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ABSTRACT
By using the quasi-equilibrium Helmholtz energy, which is defined as the thermodynamic work in a quasi-static process, we investigate the
thermal properties of both an isothermal process and a transition process between the adiabatic and isothermal states (adiabatic transition).
Here, the work is defined by the change in energy from a steady state to another state under a time-dependent perturbation. In particular,
the work for a quasi-static change is regarded as thermodynamic work. We employ a system–bath model that involves time-dependent
perturbations in both the system and the system–bath interaction. We conduct numerical experiments for a three-stroke heat machine
(a Kelvin–Planck cycle). For this purpose, we employ the hierarchical equations of motion (HEOM) approach. These experiments involve
an adiabatic transition field that describes the operation of an adiabatic wall between the system and the bath. Thermodynamic–work dia-
grams for external fields and their conjugate variables, similar to the P–V diagram, are introduced to analyze the work done for the system in
the cycle. We find that the thermodynamic efficiency of this machine is zero because the field for the isothermal processes acts as a refrigerator,
whereas that for the adiabatic wall acts as a heat engine. This is a numerical manifestation of the Kelvin–Planck statement, which states that it
is impossible to derive the mechanical effects from a single heat source. These HEOM simulations serve as a rigorous test of thermodynamic
formulations because the second law of thermodynamics is only valid when the work involved in the operation of the adiabatic wall is treated
accurately.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093666

I. INTRODUCTION

In a process at constant temperature, free energy is an exten-
sive property that describes a mathematically concise relationship
between thermodynamic variables under the work done on a
system.1–3 Among free energy functions, the Helmholtz energy
is an important quantity that links thermodynamics and statisti-
cal physics. In the thermodynamics case, the Helmholtz energy
is defined as the Legendre transform of the internal energy U as
F = U − TS, where S is the entropy and T is the absolute tempera-
ture. In the statistical physics case, the Helmholtz energy is evaluated
from the partition function (PF) Z by F = −kBT ln Z, where kB is the
Boltzmann constant. The thermodynamic variables such as U, S, and
magnetization M for an external magnetic field B can be obtained
from the Helmholtz energy. Note that the free energy defined from

the partition function is ubiquitously referred to as the Helmholtz
energy. In the thermodynamic sense, the Helmholtz energy for
B should be called the Gibbs energy because they appear as the
Legendre transformation of F with respect to B and its conjugate
property M (dG = −SdT −MdB).4 However, following convention,
we refer to F as the Helmholtz energy.

While investigations based on the partition function are lim-
ited in the equilibrium case, the free energy-based investigation
has been extensively extended to the non-equilibrium condition,
particularly after the discovery of the Jarzynski equality. The non-
equilibrium work is related to the equilibrium free energy as
− ln(⟨exp[−βW(t)]⟩)/β = ΔFA(t).5–7 Here, β ≡ 1/kBT is the inverse
temperature, ΔFA(t) is the change in the free energy of the sys-
tem, W(τ) is the non-equilibrium work, and ⟨⋅ ⋅ ⋅⟩ is the ensemble
average over all phase-space trajectories under the time-dependent
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external perturbation from time t0 to t. More generally, the fluc-
tuation theorem that can treat non-isothermal cases has been
developed.8–17

Although investigating such thermodynamic systems in the
classical regime is straightforward (e.g., using classical molecular
dynamics simulations),18 doing so in the quantum regime remains
challenging.12–17,19–27 For example, the dynamics of a microscopic
subsystem (main system) is reversible in time and cannot reach its
thermal equilibrium state by itself. Thus, system–bath (SB) models
in which a small main system is coupled to a bath are employed to
describe the time irreversibility of the dynamics of a reduced system
evolving toward the thermal equilibrium state.28–30 The tempera-
ture of the bath does not change because its heat capacity is infinite;
meanwhile, the canonical distribution of the main system on its own
cannot be assumed as an equilibrium state due to the presence of the
system–bath interaction.31–34

This scenario differs significantly from the classical case where
the main system reaches its canonical distribution on its own spon-
taneously when the system is sufficiently large. While the Jarzynski
equality and fluctuation theorem utilize the ensemble average over
all phase-space trajectories under time-dependent external per-
turbation, such a trajectory-based approach is invalid in a small
quantum system because of the measurements of the quantum
trajectories.14,35

Recently, it was found that the thermodynamic system A cou-
pled to a heat bath B can be described using the quasi-equilibrium
Helmholtz energy (qHE) in a physically consistent manner with
classical thermodynamics. The qHE is defined as ΔFA(t) =Wqst

(t),
where Wqst

(t) is the quasi-static work done on the system during
the isothermal operation at time t.35,36 Note that in this paper, the
work is defined by the change in energy from one state to another
under a time-dependent perturbation; when the change is quasi-
static, it is regarded as thermodynamic work. From ΔFA(t), a variety
of thermodynamic variables that include the change in the internal
energy and entropy can be obtained. The previous investigation
was limited to the isothermal case;35,36 in this study, we extend
it to treat thermal transitions between the adiabatic and isother-
mal states (adiabatic transitions). For this purpose, we introduce a
time-dependent SB interaction that describes a manipulation of an
adiabatic wall between the system and the bath. The key to investi-
gating this quasi-static thermodynamic problem is the hierarchical
equations of motion (HEOM) formalism, which enables the evalua-
tion of the internal energies of not only the system but also the bath
and the SB interactions, even in low-temperature, non-Markovian,
and nonperturbative conditions.31–42

