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ABSTRACT: Simulating electron−nucleus coupled dynam-
ics poses a nontrivial challenge and an important problem in
the investigation of ultrafast processes involving coupled
electronic and vibrational dynamics. Because irreversibility of
the system dynamics results from thermal activation and
dissipation caused by the environment, in dynamical studies, it
is necessary to include heat bath degrees of freedom in the
total system. When the system dynamics involves high-energy
electronic transitions, the environment is regarded to be in a
low-temperature regime and we must treat it quantum
mechanically. In this Article, we present rigorous and versatile approaches for investigating the dynamics of open systems
with coupled electronic and vibrational degrees of freedom within a fully quantum mechanical framework. These approaches are
based on a quantum Fokker−Planck equation and a quantum Smoluchowski equation employing a heat bath with an Ohmic
spectral density, with non-Markovian low-temperature correction terms, and extensions of these equations to the case of
multistate systems. The accuracy of these equations was numerically examined for a single-state Brownian system, while their
applicability was examined for multistate double-well systems by comparing their results with those of the fewest-switch surface
hopping and Ehrenfest methods with a classical Markovian Langevin force. Comparison of the transient absorption spectra
obtained using these methods clearly reveals the importance of the quantum low-temperature correction terms. These equations
allow us to treat nonadiabatic dynamics in an efficient way, while maintaining numerical accuracy. The C++ source codes that
we developed, which allow for the treatment of the phase and coordinate space dynamics with any single-state or multistate
potential forms, are provided as Supporting Information.

1. INTRODUCTION

Understanding nonadiabatic dynamics in electronic and
bionanomaterials is fundamentally important in the study of
many types of phenomena, ranging from photoisomerization to
spintronics. Recent advances in experimental technologies have
made it possible to observe such nonadiabatic processes that
take place on very short time scales.1−5 Theoretical input
regarding the complex profiles of potential energy surfaces
(PESs) and the nonadiabatic coupling among PESs is
important for analyzing such ultrafast transport processes, in
particular, those in materials involving biomolecular aggregates
and crystalline solar cells.6,7 For such systems, the surrounding
molecules act as a heat bath and also play an essential role in
determining the nature of the transport processes because they
either promote or suppress the wavepacket motion of the
system through thermal activation and relaxation.
In the study of systems of the type considered here, while

nuclear motion is often treated using a semiclassical approach,
which is applicable to the case of heavy nuclei, nonadiabatic
transition processes must be described using a purely quantum
mechanical approach because transitions between discretized
electronic states are, in their essence, quantum dynamics. For
this reason, the effect of the environment should be treated
using an open quantum model, even if the dynamics of the

nuclei are semiclassical, because otherwise the quantum nature
of the electronic transitions is not properly accounted for.
Indeed, ignoring the quantum effects of the environment, in
particular in the low temperature regime, in which quantum
effects become very important, leads to unphysical behavior.
For example, in the case that we employ a classical description
of the environment in the low temperature regime, while
electronic transitions and the motion of wavepackets are
described by quantum mechanics, the positivity of the
probability distributions of the electronic states cannot be
maintained. This is a fundamental complication, known as the
“positivity problem,” which imposes a well-known limitation
on the applicability of the quantum master equation without
the rotating wave approximation.8,9 The positivity problem
arises because the classical treatment of the environment leads
to the violation of the quantum fluctuation−dissipation (QFD)
theorem.10−13

The excited state dynamics of systems exhibiting ultrafast
coupled electronic and vibrational dynamical processes have
been investigated with models that explicitly take into account
nuclear degrees of freedom and electronic states through
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approaches employing equations of motion for wave functions,
density matrices, phase space distributions,14−22 and Gaussian
quantum wavepackets23−25 and approaches utilizing mixed
quantum-classical trajectories.26−28 However, many of these
approaches were developed for isolated systems and were
verified within the system which have a few degrees of
freedom. Moreover, varieties of assumptions (in particular,
assumptions regarding the quantum dynamical treatment of
the couplings between the electronic states and the nuclear
coordinates) were introduced in such approaches and the
assumptions severely limit their range of applicability. In
contrast, the multistate quantum hierarchical Fokker−Planck
equation (MS-QHFPE) approach, which is an extension of the
quantum Fokker−Planck equation for the Wigner distribution
function29−32 to multistate systems16−20 and is a variant of the
hierarchical equations of motion (HEOM) theories,13,33,34 can
treat any types of diabatic coupling and PES profiles with non-
Markovian system−bath interactions described by a Drude
spectral density. However, although the MS-QHFPE approach
allows us to compute the dynamics described by a multistate
system−bath Hamiltonian numerically rigorously, integrating
the equations of motion is very computationally intensive, in
particular, for a system described by multidimensional PESs.
Hence, presently, calculations carried out for two-dimensional
systems are limited to the high-temperature Markovian case
described by the MS-QFPE.20

