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We consider a quantum system strongly coupled to multiple heat baths at different temperatures.
Quantum heat transport phenomena in this system are investigated using two definitions of the heat
current: one in terms of the system energy and the other in terms of the bath energy. When we consider
correlations among system-bath interactions (CASBIs)—which have a purely quantum mechanical
origin—the definition in terms of the bath energy becomes different. We found that CASBIs are
necessary to maintain the consistency of the heat current with thermodynamic laws in the case of
strong system-bath coupling. However, within the context of the quantum master equation approach,
both of these definitions are identical. Through a numerical investigation, we demonstrate this point for
a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal
equations of motion approach under the strongly coupled and non-Markovian conditions. We observe
the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their
phases depend on the system-bath coupling strength. Through consideration of the bath heat current,
we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling
increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency
decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed,
due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of
quantum heat engines. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971370]

I. INTRODUCTION

Recent progress in the control and measurement of
small-scale systems provides the possibility of examining the
extension of thermodynamics1–4 and the foundation of statis-
tical mechanics5,6 in nano-materials. In particular, elucidating
how purely quantum mechanical phenomena such as quantum
entanglement and coherence are manifested in thermodynam-
ics has become a topic of growing interest for the past two
decades.7–14 Investigation of these types of phenomena may
provide new insights into our world and aid in the development
of quantum heat machines operating beyond classical bounds.
Such developments could lead to more efficient methods of
energy usage.

Quantum heat transport problems involving quantum
heat machines have been studied with approaches devel-
oped through the application of open quantum dynamics
theory. Quantum master equation (QME) approaches are fre-
quently used to investigate the dynamics of quantum heat
machines.15,16 Although the QME approach is consistent with
the laws of thermodynamics,17–19 its applicability is limited
to cases in which the system-bath interaction is treated as a
second-order perturbation and the Markov approximation is
employed. Thus, these investigations have been carried out
only in weak coupling regimes.

Recent theoretical and experimental works20,21 have
demonstrated the importance of the interplay between the
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quantum nature of systems and environmental noise. For
example, it has been shown that the optimal conditions for
excitation energy transfer in light-harvesting complexes are
realized in the non-perturbative, non-Markovian regime, in
which a description beyond perturbative approaches is essen-
tial to properly understand the quantum dynamics displayed
by the system. To this time, the approaches used to study this
regime include the QME employing a renormalized system-
plus-bath Hamiltonian derived with the polaron transforma-
tion22 or the reaction-coordinate mapping,23,24 the functional
integral approach,25 the non-equilibrium Green’s function
method,26–28 and the stochastic Liouville-von Neumann equa-
tion approach.29 In most cases, however, such attempts are
limited to the nearly Markovian case, slow driving cases, or
the investigation of the short-time behavior. In the present
study, we employ the hierarchal equations of motion (HEOM)
approach30–35 to investigate heat transport and quantum heat
engine problems. This approach allows us to treat systems
subject to external driving fields in a numerically rigorous
manner under non-Markovian and non-perturbative system-
bath coupling conditions. We must choose the definition of
heat current carefully, however, to satisfy various thermo-
dynamic requirements, for example, to have right thermal
equilibrium limit.27 While several researchers have studied
a role of heat current between subsystems,37–39 which are
introduced by partitioning a many-body system such as chain
models, here we consider the heat current between the system
and baths. Thus we employ two definitions of the heat cur-
rent: one in terms of the system energy (system heat current)
and the other in terms of the bath energy (bath heat current).
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Both of these definitions are frequently used in the litera-
ture for varieties of systems involving chain models; here we
carefully examine the validity of these definitions for a non-
equilibrium spin-boson model and a three-level heat engine
model in the case of the strong system-bath coupling because
the existence of a non-commuting inter-bath coupling through
the system contributes to the heat current even in the steady
state case. This effect has not been investigated in the previous
studies.

The organization of this paper is as follows. In Sec. II,
we introduce the two definitions of the heat current that we
investigate: the system heat current (SHC) and the bath heat
current (BHC). In Sec. III, we present the first and the second
laws of thermodynamics as obtained through consideration of
the BHC. In Sec. IV, we analytically derive reduced expres-
sions for the SHC and BHC. In Sec. V, we explain the HEOM
approach and demonstrate a method employing it to calcu-
late the SHC and BHC numerically in a rigorous manner. In
Sec. VI, we apply our formulation to a non-equilibrium spin-
boson model and a three-level heat engine model. Through
numerical investigation of the HEOM, we investigate the cycle
behavior of the quantum heat engine under a periodic driving
field. It is shown that the efficiency of the heat engine decreases
as the system-bath coupling increases. Section VII is devoted
to concluding remarks.