The qHE treatment for the determination of thermodynamic
properties, including entropy change in the adiabatic wall, shall be
useful for the study of a quantum heat machine43–56 because the
thermodynamic effects of the heat bath play a significant role in an
investigation of this kind.57–64 In addition, a thermodynamic work
diagram of external forces (such as stresses) and their conjugate
variables (such as strains), similar to Clapeyron’s P–V diagram,65

can be introduced to analyze the work done in the system. Such
an extension can be useful for analyzing the experimental results in
the quantum regime, where the quantized work and heat are to be
manipulated.66–75

As a demonstration, we simulate a three-stroke heat machine
with a single heat bath that consists of the isothermal process, the

adiabatic transition process, and the combination of these processes
by using the thermodynamic work diagrams. Then, we show that our
numerical results are consistent with the Kelvin–Planck statement
(or heat engine statement) of the second law of thermodynamics.76

The simulations of this cycle can be a critical check on the accuracy
of thermodynamic formulations and the description of equations of
motion in the quantum regime since the thermodynamic laws will
break down if the work done for the entire system, including the
adiabatic wall operation, is not properly evaluated.

This paper is organized as follows: In Sec. II, we present the
definition of the qHE for an arbitrary SB model that satisfies the first
and second laws of thermodynamics. In Sec. III, we introduce a har-
monic oscillator heat bath and present a spin–boson model with a
time-dependent SB interaction. The HEOM for this system are also
introduced. Section IV presents and discusses the numerical results.
Finally, concluding remarks are provided in Sec. V.

II. TOTAL ENERGY AND INTERNAL ENERGY
A. Total energy

We start from a situation where the dynamics of a system are
described by a time-dependent Hamiltonian expressed as Ĥtot(t).
The total density operator is then expressed as

ρ̂tot(t) = exp+[−
i
h̵∫

t

t0

dt′Ĥtot(t′)]ρ̂tot(t0)exp−[
i
h̵∫

t

t0

dt′Ĥtot(t′)],

(1)

where exp±[⋅ ⋅ ⋅] are the time-ordered exponentials in which the
operators in [⋅ ⋅ ⋅] are arranged in chronological order and ρ̂tot(t0) is
an initial state normalized as tr{ρ̂tot(t0)} = 1. The expectation value
for any operator Â is defined as ⟨Â⟩ = tr{Âρ̂tot(t)}. The change in
the total energy is expressed as

ΔUtot(t) = ⟨Ĥtot(t)⟩ − ⟨Ĥtot(t0)⟩. (2)

Because we have tr{[Ĥtot(t), Ĥtot(t)]ρ̂tot(t)} = 0, the time deriva-
tive of the above equation is evaluated as

d
dt

ΔUtot(t) = Ptot(t), (3)

where Ptot(t) ≡ tr{(∂Ĥtot(t)/∂t)ρ̂tot(t)}. Thus, the conservation
law of the total energy is expressed as

ΔUtot(t) =Wtot(t), (4)

where

Wtot(t) = ∫
t

t0

dt′tr{
∂Ĥtot(t′)

∂t′
ρ̂tot(t′)}. (5)

The work here is defined as the change in energy from one state
to another under a time-dependent perturbation. This work is
attributed to external perturbations. The above equality represents
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the relationship between the work and the total energy in any
Hamiltonian Ĥtot(t) and is not restricted to thermodynamic systems
characterized by temperature.

B. Internal energy
To introduce thermodynamic temperature in the framework

of open quantum dynamics theory, we next consider a quasi-
static process in which the system changes slowly under weak
external perturbation while maintaining a quasi-equilibrium state.
Thus, we assume that the total system is described by the
quasi-equilibrium partition function (qPF), which is defined as
Ztot(t) = tr{exp[−βĤtot(t)]}.11–17 We then have

∂ ln Ztot(t)
∂t

= −βtr{
∂Ĥtot(t)

∂t
ρ̂tot(β; t)}, (6)

where ρ̂tot(β; t) ≡ exp[−βĤtot(t)]/Ztot(t). Thus, we define

ln(
Ztot(t)
Ztot(t0)

) = −βΔFtot(β; t), (7)

where

ΔFtot(β; t) ≡ ∫
t

t0

dt′tr{
∂Ĥtot(t′)

∂t′
ρ̂tot(β; t′)} (8)

is the qHE.35,36 The significant difference between the qHE and the
conventional free energy is that the qHE involves time-dependent
work done for the system and is thus a time-dependent function.
Therefore, the qHE vanishes when there is no work.

For the inverse bath temperature β, the qHE and the work
defined by Eq. (5) satisfy the minimum work principle expressed
as4,8,77

Wtot(β; t) ≥ ΔFtot(β; t), (9)

which corresponds to the second law of thermodynamics. Although
the above inequality has been derived for an isolated quantum sys-
tem, it can also be applied to an SB system because the total system
of an SB model is regarded as an isolated system (see Appendix A).
As we will show below, we can utilize the above inequality for open
quantum dynamics systems because the HEOM formalism allows us
to evaluate the work and free energy not only for a reduced system
but also for a bath.

In general, work is not a state variable, but as has been shown,
it is the state variable in quasi-static processes where the equality
sign holds.35,36 Using the qPF-based density operator, we can
evaluate the change in the total internal energy as

ΔUtot(β; t) = tr{Ĥtot(t)ρ̂tot(β; t)} − tr{Ĥtot(t0)ρ̂tot(β; t0)}, (10)

which agrees with ΔU tot(β; t) = ∂(βΔFtot(β; t))/∂β. We can also
evaluate the change in heat as Qtot(β; t) = β∂ΔFtot(β; t)/∂β. From
the above relations, the first law of thermodynamics can be expressed
as

ΔUtot(β; t) = Qtot(β; t) +Wtot(β; t), (11)

where we used Wtot(β; t) ≡ ΔFtot(β; t) from the definition in
Eq. (5). From Eq. (4) under the quasi-equilibrium condition, we have

ΔUqeq
tot (β; t) = ΔUtot(β; t) −Qtot(β; t), (12)

which indicates that the difference between the system energy and
the internal energy is the heat Qtot(β; t).