While it has been found that non-Markovian effects arising
from non-Ohmic environments are important in the
description of exciton/electron transfer phenomena,6,7,35,36

the Ohmic heat bath model for nuclear dynamics has been
(implicitly) employed in many investigations for models
described by PESs that further coupled to a heat-bath,
including a model that causes a Brownian/Drude spectral
density after reducing the nuclear degrees of freedom.37−40

This results from the fact that the non-Markovian effects on
the nuclear motion so far studied are regarded to be
insignificant in such systems, in particular, when the damping
on the nuclear motion is quite strong. For this reason, although
there have been several investigations employing Drude
environments for the nuclear dynamics carried out on systems
including nonlinear vibrational responses,41−43 a ratchet
system,44 and a resonant tunneling diode system,45,46 in this
Article, we derive equations of motion for single-state and
multistate systems employing the Ohmic environment: low-
temperature quantum Fokker−Planck equations (LT-QFPE)
and low-temperature quantum Smoluchowski equations (LT-
QSE) and their extensions to multistate (MS) systems, MS-
LT-QFPE and MS-LT-QSE. As seen in the theory of quantum
Brownian motion, within a quantum mechanical description,
an Ohmic bath exhibits peculiar behavior in momentum
space.47−49 We show that this difficulty can be avoided by
properly treating the low temperature correction terms in the
LT-QFPE and MS-LT-QFPE. In the case of a heat bath with
an Ohmic spectral density, the LT-QFPE and LT-QSE are
sufficiently accurate, while also being sufficiently simple in
comparison to the QHFPE. These features make the LT-
QFPE and LT-QSE suited for describing slowly decaying
systems and systems rendered in multidimensional phase
spaces. Also, it is noteworthy that many of the existing
formalisms, including those of the quantum Fokker−Planck
equation29−32 and Zusman equation,50−52 can be derived from
the (MS-)LT-QFPE and (MS-)LT-QSE under certain
conditions.

The organization of this paper is as follows. In section 2, we
introduce a model with multiple electronic states described by
the PESs that are coupled to a harmonic heat bath with an
Ohmic spectral density. Then, we present the MS-LT-QFPE
and MS-LT-QSE and their single PES forms, LT-QFPE and
LT-QSE. In section 3, we present numerical results for single-
state Brownian and multistate double-well systems to illustrate
the validity and applicability of these approaches. Section 4 is
devoted to concluding remarks. The C++ source codes that we
developed are provided as Supporting Information.

2. HAMILTONIAN AND FORMALISM
2.1. Model. Because the LT-QFPE and LT-QSE are the

simpler, single-potential forms of the MS-LT-QFPE and MS-
LT-QSE, we start with a multipotential system. We consider a
molecular system with multiple electronic states {|j⟩} coupled
to the nuclear coordinates. For simplicity, we represent the
nuclear coordinates by a single dimensionless coordinate, q.
Here and hereafter, we employ a dimensionless coordinate and
a dimensionless momentum defined in terms of the actual
coordinate and momentum, q̅ and p̅, as ω≡ ̅ ℏq q m /0 and

ω≡ ̅ ℏp p m/ 0 , where ω0 is the characteristic vibrational
frequency of the system and m is the effective mass. The
reaction coordinate is also bilinearly coupled to the harmonic
bath coordinates, x ⃗ ≡ (..., xξ, ...). The Hamiltonian of the total
system is expressed as29

̂ ⃗ ⃗ ≡ ̂ + ̂ ⃗ ⃗H p q p x H p q H p x q( , ; , ) ( , ) ( , ; )tot B (1)

where the system Hamiltonian, Ĥ(p, q), is defined as

∑ω̂ ≡
ℏ

̂ + | ⟩ ̂ ⟨ |H p q p j U q k( , )
2

( )
j k

jk
0 2

,

d

(2)

