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Abstract
Discretizing a distribution function in a phase space for an efficient quantum dynamics simulation is a non-trivial challenge, 
in particular for a case in which a system is further coupled to environmental degrees of freedom. Such open quantum dynam-
ics is described by a reduced equation of motion (REOM), most notably by a quantum Fokker–Planck equation (QFPE) for 
a Wigner distribution function (WDF). To develop a discretization scheme that is stable for numerical simulations from the 
REOM approach, we employ a two-dimensional (2D) periodically invariant system-bath (PISB) model with two heat baths. 
This model is an ideal platform not only for a periodic system but also for a non-periodic system confined by a potential. We 
then derive the numerically “exact” hierarchical equations of motion (HEOM) for a discrete WDF in terms of periodically 
invariant operators in both coordinate and momentum spaces. The obtained equations can treat non-Markovian heat-bath in 
a non-perturbative manner at finite temperatures regardless of the mesh size. As demonstrations, we numerically integrate 
the discrete QFPE for a 2D free rotor and harmonic potential systems in a high-temperature Markovian case using a coarse 
mesh with initial conditions that involve singularity.

Keywords Discrete Wigner distribution function · Open quantum dynamics theory · Quantum Fokker–Planck equation · 
Hierarchical equations of motion

1 Introduction

A central issue in the development of a computational sim-
ulation for a quantum system described in a phase space 
distribution is the instability of the numerical integration of 
a kinetic equation in time, which depends upon a discretiza-
tion scheme of the coordinate and momentum [1–5]. In this 
paper, we introduce a new approach in order to construct 
a Wigner distribution function (WDF) for an open quan-
tum dynamics system on the basis of a finite-dimensional 
quantum mechanics developed by Schwinger [6]. Here, 
open quantum dynamics refers to the dynamics of a system 

coupled to baths consisting of surrounding atoms or mol-
ecules that is typically modeled by an infinite number of 
harmonic oscillators [7–18]. After reducing the bath-degrees 
of freedom, the derived reduced equation of motion can 
describe the time irreversibility of the dynamics toward the 
thermal equilibrium state. The energy supplied by fluctua-
tions and the energy lost through dissipation are balanced 
in the thermal equilibrium state, while the bath temperature 
does not change, because its heat capacity is infinite.

In previous studies, the Boltzmann collision operator 
[19, 20] and the Ornstein–Uhlenbeck operator [10, 11] 
have been used for a description of dissipative effects in the 
quantum Boltzmann equation and quantum Fokker–Planck 
equation (QFPE), respectively. The former one, however, 
is phenomenological [21], whereas the latter one is valid 
only at high temperature [13] that leads to a breakdown of 
the positivity of population distributions at low temperature 
[15–17]. This is because a Markovian assumption cannot 
take into account the effects of quantum noise, which is non-
Markovian at low temperature. Thus, numerically “exact” 
approach, for example quantum hierarchical Fokker–Planck 
equations (QHFPE) [18] for a reduced WDF must be used 

Y. T. is supported by JSPS KAKENHI Grant Number B 
21H01884.

 * Yoshitaka Tanimura 
 tanimura.yoshitaka.5w@kyoto-u.jp

 Yuki Iwamoto 
 iwamoto.yuki.w57@kyoto-u.jp

1 Department of Chemistry, Graduate School of Science, 
Kyoto University, Kyoto 606-8502, Japan

http://orcid.org/0000-0002-7913-054X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10825-021-01754-z&domain=pdf


2092 Journal of Computational Electronics (2021) 20:2091–2103

1 3

as the rigorous quantum mechanical treatments. These equa-
tions are derived on the basis of the hierarchical equations 
of motion (HEOM) formalism [12, 15, 16]. By using the 
QHFPE, for example, self-excited current oscillations of the 
resonant tunneling diode (RTD) in the negative differential 
resistance region described by a Caldeira–Leggett model 
was discovered in a numerically rigorous manner [22–24].

For a case of isolated time-reversible processes, a finite-
difference approximation of momentum operators allows us 
to solve a kinetic equation using a uniformly spaced mesh in 
the coordinate space. Then, the wave function is expressed 
in this discretized space. While the quantum dynamics of 
an isolated N-discretized coordinate system are described 
using the wave function as a N-dimensional vector, an open 
quantum system must be described using a N × N reduced 
density matrix, most notably for the quantum master equa-
tion (QME) approach or a N ×M WDF for the N-discretized 
coordinate and the M-discretized momentum, most notably 
for the QFPE approach [1].

Whether a system is isolated or is coupled to a heat bath, 
the WDF is numerically convenient and physically intuitive 
to describe the system dynamics. This is because the WDF 
is a real function in a classical phase like space, and the 
described wavepacket in the momentum space is localized in 
a Gaussian-like form following the Boltzmann statics, while 
the distribution in the coordinate space is spread. Various 
numerical schemes for the WDF, including the implementa-
tion of boundary conditions, for example inflow, outflow, or 
absorbing boundary conditions [25–27], and a Fourier-based 
treatment of potential operators [1, 3], have been developed. 
Varieties of application for quantum electronic devices 
[28–35], most notably the RTD [36–46] that includes the 
results from the QHFPE approach [22–24], quantum ratchet 
[47–49], chemical reaction [13, 14], multi-state nonadiaba-
tic electron transfer dynamics [50–55], photo-isomerization 
through a conical intersection [56], molecular motor [57], 
linear and nonlinear spectroscopies [58–60], in which the 
quantum entanglement between the system and bath plays 
an essential role, have been investigated.

