase or decrease in Ak(t) causes a decrease or
increase in M(β; t), even if B(t) remains constant. Thus, in the B–M
diagram in Fig. 4(1c), we observe a contribution from the red and
orange dashed lines resulting from changes in A1(t) in processes (i′)
and (iv′) and from the purple and blue dashed lines resulting from
changes in A2(t) in processes (ii′) and (iii′). The areas surrounded
by the trajectories of the B–M diagrams are divided vertically into
two parts, with the processes evolving in a counterclockwise fashion
over time at the top and those evolving in a clockwise fashion over
time at the bottom. In this case, the work is evaluated from the area
of the top minus the area of the bottom. In Fig. 4(1c), such effects
appear as the horizontal shifts of the solid curves corresponding
to (i)–(iv).

In the case of the A–D diagrams, an increase in B(t) suppresses
the spin excitation effect of Ak(t), so Dk(β; t) decreases even if Ak(t)
does not change, as shown by the red and blue horizontal lines in the
A1–D1 and A2–D2 diagrams in Figs. 4(2c) and 4(3c), respectively.
The suppression effect of B(t) is smaller for the hot bath than for
the cold bath, and the absolute value of the work done is larger for
A1 than for A2. The difference between the work done by A1 and
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TABLE II. Work done in one cycle for three values of the SB coupling strength A0. Here, Wa with a = B–M, A1–D1, and
A2–D2 represents the work evaluated as the areas surrounded by the trajectories of the work diagrams in Fig. 4, and WHEOM

b
with b = A, I1, and I2 represents the work directly evaluated from the HEOM approach with Eqs. (16) and (17) for one cycle
of the external fields B(t), A1(t), and A2(t), respectively. In both cases, the value of the total work is identical and, in the
HEOM case, it is evaluated as WHEOM

tot = WHEOM
A +WHEOM

I1
+WHEOM

I2
. Then, as we illustrated in Table III in Appendix B, we

have WHEOM
tot + QHEOM

tot = 0.

A0 WB−M WHEOM
A WA1−D1 WHEOM

I1
WA2−D2 WHEOM

I2
WHEOM

tot

0.1 −0.127 −0.127 4.83 × 10−4 4.83 × 10−4
−4.90 × 10−4

−4.90 × 10−4
−0.127

√
0.1 −0.128 −0.128 4.81 × 10−3 4.81 × 10−3

−4.85 × 10−3
−4.85 × 10−3

−0.129
√

3.0 −0.149 −0.149 0.122 0.122 −0.101 −0.101 −0.128

that done by A2 is compensated by the work done by B, as presented
in Table II. As we will show below using a T–S diagram, the bath
removal and bath attachment processes dominate the heat transfer
processes in the strong SB interaction case.

Although the profiles of the B–M diagrams are very different
when the SB coupling strength is large, the total work done by the
external fields is almost the same, regardless of the SB coupling
strength, in the quasi-static limit, providing a manifestation of
Carnot’s theorem [see Fig. 3(ii) and Table II].

4. T–S diagram
We now consider the T–S diagram. Here, the change in

the quasi-equilibrium Boltzmann entropy (qBE) is calculated from
Eq. (25) by numerically differentiating ΔFqst

A+ I(βk; t) with respect
to βk for k = 1 and 2 by using the finite difference expression
[ΔFqst

A+ I(βk + Δβ; t) − ΔFqst
A+ I(βk; t)]/Δβ, with Δβ = 0.0001.

Although the B–M and A–D diagrams are useful for interpret-
ing the work that is directly evaluated by using the HEOM approach,
the situation for the T–S diagram is different because the entropy
is purely a thermodynamic variable that is indirectly evaluated by
using the temperature. Therefore, the T–S diagram is better suited
to exploring the thermodynamic features of the system. The area of
the T–S diagram is equivalent to the net heat gain, which can be eval-
uated from the HEOM formalism as the change in the bath energy.
In Fig. 5, we depict the T–S diagram for the (a) weak [A0 = 0.1],
(b) intermediate [A0 =

√
0.1], and (c) strong [A0 =

√
3.0] SB inter-

action cases. After the heat bath is removed, the system is isolated
and the entropy does not change under the isentropic manipulation
described in Sec. III A. For reference, we also plot the results based
on the von Neumann entropy calculated from the zeroth HEOM
element as SvN

A (t) = −trA{ρ̂0⃗(t) ln ρ̂0⃗(t)} in Appendix B. The trajec-
tories of the T–S diagram are periodic and closed because the qBE is
the state variable. The area enclosed by each diagram corresponds to
the positive heat when evolving in a counterclockwise fashion over
time (see Table III in Appendix B).