Here, the nuclear and electronic operators are denoted by hats,
and the direct products with the unit operator in the kinetic
and bath terms (⊗1̂) are omitted. The diagonal element Ujj

d(q)
is the diabatic PES of |j⟩, and the off-diagonal element Ujk

d (q) (j
≠ k) represents the diabatic coupling between |j⟩ and |k⟩. The
vibrational frequency ω̅ at a local minimum of the potential q0
is determined by the curvature of the PESs as

ω ωℏ ̅ ≃ ℏ ∂
∂

=
q

U q( )j j
q q

0

2

2 0 0

0 (3)

where j0 is a primary state of the vibrational dynamics.
Therefore, the frequency ω0 is chosen to be ℏω0 ≃ ∂

2Uj0j0(q)/

∂q2|q=q0 to have ω̅ ≃ ω0. The bath Hamiltonian ĤB(p⃗,x;⃗q) is
defined as

∑
ω

ω
̂ ⃗ ⃗ ≡

ℏ
̂ + ̂ − ̂

ξ

ξ
ξ ξ

ξ

ξ
H p x q p x

g
q( , ; )

2B
2
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where ωξ, pξ, and gξ are the vibrational frequency, conjugate
momentum, and system-bath coupling constant of the ξth
dimensionless bath mode, xξ. The bath is characterized by the
dissipation and fluctuation that it engenders. These are
represented by the relaxation function

∫π
ω ω

ω
ω=

∞
R t d t( )

2 ( )
cos

0 (5a)
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and the symmetrized correlation function

∫π
ω ω ω ω= +

∞
C t n t( )

2
d ( ) ( )

1
2

cos
0

i
k
jjj

y
{
zzz (5b)

where the spectral density is defined as ω ≡( ) πΣξ(gξ
2/2)δ(ω

− ω), and we have introduced the Bose−Einstein distribution
function, n(ω) ≡ (eβℏω − 1)−1, for the inverse temperature
divided by the Boltzmann constant, β ≡ 1/kBT.
We choose the coefficients νk and ηk so as to realize the

relation

∑ω
β ω

η
β

ω
ω ν

+ ≃
ℏ

+
ℏ +

n( )
1
2

1 1 2

k

K
k

k
2 2

(6)

for finite K, where the first term on the right-hand side is the
classical contribution from the temperature, and the remaining
terms are the quantum low-temperature (QLT) corrections.
The Matsubara decomposition scheme (MSD) can be applied
straightforwardly to the above. In this scheme, we set ηk = 1
and νk = νk̃, where νk̃ ≡ 2πk/βℏ is the kth Matsubara
frequency.34,53 In this Article, we employ the Pade ́ spectral
decomposition [N−1/N] (PSD[N−1/N]) scheme to enhance
the computational efficiency while maintaining the accu-
racy.54−56

To reduce the computational times for the computations of
the nonadiabatic dynamics with any forms of the PESs, here we
employ an Ohmic spectral density, expressed as

ω ζ
ω

ω=( )
0 (7)

where ζ is the system-bath coupling strength. Then we have

ζ
ω

δ= ·R t t( ) 2 ( )
0 (8a)

and

δ

ν

≃ = + ∑ ·

− ∑ ·

ζ
ω β

η
β

ζ
ω

η
β

ν

ℏ ℏ

ℏ
− | |

( )C t C t t

e

( ) ( ) 2 ( )K k
K

k
K

k
t

1 2

2

k

k k

0

0 (8b)

In the case of a harmonic PES with frequency ω0, the
conditions ζ < 2ω0, ζ = 2ω0, and ζ > 2ω0 correspond to the
underdamped, critically damped, and overdamped cases,
respectively. In Figure 1, we plot CK(t) for various values of
the cutoff K, at the temperature βℏω0 = 7.47. As this figure and
eq 8b indicate, the fluctuation term is always non-Markovian
because of the quantum nature of the noise, and it can be
regarded as Markovian only in the high-temperature limit,
βℏω0 ≪ 1, in which the heat bath exhibits classical
behavior.13,57 This is an important conclusion obtained from
the QFD theorem, namely, that the negative non-Markovian
terms appear in the case that we do not use a time-coarse-
grained, Markovian description. Note that, in the case that we
employ an ohmic spectral density without cutoff functions
(e.g., Lorentzian cutoff and exponential cutoff), some of the
physical observables, including the mean square of the
momentum, ⟨p2⟩, diverge due to the divergence of the first
and second terms in eq 8b under the infinite summation of the
Matsubara frequencies, if there is no finite cutoff function. This
divergence is often referred to as the ultraviolet diver-
gence.47−49 In practice, we can ignore QLT correction terms
whose frequencies are sufficiently greater than the character-