The above-mentioned approaches have utilized a discrete 
WDF. Because original equations defined in continuum 
phase space are known to be stable under a relevant physical 
condition, any instability arises from a result of the discre-
tization scheme. In principle, discussions for a stability of 
the scheme involve a numerical accuracy of the discretiza-
tion scheme with respect to the coordinate and momentum. 
Generally, the stability becomes better for finer mesh. How-
ever, computational costs become expensive and numeri-
cal accuracy becomes worse if the mesh size is too small. 
In addition, when the mesh size is too large, the computed 
results diverge as a simulation time goes on. Thus, we have 
been choosing the mesh size to weigh the relative merits of 
numerical accuracy and costs.

In this paper, we introduce a completely different scheme 
for creating a discrete WDF. Our approach is an extension 
of the discrete WDF formalism introduced by Wootters [61] 
that is constructed on the basis of a finite-dimensional quan-
tum mechanics introduced by Schwinger [6]. To apply this 
formalism to an open quantum dynamics system, we found 
that a rotationally invariant system-bath (RISB) Hamilto-
nian developed for the investigation of a quantum dissipa-
tive rotor system is ideal [62]. Although the bath-degrees 
of freedom are traced out in the framework of the reduced 
equation of motion approach, it is important to construct 
a total Hamiltonian to maintain a desired symmetry of the 
system, including the system-bath interactions. If the sym-
metry of the total system is different from the main system, 
the quantum nature of the system dynamics is altered by the 
bath [62–64].

Here, we employ a 2D periodically invariant system-
bath (PISB) model to derive a discrete reduced equation 
of motion that is numerically stable regard less of the 
mesh size. For this purpose, we introduce two sets of the 
N-dimensional periodic operators for a momentum and coor-
dinate spaces: The discretized reduced equation of motion 
is expressed in terms of these two operators and is stable 
for numerical integration even if N is extremely small. The 
obtained equations of motion can be applied not only for a 
periodic system but also a system confined by a potential.

The remainder of the paper is organized as follows. In 
Sect. 2, we introduce the periodically invariant system-bath 
model. In Sect. 3, we derive the HEOM for the discrete 
WDF. In Sect. 4, we demonstrate a stability of numerical 
calculations for a periodic system and a harmonic poten-
tial system using the discrete QFPE. Section 5 is devoted to 
concluding remarks.

2  Periodically invariant system‑bath (PISB) 
model

2.1  Hamiltonian

We consider a periodically invariant system expressed by 
the Hamiltonian as

where T(p̂) and U(x̂) are the kinetic and potential part of the 
system Hamiltonian expressed as a function of the momen-
tum and coordinate operators p̂ and x̂ , respectively. In this 
discretization scheme, it is important that T(p̂) and U(x̂) must 
be periodic with respect to the momentum and the coordi-
nate, because all system operators must be written by the 
displacement operators in a finite-dimensional Hilbert space 
described subsequently.

(1)ĤS = T(p̂) + U(x̂),
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This system is independently coupled to two heat baths 
through V̂x ≡ � cos(x̂dp∕�)∕dp and V̂y ≡ � sin(x̂dp∕�)∕dp 
where dp is the mesh size of momentum [62]. Then, the 
PISB Hamiltonian is expressed as

 where

and m�
k
 , p̂𝛼

k
 , q̂𝛼

k
 and ��

k
 are the mass, momentum, position 

and frequency variables of the kth bath oscillator mode in 
the � = x or y direction. The collective coordinate of the 
bath �̂�𝛼(t) ≡ ∑

k ckq̂𝛼,k(t) is regarded as a random driving 
force (noise) for the system through the interactions V̂𝛼 . 
The random noise is then characterized by the canoni-
cal and symmetrized correlation functions, expressed as 
𝜂𝛼(t) ≡ 𝛽⟨�̂�𝛼;�̂�𝛼(t)⟩B and C𝛼(t) ≡ 1

2
⟨{�̂�𝛼(t), �̂�𝛼(0)}⟩B where 

� ≡ 1∕kBT  is the inverse temperature divided by the Boltz-
mann constant kB , �̂�𝛼(t) is �̂�𝛼 in the Heisenberg representa-
tion and ⟨⋯⟩B represents the thermal average over the bath 
modes [12, 15]. In the classical case, ��(t) corresponds to the 
friction, whereas C�(t) corresponds to the correlation func-
tion of the noise, most notably utilized in the generalized 
Langevin formalism. The functions ��(t) and C�(t) satisfy 
the quantum version of the fluctuation-dissipation theorem, 
which is essential to obtain a right thermal equilibrium state 
[12, 15, 49].

The harmonic baths are characterized by the spectral 
distribution functions (SDFs). In this paper, we assume the 
SDFs of two heat baths are identical and are expressed as

Using the spectral density J(�) , we can rewrite the friction 
and noise correlation functions, respectively, as

and

In order for the heat bath to be an unlimited heat source 
possessing an infinite heat capacity, the number of heat-bath 
oscillators k is effectively made infinitely large by replacing 
J(�) with a continuous distribution: Thus, the harmonic heat 
baths are defined in the infinite-dimensional Hilbert space.

(2)Ĥtot = ĤS + V̂x

∑

k

ckq̂x,k + V̂y

∑

k

ckq̂y,k + ĤB,

(3)

ĤB =
∑

k

(
p̂2
x,k

2mk

+
1

2
mk𝜔

2
k
q̂2
x,k

)
+
∑

k

(
p̂2
y,k

2mk

+
1

2
mk𝜔

2
k
q̂2
y,k

)
,

(4)J(�) =
�

2

∑

k

(ck)
2

mk�k

�(� − �k).