For the weak and intermediate SB coupling cases in Figs. 5(a)
and 5(b), the profiles of the T–S diagram are similar to the fac-
torized case in Fig. 1(b). This is because the contribution of the
entropy from the SB interaction is small in these cases. Conversely,
for the strong SB coupling case in Fig. 5(c), the T–S diagram differs
significantly due to the entropy change associated with the bath
removal and bath attachment processes. This is because the system
can be excited by the SB interaction through V̂ = σ̂x, so that entropy
increases during the bath attachment process as the heat flowing

FIG. 5. T–S work diagrams for the quasi-static process (Ω/2π = 1.25 × 10−5
) in

the (a) weak, (b) intermediate, and (c) strong SB coupling cases, corresponding to
(a)–(c) in Fig. 4. The red and blue lines represent the (i) hot isothermal compres-
sion and (iii) cold isothermal expansion processes, whereas the purple and orange
lines are the (ii) isentropic compression and (iv) isentropic expansion processes,
respectively. In each figure, we set ΔSqst

A+I(0) = 0 and the cycle starts from the
hot isothermal compression, as illustrated by the red arrow. In the strong SB cou-
pling case in (c), the bath removal and attachment processes, represented by the
dashed lines, determine the amount of heat production.

J. Chem. Phys. 157, 084110 (2022); doi: 10.1063/5.0107305 157, 084110-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

from the bath to the system increases, whereas entropy decreases
during the bath removal process due to reverse heat flow. Thus,
although the area enclosed by the lines corresponding to the net
heat gain is the same, as illustrated in Table III, the heat flow is con-
trolled by the bath attachment and removal processes in the strong
coupling case, whereas the heat flow is controlled by the isothermal
process in the weak and intermediate coupling cases. However, the
area enclosed by the trajectory in the T–S diagram does not depend
on the SB coupling strength, as in the case of work.

IV. CONCLUSIONS
We have conducted accurate numerical simulations of a quan-

tum Carnot engine based on an SB model, incorporating the ATFs
and IDF to describe the manipulations of the adiabatic wall by
external forces. The HEOM formalism enables the evaluation of the
internal energies of not only the subsystem but also the bath and
the SB interactions even in low-temperature, non-Markovian, and
nonperturbative conditions. We analyzed the real-time responses
of work as functions of the cycle frequency. As expected, the
computational results approach the Carnot efficiency in the quasi-
static limit. Moreover, the efficiency does not change, regardless of
the SB coupling strength, which is the manifestation of Carnot’s
theorem.

If the ATFs are abruptly changed, as in the conventional
theory when introducing an adiabatic process, the cycle is no longer
quasi-static and the efficiency becomes lower than the Carnot limit.
The use of reduced equations of motion with Markovian and rotat-
ing wave approximations, such as the Lindblad equation, should be
avoided because this does not accurately treat the quantum entan-
glement between the subsystem and the bath or the dynamic thermal
effects described by the fluctuation and dissipation arising from the
heat bath.42,43

Considering work as the qHE, we computed the conjugate ther-
modynamic variables of the IDF and ATFs and depicted the results
as thermodynamic work diagrams. We further introduced the qBE
in an attempt to characterize the thermal properties of the cycle.
We showed that work variables such as M(β; t), D1(β; t), and
ΔSqst

A+I(β; t) are state variables. Thus, the areas surrounded by the
trajectories in the M–B and A–D diagrams correspond to work,
whereas the area within the trajectory of the T–S diagram corre-
sponds to the net heat gain. The results show that ATFs are respon-
sible for the work when the SB coupling is very strong, whereas the
IDF is responsible when the SB coupling is not strong. As expected,
the total work and net heat gain were found to be independent of the
SB coupling strength in the quasi-static limit, as predicted by Carnot
almost 200 years ago. The inclusion of ATFs is the key to maintain-
ing physical consistency in the study of quantum thermodynamics
and perhaps for quantum information.

Although here we employed a simple spin-boson system, we
can apply the same method to ideal gas systems characterized by
a P–V diagram by using the hierarchical quantum Fokker–Planck
equations.41,43,108,109 In the case of a bosonic gas, the results should
be similar to those for a classical ideal gas, except at very low tem-
peratures; conversely, in the case of a fermionic gas, the results
should exhibit quantum effects even at high temperatures. It would
be interesting to investigate heat engines with different mechanisms,

although it seems unlikely that the thermodynamic laws will be
violated.

In this investigation, we limited our analysis to work variables
in a quasi-static case. As an extension of this study, it is possible to
introduce nonequilibrium free energy by using the nonequilibrium
work. Such investigations are left for future work.
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APPENDIX A: ISENTROPIC PROCESSES

In the classical Carnot cycle, the isentropic process is regarded
as a temperature-changing process in which the internal energy also
changes. In the present case, we cannot define the temperature dur-
ing the isentropic process because the system is microscopic and
isolated, aside from the initial and final states described by β1 or β2.
Thus, instead of assuming a spontaneous change in internal energy,
we actively control the external field (IDF) to realize the temperature
change between βa and βb in the isentropic processes.