II. SYSTEM HEAT CURRENT AND BATH
HEAT CURRENT

We consider a system coupled to multiple heat baths at dif-
ferent temperatures. With K heat baths, the total Hamiltonian
is written as

Ĥ(t) = ĤS(t) +
K∑

k=1

(
Ĥ

k
I + Ĥ

k
B

)
, (1)

where ĤS(t) is the system Hamiltonian, whose explicit time
dependence originates from the coupling with the exter-
nal driving field. The Hamiltonian of the kth bath and the
Hamiltonian representing the interaction between the system

and the kth bath are given by Ĥ
k
B =

∑
j ~ωkj b̂

†

kj
b̂kj and Ĥ

k
I

= V̂ k
∑

j gkj (b̂
†

kj
+ b̂kj ), respectively, where V̂k is the system

operator that describes the coupling to the kth bath. Here,
b̂kj , b̂†kj

,ωkj and gkj are the annihilation operator, creation oper-
ator, frequency, and coupling strength for the jth mode of the
kth bath, respectively. Due to the bosonic nature of the bath, all
bath effects on the system are determined by the noise corre-
lation function, Ck(t) ≡ 〈X̂k(t)X̂k(0)〉B, where X̂k ≡

∑
j gkj (b̂

†

kj

+ b̂kj ) is the collective bath coordinate of the kth bath and
〈. . .〉B represents the average taken with respect to the canon-
ical density operator of the baths. The noise correlation func-
tion is expressed in terms of the bath spectral density, Jk(ω),
as

Ck(t) =
∫ ∞

0
dω

Jk(ω)
π

[
coth

(
~ω

2kBTk

)
cos(ωt) − i sin(ωt)

]
,

(2)

where Jk(ω) ≡ π
∑

j g2
kj
δ(ω − ωkj ), and T k is the temperature

of the kth bath.

For the system described above, we derive two rigorous
expressions for the heat current, which are convenient for car-
rying out simulations of reduced system dynamics. One of
these expressions is derived through consideration of the con-
servation of the system energy, and for this reason, we call it
the “system heat current” (SHC). This current is defined as

d
dt
〈ĤS(t)〉 − Ẇ (t) =

K∑
k=1

Q̇k
S(t), (3)

where Ẇ (t)≡ 〈(∂ĤS(t)/∂t)〉 is the power, i.e., the time deriva-
tive of the work, and

Q̇k
S(t) =

i
~
〈[Ĥ

k
I (t), ĤS(t)]〉 (4)

is the change in the system energy due to the coupling with the
kth bath. This is identical to the definition used in the QME
approach, in which the system Hamiltonian is identified as the
internal energy. The second expression for the heat current is
derived through consideration of the rate of decrease of the

bath energy, Q̇k
B(t) ≡ −d〈Ĥ

k
B(t)〉/dt. We call this current the

“bath heat current” (BHC). Using the Heisenberg equations,
the BHC can be rewritten as

Q̇k
B(t) = Q̇k

S(t) +
d
dt
〈Ĥ

k
I (t)〉 +

∑
k′,k

q̇k,k′ , (5)

where

q̇k,k′(t) =
i
~
〈[Ĥ

k
I (t), Ĥ

k′

I (t)]〉. (6)

The second term on the right hand side of Eq. (5) vanishes
under steady-state conditions and in the limit of a weak system-
bath coupling. The third term contributes to the heat current
even under steady-state conditions, while it vanishes in the
weak coupling limit. The third term, which is of purely quan-
tum mechanical origin, as can be seen from the definition,
is the main difference between the SHC and the BHC. This
term plays a significant role in the case that the kth and k ′th
system-bath interactions are non-commuting and each system-
bath coupling is strong. We also note that because this third
term is greater than fourth-order in the system-bath interac-
tion, it does not appear in the second-order QME approach.
Therefore only non-perturbative approaches22–27,29 including
higher-order QME approaches36 may allow us to reveal the
features that we are going to discuss in the present study.
Hereafter, we refer to this term as the “correlation among the
system-bath interactions” (CASBIs). For a mesoscopic heat-
transport system, including nanotubes and nanowires, each
system component is coupled to a different bath (i.e., each
V̂k acts on a different Hilbert space), and for this reason, the
CASBI contributions vanish. By contrast, for a microscopic
system, including single-molecular junctions and supercon-
ducting qubits, the CASBI contribution plays a significant role.
Using our two definitions of the heat current, we are able to
elucidate the important dynamic properties of microscopic sys-
tems and clearly demonstrate how their quantum mechanical
nature is manifested.
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III. THE FIRST AND SECOND LAWS
OF THERMODYNAMICS

We can obtain the first law of thermodynamics by sum-
ming Eq. (5) over all k,

K∑
k=1

Q̇k
B(t) =

d
dt
〈ĤS(t) +

K∑
k=1

Ĥ
k
I (t)〉 − Ẇ (t). (7)

The quantity ĤS(t) +
∑K

k=1 Ĥk
I (t) is identified as the internal

energy, because the contributions of q̇k,k′ cancel out.
The derivation of the second law of thermodynamics is

presented in the Appendix. In a steady state without external
driving forces, the second law is expressed as