(5)�(t) =
2

� ∫
∞

0

d�
J(�)

�
cos(�t),

(6)C(t) =
2

� ∫
∞

0

d�J(�) coth

(
�ℏ�

2

)
sin(�t).

2.2  System operators in a finite Hilbert space

We consider a (2N + 1)–dimensional Hilbert space for the 
system, where N is an integer value. We then introduce a 
discretized coordinate X and momentum P, expressed in 
terms of the eigenvectors �X, n⟩ and �P,m⟩ where n and m 
are the integer modulo 2N + 1 [65]. The eigenvectors of the 
coordinate state satisfy the orthogonal relations

where �′
m,n

 is the Kronecker delta, which is equal to 1 
if n ≡ m(mod 2N + 1) (i. e. in the case that satisfies 
(n − m) = (2N + 1)× integer), and

where I is the unit matrix. The momentum state is defined as 
the Fourier transformation of the position states as

where � = exp
[
i2�∕(2N + 1)

]
.The position and momentum 

operators are then defined as

and

where xm = mdx, pm = mdp, and dx and dp are the mesh 
sizes of the position and momentum, respectively. They sat-
isfy the relation

To adapt the present discretization scheme, we express all 
system operators, including the position and momentum 
operators, in terms of the displacement operators (Schwing-
er’s unitary operators [6]) defined as

These operators satisfy the relations,

(7)⟨X,m�X, n⟩ = ��
m,n

,

(8)
N�

m=−N

�X,m⟩⟨X,m� = I,

(9)�P,m⟩ = 1

2N + 1

N�

n=−N

�mn�X, n⟩,

(10)x̂ =

N�

m=−N

xm�X,m⟩⟨X,m�,

(11)p̂ =

N�

m=−N

pm�P,m⟩⟨P,m�,

(12)dxdp =
2�ℏ

2N + 1
.

(13)Ûx ≡ exp

(
ix̂dp

�

)
,

(14)Ûp ≡ exp

(
−ip̂dx

�

)
.
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a n d  Û2N+1
x

= Û2N+1
p

= I  a n d  ÛxÛp = ÛpÛx𝜔
−1 .  I t 

should be noted that except in the case of N → ∞ , x̂ 
and p̂ do not satisfy the canonical commutation rela-
tion as in the case of the Pegg–Barnett phase operators 
[66]. (See “Appendix 1”) To have a numerically sta-
ble discretization scheme, all system operators must be 
defined in terms of the periodic operators. Because the 
cosine operator in the momentum space is expanded as 
cos(p̂dx∕�) = 1 − (p̂dx∕�)2∕2 + (p̂dx∕�)4∕24 + O(dx6) , we 
defined the kinetic energy as

which is equivalent to T(p̂) ≈ p̂2∕2 with the second-order 
accuracy O(dx2) . As the conventional QFPE approaches 
use a higher-order finite difference scheme, for example a 
third-order [23] and tenth-order central difference [54], the 
present approach can enhance the numerical accuracy by 
incorporating the higher-order cosine operators, for example, 
as T(p̂) = �2[15 − 16 cos (p̂dx∕�) + cos (2p̂dx∕�)]∕12dx2 + O(dx4).

Any potential U(x̂) is also expressed in terms of the peri-
odic operators in the coordinate space as

 where ak and bk are the Fourier series of the potential func-
tion U(x̂) . The distinct feature of this scheme is that the WDF 
is periodic not only in the x̂ space but also in the p̂ space. 
The periodicity in the momentum space is indeed a key 
feature to maintain the stability of the equation of motion. 
Because the present description is developed on the basis of 
the discretized quantum states, the classical counter part of 
the discrete WDF does not exist.

3  Reduced equations of motion

3.1  Reduced hierarchical equations of motion

For the above Hamiltonian with the Drude SDF

(15)Ûx�P,m⟩ = �P,m + 1⟩,

(16)Ûx�X,m⟩ = 𝜔�X,m − 1⟩,

(17)Ûp�X,m⟩ = �X,m + 1⟩,

(18)Ûp�X,m⟩ =
1

𝜔
�X,m − 1⟩,

(19)T(p̂) ≡ �2

dx2

[
1 − cos

(
p̂dx

�

)]
,

(20)U(x̂) ≡
N∑

k=−N

[
ak cos

(
k
x̂dp

�

)
+ bk sin

(
k
x̂dp

�

)]
,

we have the dissipation (friction) as

and the noise correlation functions (fluctuation) as

where c�
k
 are the temperature dependent coefficients and 

� = 2�∕�ℏ is the Matsubara frequency [15, 16]. This SDF 
approaches the Ohmic distribution, J(�) = ��, for large � . 
In the classical limit, both the friction and noise correlation 
functions become Markovian as �(t) ∝ �(t) and C(t) ∝ �(t) . 
On the other hand, in the quantum case, C(t) cannot be 
Markovian and the value of C(t) becomes negative at low 
temperature, owing to the contribution of the Matsubara fre-
quency terms in the region of small t. This behavior is char-
acteristic of quantum noise. The infamous positivity problem 
of the Markovian QME for a probability distribution of the 
system arises due to the unphysical Markovian assumption 
under the fully quantum condition [15–17]. The fact that the 
noise correlation takes negative values introduces problems 
when the conventional QFPE is applied to quantum tun-
neling at low temperatures [18].