istic frequency of the system, because the random force
generated by such terms is averaged out over a sufficiently
short time scale that its influence on the dynamics of interest is
negligible. In this way, we are able to calculate nondiverging
physical observables, for example, the mean square of the
coordinate, ⟨q2⟩, by simply ignoring the contribution from the
high-frequency QLT correction terms by implementing the
cutoff K, while diverging physical observables still tend to
diverge.

2.2. Multistate Low-Temperature Quantum Fokker−
Planck Equations. The state of the total system is
represented by the density operator, ρ̂tot(z,z′,x ⃗,x ⃗′)≡
⟨x|⃗⟨z|ρ̂tot(t)|z′⟩|x′⃗⟩, where |z⟩ and |x⟩⃗ are the eigenstate of
the system and bath coordinate operators, respectively. We
consider the reduced density matrix in the diabatic
representation of the system subspace, defined as

ρ ρ′ ≡ ⟨ | ̂ ′ | ⟩z z t j z z t k( , , ) ( , , )jk
d

(9)

where ρ̂(z,z′, t) ≡ TrB{ρ̂tot(z, z′, x,⃗ x′⃗, t)} is the reduced
density operator and TrB{...} ≡ ∫ dx ⃗ ∫ dx′⃗δ(x−⃗x′⃗){...}
represents the trace operation in the bath subspace. The

Figure 1. Symmetrized correlation function, C(t), for an Ohmic
spectral density, eq 7, at temperature βℏω0 = 7.47, which is in the
low-temperature regime. The thick black solid curve represents the
exact expression, eq 5b, and the other curves represent CK(t), eq 8b,
for various values of the cutoff, K. The values of the coefficients νk and
ηk for each value of K are given in Table 1. The fast decay components
in the exact expression and the delta-function components in eq 8b,
which are overlapped with the t = 0 axis, are not displayed.

Table 1. PSD[N-1/N] Coefficients Used for K = 1−5

K k βℏνk ηk

1 1 7.745967 2.5
2 1 6.305939 1.032824

2 19.499618 5.967176
3 1 6.2832903 1.000227

2 12.9582867 1.300914
3 36.1192894 11.198859

4 1 6.283185 1.000000
2 12.579950 1.015314
3 20.562598 1.905605
4 57.787940 18.079081

5 1 6.283185 1.000000
2 12.566542 1.000262
3 19.004690 1.113033
4 29.579276 2.800147
5 84.536926 26.586558
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diagonal and off-diagonal elements, ρjj
d and ρjk

d (j ≠ k),
represent the population of |j⟩ and the coherence between |j⟩
and |k⟩, respectively. Hereafter, we employ the matrix forms of
the reduced density matrix and the diabatic PESs: {ρd(z, z′)}jk
≡ ρjk

d (z,z′) and {Ud(z)}jk ≡ Ujk
d (z).

We now introduce the Wigner distribution function, which
is the quantum analogy of the classical distribution function in
phase space. For a multistate system, the multistate Wigner
distribution function (MS-WDF) is defined as16−20

∫ ρ
π

≡ + −−W p q t re q
r

q
r

( , , )
1

2
d

2
,

2
iprd di

k
jjj

y
{
zzz (10)

where q ≡ (z + z′)/2 and r ≡ z − z′. Both p and q are now c-
numbers in this phase space representation.
The reduced dynamics of ρd(z, z′, t) and Wd(p, q, t) are

expressed in the path integral framework using the Feynman−
Vernon influence functional.58 Their time evolutions can be
described by a set of time differential equations in the HEOM
form (see section S1). In the present case, these equations are

ν

ν

= − + ∑ + Ξ̂

− ∑ Φ̂

− ∑ Θ̂

∂
∂ ⃗

⃗

⃗+ ⃗

⃗− ⃗

( )
W

W

W

W

p q t

p q n p q p q t

p q p q t

n p q p q t

( , , )