−

K∑
k=1

Q̇k
B

Tk
≥ 0, (8)

while with a periodic external driving force, it is given by

−

K∑
k=1

Qcyc,k
B

Tk
≥ 0, (9)

where Qcyc,k
B =

∮
cyc

dt Q̇k
B(t) is the heat absorbed or released

per cycle. The second law without a driving force can be
rewritten in terms of the SHC as

−

K∑
k=1

Qcyc,k
S

Tk
≥

K∑
k,k′=1

qcyc
k,k′

Tk
. (10)

When the right-hand side (rhs) of Eq. (10) is negative, the
left-hand side (lhs) can also take negative values. However,
this contradicts the Clausius statement of the second law, i.e.,
that heat never flows spontaneously from a cold body to a
hot body. As we have shown in Sec. VI, it is necessary to
include the q̇k, k′ terms to have a thermodynamically valid
description.

IV. REDUCED DESCRIPTION OF HEAT CURRENTS

In order to calculate the heat current from the reduced
system dynamics, we must evaluate the expectation value of
the collective bath coordinate. To do so, we adapt a generating
functional approach40 by adding the source term, f k(t), for the
kth interaction Hamiltonian as

V̂kX̂k → V̂k, f (t)X̂k ≡ (V̂k + fk(t))X̂k . (11)

Here, in order to evaluate an expectation value, we add the
source term to the ket (left) side of the density operator, which
does not change a role of the system-bath interaction in the
time-evolution operator. The interaction representation of any
operator, Â, with respect to the non-interacting Hamiltonian,

ĤS(t)+
∑

k Ĥ
k
B is expressed as Ã(t). The total density operator,

ρ̃tot(t), with the source term is then denoted by ρ̃tot, f . This
source term enables us to have a collective bath coordinate
with the functional derivative as

X̃k(t) ρ̃tot(t) = i~
δ

δfk(t)
ρ̃tot, f (t)���f=0

. (12)

Then, for example, the SHC and the interaction Hamiltonian
are expressed in terms of the operators in the system space as

Q̇k
S(t) = TrS

{ [
H̃S(t), Ṽ k

] δ

δfk(t)
ρ̃f (t)|f=0

}
(13)

and 〈
Ĥ

k
I (t)

〉
= i~TrS

{
Ṽ k

δ

δfk(t)
ρ̃f (t)|f=0

}
, (14)

where ρ̃(t) ≡ TrB{ ρ̃tot(t)} is the reduced density operator of
the system obtained by tracing out all bath degrees of free-
dom. This is expressed in the form of a second-order cumulant
expansion, which is exact in the present case, due to the bosonic
nature of the bath,

ρ̃f (t) = T+
{
UIF, f (t)

}
ρ̂(0). (15)

Here, UIF(t) =
∏K

k=1 exp[∫
t
0ds Wk(s)] is the Feynman-Vernon

influence functional in operator form, and T+{. . .} is the time-
ordering operator, where the operators in {. . .} are arranged in
a chronological order. Here, the initial state is taken to be the
product state of the reduced system and the bath density oper-
ators, ρ̂tot(0) = ρ̂(0)

∏K
k=1 ρ̂

k,eq
B , where ρ̂

k,eq
B is the canonical

density operator for the kth bath. Note that, by generalizing the
influence functional,33,34 we can extend the present result to
the case of a mixed initial state of the reduced system and
the bath. The operators of the influence phase are defined
by

Wk(s) =
∫ s

0
du Φ̃k(s)

[
CR

k (s − u)Φ̃k(u)

−CI
k(s − u)Ψ̃k(u)

]
, (16)

where we have introduced the two superoperators Φ̂k ρ̂ = (i/~)
[V̂k , ρ̂] and Ψ̂k ρ̂= (1/~){V̂k , ρ̂}, and CR

k (s) and CI
k(s) are

the real and imaginary parts of Ck(s). Thus, by apply-
ing the functional derivative with respect to f k(t), to
the reduced density operator, we obtain the following
relation:

i~
δ

δfk(t)
ρ̃f (t)|f=0 = − T+

{∫ t

0
ds

[
CR

k (t − s)Φ̃k(s)

−CI
k(t − s)Ψ̃k(s)

]
UIF(t)

}
ρ̂(0). (17)

From the generating functional, for the SHC, we obtain the
expression

Q̇k
S(t) =

∫ t

0
ds

(
CR

k (t − s)
i
~
〈[Âk(t), V̂ k(s)]〉

−CI
k(t − s)

1
~
〈{Âk(t), V̂ k(s)}〉

)
, (18)

where Âk(t) ≡ (i/~)[ĤS(t), V̂ k(t)]. In order to obtain an explicit
expression for the BHC given in Eq. (13), we need to evalu-
ate the expectation value of the interaction energy. From the
generating functional, this is obtained as〈

Ĥk
I (t)

〉
= −

∫ t

0
ds

(
C̄R

k (t − s)
i
~
〈[V̂ k(t), V̂ k(s)]〉

−CI
k(t − s)