Because the HEOM formalism treats the contribution 
from the Matsubara terms accurately utilizing hierarchical 
reduced density operators in a non-perturbative manner, 
there is no limitation to compute the dynamics described by 
the system-bath Hamiltonian [13–18, 22–24, 49–55]. The 
HEOM for the 2D PISB model is easily obtained from those 
for the three-dimensional RISB model as [63]

 where {n�} ≡ (nx, ny) is a set of integers to describe the 
hierarchy elements and {n� ± 1} represents, for example, 
(nx, ny ± 1) for � = y , and

with Â×�̂� ≡ Â�̂� − �̂�Â and Â◦�̂� ≡ Â�̂� + �̂�Â for any operator Â . 
We set �̂�{n𝛼−1}(t) = 0 for n� = 0.

For (n𝛼 + 1)𝛾 ≫ 𝜂∕𝛽 and (n𝛼 + 1)𝛾 ≫ 𝜔0 (the high tem-
perature Markovian limit), where �0 is the characteristic fre-
quency of the system, we can set iV̂×

𝛼
�̂�{n𝛼+1}(t)∕� = 𝛤𝛼�̂�{n𝛼}(t) 

to truncate the hierarchy, where

(21)J(�) =
��2�

�2 + �2
,

(22)�(t) = � exp[−�t]

(23)C(t) = c�
0
exp[−�t] +

∞∑

k=1

c�
k
exp[−k�t],

(24)

(25)�̂�𝛼 ≡ 𝜂𝛾

(
1

𝛽
V̂×
𝛼
−

�

2
Ĥ×

S
V̂◦

𝛼

)
,
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is the damping operator [12–18].
In a high temperature Markovian case with J(�) = �� , 

the HEOM reduces to the Markovian QME without the 
rotating wave approximation (RWA) expressed as [62]

To demonstrate a role of the counter term in the present 2D 
PISB model, we derive the above equation from the pertur-
bative approach in “Appendix 1”.

3.2  Discrete quantum hierarchical Fokker–Planck 
equation

The HEOM for the conventional WDF have been used for 
the investigation of various problems [13–18, 49, 52–55], 
including the RTD problem [22–24]. Here, we introduce a 
different expression on the basis of a discrete WDF. While 
there are several definitions of a discrete WDF [67–69], in 
this paper, we use a simple expression introduced by Vour-
das [65]. For any operator Â is then expressed in the matrix 
form as

 where we introduced qk = kdx and pj = jdp . For Â = �̂� , 
we have the discrete WDF expressed as W(pj, qk) . This 
discrete WDF is analogous to the conventional WDF, 
although the discretized regions in the p and q spaces are 
both from -N to N and are periodic in this case. Thus, 
for example, for k < −N  , we have k → k + 2N + 1 and 
qk = (k + 2N + 1)dx , and for j > N , we have j → j − 2N − 1 
and pj = (j − 2N − 1)dp . The Wigner representation of the 
reduced equations of motion, for example Eqs. (24) and (27) 
can be obtained by replacing the product of any operators Â1 
and Â2 by the star product defined as

Accordingly,  the quantum commutator [ , ] is 
replaced as the discrete Moyal bracket defined as 
{A

1
,A

2
}M ≡ A

1
⋆ A

2
− A

2
⋆ A

1
.

(26)𝛤𝛼 ≡ 1

𝛾�2
V̂×
𝛼
�̂�𝛼

(27)

(28)A(pj, qk) =

N�

l=−N

exp

�
i
2pj(qk − ql)

�

�
⟨X, l�Â�X, 2k − l⟩

(29)=

N�

l=−N

exp

�
i
−2qk(pj − pl)

�

�
⟨P, l�Â�P, 2j − l⟩,

(30)

[A
1
⋆ A

2
](pj, qk) ≡ 1

(2N + 1)2

N∑

j1,j2,k1,k2=−N

exp

(
i
2pj2qk1 − 2pj1qk2

�

)

× A
1
(pj + pj1 , qk + qk1 )A2

(pj + pj2 , qk + qk2 ).

The HEOM in the desecrate WDF (the discrete QHFPE) 
are then expressed as

As illustrated by Schwinger [6], although we employed 
the periodic WDF, we can investigate the dynamics of a 
system confined by a potential by taking the limit N → ∞ 
for dx = x0

√
2�∕(2N + 1) and dp = p0

√
2�∕(2N + 1) with 

x0p0 = ℏ , while we set dx = L∕(2N + 1) and dp = 2�ℏ∕L in 
the periodic case, where L is the periodic length.

3.3  Discrete quantum Fokker–Planck equation

In the high temperature Markovian limit, as the regular 
HEOM (Eq. 24) reduces to the QME (Eq. 27), the discrete 
QHFPE reduces to the discrete QFPE expressed as

Here, the terms proportional to �∕�ℏ2 and �∕2ℏ2 represent 
the effects of thermal fluctuation and dissipation arise from 
the heat bath, respectively. More explicitly, the above equa-
tion is expressed as (“Appendix 1”)

(31)

(32)

𝜕

𝜕t
W = −

i

�
{H

S
,W}M

+
∑

𝛼=x,y

[
−

𝜂

𝛽�2

(
{V̂𝜶 , V̂𝜶 ⋆W}M − {V̂𝜶 ,W ⋆ V̂𝜶}M

)

+
𝜂

2�2

(
{V̂𝜶 ,HS

⋆ V̂𝜶 ⋆W}M + {V̂𝜶 ,HS
⋆W ⋆ V̂𝜶}M

−{V̂𝜶 , V̂𝜶 ⋆W ⋆H
S
}M − {V̂𝜶 ,W ⋆ V̂𝜶 ⋆H

S
}M

)]
.