III. OPEN QUANTUM DYNAMICS THEORY
FOR THERMODYNAMICS
A. System–bath model for isothermal–adiabatic
transitions

To proceed one step, we consider an SB model to compute
the thermodynamic variables. The total Hamiltonian is expressed
as Ĥtot(t) = ĤA(t) + ĤI(t) + ĤB, where ĤA(t) and ĤI(t) are the
time-dependent Hamiltonians of the main system and the SB inter-
action, respectively, and ĤB is the Hamiltonian of the bath. The
time dependences of ĤA(t) and ĤI(t) are, respectively, described
by the isothermal driving field (IDF) and the adiabatic transition
field (ATF), which are represented by B(t) and A(t), respectively.
By choosing B(t) and A(t), a real experimental situation can be
simulated.66–75 Later, IDF and ATF are given explicit forms when
conducting numerical simulations.

We employ a heat bath modeled by an ensemble of harmonic
oscillators,

ĤB =
N

∑
j=1
(

p̂2
j

2mj
+

1
2

mjω2
j x̂2

j ), (13)

with the momentum, position, mass, and frequency of the jth bath
oscillator given by p̂j, x̂j, mj, and ωj, respectively. To describe
the transition between the isothermal and adiabatic processes, we
consider the SB interaction expressed as

ĤI(t) = A(t)V̂
N

∑
j=1

cjx̂j, (14)

where V̂ is the system part of the interaction and cj is the jth cou-
pling constant. With a proper choice of A(t), V̂ , and the spectral
distribution of the bath coupling, a variety of isothermal–adiabatic
manipulations (e.g., the insertion and exertion of the adiabatic wall
or attaching or removing the quantum system to the bath) can be
performed.

The open quantum dynamics theory utilizes the reduced den-
sity operator (RDO) assuming that the heat bath is in the thermal
equilibrium state at β. When the bath part of the SB interaction
is a linear function of the bath coordinates, as in Eq. (14), we can
eliminate the bath degrees of freedom by performing the Gaussian
integrations involved in the bath Hamiltonian. This leads to the
following reduced description of the system operator:

ρ̂rd
A (t) =

trB{ρ̂tot(t)}
Z0

B(β)
, (15)

where the denominator Z0
B(β) = trB{exp[−βĤB]} is introduced to

maintain the reduced operator in a finite value and the RDO is
normalized as trA{ρ̂rd

A (t)} = 1.
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Due to the bosonic nature of the bath, all bath effects
on the system are determined by the bath correlation function
C(t) ≡ ⟨X̂(t)X̂(0)⟩B, where X̂ ≡ ∑jcjx̂j is the collective coordinate of
the bath and ⟨⋅ ⋅ ⋅⟩B represents the average taken with respect to the
canonical density operator of the bath. The bath correlation function
is expressed in terms of the bath spectral density J(ω) as

C(t) = ∫
∞

0
dω J(ω)[coth(

βh̵ω
2
) cos(ωt) − i sin(ωt)], (16)

where J(ω) ≡ ∑N
j=1(h̵c2

j /2mjωj)δ(ω − ωj). The real part of Eq. (16) is
analogous to the classical correlation function of the bath and repre-
sents the fluctuations, while its imaginary part represents the dissipa-
tion. The fluctuation term is related to the dissipation term through
the quantum version of the fluctuation—dissipation theorem.31,34,78

For the heat bath to be an unlimited heat source with an infinite heat
capacity, the number of heat bath oscillators N can be made infinitely
large by replacing J(ω) with a continuous distribution.

We should note that in the framework of regular open quan-
tum dynamic theories, the energy conservation law in Eq. (4) does
not hold due to the reduced description of the density operator
ρ̂tot(t). For example, without the external force [i.e., Ĥtot(t) = Ĥtot],
the total system reaches the equilibrium state ρ̂eq

tot = exp[−βĤtot] for
sufficiently long t, even if we start from a non-equilibrium initial
condition expressed as ρ̂tot(t0) = ρ̂A(t0) exp[−βĤB], where ρ̂A(t0) is
a highly excited initial state of the system. This indicates that we have
ΔU tot(t) ≠ 0 for a dissipative system; in contrast, from Eq. (2), we
have ΔU tot(t) = 0 for the total system. In open quantum dynamics
theory, this phenomenon arises because we have reduced the degrees
of freedom of the heat bath prior to the total system evolving in time.
Thus, to apply the qPF theory introduced in Sec. II B to the SB model,
we must extend the reduced dynamics theory to separately evaluate
the energy flow to the bath.

