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The Dzyaloshinskii–Moriya (DM) interaction is induced by the spin–orbit interaction with an antisym-
metric component in the exchange coupling. We have examined a possibility to detect the DM interaction
as well as the non-secular part of the dipolar interaction for weakly-coupled systems by analyzing relax-
ation processes from the double to single quantum coherence by pulsed EPR measurement. Numerical
simulation for two and three spin-1/2 systems indicates that the proposed measurement has a capability
to determine the signs of the DM interactions that are important to distinguish spins in a uniform field
from in a staggered field.

� 2008 Elsevier B.V. All rights reserved.
Understanding the dynamics of spins in solids is clearly a noble
and important issue in the condensed matter physics and chemis-
try. It is therefore not surprising that a tremendous amount of
experimental and theoretical efforts has been made to explore
the dynamical behavior of the spin system. Recently, the chiral or-
der of magnetic spins in molecular based materials [1], inorganic
materials [2–5], and semiconductor nanostructures [6,7] has at-
tracted much attention because of its unique anisotropic features
[8]. The key feature of these materials is the Dzyaloshinskii–Moriya
(DM) interaction between the neighboring spins bSi and bSiþ1, which
is induced by the spin–orbit interaction with an antisymmetric
component in the exchange coupling and is expressed as
D � ðbSi � bSiþ1Þ, where D is the coupling constant [9,10].

For S ¼ 1=2 antiferromagnetic spin chain, the DM interactions
are classified into two kinds [11]; one is the uniform DM interac-
tion (

P
iD � ðbSi � bSiþ1Þ) [12,13], and the other is the staggered DM

interaction (
P

ið�1ÞiD � ðbSi � bSiþ1Þ) [14,15]. In the latter case, a
gyromagnetic (g) tensor may be staggered. While efforts have been
made to identify the DM interactions by measuring the continuous
wave electron paramagnetic resonance (CW EPR) spectra of forbid-
den transitions between the singlet ground state and the triplet ex-
cited state of the spin gap systems which is allowed by the DM
interaction [16–18], it is not easy to determine the DM parameter
due to the weakness of the coupling strength.

In this Letter, we explore a possibility to detect the DM interac-
tions by means of pulsed EPR spectroscopy techniques. In particu-
lar, we focus on the different relaxation dynamics caused by the
uniform and staggered DM interactions.

There are several varieties of pulsed EPR methods for detecting
electron–electron couplings to determine structures of biological
ll rights reserved.

. Joutsuka).
molecules [25], such as DEER (double electron–electron resonance)
[19,20], ‘2 + 1’ pulse train [21,22], and DQ (double quantum) EPR
[23,24]. In those methods we assume the high-field approximation
for spins in solids, where the spins are weakly coupled and pulsed
EPR techniques are used to manipulate the spin density operator.
We thus propose the pulsed EPR spectroscopy utilizing the double
quantum coherence (DQC) to extract the effects of the DM interac-
tion, as well as the non-secular part of the dipolar interaction.

It will be shown that the difference between the uniform and
the staggered DM interactions can clearly be seen from this mea-
surement when the system is nearly parallel to the static magnetic
field.

Note that although here we restricted our discussions for two
and three spin cases, the present detection scheme may be applica-
ble to a multispin system, where the collective excitations, such as
spin waves, play essential roles. This is because energy scale of the
collective excitations is very small compared with the Zeeman en-
ergy and we can separate EPR spectra from the collective
excitations.

We consider N-spin system in a chain with the Zeeman term
lB
bSigiH described by the Hamiltonian,

bH ¼ bH0 þ bH1 ¼
XN

i

bH0i þ
XN�1

i

bH1i; ð1Þ

wherebH0i=�h ¼ lB
bSigiH=�h ð2Þ

and

bH1i=�h ¼ bSiJbSiþ1 þ b bSi � bSiþ1 �
3
r3 ðbSi � rÞðbSiþ1 � rÞ

� �
þ ð�1ÞiD � ðbS � bS Þ: ð3Þ
i iþ1
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Here, H, r, J, and b ¼ l0g2l2
B=4p�hr3 are the magnetic fields, the inter-