(33)

�

�t
W(pj, qk) = −ℏ sin

(
pjdx

ℏ

)
W(pj, qk+N+1) −W(pj, qk−N−1)

dx2

−
i

ℏ
{U,W}M

+
�

�

W(pj+1, qk) − 2W(pj, qk) +W(pj−1, qk)

dp2

−
ℏ2�(� − 2 + �−1)Vpj

4dx2dp2

(
W(pj, qk+N+1) +W(pj, qk−N−1)

)

+
ℏ2�(Vpj

− Vpj+1
)

4dx2dp2
(W(pj+1, qk+N+1) +W(pj+1, qk−N−1))

+
ℏ2�(Vpj

− Vpj−1
)

4dx2dp2
(W(pj−1, qk+N+1) +W(pj−1, qk−N−1)),
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 where Vpj
≡ cos(pjdx∕ℏ) . The numerical stability of the 

above equation arises from the finite difference scheme in 
the periodic phase space. For example, the finite difference 
of the kinetic term [the first term in the RHS of Eq. (33)] is 
constructed from the elements not the vicinity of qk (i.e., qk+1 
and qk−1 ), but the boundary of the periodic q state (i.e., 
qk+N+1 and qk−N−1 ). The dissipation terms [the last three 
terms in the RHS of Eq. (33)] are also described by the 
boundary elements. As we will show the harmonic case 
below, the potential term (the second term in the RHS of 
Eq.(33)) is constructed from the boundary of the periodic p 
state. Because Eq. (33) satisfies 

∑N

k=−N

∑N

j=−N
W(pk, qj) = 1 

and because the operators in the discrete QFPE are non-
local, the calculated results are numerically stable regardless 
of a mesh size.

For large N , we have sin(pjdx∕ℏ) ≈ pjdx∕ℏ and 
cos(pjdx∕ℏ) ≈ 1 − (pjdx∕ℏ)

2 . Then the above equation is 
expressed in a similar form as the QFPE obtained by Cal-
deira and Leggett [10, 13], although the finite difference 
expressions for the discrete WDF are quite different from 
those for the conventional WDF. (See “Appendix 1”).

4  Numerical results

In principle, with the discrete WDF, we are able to compute 
various physical quantities by adjusting the mesh size deter-
mined from N for any periodic system and a system confined 
by a potential. A significant aspect of this approach is that 
even small N, the equation of motion is numerically stable, 
although accuracy may not be sufficient.

In the following, we demonstrate this aspect by numeri-
cally integrating Eq. (33) for the a free rotor case and a har-
monic potential case, for which we have investigated from 
the regular QME approach [62] and the QFPE approach 
[13]. In both cases, we considered a weak damping con-
dition ( � = 0.05 ) at high temperature ( � = 0.1 ). For time 

integrations, we used the fourth-order Runge–Kutta method 
with the step �t = 0.001 . In the free rotor case, we chose N to 
minimize the momentum space distribution near the bound-
ary, whereas, in the harmonic case, we chose N to minimize 
the population of the discrete WDF near the boundary in 
both the q and p directions. 

4.1  Free rotor case

We first examine the numerical stability of Eq. (33) for a 
simple free rotor case, U(x̂) = 0 with L = 2� . For demonstra-
tion, we considered localized initial conditions expressed as 
W(p0, qj) = 1 for −N ≤ j ≤ N with p0 = 0 , and zero other-
wise. While such initial conditions that involve a singularity 
in the p direction is not easy to conduct numerical simulation 
from a conventional finite difference approach, there is no 
difficulty from this approach. Moreover, the total population 
is always conserved within the precision limit of the numeri-
cal integration, because we have 

∑N

k=−N

∑N

j=−N
W(pk, qj) = 1.

We first depict the time-evolution of the momen-
tum distribution function P(pk) =

∑N

j=−N
W(pk, qj) for 

(a) N = 5 and (b) 20, respectively. Here, we do not plot 
P(qj) =

∑N

k=−N
W(pk, qj) , because this is always constant as 

a function of q, as expected for the free rotor system. As 
illustrated in Fig. 1, even the distribution was localized at 
p0 = 0 at t = 0 , calculated P(pk) was alway stable. As the 
waiting time increased, the distribution became a Gaussian-
like profile in the p direction owing to the thermal fluctua-
tion and dissipation both of which arose from the heat bath. 
In this calculation, the larger N we used, the more accurate 
results we had. We found that the results converged approxi-
mately N = 20 , and coincided with the results obtained from 
the conventional QME approach with use of the finite dif-
ference scheme [62]. The equilibrium distributions of the 
discrete WDF for different N are depicted in Fig. 2. As N 
increases, the distribution in the p direction approached the 
Gaussian profile.  

Fig. 1  Snapshots of the momen-
tum space distribution function, 
P(pk) =

∑N

j=−N
W(pk, qj) , in the 

free rotor case calculated from 
Eq. (33) for mesh size (a) N = 5 
and (b) N = 20 with the waiting 
times t = 0, 2, 5 , and 100 (equi-
librium state)

(a) (b)

p p

P(p)

t=0
t=2
t=5

P(p)
eq

t=0
t=2
t=5
eq
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4.2  Harmonic case

We next consider a harmonic potential case, U(x̂) = x̂2∕2 . 
Here, we describe the potential using the periodic opera-
tor as U(x̂) ≈ �2(1 − cos(x̂dp∕�))∕dp2 + O(dp2) . Then, the 
potential term is expressed as

With this expression, we simulated the time-evolution 
of the discrete WDF by numerically integrating Eq.(33) 
with N = 150 . We chose the same system-bath coupling 
strength and inverse temperature as in the free rotor case 
(i.e., � = 0.05 and � = 0.1 ). In Figs. 3 and 4, we depict the 
time-evolution of the position and momentum distribution 
functions P(qj) and P(pk) in the harmonic case from the same 
localized initial conditions as in the free rotor case. As illus-
trated in Figs. 3 and 4, both P(qj) and P(pk) approached the 
Gaussian-like profiles as analytic derived solution of the 
Brownian model predicted. Note that, although the discrete 
WDF is a periodic function, we can describe such distribu-
tion that is confined in a potential by combining the perio-
dicity in the coordinate and momentum spaces.