B. HEOM
We now introduce the HEOM formalism that plays a key role in

the present quantum thermodynamic investigations. In the HEOM
formalism, the set of equations of motion consists of the auxil-
iary density operators (ADOs).31–38,78–80 Here, we consider the case
that the bath correlation function [Eq. (16)] is written as a linear
combination of exponential functions, C(t) = ∑K

l=0ζle−νl ∣t∣, where νl
and ζ l are, respectively, the frequency and the strength obtained
from a Padé spectral decomposition scheme to reduce the hierarchy
size.81 The ADOs introduced in the HEOM are defined by the index
n⃗ = (n0, n1, . . . , nK), where nl takes an integer value zero and above.
The zeroth ADO for which all elements are zero, 0⃗ = (0, 0, . . . , 0),
corresponds to the actual RDO, ρ̂rd

A (t) = ρ̂0⃗(t), and we normalize
the RDO as trA{ρ̂0⃗(t)} = 1. The SB coupling strength of the equa-
tions of motion for the ADOs depends on time. The HEOM are then
expressed as

∂

∂t
ρ̂n⃗(t) = (−

i
h̵

Ĥ×A(t) −
K

∑
l=0

nlνl)ρ̂n⃗(t)

−
iA(t)

h̵

K

∑
l=0

nlΘ̂lρ̂n⃗−e⃗l(t) −
iA(t)

h̵
V̂ ×

K

∑
l=0

ρ̂n⃗+e⃗l(t), (17)

where e⃗l is the (K + 1)-dimensional unit vector. The operators are
defined as

Θ̂0 = (
γ
β
+

K

∑
l=1

ζl

γ2 β
2γ

γ2 − ν2
l
)V̂ × −

ih̵γ2

2
V̂○, (18)

and

Θ̂l = −
ζlγ2

β
2νl

γ2 − ν2
l

V̂ × (l ∈ {1, 2, . . . , K}), (19)

where Ô ×P̂ = [Ô, P̂] and Ô○P̂ = {Ô, P̂} for arbitrary operators
Ô and P̂.

In principle, the HEOM provide an asymptotic approach to
calculate various physical quantities with any desired accuracy by
adjusting the number of hierarchal elements determined by K, and
the error introduced by the truncation is negligibly small in the case
that K is sufficiently large.34

C. Physical variables
1. System energy and work

First, we evaluate the change in the energy of each part of
the Hamiltonian, which is defined as Uα(t) = tr{Ĥα(t)ρ̂tot(t)} for
α = A, I, and B, with ρ̂tot(t) given by Eq. (1).

Although the evaluations of UI(t) and UB(t) are not easy
within the framework of the open quantum dynamics theory
because the bath degrees of freedom have been reduced, we can
obtain their values indirectly by using the hierarchical elements in
the HEOM formalism. This is because, in the HEOM formalism,
the higher hierarchical elements store information about the higher
cumulant of the bath coordinates, as previously demonstrated.35–39

We express the HEOM elements obtained from Eq. (17) under
any form of external field as ρ̂n⃗(t). Using the zeroth member of the
hierarchy ρ̂0⃗(t), the expectation value of the system energy at time
t is evaluated as

UA(t) = trA{ĤA(t)ρ̂0⃗(t)}. (20)

In the HEOM formalism, the first-order hierarchical elements ρ̂e⃗l(t)
(0 ≤ l ≤ K) are defined as the expectation value of the collective
bath coordinate X̂. Thus, from Eq. (14), the SB interaction energy
is expressed as35–38

UI(t) = A(t)
K

∑
l=0

trA{V̂ ρ̂e⃗l(t)}, (21)

where e⃗l is the index for the first-order hierarchical member. To
evaluate the bath energy, we consider the expectation value of bath
energy defined as UB(t) ≡ tr{ĤBρ̂tot(t)} and evaluate the change
in the bath energy from ∂UB(t)/∂t = i∫

t
t0

tr{[ĤI , ĤB]ρ̂tot(t)}dt/h̵,
which is obtained from ∂ρ̂tot(t)/∂t = [Ĥtot(t), ρ̂tot(t)]/ih̵. The bath
energy is then evaluated as (see Appendix B)

∂

∂t
UB(t) = A(t)

K

∑
l=0

νltrA{V̂ ρ̂e⃗l(t)} + A2
(t)γ2trA{V̂ 2ρ̂0⃗(t)}. (22)

J. Chem. Phys. 157, 014104 (2022); doi: 10.1063/5.0093666 157, 014104-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The total work is evaluated as

Wtot(t) =WA(t) +WI(t), (23)

where

WA(t) = ∫
t

t0

dt′trA{
∂ĤA(t′)

∂t
ρ̂0⃗(t

′
)} (24)

and

WI(t) = ∫
t

t0

dt′
dA(t′)

dt′
K

∑
l=0

trA{V̂ ρ̂e⃗l(t
′
)}. (25)

Thus, we have ΔU tot(t) = ΔUA(t) + ΔUI(t) + ΔUB(t), where
ΔUα(t) ≡ Uα(t) −Uα(t0) for α = A, B, I, and tot. The change in the
total energy and the work evaluated from the HEOM now satisfy
the energy conservation law in Eq. (4).

2. Free energies and partition functions
For the SB Hamiltonian, the RDO is expressed as Eq. (15). By

using the above definition with the HEOM, the work and internal
energy changes are calculated numerically and rigorously for any
thermal cycle driven by the IDF and ATF regardless of the condition
in Eq. (9). Nevertheless, we limit our discussion to the quasi-
static case and attempt to quantify the quantum thermodynamic
variables by comparing physical quantities calculated in the HEOM
with thermodynamic quantities evaluated in the qHE formalism.
Then, the reduced qPF operator is assumed to be of the form
Ẑrd