electron vector, the antiferromagnetic Heisenberg coupling, and the
dipolar coupling, respectively. Assuming the static field is applied in
the z direction, we let the Zeeman term be

lB
bSigiH=�h � xix

bSix þ xiy
bSiy þ xiŜiz: ð4Þ

We also rewrite the exchange interaction asbSiJbSiþ1 ¼ JbSi � bSiþ1 þ JxyðbSix
bSiþ1y þ bSiy

bSiþ1xÞ

þ JxzðbSix
bSiþ1z þ bSiz

bSiþ1xÞ þ JyzðbSiy
bSiþ1z þ bSiz

bSiþ1yÞ: ð5Þ

For simplicity, we choose the vector D to be directed along the x axis
and consider only the nearest-neighbor interactions. Since Dx and
Dy play a similar role in relaxation processes, we can apply the same
argument for Dy.

To begin with, we discuss the time evolution of a two-particle
system of spin 1/2 described by Eq. (1) for the pulse sequence in
Fig. 1. Here, the order of coherence p is the difference in magnetic
quantum numbers DM and the double-, single-, and zero-quantum
coherences (DQC, SQC, and ZQC) correspond to jpj ¼ 2, 1, 0,
respectively.

In a system with coupled electron spins, DQC can be created by
the sequence p=2� s=2� p� s=2� p=2, which is known as the
DQC generator [26], where s ¼ p=jJ þ bð1� 3 cos2 hÞj with the
phase cycle ½ðx; x; xÞ � ðy; y; yÞ þ ð�x;�x;�xÞ � ð�y;�y;�yÞ�. Note
that while this phase cycle suppresses all of the pathways that
yield SQC and ZQC, this cannot eliminate SQC and ZQC in the equi-
librium state. Thus, the existence of initial SQC and ZQC weakens
the signal intensity.

If the system is in �bSz at first, the DQC state immediately after
the third pulse is expressed as

q̂ð0Þ ¼ �2bS1x
bS2y � 2bS1y

bS2x; ð6Þ

which is undetectable by the quadrature detection. However, the
DM interaction as well as the non-secular part of the dipolar, ex-
change, and Zeeman interactions can create detectable SQC excita-
tions via forbidden coherence (FC) pathways since all of them
consist of one creation or annihilation operator only. While this
transition causes the undesired relaxation in the allowed DQ EPR
measurement, we extract the dynamical information of the
above-mentioned four interactions from the relaxation in the pres-
ent measurement.

Although the non-secular hyperfine coupling assumes the same
form as the anisotropic Zeeman interaction for the electron spin
operators, the non-secular hyperfine coupling is much smaller than
the anisotropic Zeeman interaction and therefore we ignore the
hyperfine coupling.

The conversion from DQC to SQC in the evolution period can
readily be verified by the power series expansion of the spin den-
sity operator
+2
+1

0
-1
-2

t

π/2 π π/2
πτ/2τ/2

Fig. 1. Pulse sequence and related coherence transfer pathways. The fourth selec-
tive p pulse converts the coherence order of either of two spins in the dashed
pathway as p ¼ þ1! �1.
q̂ðtÞ ¼ q̂ð0Þ � itL̂q̂ð0Þ � t2

2
L̂2q̂ð0Þ þ � � � ; ð7Þ

where L̂ is the Liouvillian of Eq. (1): L̂q̂ ¼ ðbHq̂� q̂bHÞ=�h. Since the
commutator q̂ð0Þ with 2bS1y

bS2z � 2bS1z
bS2y yields the detectable SQCbS1y � bS2y, we find the signal in the lowest order is proportional to

Dx. Furthermore, the z component of the DM interaction cannot ex-
cite SQC since it is only a flip-flop term. Although the present anal-
ysis holds only for a short time, this suffices to illustrate a role of the
DM interaction. Below, we utilize the response function approach to
discuss longer time period.