1
~
〈{V̂ k(t), V̂ k(s)}〉

)
. (19)

In order to obtain this expression, we have divided the real part
of the noise correlation function into a short-time correlated
part, expressed by a delta-function, and the remaining part,
as CR

k (s) = C̄R
k (s) + 2∆kδ(s). The imaginary part of the noise

correlation function is similarly divided into a delta-function
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part and the remaining part, but in this case, we incorpo-
rate this delta-function part into the system Hamiltonian by

renormalizing the frequency. Taking the time derivative of
Eq. (19), we obtain the following:

d
dt

〈
Ĥk

I (t)
〉
−

〈
dV̂ k(t)

dt
X̂k(t)

〉
= −

∫ t

0
ds

(
˙̄CR

k (t − s)
i
~
〈[V̂ k(t), V̂ k(s)]〉 − ĊI

k(t − s)
1
~
〈{V̂ k(t), V̂ k(s)}〉

)
+

i
~
∆k

〈[
dV̂ k(t)

dt
, V̂ k(t)

]〉
+

2
~

CI
k(0)〈V̂2

k(t)〉. (20)

The lhs of the above equation is identical to Q̇k
B(t), because we

have 〈
dV̂ k(t)

dt
X̂k(t)

〉
= −Q̇k

S(t) −
∑
k′,k

q̇k,k′(t), (21)

which is derived from the Heisenberg equation of motion for
V̂k ,

dV̂ k(t)
dt

= Âk(t) −
∑
k′,k

i
~

[V̂ k(t), V̂ k′(t)]X̂k′(t). (22)

Accordingly, using the relation

i
~

〈[
dV̂ k(t)

dt
, V̂ k(t)

]〉
=

∑
k′,k

∫ t

0
ds

(
CR

k′(t − s)
i
~

〈
[B̂k,k′(t), V̂ k′(s)]

〉
−CI

k′(t − s)
1
~
〈{B̂k,k′(t), V̂ k′(s)}〉

)
+

i
~
〈[Âk(t), V̂ k(t)]〉, (23)

where B̂k,k′ ≡ (i/~)2[[V̂ k , V̂ k′], V̂ k], we obtain the following as
the final expression for the BHC:

Q̇k
B(t) = −

∫ t

0
ds

(
˙̄CR

k (t − s)
i
~
〈[V̂ k(t), V̂ k(s)]〉

− ĊI
k(t − s)

1
~
〈{V̂ k(t), V̂ k(s)}〉

)
+

2
~

CI
k(0)〈V̂2

k(t)〉 +
i
~
∆k〈[Âk(t), V̂ k(t)]〉

+ ∆k

∑
k′,k

∫ t

0
ds

(
CR

k′(t − s)
i
~
〈[B̂k,k′(t), V̂ k′(s)]〉

−CI
k′(t − s)

1
~
〈{B̂k,k′(t), V̂k′(s)}〉

)
. (24)

Now that we have obtained the explicit expressions for
the SHC and BHC; the remaining task is to evaluate these
expressions in a numerically rigorous manner. This was carried
out using the HEOM approach.

V. HIERARCHAL EQUATIONS OF MOTION APPROACH

When the noise correlation function, Eq. (2), is written
as a linear combination of exponential functions and a delta
function, Ck(t) =

∑Jk
j=0(c′kj

+ ic′′kj
)e−γkj |t | + 2∆kδ(t), which is

realized for the Drude,30–35 Lorentz,41,42 and Brownian43–45

cases (and combinations thereof46), we can obtain the reduced
equations of motion as the HEOM. The HEOM consists of the
following set of equations of motion for the auxiliary density
operators (ADOs):

ρ̂~n1,...,~nK
(t) ≡ T+

{
exp

[
−

i
~

∫ t

0
dsL(s)

]}

× T+



K∏
k=1

Jk∏
j=0

[
−

∫ t

0
ds e−γkj (t−s)

Θ̃kj (s)

]nkj

× UIF(t)


ρ̂(0). (25)

Here, we have Θ̂kj ≡ c′kj
Φ̂k − c′′kj

Ψ̂k and L(t) ρ̂ = [ĤS(t), ρ̂].

Each ADO is specified by the index ~nk = (nk0 , . . . , nkJk
),

with k = 1, . . . , K , where each element takes an integer value
larger than zero. The ADO for which all elements are zero,
~n0 = · · · = ~nK = 0, corresponds to the actual reduced density
operator. Taking the time derivative of Eq. (25), the equations
of motion for the ADOs are obtained as

∂

∂t
ρ̂~n1,...,~nK

(t) = −



i
~
L(t) +

K∑
k=1

Jk∑
j=0

nkjγkj


ρ̂~n1,...,~nK

(t)

−

K∑
k=1

∆kΦ̂
2
k ρ̂~n1,...,~nK

(t)

−

K∑
k=1

Φ̂k

Jk∑
j=0

ρ̂~n1,...,~nk+~ej ,...,~nK
(t)