A+I(β; t) = trB{exp[−βĤtot(t)]}/Z0
B(β), which has been evaluated

as Ẑrd
A+I(β; t) = exp[−βĤ ∗(t)], with Ĥ ∗(t) being referred to as

the Hamiltonian of mean force or effective Hamiltonian.15–17

Then, we have Ztot(β; t) = Zrd
A+I(β; t)Z0

B(β), where Zrd
A+I(β; t) = trA

{Ẑrd
A+I(β; t)}. In this study, we evaluate Ztot from the HEOM

approach, including a contribution from the SB coupling using
Eq. (25). We define the RDO for the PF as ρ̂tot(β; t) ≡ exp
[−βĤtot(t)]/Ztot(β; t) and ρ̂rd

A (β; t) ≡ trB{exp[−βĤtot(t)]}/Ztot
(β; t). Accordingly, we evaluate Eq. (7) as

ln(
Zrd

A+I(β; t)
Zrd

A+I(β; t0)
) = −βΔFrd

A+I(β; t), (26)

where ΔFrd
A+I(β; t) is the reduced free energy. From Eqs. (24) and

(25), we have

ΔFrd
A+I(β; t) = ΔFqst

A (β; t) + ΔFqst
I (β; t), (27)

where

ΔFqst
A (β; t) = ∫

t

t0

dt′trA{
∂ĤA(t′)

∂t
ρ̂qst

0⃗
(t′)} (28)

and

ΔFqst
I (β; t) = ∫

t

t0

dt′
dA(t′)

dt′
K

∑
l=0

trA{V̂ ρ̂qst
e⃗l
(t′)}. (29)

From the above equations, we define ΔUrd
α (β; t) ≡ ∂(βΔFqst

α

(β; t))/∂β and ΔSrd
α (β; t) ≡ kBβ2∂ΔFqst

α (β; t)/∂β for α = A and I.
Note that we introduced the suffix rd in addition to qst because
ΔUrd

A (β; t) involves the contribution from the system part of the SB
interaction, as we briefly explain in Sec. III C 3.36 Using the qHE, we
can introduce the conjugate variables of the IDF and ATF as

M(β; t) ≡ −
∂ΔFqst

A (β; t)
∂B(t)

(30)

and

D(β; t) ≡ −
∂ΔFqst

I (β; t)
∂A(t)

, (31)

where B(t) and A(t) represent, for example, the magnetic field
and stress, respectively, whereas M(β; t) and D(β; t) represent,
for example, the magnetization and strain, respectively. From the
definition of the total work Eq. (5), we can evaluate the above
variables in terms of the ADOs as

M(β; t) = trA{σ̂zρ̂0⃗(t)} (32)

and

D(β; t) = −
Kk

∑
l=0

trA{V̂ ρ̂e⃗ k
l
(t)}. (33)

Note that M(β; t) and D(β; t) are the state variables in the quasi-
static case because they are uniquely determined by the state
specified by the quasi-equilibrium distribution at t and are inde-
pendent of the pathway of work. As described in Eq. (11), we
have the first law of thermodynamics for each component α = A
and I as

ΔUrd
α (β; t) = TΔSrd

α (β; t) +Wqst
α (β; t), (34)

where

Wqst
A (β; t) = −∫

t

t0

dB(t′)
dt′

M(β; t′)dt′ (35)

and

Wqst
I (β; t) = −∫

t

t0

dA(t′)
dt′

D(β; t′)dt′. (36)

For ΔUrd
A+I(β; t) = ΔUrd

A (β; t) + ΔUrd
I (β; t), Qrd

A+I(β; t)
= TΔSrd

A+I(β; t) with ΔSrd
A+I(β; t) = ΔSrd

A (β; t) + ΔSrd
I (β; t), and

Wtot(β; t) =Wqst
A (β; t) +Wqst

I (β; t), we have

ΔUrd
A+I(β; t) = Qrd

A+I(β; t) +Wtot(β; t). (37)

Here, work is defined by the quasi-static change in the total
energy under time-dependent perturbation. This work is regarded
as thermodynamic work. When the main system consists of n non-
interacting spins that are independently coupled to the heat bath,
the magnitude of ΔUrd

A+I(β; t), Qrd
A+I(β; t), ΔSrd

A+I(β; t), Wtot(β; t),
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M(β; t), and D(β; t) are proportional to n. Thus, they are extensive
properties, whereas B(t), A(t), and T are intensive properties.

Using the qHE, we can also define the reduced PF for α = A
and I as

Zqst
α (β; t) = exp[−βΔFqst

α (β; t)]Zqst
α (β; t0). (38)

The total PF is then expressed as Ztot(β; t) = Zrd
A+I(β; t)Z0

B(β), where
Zrd

A+I(β; t) = Zqst
A (β; t)Zqst

I (β; t), which is consistent with Eq. (37)
for Wtot(t) = ΔFrd

A+I(β; t). However, from the above, we have
ΔUtot(β; t) = ΔUrd

A+I(β; t) and Qtot(β; t) = Qrd
A+I(β; t), which contra-

dicts the first law of thermodynamics for the total system presented
in Eq. (11). To illustrate this point, we consider the change in the
internal energy of each Hamiltonian component defined as

ΔUqst
α (β; t) ≡ Uqst

α (β; t) −Uqst
α (β; t0), (39)

where Uqst
α (β; t) is evaluated from Eqs. (20)–(22) with the use

of ρ̂qst
n⃗ (t) for α = A, B, and I. The total internal energy is then

given by

ΔUtot(β; t) = ΔUqst
A (β; t) + ΔUqst

I (β; t) + ΔUqst
B (β; t), (40)

whereas we obtain ΔUrd
tot(β; t) = ΔUrd

A (β; t) + ΔUrd
I (β; t) from

Ztot(β; t) = Zrd
A+I(β; t)Z0

B(β), with ΔUrd
tot(β; t) = −∂ ln Ztot(β; t)/∂β.