( , ) ( , ) ( , , )

( , ) ( , , )

( , ) ( , , )

t n

k
K

k k K n

k
K

n e

k
K

k k k n e

d

qm
d d d

d d

d d

k

k

(11)

where n⃗ ≡ (..., nk, ...) is a K-dimensional multi-index whose
components are all non-negative integers and ek⃗ ≡ (0, ..., 1, 0,
...) is the kth unit vector. The multi-index n⃗ represents the
index of the hierarchy, and physically, the first hierarchical
element, W0⃗

d(p, q, t), corresponds to the MS-WDF, Wd(p, q, t).
The rest of the hierarchical elements serve only to facilitate
treatment of the non-Markovian system-bath interaction that
arises from the QLT effects.
The quantum Liouvillian for the MS-WDF is given by

≡ +p q p q p q( , ) ( , ) ( , )qm
d

qm
d

(12a)

where

ω≡ ∂
∂

W Wp q p q p
q

p q( , ) ( , ) ( , )0
(12b)

and

≡
ℏ

★ − ★

W

U W W U

p q p q
i

q p q p q q

( , ) ( , )

( ( ) ( , ) ( , ) ( ))

qm
d

d d
(12c)

are the kinetic and potential terms in the diabatic
representation, respectively. Here, we have introduced the
star operator, ★, which represents the Moyal product, defined
as59,60

★ ≡ ∂
⃖
∂
⃗
− ∂

⃗
∂
⃖

i
exp

2
( )

q p q p

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (13)

The differentiation operators from the left and right appearing
here are defined as

∂
⃗

= ∂
⃖
≡

∂
∂

f x f x
f x

x
( ) ( )

( )
x x (14)

The operators for the fluctuation and dissipation, Φ̂d(p, q),
Θ̂k

d(p, q), and Ξ̂k
d(p, q), appearing in eq 11, are defined as

Φ̂ ≡ − ∂
∂

p q
p

( , )
d

(15a)

ζ
ω

η
β

Θ̂ ≡
ℏ
∂
∂

p q
p

( , )
2

k
kd

0 (15b)

and

∑

ζ
ω

ω
β

Ξ̂ ≡ − ∂
∂

+
ℏ
∂
∂

+ Φ̂ Θ̂

p q
p

p
p

p q p q

( , )
1

( , ) ( , )

K

k

K

k

d

0
0

d d

i
k
jjjjj

y
{
zzzzz

(15c)

The first two operators in the above equations, Φ̂d(p, q) and
Θ̂k

d(p, q), arises from eq 8a and the first term in eq 8b, while
the last operator, Ξ̂K

d(p, q), arises from the second term in eq
8b. The derivation of eq 11 is presented in section S1.B.
Because eq 11 is a generalization of the multistate quantum
Fokker−Planck equation (MS-QFPE)16−19 valid in the low-
temperature regime, we refer to these equations as the
multistate low-temperature quantum Fokker−Planck equations
(MS-LT-QFPE).
For a single-state system, the matrices Wd(p, q, t) and Ud(q)

reduce to scalar functions,W(p, q, t) and U(q). In this case, we
refer to eq 11 as the low-temperature quantum Fokker−Planck
equations (LT-QFPE). These equations can be understood as
an extension of the quantum Fokker−Planck equation
(QFPE).29−32

The conventional (multistate) quantum hierarchical Fok-
ker−Planck equations ((MS-)QHFPE) with a Drude spectral
density, ω ωγ ω γ∝ +( ) /( )D