In conventional EPR measurements, the intensity of signal from
the forbidden transitions is of the order of a2 and approximately
10�8 smaller than from the allowed transitions in the high field
region [27], while the intensity of the present pulse measurement
is of the order of a, where a ’ kbH 01ik=kbH0ik and kbHjik ðj ¼ 0;1Þ
stands for the norm of the Hamiltonians of spin i. Here, bH0i is given
by Eq. (2), which leads to kbH0ik ¼ lBgiH=2 and bH 01i is now expressed
as

bH 01i=�h ¼ xix
bSix þ xiy

bSiy þ bðC þ DÞ þ ð�1ÞiDxðbSiy
bSiþ1z � bSiz

bSiþ1yÞ
þ ð�1ÞiDyðbSiz

bSiþ1x � bSix
bSiþ1zÞ; ð8Þ

where C and D are the dipolar interactions, which contain only one
creation or annihilation operator, expressed in the polar coordinates
as [28]

C ¼ �3
2
ðbSþi bSiþ1z þ bSiz

bSþiþ1Þ sin h cos he�i/; ð9Þ

and

D ¼ �3
2
ðbS�i bSiþ1z þ bSiz

bS�iþ1Þ sin h cos hei/: ð10Þ

Here, h is the angle between the z axis and r, and / is the azimuthal
angle. They are experimentally changeable parameters that make
possible to determine the sign of the DM interaction.

Likewise, the intensity of CW EPR absorption between the sin-
glet ground state and the triplet excited states of the spin gap sys-
tems is proportional to D2 [29], which corresponds to a2. On the
other hand, the detection scheme proposed in this Letter is propor-
tional to D and therefore the resulting spectra reflect the sign of the
DM interaction.

From the response function approach [30], the intensity of sig-
nal is easily shown to be of the order of a for the pulse sequence in
Fig. 1. We consider a two-particle system of spin 1/2 with the Ham-
iltonian of the form

bH ¼ bH0 þ bH 01; ð11Þ

where

bH0=�h ¼ x1
bS1z þ x2

bS2z; ð12Þ

and

bH 01=�h ¼ DxðbS1y
bS2z � bS1z

bS2yÞ: ð13Þ

The time-dependent density operator is expanded in powers of bH 01
to obtain the linear response function

Sð1ÞðtÞ ¼ ihhbSþje� iL̂0tL̂0
1jq̂ð0Þii

¼ Dxð� i cos x1t þ sin x1t þ i cos x2t � sin x2tÞ: ð14Þ

Since a ’ Dx=xi, the intensity of this signal is of the order of a. Fur-
thermore, we can verify that the intensity of forbidden transitions is
of order a2
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Sð1ÞðtÞ ¼ 0; ð15Þ
Sð2ÞðtÞ ¼ �hhbSþje�iL̂0t2L̂0

1e�iL̂0t1L̂0
1jbSyii

¼ D2
xfð�i cos x1t2 þ sin x1t2 � i cos x2t2 þ sin x2t2Þ
� cosðx1 � x2Þt1 � ðcos x1t2 þ i sin x1t2 þ cos x2t2

þ i sin x2t2Þ sinðx1 � x2Þt1g: ð16Þ

In a similar fashion, we can prove that the z component of the DM
interaction cannot excite SQC since all orders of response functions
equal to zero.

The signal from the SQC created by the DM interaction,bS1y � bS2y, is 0 for the quadrature detection, because Tr½bSþðbS1y�bS2yÞ� ¼ 0. Thus, a selective px pulse for either of two spins immedi-
ately before the detection is necessary to detect the DM interaction
as shown in Fig. 1. Since the fourth pulse in Fig. 1 applies only in
the high-field region, we have to employ the strong EPR field
against the exchange coupling. This limits the applicability of the
proposed pulsed EPR technique to the weakly-coupled spin sys-
tems. A possible candidate is the quantum dot system, in which
we can modify the strength of spin–spin interactions. Biological
molecules may be another candidate although no attempt has been
made to find the DM interaction in such a system so far.