What is missing here is the change in the bath internal energy
evaluated from Eq. (22). This difference arises because the reduced
description of the system cannot evaluate the change in the bath
energy, whereas the HEOM formalism can include the change in
bath energy from Eq. (22).

3. Reduced heat bath energy
To illustrate the above point, we consider the isothermal

and the adiabatic transition processes for B(t) and A(t).35,36

Then, we have Ztot(β; t) = Zqst
A (β; t)Zqst

I (β; t)Z0
B(β), which leads to

ΔUtot(β; t) = ΔUrd
A+I(β; t) when we differentiate both sides with

regard to β. This indicates that there is no heat flow between the
system and the bath, due to the constraints of the reduced descrip-
tion of the system, even when we consider the non-equilibrium
situation. Then, as illustrated in Eq. (40), we must compensate
for the change in the SB interaction energy using the HEOM
formalism.

It is important to note that we have ∣ΔUrd
A+I(β; t) − ΔUqst

A+I
(β; t)∣ ≠ 0 because ΔUrd

A+I(β; t) does not include the contribution
from the bath part of the SB interaction due to the reduced descrip-
tion of the system.36 Then, we separate the system part of the
SB interaction as ΔUA

I (β; t) ≡ ΔUrd
A+I(β; t) − ΔUqst

A (β; t). The bath
part of the internal energy in the SB interaction is expressed
as ΔUB

I (β; t) ≡ ΔUqst
I (β; t) − ΔUA

I (β; t). Thus, we have the change
in the internal energy of the reduced bath system, which is
expressed as

ΔUrd
B (β; t) = ΔUB

I (β; t) + ΔUqst
B (β; t). (41)

Because there is no external force on the bath, the qHE for the
reduced bath vanishes [i.e., ln(Zrd

B (t)/Z
rd
B (t0)) = 0]. Thus, we have

ΔUrd
B (β; t) = Qrd

B (β; t). (42)

Since Qtot(β; t) = Qrd
A+I(β; t) +Qrd

B (β; t) = 0, the first law of thermo-
dynamics for the total system is expressed as

ΔUtot(β; t) =Wtot(t), (43)

where ΔUtot(β; t) = ΔUrd
A+I(β; t) + ΔUrd

B (β; t) and Wtot(β; t)
=Wqst

A+I(β; t) = ΔFrd
A+I(β; t). Although a similar expression has

been employed in a perturbative Markovian case in which
ΔUrd

B (β; t) ≈ ΔUB(β; t),12,13 the present expression is valid even in a
non-Markovian and nonperturbative case. For the bath part of heat
QB(β; t) = ΔUB

I (β; t) + ΔUB(β; t), we thus obtain the total entropy
production as

Σtot(β; t) = ΔSrd
A (β; t) + βQrd

B (β; t). (44)

It should be noted that when considering the thermodynamic
properties of A, we can ignore the effects of the bath.

Note that for the situation that describes a thermal transition
from an adiabatic state to an isothermal state described by the fixed
IDF B(t) = B0 with the ATF A(t), the work Wqst

I (β; t) of inserting or
removing the adiabatic wall that applies to both the system and the
bath plays a role. The heat Qtot(β; t) is generated during the manip-
ulation of the adiabatic wall, indicating that Maxwell’s demon82,83

for thermal processes also obeys the thermodynamic law.

IV. NUMERICAL RESULTS
To demonstrate the roles of the isothermal and adiabatic tran-

sition processes, we conducted numerical simulations for a spin
system expressed as

ĤA(t) = −B(t)σ̂z , (45)

where B(t) is the IDF and σ̂α (α = x, y, and z) are the Pauli matrices.
In the case of nuclear magnetic resonance spectroscopy, B(t) cor-
responds to the longitudinal magnetic field. The time-dependent SB
interaction is controlled by the ATF [A(t)].

To construct the HEOM presented in Eq. (17), we assume the
Drude spectral distribution function given by

J(ω) =
h̵
π

γ2ω
γ2 + ω2 , (46)

where γ is the inverse noise correlation time of the bath, and we set
V̂ = σ̂x. We fix the inverse of the noise correlation time to γ = 1.0 and
use this as the frequency unit for the system. Then, we employ a Padé
spectral decomposition scheme to obtain the expansion coefficients
of the noise correlation functions.

Next, we consider three cases: (a) the high-temperature case
(βh = 0.2), (b) the intermediate-temperature case (βh = 1.0), and
(c) the low-temperature case (βh = 5.0). We then choose the
truncation number of hierarchy, which represents the depth of the
HEOM computation, as N = 6. We set the maximum number of
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hierarchy levels to K = 4 for βh = 0.2 and 1.0 and K = 7 for βh = 5.0.
Starting from a temporal initial state, we integrate Eq. (17) until
the cycle of the simulation reaches the steady state with the time-
dependent functions B(t) and A(t). We set the period of one stroke
as τ = 10 000 so that the motion of the system is quasi-static. We
use the fourth-order Runge–Kutta method with a time step of δt =
1.0 × 10−2.