−

K∑
k=1

Jk∑
j=0

nkj Θ̂kj ρ̂~n1,...,~nk−~ej ,...,~nK
(t), (26)

where~ej is the unit vector along the jth direction. The HEOM
consists of an infinite number of equations, but they can be
truncated at a finite order by ignoring all kj beyond the value
at which

∑
kj

nkj first exceeds some appropriately large value N.
Employing the noise decomposition of the HEOM

approach for the noise correlation functions in Eqs. (18) and
(24), and comparing the resulting expressions with the defini-
tion of the ADOs given in Eq. (25), we can evaluate the SHC
and BHC in terms of the ADOs as

Q̇k
S(t)= −

Jk∑
j=0

Tr{Âk(t) ρ̂~0,...,~ej ,...,~0
(t)} + ∆k

i
~

Tr{[Âk(t), V̂ k] ρ̂(t)}

(27)
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and

Q̇k
B(t) = −

Jk∑
j=0

γkj Tr{V̂ k ρ̂~0,...,~ej ,...,~0
(t)}

+
2
~

CI
k(0)Tr{V̂2

k ρ̂(t)} +
i
~
∆kTr{[Âk(t), V̂ k] ρ̂(t)}

+ ∆k

∑
k′,k

Jk′∑
j=0

Tr{B̂k,k′ ρ̂~0,...,~ej ,...,~0
(t)}

+ ∆k

∑
k′,k

i
~
∆k′Tr{[B̂k,k′ , V̂ k′] ρ̂(t)}. (28)

It is important to note that the steady-state solution of the
HEOM is an entangled state of the system and the baths;
for example, for a static system coupled to a single bath
(k = 1), the steady-state solution of the HEOM takes the form
ρ̂ ∝ TrB{exp[−β(ĤS + Ĥ1

I + Ĥ1
B)]}.33,34

VI. NUMERICAL ILLUSTRATION

To demonstrate the role of the CASBI in the heat
current, we carried out numerical simulations for a non-
equilibrium spin-boson model47–51 and a three-level heat
engine model52–55 with the HEOM approach (Fig. 1). Here,
we focus on investigating the steady-state heat currents, which
are computed from Eq. (26) using the Runge-Kutta method
to numerically integrate them until convergence to the steady
state is realized. We assume that the spectral density of each
bath takes the Drude form, Jk(ω) = ηkγ

2ω/(ω2 + γ2), where
ηk is the system-bath coupling strength, and γ is the cutoff fre-
quency. A Padé spectral decomposition scheme is employed
to obtain the expansion coefficients of the noise correlation
functions.56–58 The accuracy of numerical results is checked
by increasing the values of J1, . . . , JK and N until convergence
is reached.

A. Non-equilibrium spin-boson model

The non-equilibrium spin-boson model studied here con-
sists of a two-level system coupled to two bosonic baths
at different temperatures. This model has been employed
extensively as the simplest heat-transport model. The system
Hamiltonian is given by ĤS = (~ω0/2)σz. We consider the
case in which the system is coupled to the first bath through

FIG. 1. Schematic depiction of (a) the non-equilibrium spin-boson model and
(b) the three-level heat engine model.

V̂1 =σx and to the second bath through σx and σz in the
form V̂2 = (sxσx + szσz)/(s2

x + s2
z )

1/2
. In order to investigate

the difference between the SHC and BHC, we consider the
case sz , 0, because otherwise the CASBI term vanishes, and
thus, the SHC coincides with the BHC. (This is the case that
most of previous investigation has been considered.) It should
be noted that the CASBI has a purely quantum origin, as can
be seen from its definition. We chose T1 = 2.0~ω0/kB, T2

= 1.0~ω0/kB, γ = 2.0ω0, and sz = 1.
Figure 2 depicts the role of non-commuting component

of the V1 and V2 interactions in the SHC and BHC pro-
cesses in the steady state as functions of sx. Here, the system-
bath coupling strengths are set to η1 = η2 = 0.01ω0. Even
when the system Hamiltonian commutes with the second
interaction Hamiltonian in the case sx = 0 (i.e., even when
the system couples to the second bath in a non-dissipative
manner with the interaction szσz as [ĤS, Ĥ2

I ]= 0), non-zero
heat current arises due to the CASBI contribution, q̇1,2. This
is because the Hamiltonian of the system plus system-bath
interactions does not commute with the second interaction
(i.e., [ĤS +

∑
k=1,2 Ĥk

I , Ĥ2
I ] = [Ĥ1

I , Ĥ2
I ] , 0), while the sys-

tem Hamiltonian and the second interaction Hamiltonian do
commute.