To illustrate a role of periodicity, we depict the time-evo-
lution of the discrete WDF for various values of the waiting 
time in Fig. 5. At time (a) t = 0 , the distribution was local-
ized at p0 = 0 , while the distribution in the q direction was 
constantly spread. At time (b) t = 0.5 , the distribution sym-
metrically splits into the positive and negative p directions 
because the total momentum of the system is zero. Due to 
the kinetic operator (the first term in the RHS in Eq.(33)), 
the vicinity of the distributions at (p, q) = (p0, q−(N+1)) , and 

(34)

−
i

ℏ
{U,W}M = ℏ sin

(
xkdp

ℏ

)
W(pj+N+1, qk) −W(pj−N−1, qk)

dp2
.

(p0, qN+1) appeared and the profiles of the distribution are 
similar to the distribution near (p0, q0) . We also observed 
the distribution along the vicinity of the p = pN+1 and 
p = p−(N+1) axises, respectively. These distributions arose 
owing to the finite difference operator of the potential term 
in Eq. (34), which created the positive and negative popula-
tions W(pN+1, qk) and −W(p−(N+1), qk) from W(p0, qk) . The 
sign of these distributions changed at q = q0 , because of 
the presence of the prefactor sin

(
xkdp∕ℏ

)
 . In Fig. 5(d), we 

observed the tilted x letter-like distributions centered at 

q q

(a) (b)

p p

Fig. 2  Equilibrium distribution ( t = 100 ) of the discrete WDF in the free rotor case for (a) N = 5 and (b) N = 20

q

P(q)

t=0
t=2
t=20
eq

Fig. 3  Snapshots of the coordinate space distribution function, 
P(qj) =

∑N

k=−N
W(pk, qj) , in the harmonic potential case calculated 

from Eq. (33) with N = 150 with the waiting times t = 0, 2, 20 , and 
200 (equilibrium state)
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(p, q) = (12, 0) and (−12, 0) , respectively. These distribu-
tions appeared as twin peaks in the momentum distribution 
depicted in Fig. 4.

From time (e) t = 1.0 to (i) t = 10 , the distributions 
rotated clockwise to the centered at (q0, p0) as in the con-
ventional WDF case. Owing to the periodic nature of the 
kinetic and potential operators, we also observe the mirror 
images of the central distribution at (q0, pN+1) , (q0, p−(N+1)) , 
(q−(N+1), p0) , and (qN+1, p0) , respectively. At time (j) t = 20 , 
the spiral structures of the distributions disappeared owing 
to the dissipation, then the profiles of distributions became 
circular. The peaks of the circular distributions became 
gradually higher due to the thermal fluctuation (excitation), 
as depicted in Fig. 5 (k) t = 40 . The distributions were then 
reached to the equilibrium profiles, in which the energy 
supplied by fluctuations and the energy lost through dis-
sipation were balanced, as presented in Fig. 5 (i) t = 100 . It 
should be noted that, although P(qj) and P(pk) in Figs. 3 and 
4 exhibited the Gaussian profiles, each circular distribution 
observed in Fig. 5 (l) need not be the Gaussian, because 
the discrete WDF itself is not a physical observable. The 
negative distributions in the four edges of the phase space 
arose due to the prefactors of the kinetic and potential terms 
sin

(
xkdp∕ℏ

)
 and sin

(
pjdx∕ℏ

)
 . Although the appearance of 

the discrete WDF is very different from the conventional 
WDF, this is not surprising, because the discrete WDF does 
not have classical counter part. This unique profile of the 
discrete WDF is a key feature to maintain the numerical 
stability of the discrete QFPE.

5  Conclusion

In this paper, we developed an open quantum dynamics 
theory for the discrete WDF. Our approach is based on 
the PISB model with a discretized operator defined in the 
2N + 1 periodic eigenstates in both the q and p spaces. The 
kinetic, potential, and system-bath interaction operators in 
the equations of motion are then expressed in terms of the 
periodic operators; it provide numerically stable discretiza-
tion scheme regardless of a mesh size. The obtained equa-
tions are applicable not only for a periodic system but also a 
system confined by a potential. We demonstrated the stabil-
ity of this approach in a Markovian case by integrating the 
discrete QFPE for a free rotor and harmonic cases started 
from singular initial conditions. It should be noted that the 
Markovian condition can be realized only under high-tem-
perature conditions even if we consider the Ohmic SDF due 
to the quantum nature of the noise. To investigate a system in 
a low temperature environment, where quantum effects play 
an essential role, we must include low-temperature correc-
tion terms in the framework of the HEOM formalism [15, 
16], for example the QHFPE [17] or the low-temperature 
corrected QFPE [54].

As we numerically demonstrated, we can reduce the 
computational cost of dynamics simulation by suppressing 
the mesh size, while we have to examine the accuracy of 
the results carefully. If necessary, we can employ a present 
model with small N as a phenomenological model for an 
investigation of a system described by a multi-electronic and 
multi-dimensional potential energy surfaces, for example, 
an open quantum system that involves a conical intersec-
tion [56].