We conducted the simulation for a three-stroke engine
(a Kelvin–Planck cycle) consisting of (i) isothermal expansion, (ii)
isothermal–adiabatic transition, and (iii) the combination of isother-
mal compression and adiabatic–isothermal transition [described by
B(t) and A(t) in Table I with amplitudes of B0 = 0.5 and A0 = 1.0,
respectively]. To elucidate the characteristics of the cyclic process,
we constructed thermodynamic work diagrams for external forces
and their conjugate variables as the B–M and A–D diagrams anal-
ogous to the P–V diagram. Figure 1 depicts the B–M (left) and
A–D (right) diagrams for different inverse temperatures. The pro-
cesses in the B–M diagrams evolve in a clockwise fashion over time,
whereas those in the A–D diagrams evolve in a counter-clockwise
manner. In comparison with the P–V diagram for an ideal gas, the
rotational directions in the B–M and A–D diagrams are opposite
because the ideal gas is described by dU = TdS − PdV , whereas here
we have dU = TdS + BdM + AdD. The area enclosed by the curves
corresponds to the work, but a counterclockwise cycle represents
positive work, which is also opposite to the P-V case.

In this model, B(t) represents the excitation energy of the spin.
Then, as B(t) increases, the spin is aligned with the ground state,
so the magnetization M(β; t) increases. Since the SB interaction
with V̂ = σ̂x excites the spins, as A(t) increases, M(β; t) decreases,
even if B(t) does not change, as shown by the blue horizontal line
in the B–M diagram. Similarly, an increase in B(t) suppresses the
spin excitation effect of A(t), so D(β; t) decreases even if A(t)
does not change, as shown by the red horizontal line in the A–D
diagram.

Here, the areas surrounded by the counter-clockwise curves
are positive work (a heat engine), whereas those surrounded by the
clockwise curves are negative work (a refrigerator). This indicates
that the IDF and ATF described in Table I drive the system as a
refrigerator and heat engine, respectively. The size of each area is
determined mainly by the adiabatic transition (the horizontal blue
line) in the case of the B–M diagrams and by the isothermal tran-
sition (the horizontal red line) in the case of the A–D diagrams. As
the temperature decreases, the area becomes larger because the effi-
ciency of the energy change under a given external force improves
as the internal energy decreases. Thus, we find that the areas in
the B–M and A–D diagrams are identical at each temperature, and

TABLE I. Time evolutions of IDF [B(t)] and ATF [A(t)] for a three-stroke heat
machine (a Kelvin–Planck cycle) with equal time intervals τ. The cycle consists of (i)
isothermal expansion, (ii) adiabatic transition, and (iii) the combination of isothermal
compression and diabatic transition.

B(t)/∣B0∣ A(t)/∣A0∣

(i) 1.0 + t/τ 1.0
(ii) 2.0 1.3 − 0.3t/τ
(iii) 4.0 − t/τ 0.1 + 0.3t/τ

FIG. 1. B–M diagrams (left) and A–D diagrams (right) for the three-stroke heat-
machine (a Kelvin–Planck cycle) described by the ATF [A(t)] and IDF [B(t)] in
Table I at different temperatures: (a) βh = 0.2 (high), (b) βh = 1.0 (intermediate),
and (c) βh = 5.0 (low). In each figure, the cycle starts from the red arrow, and the
three curves represent (i) isothermal expansion (red curves), (ii) adiabatic transi-
tion (blue curves), and (iii) the combination of isothermal compression and diabatic
transition (green curves). The processes in the B–M diagrams evolve in a clock-
wise fashion over time (refrigerator), whereas the processes in the A–D diagrams
evolve in a counter-clockwise fashion over time (heat engine). The areas in each
B–M and A–D diagram are identical; thus, the work done for the system is zero
(see Table II).

the work done for the system is zero within the numerical accu-
racy (see Table II) because we cannot subtract the energy from the
heat machine with a single heat bath. This result demonstrates the
Kelvin–Planck statement (or heat engine statement) of the second
law of thermodynamics4 in open quantum dynamics theory—it is
impossible for any substance to derive the mechanical effects from a
single heat source.

TABLE II. System, interaction, and total quasi-static works per cycle (Wqst
A , Wqst

I , and

Wqst
tot = Wqst

A +Wqst
I , respectively) at different inverse temperatures βh.

β h Wqst
A Wqst

I Wqst
tot

0.2 1.34 × 10−3
−1.33 × 10−3 1.04 × 10−5

1.0 1.71 × 10−2
−1.71 × 10−2 1.28 × 10−5

5.0 2.68 × 10−2
−2.69 × 10−2

−1.19 × 10−4
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V. CONCLUSIONS
We investigated the thermodynamic properties of quantum

dissipative systems based on the SB model by identifying the quasi-
static work as the qHE. The key to investigating the non-equilibrium
thermodynamic problem is the HEOM formalism, which enables the
evaluation of the internal energies of not only the system but also
the bath and the SB interaction, even under low-temperature, non-
Markovian, and nonperturbative conditions, where the quantum
effects become important. While the qHE was originally devel-
oped for an isothermal process, we extended it to treat an adiabatic
transition process in a unified manner.

As a demonstration, we numerically simulated a three-stroke
heat machine consisting of an isothermal process, an adiabatic
process, and their combination. To analyze the results, the work
diagrams with external fields and their conjugated variables were
used. The results are consistent with the Kelvin–Planck statement
of the second law of thermodynamics. This indicates that the ther-
modynamic rule is broken if the work of adiabatic wall manipulation
described by the ATF is not taken into account, suggesting its impor-
tance. In the case of Markov limits, where the γ is large and the heat
bath is hot, or in the case of perturbative approximations, where the
interaction is weak, the effects of the ATF are expected to be less
pronounced.