Figure 3 depicts the heat currents as functions of the
system-bath coupling strength for the case sx = sz = 1. In
the weak system-bath coupling regime, the SHC and BHC
increase linearly with the coupling strength in similar man-
ners. It thus seems that in this case, the CASBI contribution is
minor. As the strength of the system-bath coupling increases,
the difference between the SHC and BHC becomes large:
While Q̇1

S decreases after reaching a maximum value near
η1 = η2 = 0.2ω0, the CASBI contribution, q̇1,2, dominates
the BHC, and as a result, it remains relatively large. Thus, in
this regime, the SHC becomes much smaller than the BHC. In
the very strong coupling regime, the SHC eventually becomes
negative, which indicates the violation of the second law. In
order to eliminate such a non-physical behavior, we have to
include the q̇1,2 term in the definition of the SHC. Note that
the differences between the SHC and BHC described above
vanish for sz = 0, and hence in this case, there is no negative

FIG. 2. The heat currents of the non-equilibrium spin-boson model are plotted
as functions of sx in order to illustrate the effect of the fact that V1 and V2
do not commute. The solid (blue) and the dashed (black) curves represent Q̇1

B
and Q̇1

S, which correspond to the BHC and SHC.
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FIG. 3. The SHC and BHC corresponding to Q̇1
S (black dashed curve) and

Q̇1
B (blue solid curve) for the non-equilibrium spin-boson model as functions

of the system-bath coupling.

current problem. This is the case considered in most previous
investigation.

B. Three-level heat engine model

The three-level heat engine model considered here con-
sists of three states, denoted by |0〉, |1〉, and |2〉, coupled to
two bosonic baths. The system is driven by a periodic external
field with frequency Ω. The system Hamiltonian is expressed
as

ĤS(t) =
∑

i=0,1,2

~ωi |i〉〈i| + g(e−iΩt |1〉〈2| + H.c.) (29)

with ω1 > ω2 > ω0. The system-bath interactions are defined
as V̂1 = |0〉〈1|+ |1〉〈0| and V̂2 = |0〉〈2|+ |2〉〈0|. We setω0 = 0
without loss of generality. Roughly stated, this model acts as
a quantum heat engine when population inversion between
the two excited states, |1〉 and |2〉, occurs. This can be real-
ized in the case that the temperature of the first bath, T1, is
sufficiently higher than that of the second bath, T2. Using
this model, we analyze the work and the heat per cycle, i.e.,
Y cyc = limt→∞∫

t+2π/Ω
t Ẏ (t ′)dt ′ for Y = W , Qk

S, and Qk
B with k

= 1 or 2. We set ω2 = 0.5ω1, Ω = 0.5ω1, γ = 2.0ω1, and
g = 0.1~ω1.

In Figure 4, we illustrate the time dependences of the two
SHC, Q̇1

S and Q̇2
S, and the power, W, that arise from transitions

between |0〉 and |1〉, |0〉 and |2〉, and |1〉 and |2〉, respectively,
for several values of the first bath coupling, with the sec-
ond bath coupling fixed (η2 = 0.001ω1). The figure depicts
Q̇1

S, Q̇2
S, and Ẇ for one cycle of the external force. We set

t = 0 and t = 1 to correspond to the maxima of the cyclic
driving field. The time delays observed for Q̇1

S, Q̇2
S, and Ẇ

imply that the transition |0〉 → |1〉 → |2〉 is cyclic. This
behavior can be regarded as a microscopic manifestation of
a quantum heat engine. The periods of the currents and power
are, however, half as long as the period of the driving field.
This is because, while the transition for the work production
is induced by an even number of system-field interactions, the
second-order interaction that involves components with fre-
quency 2Ω, which is twice that of the system-field interaction,
becomes dominant.

The phases of Q̇1
S, Q̇2

S and W depend on the first bath
coupling. Because the strength of the second bath coupling

FIG. 4. The SHC of the first bath, Q̇1
S (red curve), that of the second bath,

Q̇2
S (blue curve), and the power, Ẇ (black curve), are plotted as functions of

time for (a) weak (η1 = 0.01ω1), (b) intermediate (η1 = 0.10ω1), and (c)
strong (η1 = 1.00ω1) coupling to the first bath with fixed weak coupling to
the second bath (η2 = 0.001ω1). The temperatures of the first and second
baths are T1 = 10~ω1/kB and T2 = ~ω1/kB. The time period of 1 corre-
sponds to one cycle of the external force. Each curve is properly adjusted as
Ẏ → Ẏ − 1

2 (maxt {Ẏ (t)} +mint {Ẏ (t)}) for Y = Q1
S, Q2

S, and W.

and the external fields are weak, all of these changes are a
consequence of the change in Q̇1

S. When the first bath cou-
pling is weak, the first SHC, Q̇1

S, which is the current from
the high-temperature heat bath, cannot follow the change of
the external field and hence exhibits a delay in its response
to the decrease of the heat current that occurs at the maxima
of the field intensity. As a result, the power, W, and the heat
current for the low-temperature bath, Q̇2

S, exhibit successively
a delayed response. When the first bath coupling is strong, Q̇1

S
closely follows the variation of the field. The time delays of
Q̇2

S and Ẇ also decrease as first bath coupling increases.
In Fig. 5, we depict the system efficiency,