In order to demonstrate the present detection scheme closely
and to analyze the relaxation mechanism precisely, we have to in-
clude longitudinal and transverse relaxations as well as inhomoge-
neous broadening processes. We calculate the EPR spectra for the
given pulse sequence using a quantum master equation for nearly
Gaussian–Markovian noise bath [31], which is an extension of the
stochastic Liouville equation [32]. We assume that the HamiltonianbH defined by Eq. (1) is coupled to the harmonic heat-bath. The total
Hamiltonian is then expressed as

bH tot ¼ bH þ V̂
X

j

cjx̂j þ
X

j

p̂2
j

2mj
þ 1

2
mjx

2
j x̂2

j

 !
; ð17Þ

where x̂j; p̂j;mj, and xj are the coordinate, momentum, mass, and
frequency of the jth bath oscillator, respectively. The operator V̂ is
the system part of the coupling described by the creation and anni-
hilation operators bSþ and bS�. In this Letter, we assume a nearly
Gaussian–Markovian noise bath defined by an Ohmic spectral dis-
tribution with a Lorentzian cutoff,

JðxÞ ¼ �hg
p

c2x
x2 þ c2 ; ð18Þ

where g and c represent the strength of the system-bath coupling
and the width of the spectral distribution of the bath, respectively.
If we further assume the high temperature bath, b�hc� 1, we can
derive the hierarchy of equations for the reduced density operator
by tracing over the bath degrees of freedom as

o

ot
q̂nðtÞ ¼ �

i
�h
bH� þ nc

� �
q̂nðtÞ �

i
�h

V̂�q̂nþ1ðtÞ

� in
�h

Ĥ0q̂n�1ðtÞ � Ĉfq̂nðtÞ � q̂eq
n g ðn ¼ 1;2; � � �Þ; ð19Þ

where

Ĥ0 �
gc
b

V̂� � i
b�hc
2

V̂	
� �

; ð20Þ

and we set in Ĥ0q̂n�1ðtÞ=�h ¼ 0 for n ¼ 0. In Eqs. (19) and (20), we
have introduced the hyperoperator notations for any operator Ô:
V̂�Ô � V̂Ô� ÔV̂ and V̂	Ô � V̂Ôþ ÔV̂ . To include the effect of the
homogeneous broadening arising from the natural radiative damp-
ing, we have added the longitudinal (T1-type) and transverse (T2-
type) relaxation processes, expressed as

ĈÔ � C
X

i

ðbSþi bS�i Ôþ ÔbSþi bS�i � 2bS�i ÔbSþi Þ: ð21Þ
The above set of equations of motion may be regarded as a general-
ization of the Kubo’s stochastic Liouville equation [33] and if we set
b! 0 with keeping g ¼ D2=b, the above equations reduce to the sto-
chastic Liouville equation, where D and c correspond to the ampli-
tude and the inverse correlation time of a noise, respectively.
Note that although Eq. (19) can handle a finite temperature system,
we have to include low temperature correction terms if the heat-
bath is in a low temperature system, where quantum effects play
an important role [34]. The hierarchy of equations, Eq. (19), contin-
ues to the infinity, but we can safely truncate the hierarchy for large
N by the following terminator:

o

ot
q̂NðtÞ ¼ �

i
�h
bH� þ Nc

� �
q̂NðtÞ �

1

c�h2 V̂�Ĥ0q̂NðtÞ

� iN
�h

Ĥ0q̂N�1ðtÞ � Ĉfq̂NðtÞ � q̂eq
N g; ð22Þ

where N is chosen to satisfy ðN þ 1Þc
 x1. The operator V̂ in Eq.
(19) can be any form, but here we set bV ¼Pi

bSiz � bSz to include
the pure dephasing effects. For the fast modulation limit c!1,
the effects which arise from these terms can be regarded as the
T�2 process due to random local strain fields (spin–phonon coupling)
in solids.