Although our demonstration was restricted to a simple model,
this approach can be applied to investigate a variety of heat engines
and refrigerators that consist of the isothermal and adiabatic pro-
cesses. Moreover, while we analyzed only a quasi-static case, the
present formalism can be applied to non-equilibrium situations by
regarding the work as the non-equilibrium free energy. Numeri-
cally rigorous HEOM experiments on such systems can be a versatile
means to formulate and verify quantum thermodynamics far from
equilibrium. In the future, we plan to extend the present research to
a study of the quantum Carnot cycle.
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APPENDIX A: THE MINIMUM WORK PRINCIPLE
[EQ. (9)]

For an isolated quantum system described by the Hamiltonian
Ĥ0 and the perturbed Hamiltonian Ĥδt = Ĥ0 + δĤ, we have an
identity that leads to a quantum version of the Jarzynski equality
expressed as8,10,11,14

⟨e−βĤ (H)
0 (δt)eβĤ 0⟩ =

Zδt

Z0
, (A1)

where ⟨⋅ ⋅ ⋅⟩ implies an average of appropriate sampling states; Zδt
and Z0 are the partition functions for Ĥδt and Ĥ0, respectively, at
the inverse temperature β; and Ĥ(H)0 (δt) is the Heisenberg operator
of Ĥ0 whose time dependence is described by Ĥδt .

The orthonormal basis set of Ĥ0 is expressed as {∣i⟩} of Ĥ0.
Then, we have inequality expressed as4

⟨i∣e−βĤ
∣i⟩ ≥ e⟨i∣Ĥ ∣i⟩ (A2)

for any Hermitian operator Ĥ. This leads to

⟨e−βĤ (H)
0 (δt)eβĤ 0⟩ ≥∑

i
pie−β(⟨i∣Ĥ (H)

0 (δt)∣i⟩−Ei), (A3)

where Ei = ⟨i∣Ĥ0∣i⟩ and pi = e−βEi/Z0. Using Jensen’s inequality
⟨exp[−βX̂]⟩ ≥ exp[−β⟨X̂⟩], we have8,16,77

− β(⟨Ĥ(H)0 (δt)⟩ − ⟨Ĥ0⟩) ≤ ln Zδt − ln Z0. (A4)

Because our SB system is also an isolated system, the above inequal-
ity holds for Ĥtot(t) with the heat bath Eq. (13) consisting of
N harmonic oscillators. Thus, we obtain

Wtot(β; t) ≥ ΔFtot(β; t), (A5)

which is the minimum work principle given by Eq. (9). Finally, tak-
ing the limit of N →∞, we obtain the description for the case of
open quantum dynamics systems. In general, the above inequalities
may not hold for reduced systems because both work and free energy
are evaluated from a reduced system rather than from an isolated
whole system; by using the HEOM formalism, the above inequality

TABLE III. The IDF [B(t)] and ATF [A(t)] as functions of t. Here, τ is the time
duration, and the process approaches a quasi-static state when τ becomes large.

Time B(t) A(t)

t < 0 1.0 1.0
0 ≤ t < τ 1.0 + t/τ 1.0 − 0.3t/τ
τ ≤ t 2.0 0.7
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FIG. 2. δW(τ) ≡ W tot(τ) − ΔFtot(τ) plotted as a function of time duration τ. For
any τ, δW(τ) is positive, indicating that the inequality Eq. (9) holds.

can be applied because contributions from the bath part of work and
free energy can also be evaluated.

In Eq. (A5), the equal sign holds if the process is reversible
(the minimum work principle). The quantity δW(β; t) =Wtot(β; t)
− ΔFtot(β; t) produced in the irreversible case is the work discarded
as dissipative heat; in a quasi-static process, the energy loss due to
dissipation is suppressed and Wtot(β; t) approaches ΔFtot(β; t).

Although Eq. (A5) for quantum finite systems has been proved,
the mathematical proof for infinite systems is not complete at this
time. Here, we conduct numerical calculations by using the HEOM,
which are derived by reducing a heat bath with infinite degrees of
freedom, and verified the results within the error range.

For the SB Hamiltonian, Eq. (9) has been examined numeri-
cally in the isothermal case.36 Here, we extend it to the case of a
mixture of isothermal and adiabatic transitions by using the system
discussed in Sec. IV. To conduct the simulation, we set the IDF and
ATF as in Table III. The non-equilibrium work Wtot(τ) is evalu-
ated from Eq. (17) for various values of τ and fixed parameter values
(γ = 1.0, βh = 1.0, N = 8, K = 4, and δt = 0.01). Meanwhile, the equi-
librium free energy ΔFtot(τ) is evaluated from the partition function
obtained from the imaginary HEOM with N = 6 and K = 10 and
the imaginary time step δt = 0.0001.32 We plot δW(τ) ≡Wtot(τ)
− ΔFtot(τ) for different time scales of driving fields τ in Fig. 2. As
shown in this figure, δF is always positive.

APPENDIX B: DERIVATION OF EQ. (22)

The time differentiation of the expectation value
trtot{Ĥtot(t)ρ̂tot(t)} is expressed as

∂UB(t)
∂t

=Wtot(t) −
∂UA(t)

∂t
−
∂UI(t)
∂t

, (B1)

where Wtot(t) is defined in Eq. (23). Applying Eqs. (20) and (21) in
Eq. (B1), we can rewrite Eq. (B1) as

∂UB(t)
∂t

= −trA{ĤA(t)
∂ρ̂0⃗(t)
∂t
} − A(t)

K

∑
l=0

trA{V̂
∂ρ̂e⃗l(t)
∂t

}. (B2)

The second term on the right-hand side of the above equation can
be evaluated from Eq. (17). Thus, we obtain Eq. (22).
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