D
2 2

D
2 , where γD is the cutoff

frequency, are capable of treating systems subject to non-
Markovian noise, and are not limited to the case of an Ohmic
spectral density.32,42,44,46 However, the (MS-)QHFPE require
a (K + 1)-dimensional multi-index n⃗′ ≡ (n0, n⃗) (i.e., the
additional index n0) to describe non-Markovian dynamics
caused by a finite value of γD and, therefore, is computationally
more expensive than the (MS-)LT-QFPE. Moreover, the (MS-
)QHFPE become unstable in the ohmic limit (i.e., γD ≫ 1) at
low temperatures because of the fast decaying terms with γD,
while the (MS-)LT-QFPE is sufficiently accurate and also
being sufficiently simple in comparison to the (MS-)QHFPE.
Thus, although applicability of these equations is limited to the
ohmic case, the computational cost to solve the (MS-)LT-
QFPE is suppressed than that to solve the (MS-)QHFPE.
These features make the (MS-)LT-QFPE and (MS-)LT-QSE
suited for describing slowly decaying systems and systems
rendered in multidimensional phase spaces. Note that in the
case that the diabatic PESs of the system are harmonic, the
MS-LT-QFPE yields the same results as the HEOM for a
reduced electronic system with a Brownian spectral den-
sity.39,61 In Appendices A and B, we present a stochastic
Liouville description of the (MS-)LT-QFPE and Langevin
description of the LT-QFPE, respectively.

2.3. Multistate Low-Temperature Quantum Smolu-
chowski Equations. In this section, we present the
asymptotic form of eq 11 in the Smoluchowski limit, that is,
in the case ζ ≫ ω0 and ωe, where ωe is the characteristic
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frequency of the electronic transition dynamics. We introduce
the following probability distribution in coordinate space:

∫≡f Wq t p p q t( , ) d ( , , )d d
(16)

In the Smoluchowski limit, the equations of motion for fd(q)
are

ν

ν

= − + ∑ + + Ξ̂

− ∑ Φ̂

− ∑ Θ̂

ω
ζ

ω
ζ

∂
∂ ⃗

⃗

⃗+ ⃗

⃗− ⃗

f

f

f

f

q t

q n q q q t

q q t

n q q t

( , )

( ) ( ( ) ( )) ( , )

( ) ( , )

( ) ( , )

t n

k
K

k k K n

k
K

n e

k
K

k k k n e

d

d d od,d d

od,d d

od,d d

k

k

0

0

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ

(17)

where

≡
ℏ

−f U f f Uq q t
i

q q t q t q( ) ( , ) ( ( ) ( , ) ( , ) ( ))d d d
(18a)

corresponds to the Liouville−von Neumann equation for the
electronic subspace and

≡ ∂
∂

+f F f f Fq q t
q

q q t q t q( ) ( , )
1
2

( ( ) ( , ) ( , ) ( ))d d d

(18b)

is the drift term that arises from the force Fd(q) ≡ − (1/
ℏ)∂Ud(q)/∂q. The operators

Φ̂ = − ∂
∂

q
q

( )
od,d

(19a)

and

η
β

Θ̂ =
ℏ
∂
∂

q
q

( )
2

k
kod,d

(19b)

represent the non-Markovian parts of the noise, while

∑
β

Ξ̂ = −
ℏ
∂
∂

+ Φ̂ Θ̂q
q

q q( )
1

( ) ( )K
k

K

k
od,d 2

2
od,d od,d

(19c)

represent the Markovian part of the noise. The superscript
“od” means “overdamped”. The derivation of eq 17 is given in
section S1.C. In the case of a single-state system, the matrices
fd(q,t), Ud(q), and Fd(q) reduce to scalar functions, f(q,t),
U(q), and F(q), respectively. The relationship between eq 11
and eq 17 is similar to the relationship between the Fokker−
Planck (Kramer’s) equation and the Smoluchowski equa-
tion.62,63 For this reason, we refer to eq 17 as the (multistate)
low-temperature quantum Smoluchowski equations ((MS-
)LT-QSE), while we refer to this as the (multistate)
Smoluchowski equation ((MS-)SE) in the high-temperature
limit.
A quantum mechanical extension of the Smoluchowski

equation valid in the low-temperature regime is known as the
quantum Smoluchowski equation (QSE), which treats QLT
effects in the framework of the Markovian approxima-
tion.48,49,64−67 However, because QLT corrections are in
principle non-Markovian as shown in eq 8b, when we lower
the bath temperature or we study a system with high energy,
the QSE becomes inaccurate. In contrast, the (MS-)LT-QSE
can describe non-Markovian terms that is necessary to satisfy
the QFD theorem, the (MS-)LT-QSE is applicable to a wider