εS ≡−W cyc/Qcyc,1
S , and the bath efficiency, εB ≡−W cyc/Qcyc,1

B ,
as functions of the strength of the coupling to the first
bath with fixed strength of the coupling to the second bath,
η2 = 0.001ω1. Here, W cyc and Qcyc represent the time average

FIG. 5. The efficiencies of the three-level heat engine calculated as functions
of the coupling to the first bath, η1, with fixed weak coupling to the second
bath (η2 = 0.001ω1). Here, we consider εS = −Wcyc/Qcyc,1

S (solid line) and

εB = −Wcyc/Qcyc,1
B (curve with circles) in the high temperature case, with

T2 = 1.0~ω1/kB, and εS (dashed curve) and εB (dashed-dotted line) in the
low temperature case, with T2 = 0.1~ω1/kB.
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FIG. 6. The work and heat per cycle of the three-level heat engine calculated
as functions of the coupling to the first bath, η1, with fixed weak coupling to
the second bath (η2 = 0.001ω1). Here, we consider only the high temperature
case, with T2 = 1.0ω1. The solid, dashed, and circle curves represent the work,
the system heat, Qcyc,1

S , and the bath heat, Qcyc,1
B , respectively.

of W and Q per cycle. We consider a high temperature case with
T2 = ~ω1/kB and a low temperature case with T2 = 0.1~ω1/kB,
with the fixed ratio T2/T1 = 0.1.

While the system efficiency is weakly dependent on the
strength of the first bath coupling, regardless of the tempera-
ture, the bath efficiency decreases as the strength of the first
bath coupling increases, in particular in the low temperature
case. The reason for this can be understood from Fig. 6. There,
it is seen that Qcyc,1

S decreases as the strength of the first bath
coupling increases, as a result of the strong suppression of
the thermal activation by dissipation. The overall profiles of
the work, W cyc as well as Qcyc,2

S (not shown) are similar to

Qcyc,1
S . The η1 dependence of Qcyc,1

S and W cyc follows that

of Qcyc,2
S because, under the present weak system and second

bath interaction, the heat flow and work are determined by the
capability of the second bath to drain the heat.54 Because we
set the strength of the second bath coupling and the external
fields are weak, the work �W cyc tends to follow the behavior of
Qcyc,1

S , as illustrated in Fig. 4, whereas Qcyc,1
B increases as the

strength of the coupling to the first bath increases, due to the
CASBI contribution, q̇1,2. As a result, the system efficiency,
−W cyc/Qcyc,1

S , does not change significantly, whereas the bath

efficiency, −W cyc/Qcyc,1
B , decreases as a function of the first

coupling strength.
In the strong coupling regime, the bath efficiency in the

low temperature case is larger than that in the high temper-
ature case, as depicted in Fig. 5, because as the temperature
decreases, the system coupled to the low temperature bath
becomes less activated. Note that if the strength of the coupling
to the second bath is sufficiently large that the system is in the
non-perturbative regime, the system efficiency decreases as
the strength of the coupling to the first bath increases, because
in this case, a part of �W goes to Qcyc,2

S .
Unlike in the non-equilibrium spin-boson case, the system

efficiency is physically meaningful. We believe, however, that
the bath efficiency is more appropriate as the rigorous def-
inition of the heat efficiency, because the system efficiency
does not include the contribution to the energy from the
system-bath interactions, which must be regarded as a part

of the system. The decrease in efficiency can be regarded as
a quantum effect, because it originates from the discretization
of the energy eigenstates.

VII. CONCLUDING REMARKS

In this paper, we introduced an explicit expression for the
bath heat current (BHC), which includes contributions from
the correlations among the system-bath interactions (CAS-
BIs). The BHC reduces to the widely used system heat current
(SHC) derived in terms of the system energy under the con-
ditions of a weak system-bath coupling or in the case that
all system-bath interactions commute. Our definition of the
BHC can be applied to any system with any driving force
and any strength of the system-bath coupling. We numer-
ically examined the role of the CASBI using the HEOM
approach. We demonstrated this approach in the case of a
non-equilibrium spin-boson system in which the CASBI con-
tribution is necessary to maintain consistency with thermody-
namic laws in the strong system-bath coupling regime. In the
three-level heat-engine model, we observed cyclic time evo-
lution of the high-temperature heat current, the work, and the
low-temperature heat current, as in a classical heat engine.
When the system-bath coupling is weak, there is a time delay
between the variation of the external field and the heat cur-
rent of the high-temperature bath, because this bath cannot
follow variations of the system, due to the weakness of the
system-bath coupling. Contrastingly the heat current does not
exhibit any time delay in the strong system-bath coupling
case. The efficiency defined using the BHC, which is regarded
as physically more appropriate than that defined using the
SHC, decreases as the strength of the system-bath coupling
increases.