Finally, we briefly discuss some extensions of the present 
study. In the current frameworks, it is not easy to introduce 
open boundary conditions, most notably the in flow and out 
flow boundary conditions [25–27], because our approach is 
constructed on the basis of the periodical phase space. More-
over, when the system is periodic, it is not clear whether 
we can include a non-periodical external field, for exam-
ple a bias field [22–24] or ratchet refrigerant forces [49]. 
Moreover, numerical demonstration of the discrete QHFPE 
(Eq. 31) has to be conducted for a strong system-bath cou-
pling case at low temperature. Such extensions are left for 
future investigation.

A Canonical commutation relation 
in the large N limit

In this Appendix, we show that our coordinate and momen-
tum operators satisfy the canonical commutation relation in 
the large N limit.

P(p)

p

t=0
t=2
t=20
eq

Fig. 4  Snapshots of the momentum space distribution function, 
P(pk) =

∑N

j=−N
W(pk, qj) , in the harmonic potential case calculated 

from Eq. (33) with N = 150 with the waiting times t = 0, 2, 20 , and 
200 (equilibrium state)
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Fi r s t  we  cons ide r  a  non -pe r iod i c  ca se , 
dx = x0

√
2�∕(2N + 1) and dp = p0

√
2�∕(2N + 1) with 

x0p0 = ℏ . We employ the relationship between the displaced 

operator, ÛxÛp − ÛpÛx𝜔
−1 = 0 . Assuming large N, we 

express Ûx and Ûp in Taylor expansion forms as

-20
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(a) t = 0 (b) t = 0.5 (c) t = 1

(d) t = 2 (e) t = 3 (f) t = 4

(g) t = 6 (h) t = 8 (i) t = 10

(j) t = 20 (k) t = 40 (l) t = 100

q

p

Fig. 5  Snapshots of the discrete WDFs in the harmonic case for various values of the waiting time. Contours in red and blue represent positive 
and negative values, respectively. The mesh size is N = 150
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This indicates that the canonical commutation relation 
[x̂, p̂] = i� satisfies to an accuracy of O(N

−3

2 ).
In the 2�-periodic case, we set dx = 2�∕(2N + 1) and 

dp = ℏ . Then, we obtain

The first and second terms of the RHS in Eq. (36) are the 
anti-Hermite and Hermite operators. Therefore, the contri-
butions from these terms are zero. Thus, for large N, we 
obtain the canonical commutation relations for a periodic 
case as [70]

and

to an accuracy of O(N−2).

B QME for 2D PISB model and counter term

To demonstrate a role of the counter term, here we employ 
the QME for the 2D PISB model. As shown in [62], the 
QME for the reduced density matrix of the system, �̂�(t) , is 
derived from the second-order perturbation approach as

 where

is the damping operator for � = x or y, in which

(35)

[
1 +

idpx̂

�
+

(idp)2

2�2
x̂2
][

1 +
ip̂dx

�
+

(idx)2

2�2
p̂2
]

−

[
1 +

ip̂dx

�
+

(idx)2

2�2
p̂2
]

[
1 +

idpx̂

�
+

(idp)2

2�2
x̂2
][

1 −
idxdp

�
) + O((N

−3

2 )

]

=
dxdp

�2
(x̂p̂ − p̂x̂) −

idxdp

�
+ O(N

−3

2 ).

(36)

(cos x̂ + i sin x̂)
(
1 −

idx

�
p̂
)
−
(
1 −

idx

�
p̂
)

(cos x̂ + i sin x̂)(1 − idx) + O(N−2)

=
dx

�
(sin x̂p̂ − p̂ sin x̂ − i� cos x̂)

+
idx

�
(cos x̂p̂ − p̂ cos x̂ + i� sin x̂) + O(N−2).

(37)[ sin x̂, p̂] = i� cos x̂,

(38)[ cos x̂, p̂] = −i� sin x̂,

(39)

(40)
𝛤𝛼(𝜏)�̂�(t − 𝜏) ≡ C(𝜏)[V̂𝛼 , ĜS(𝜏)V̂𝛼�̂�(t − 𝜏)Ĝ†

S
(𝜏)]

− C(−𝜏)[V̂𝛼 , ĜS(𝜏)�̂�(t − 𝜏)V̂𝛼Ĝ
†

S
(𝜏)]

is the bath correlation function and ĜS(𝜏) is the time-evolu-
tion operator of the system. For the Ohmic SDF J(�) = �� , 
C(�) reduces to the Markovian form as

Using the relation ∫ t

0
d𝜏𝛤𝛼(𝜏)�̂�(t − 𝜏) = ̂̄𝛤𝛼�̂�(t) + i�𝜂𝛿(0)[(V̂𝛼)

2, �̂�(t)] , 
we can rewrite the damping operator, Eq. (40), as

In the case if there is only V̂y = � sin(x̂dp∕�)∕dp interaction 
in the PISB model, (i.e., V̂x = 0 ), we encounter the divergent 
term i�𝜂𝛿(0)[(V̂y)

2, �̂�(t)] that arises from the second term in 
the RHS of Eq. (43). Because V̂y reduces to the linear opera-
tor of the coordinate V̂y ≈ x̂ in the large N limit, the PISB 
model under this condition corresponds to the Caldeira–Leg-
gett model without the counter term: Divergent term arises 
because we exclude the counter term in the bath Hamiltonian, 
Eq. (3). (See also [64].) If we include V̂x = � cos(x̂dp∕�)∕dp , 
this divergent term vanishes, because, by using the relation 
sin2(x̂dp∕�) + cos2(x̂dp∕�) = 1 , we have

This implies that the interaction V̂y plays the same role as 
the counter term. This fact indicates the significance of 
constructing a system-bath model with keeping the same 
symmetry as the system itself. If we ignore this point, the 
system dynamics are seriously altered by the bath even if the 
system-bath interaction is feeble [64].