range of physical conditions than the QSE, as shown in
Appendix C. For electron transfer problems with harmonic
PESs, an extension of the Smoluchowski equation to multistate
systems has been carried out as the Zusman equation
(ZE).50,51,68,69 However, the original ZE theory does not
treat quantum dynamical effects from electronic states
properly, as shown in Appendix D. The MS-SE can be
regarded as a generalization of the ZE for arbitrary PESs with
describing the quantum dynamical effects from the electric
states accurately. The MS-LT-QSE can be regarded as a
generalization of the MS-SE with the QLT correction terms.
Several extensions of the ZE theory valid in the low-
temperature regime have been carried out as the following:
The generalized ZE is constructed as an extension of the
quantum Smoluchowski equation to multistate systems.70 In
the modified ZE theory52 and stochastic ZE theory,71 the
effects of non-Markovian QLT terms are incorporated using an
integral-differential equation similar to that used in second-
order perturbation theories and using a stochastic differential
equation, respectively. In contrast, the MS-LT-QSE is a non-
Markovian, nonperturbative, and deterministic approach in the
framework of the HEOM formalism. Note that when the
diabatic PESs of the system are harmonic, the MS-LT-QSE
gives the same result as the HEOM for a reduced electronic
system with an overdamped Brownian/Drude spectral
density.35,39 In Appendices A and B, we also present a
stochastic Liouville description of the (MS-)LT-QSE and
Langevin description of the LT-QSE, respectively.

3. NUMERICAL RESULTS

In principle, with the (MS-)LT-QFPE, we are able to calculate
various physical quantities with any desired accuracy by
adjusting the number of low-temperature correction terms,
while the (MS-)LT-QSE is sufficient for computing physical
quantities under overdamped conditions. Here, we first
examine the validity of eqs 11 and 17 by presenting the
results obtained from numerical integrations of these equations
in the case of a Brownian oscillator, for which exact solutions
are known. Then, we demonstrate the applicability of these
equations by using them to compute the population dynamics
and transient absorption spectrum for a multistate double-well
system.

3.1. Single-State Case: Brownian Oscillator. Here, we
consider the case of a single PES described by the harmonic
potential

ω
=
ℏ

U q q( )
2

0 2
(20)

The validity of the reduced equation of motion for a non-
Markovian system can be examined by comparing the results
obtained from a set of numerical tests (non-Markovian tests)
to the analytically derived solution in the case of the Brownian
oscillator.32

First, we study the equilibrium distribution function in the
case of the above harmonic potential. For this PES, we have
the following analytical expression for the equilibrium
distribution:47,57

π
=

⟨ ⟩β ζ

− ⟨ ⟩β ζf q
q

e( )
1

2
q q

2
,

/22 2
,

(21)

Here
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is the mean square of the coordinate q, and
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(23)

is the symmetrize-correlation function of the coordinate q.
To obtain the thermal equilibrium state numerically, we

integrated eqs 11 and 17 from a temporal initial state to a time
sufficiently long that all of the hierarchical elements reached
the steady state. For all of our computations, we fixed the
oscillator frequency to ω0 = 400 cm−1. We consider the
underdamped (ζ = 0.1ω0), critically damped (ζ = 2ω0), and
overdamped cases (ζ = 10ω0) at the temperature βℏω0 = 7.47
(T = 77 K), which is in the low-temperature regime.
Because both eqs 11 and 17 consist of sets of infinitely many

differential equations, we need to truncate n⃗ to carry out
numerical calculations. Here, we adopted the truncation
scheme proposed in refs 72 and 73 with modifications: The
hierarchy is truncated in accordance with the condition that n⃗
satisfies the relation δn⃗ω0/γn⃗ > δtol, where δtol is the tolerance of
the truncation, with γn⃗ ≡ ∑k

Knkνk and

∏ η
η

Δ ≡
!⃗ n

1
n

k

K

k

k

K

nki

k
jjjjj

y

{
zzzzz

(24)

For details, see section S4.
Numerical calculations were carried out to integrate eqs 11