We first consider a two-spin system to illustrate the effects
of the positive and negative DM interaction in the EPR spectra.
The parameters in Eq. (1) are set to be x1 ¼ 100 GHz, x2 ¼
1:01x1, xix ¼ xiy ¼ 0:01xi ði ¼ 1;2Þ, J ¼ b ¼ 0:001x1, Jxy ¼
Jxz ¼ Jyz ¼ 0:001J , and Dx ¼ 0:01J since the DM interaction is of
the order ðDg=gÞJ [10], where g is the gyromagnetic ratio and Dg
is its deviation from the value for a free electron. For simplicity,
we choose / ¼ 0 rad. The system-bath coupling parameters are
set by c ¼ 0:001x1 and g ¼ 2:4� 10�4x1, corresponding to the
inhomogeneous limit. C in Eq. (21) is 5� 10�6x1, corresponding
to T1 ¼ 200 ns and T2 ¼ 100 ns, and the temperature of the bath
is 200 K. The number of hierarchy N we employed is at most
N ¼ 30. The accuracy of calculations can be easily checked by
changing N. We consider ideal pulses that neglect the effect of pulse
duration.

Fig. 2A depicts the real part of the signal for (a) the positive DM
interaction (þD � ðS1 � S2Þ), (b) the negative DM interaction
(�D � ðS1 � S2Þ), and (c) the non-DM interaction (D ¼ 0) for h ¼ 0
rad. The peaks around 101 and 201 GHz arise from SQC and DQC,
respectively. Around 201 GHz, (a) and (b) appear in an opposite
manner reflecting the sign of the DM interactions, whereas (c) bi-
sects (a) and (b). These results indicate that the signal is propor-
tional to a, demonstrating the ability to determine the sign of the
DM interaction. The linewidths of the peaks are attributed to the
inhomogeneous lifetime T�2 that is taken into account by the hier-
archal formalism, while the T1 and T2 relaxations play a minor role
in the linewidths.

Contrary to the case of h ¼ 0, the non-secular dipolar contribu-
tion becomes prominent for h near p=4, because the non-secular
dipolar interaction can also excite the SQC through FC pathways
for nonzero h.

Fig. 2B shows the signal at h ¼ p=4, where the non-secular dipo-
lar contribution reaches maximum. The major contribution of the
signals arises from the non-secular part of the dipolar interaction
and the difference between the positive and negative DM interac-
tions diminishes. Thus we can use the angle h ¼ p=4 to estimate the
strength of the non-secular part of the dipolar interaction, while
h ¼ 0 is used to study a role of the DM interactions.

We then present the real part of EPR spectra for a three-particle
system with x3 ¼ x1. The other parameters are the same as in Fig.
2A. Depending on the signs of the DM interactions �D � ðS1 � S2Þ�
D � ðS2 � S3Þ, there are four cases of the signs in the three particle
system. Fig. 3 shows the signal for (a) the uniform DM interaction
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(þ;þ), (b) the negative-uniform DM interaction (�;�), (c) the
staggered DM interaction (�;þ), and (d) the negative-staggered
DM interaction (þ;�). The signal for (e) the non-DM interaction
(0;0) almost bisects (a) or (d) and (b) or (c). The spectra (a) or
(d) and (b) or (c) exhibit distinctive features although the differ-
ence between (a) and (d) or (b) and (c) is hardly noticeable. The
present scheme therefore can provide useful information to clarify
the sign of the DM interactions, although we cannot separate all
four cases of the signs. Note that here we assumed uniform g ten-
sor. If g tensor is staggered, however, we can distinguish all of the
four cases (not shown).

In conclusion, we have demonstrated a method to detect the
DM interaction, as well as the non-secular part of the dipolar inter-
action by analyzing the relaxation processes from DQC to SQC
using a pulsed EPR technique as illustrated in Fig. 1. The present
technique can also provide the information on the staggered DM
interactions for a three-particle system, although we need a stag-
gered g tensor to distinguish the four cases of the signs. Even
though the intensity in the forbidden transitions is much weaker
than that in the allowed transitions and the other interactions
can interfere with the different spectra, the pulsed EPR spectros-
copy has potential to detect the DM interaction by measuring the
relaxation of DQC.

We wish to express our gratitude to J. Kishine for fruitful discus-
sions. Y.T. is thankful for the financial support of Grant-in-Aid for
Scientific Research B19350011 from the Japan Society for the Pro-
motion of Science.
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