Although the definition of the heat current under the non-
steady-state condition is not clear,27 we can also apply our
formulation to the analysis of a transient behavior, in which the
variation of the bath energy in time is experimentally measur-
able. Because the HEOM approach is capable of calculating
various physical quantities in non-equilibrium situations, it
would also be interesting to extend the present investigation
to other quantum transport problems59 by calculating higher-
order cumulants60 and non-linear optical signals61–63 to reveal
the detailed physical properties of the dynamics. We leave such
problems to future studies.

ACKNOWLEDGMENTS

The financial support from a Grant-in-Aid for Scientific
Research (Grant No. A26248005) from the Japan Society for
the Promotion of Science is acknowledged.

APPENDIX: DERIVATION OF THE SECOND LAW

In this appendix, we derive the Clausius inequality as the
second law of thermodynamics for quantum steady states by
extending the result of Deffner and Jarzynski64 from the clas-
sical case to the quantum case. Note that this derivation is
not limited to the case of reduced dynamics. Because exten-
sion to the case of multiple heat baths is straightforward, here
we consider the case of a single bath, with the Hamiltonian
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Ĥ(t)= ĤS(t)+Ĥ I+ĤB. We consider the von Neumann entropy
H(t) defined as

H(t) ≡ −Tr{ ρ̂(t) ln ρ̂(t)}, (A1)

where ρ̂(t) is the total density operator. The reduced den-
sity operator for the system is ρ̂S(t) ≡ TrB{ ρ̂(t)}, while
that for the bath is ρ̂B(t) ≡ TrS{ ρ̂(t)}. Then we intro-
duce the von Neumann entropies of the system and bath as
HS(t)=−Tr{ ρ̂S(t) ln ρ̂S(t)} and HB(t)=−Tr{ ρ̂B(t) ln ρ̂B(t)},
respectively. Without loss of generality, we assume that the
total system is initially in the factorized state ρ̂(0)= ρ̂S(0) ρ̂eq

B ,

where ρ̂eq
B = e−βĤB/ZB is the equilibrium density operator of

the bath, in which ZB is the partition function of the bath. In
this case, the total entropy is merely the sum of the system and
bath entropies,

H(0) = HS(0) +HB(0). (A2)

Because the von Neumann entropy is invariant under unitary
evolution (i.e., H(t) = H(0)), and because the von Neumann
entropy is sub-additive (i.e., H(t) ≤ HS(t) +HB(t)), we have
the following inequality for ∆HS(t) ≡ HS(t) − HS(0) and
∆HB(t) ≡ HB(t) −HB(0):

∆HS(t) + ∆HB(t) ≥ 0. (A3)

We now rewrite the von Neumann entropy of the bath as

HB(t) = −Tr{ ρ̂B(t) ln ρ̂eq
B } − (Tr{ ρ̂B(t) ln ρ̂B(t)}

−Tr{ ρ̂B(t) ln ρ̂eq
B }

)
(A4)

= βEB(t) − βFB − D( ρ̂B(t)| | ρ̂eq
B ),

where EB(t) = Tr{ĤB ρ̂B(t)}, FB = −β
−1 ln ZB, and D( ρ̂| |σ̂)

= Tr{ ρ̂ ln ρ̂} − Tr{ ρ̂ ln σ̂} ≥ 0 are the bath energy, the bath
free energy, and the quantum relative entropy, respectively.
This leads to the condition

∆HB(t) = β∆EB(t) − D( ρ̂B(t)| | ρ̂eq
B ) ≤ β∆EB(t). (A5)

Then, using Eq. (A3), we obtain the inequality

∆HS(t) + β∆EB(t) ≥ 0. (A6)

A quantum heat machine is subject to a periodic per-
turbation, ĤS(t) = ĤS(t + T ), where T is the period of the
perturbation. After a sufficiently long time, the system relaxes
to a periodic steady state, with ρ̂S(t) = ρ̂S(t + T ). We separate
the time of observation into a transient part (from t = 0 to n0T )
and a steady part (from t = n0T to nT ), where n0 is an integer
sufficiently large to ensure that the system is in the periodic
steady state at n0T. The change in a variable A from time n0T
to nT is written as ∆An0→n = A(nT ) − A(n0T ). The inequality
Eq. (A6) is then partitioned as

∆H0→n0
S + ∆Hn0→n

S + β∆E0→n0
B + β∆En0→n

B ≥ 0. (A7)

The second term on the right-hand side of this equation van-
ishes because the system is in a periodic steady state during the
time from n0T to nT. The bath releases or absorbs a constant
amount of heat per cycle,

∆En0→n
B = (n − n0)∆Ecyc

B , (A8)

where ∆Ecyc
B is the change in the bath energy per cycle. This

leads to the inequality

β∆Ecyc
B ≥ 0 (A9)

for large n. Because the change of the bath energy is identical
to the bath heat, −Qcyc

B , the Clausius inequality is obtained.
With the straightforward extension of this derivation in the
case of multiple baths, we obtain the general inequality

−
∑

k

Qcyc,k
B

Tk
≥ 0. (A10)

This is the result presented in Sec. III.
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