C Discrete Moyal bracket

Using the kinetic term (the first term in the RHS of Eq. 
(32)) as an example, here we demonstrate the evaluation of 
the discrete Moyal bracket defined as Eq. (30). The kinetic 
energy in a finite Hilbert space representation is expressed as

(41)

C(�) = ℏ∫
∞

0

d�

�
J(�)

[
coth

(
�ℏ�

2

)
cos(��) − i sin(��)

]

(42)C(�) = �

(
2

�
+ iℏ

d

d�

)
�(�).

(43)

̂̄𝛤𝛼�̂�(t) =
𝜂

𝛽

(
[V̂𝛼 , V̂𝛼�̂�(t)] − [V̂𝛼 , �̂�(t)V̂𝛼]

)

+
i�𝜂

2

[
(V̂𝛼)

2,
d�̂�(t − 𝜏)

d𝜏
|𝜏=0

]

−
𝜂

2

(
[V̂𝛼 , ĤS

V̂𝛼�̂�(t)] + [V̂𝛼 , ĤS
�̂�(t)V̂𝛼]

−[V̂𝛼 , V̂𝛼�̂�(t)ĤS
] − [V̂𝛼 , �̂�(t)V̂𝛼ĤS

]
)
.

(44)

i�𝜂𝛿(0)[(V̂x)
2, �̂�(t)] + i�𝜂𝛿(0)[(V̂y)

2, �̂�(t)] = i�𝜂𝛿(0)[Î, �̂�(t)]

= 0.
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Because the Moyal bracket with A
1
= ℏ2∕dx2 and 

A
2
= W  is zero, we focus on the cos

(
pjdx∕ℏ

)
 term. Let 

A
1
= exp

(
±ipjdx∕ℏ

)
 and A

2
= W in Eq. (30). Then we have

Similarly, for A
1
= W and A

2
= exp

(
±ipjdx∕ℏ

)
 , we have

Thus, the discrete Moyal product of the kinetic energy is 
expressed as

For example, for q0 , the above expression involves the con-
tributions from qN+1≡−N(mod 2N+1) and q−N−1≡N(mod 2N+1) , 
which are the elements near the boundary of the periodic 
state. Note that N + 1 arises from ��

1−2k2,0
 that is the inverse 

element of 2 modulo 2N + 1 . For large N, the above expres-
sion reduces to the kinetic term of the conventional QFPE 
by regarding the finite difference near the boundary as the 
derivative of the coordinate.

(45)

T(pj, qk)

=
�2

dx2

�
1 −

N�

l=−N

exp

�
i
−2qk(pj − pl)

�

�
⟨P, l� cos

�
p̂dx

�

�
�P, 2j − l⟩

�

=
�2

dx2

�
1 −

N�

l=−N

exp

�
i
−2qk(pj − pl)

�

�
cos

�
pldx

�

�
𝛿l,2j−l

�

=
�2

dx2

�
1 − cos

�
pjdx

�

��
.

(46)

[
exp

(
±i

pjdx

�

)
⋆W

]
(pj, qk) =

1

(2N + 1)2

N∑

j1,j2,k1,k2=−N

exp

(
i
2pj2qk1 − 2pj1qk2

�

)

× exp

(
±i

(pj + pj1 )dx

�

)
W(pj + pj2 , qk + qk2 )

=
1

(2N + 1)

N∑

j1,k2=−N

exp

(
i
(±1 − 2k2)pj1dx

�

)
exp

(
±i

pjdx

�

)
W(pj, qk + qk2 )

=

N∑

k2=−N

𝛿�
±1−2k2,0

exp

(
±i

pjdx

�

)
W(pj, qk + qk2 )

= exp

(
±i

pjdx

�

)
W(pj, qk±(N+1)).

(47)

[
W ⋆ exp

(
±i

pjdx

�

)]
(pj, qk) = exp

(
∓i

pjdx

�

)
W(pj, qk±(N+1)).

(48)

−
i

�
[T ⋆W](pj, qk) = −� sin

(
pjdx

�

)
W(pj, qk+N+1) −W(pj, qk−N−1)

dx2
.

D Discrete quantum Fokker–Planck equation 
for large N

For a large N, Eq. (33) reduces to

 where

and

Although the above expression has a similar form to the QFPE, 
the finite difference operators for the discrete WDF are defined 
by the elements near the periodic boundary, i.e., for W(p0, q0) , 
�∕�q is evaluated from W(p0, q−(N+1)) , and W(p0, qN+1) . Thus, 

(49)

𝜕

𝜕t
W(p, q) = −p

𝜕

𝜕q
W(p, q) −

i

�
{U,W}M +

𝜂

𝛽

𝜕2

𝜕p2
W(p, q)

+
𝜂

2

(
M̂2

p
M̂xW(p, q) + pM̂x

𝜕

𝜕p
W(p, q)

)
,

(50)
�W(p, q)

�q
≡ W(pj, qk+N+1) −W(pj, qk−N−1)

dx
,

(51)
�W(p, q)

�p
≡ W(pj+N+1, qk) −W(pj−N−1, qk)

dp
,

(52)M̂xW(p, q) ≡ W(pj, qk+N+1) +W(pj, qk−N−1)

2
,

(53)M̂pW(p, q) ≡ W(pj+N+1, qk) +W(pj−N−1, qk)

2
.
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the appearance of the discrete WDF can be different from the 
regular WDF, as depicted in Fig. 5 even for large N.
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