Because the heat baths have been removed, we only consider
the main system here. For an isentropic process, we have

dUA = −M0
AdB, (A1)

because the change in entropy is zero. Alternatively, the internal
energy is expressed as

dUA = (
∂UA

∂β
)

B
dβ + (

∂UA

∂B
)

β
dB. (A2)

Note that, in statistical physics, the free energy defined from the par-
tition function is ubiquitously referred to as the Helmholtz energy.
In the thermodynamic sense, the Helmholtz energy for B should
be called the Gibbs energy because they appear as the Legendre
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transformation of F with respect to B and its conjugate property M
(dG = −SdT −MdB).105 Accordingly, dU = TdS +MdB should be
called enthalpy instead of internal energy. Following the convention,
however, we refer to F as the Helmholtz energy and U as the internal
energy.

Because the internal energy of the TLS is evaluated from
Eq. (27) as

U0
A(t) = −

√
B2(t) + E2 tanh(β

√
B2(t) + E2), (A3)

we have

(
∂UA

∂β
)

B
= −

B2
(t) + E2

cosh2
(β
√

B2(t) + E2)
, (A4)

(
∂UA

∂B
)

β
= −

B(t)
√

B2(t) + E2
tanh(β

√
B2(t) + E2)

−
βB(t)

cosh2
(β
√

B2(t) + E2)
. (A5)

From Eqs. (A1) and (A2), we have the relation

−(B2
+ E2
)dβ = βBdB. (A6)

For isentropic processes from B(ta) = Ba at βa to B(tb) = Bb at βB,
we have

− ln(
βb

βa
) = ln

⎛
⎜
⎝

√
E2 + B2

b
√

E2 + B2
a

⎞
⎟
⎠

. (A7)

Thus, we have the relation

Bb =

¿
Á
ÁÀ
(

βa

βb
)

2

(B2
a + E2) − E2. (A8)

APPENDIX B: QUASI-EQUILIBRIUM BOLTZMANN
ENTROPY AND VON NEUMANN ENTROPY

The von Neumann entropy (vNE) is commonly used in quan-
tum thermodynamics, particularly in nonequilibrium cases. It is
defined as follows:

SvN
A (t) = −trA{ρ̂A(t) ln ρ̂A(t)}, (B1)

where ρ̂A(t) is the reduced density matrix. In isolated systems,
the qBE and vNE are equivalent, but in a reduced system, this
equivalence does not hold due to the contribution of entropy from
the SB interaction. If we use the reduced density matrix obtained
from nonperturbative approaches, such as the HEOM approach, the
description of vNE becomes reasonably accurate, even in the strong
SB coupling case.82 Here, by using the zeroth member of the HEOM
solution in Eq. (B1) as ρ̂A(t) = ρ̂0⃗, we introduce the vNE to char-
acterize the time evolution of the qBE more closely. Because the
Carnot cycle involves two isentropic processes, where the qBE and
vNE results must agree, we can verify the description of vNE in the

TABLE III. Net heat gain, evaluated as the area in the T–S diagrams based on the
qBE [QqBE] and vNE [QvNE] for different SB coupling strengths A0. They are com-

pared with one cycle of the bath energy [QHEOM
tot ≡ ΔUqst

B1
(β1; t) + ΔUqst

B2
(β2; t)],

evaluated using Eq. (13) from the HEOM approach.

A0 QqBE QvNE QHEOM
tot

0.1 0.1285 0.1289 0.1272
√

0.1 0.1286 0.1289 0.1287
√

3.0 0.1292 0.1290 0.1283

isotropic processes, as well as the transitions between the isentropic
and isothermal processes.

By using the calculated entropy, we also computed the net heat
gain per cycle. For example, for the vNE, QvNE is evaluated as

QvNE = ∫

π
2Ω

− π
4Ω

dtT1
∂SvN

A (β1; t)
∂t

+ ∫

3π
2Ω

3π
4Ω

dtT2
∂SvN

A (β2; t)
∂t

. (B2)

The calculated results are presented in Table III. Although the net
heat gain calculated directly from the HEOM agrees with the total
work presented in Table II, there is a slight discrepancy between

FIG. 6. Time evolution of the qBE (color curves) and vNE (black dashed curves)
in the (a) weak, (b) intermediate, and (c) strong SB coupling cases for the eight-
stroke cycle denoted by (i)–(iv′) (for the correspondence between each stroke and
the line colors, see Fig. 2).
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QHEOM
tot and the other values obtained from the qBE and the vNE.

This may be due to the insufficient precision of the β derivative in
evaluating the entropy.

In Fig. 6, we depict the qBE and the vNE as a function of time
for different SB coupling strengths. Here, we set the origin of the two
graphs as Sqst

A+I(t) = SvN
A (t) at t = π/2Ω. As illustrated in Figs. 6(a)

and 6(b), the results from the qBE and the vNE are similar and
almost overlap. This is because the contribution of the entropy from
the SB interaction is small in these cases. In the strong coupling case
in panel (c), while the time evolution of entropy in the isentropic
processes is similar, that in the isothermal processes controlled by
B(t) is different. This is because the contribution of the entropy
from the SB interaction is not accurately taken into account in the
vNE due to its reduced description of the system. Thus, the vNE
underestimates the entropy compared with the qBE in the isother-
mal processes. Because their contribution cancels out, the net heat
gain, evaluated as the area in T–S diagrams, is similar in both the
qBE and vNE cases, as presented in Table III.
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