and 17 using the fourth-order low-storage Runge−Kutta
(LSRK4) method.74 The time step for the LSRK4 method
was chosen between δt = 0.1 × 10−2 fs and δt = 0.5 × 10−2 fs.
Uniform meshes were employed to discretize the Wigner
function and probability distribution function, and the mesh
sizes were set to Nq = 64 and Np = 64 in the q and p directions,
respectively. The mesh ranges of the Wigner function and
probability distribution function in the q direction were chosen
between −4 ≤ q ≤ + 4 and −12 ≤ q ≤ + 12. The mesh range
of the Wigner function in the p direction was chosen between
−4 ≤ p ≤ + 4 and −15 ≤ p ≤ + 15. The finite difference
calculations for q and p derivatives in eqs 11 and 17 were
performed using the central difference method with tenth-
order accuracy. For the kinetic term of the Liouvillian in eq
12a, the upwind difference method with ninth-order accuracy
was employed for the q derivative.44−46,75 The Moyal products
in eq 12c were evaluated using the discretized convolution
representation described in refs 75−77 with modifications for
multistate systems (for details of the modifications, see section
S6.1). The number of QLT correction terms was chosen from
K = 3 and 4 for the low-temperature case (βℏω0 = 7.47 (77
K)), and K = 2 was employed for the high-temperature case
(βℏω0 = 1.92 (300 K)). The tolerance of the truncation was
chosen between δtol = 10−4 and δtol = 10−6. In the case of δtol =
10−4, the number of total hierarchical elements were 34 and 14
for the low-temperature and high-temperature cases, respec-
tively. The C++ source codes, which allow for the treatment of
the phase and coordinate space dynamics with any single-state
or multistate potential forms, are provided as Supporting
Information. The actual numerical integrations for the present

calculations were carried out using C++/CUDA codes with
cuBLAS and cuFFT libraries to enhance the computational
speed with graphics processing unit (GPU).
In Figure 2, we compare the analytic equilibrium

distribution with that obtained from the LT-QFPE under

several conditions for the system-bath coupling at βℏω0 = 7.47.
The results obtained from the LT-QFPE are overlapped to
analytically exact solutions. In the numerical calculation, the
larger number K we used, the more accurate results we had.
In the case of a weak interaction, both the numerical and

analytical forms are closer to that for the isolated harmonic
oscillator, which is given by eq 21 with ⟨q2⟩β,0 = (1/
2)coth(βℏω0/2). This expression can also be derived from
the Boltzmann summation of the eigenstates.
As mentioned above, the mean-square momentum, ⟨p2⟩,

diverges in the present Ohmic case.47,57 This is because high
frequency quantum noise destroys the quantum coherence
between the “bra” and “ket” wave functions, which results in
the condition ρ(z,z′) = 0 for z ≠ z′. As a result, the Wigner
distribution function in momentum space, which is the Fourier
transform of the quantum coherence r ≡ z−z′, is flat in this
case (see section S5). However, even in such situations, we can
use the Wigner function, because the dynamics of the system
are controlled by the low-frequency Matsubara terms or the
low-frequency QLT correction terms.
In Figure 3, we plot stable solutions for the Wigner

distribution function calculated with the LT-QFPE using
several values for the number of QLT correction terms. It is
seen that the width of Wigner distributions (∝⟨p2⟩) increases
as the number of QLT correction terms increases, while the q
probability distributions converge to on the analytically derived
solution. The Gaussian-like profile in the p direction arises

Figure 2. Equilibrium distributions for a harmonic oscillator in the
underdamped (ζ = 0.1ω0), critically damped (ζ = 2ω0), and
overdamped (ζ = 10ω0) cases at low-temperature, βℏω0 = 7.47 (T
= 77 K). The red, green, and blue curves represent the analytically
derived solutions, eq 21, and the red, green, and blue symbols
represent the numerical results obtained with the LT-QFPE. The
classical and quantum equilibrium distributions of the system without
a heat bath are also presented as the dotted and dashed curves,
respectively.
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from QLT correction terms for finite K. Although we observe
the larger flat distribution for larger K, we can still use the

Wigner function by ignoring these contribution for the
calculation of the nondiverging physical variables. This is the
reason that we can calculate the physical variable using Wigner
distribution, while ⟨p2⟩ diverges with K → ∞.
We next study the symmetrized correlation function of the

system coordinate, defined as

{ }ρ≡ + ′ ′ ⃗ ′⃗C t Tr z t
z z

z z x x( ) ( )
2

( , , , )q tot tot
eq

(25)

where t( )tot is Green’s function for the total system and
Weq(p, q,x,⃗x)⃗ is the stationary solution of t( ). In the HEOM
formalism, the time evolution of the total system, described by
ρtot(z, z′, x,⃗ x′⃗, t), is replaced by that of the hierarchical
elements, described by ρ ρ′ ≡ { ′ | ⃗ ∈ }⃗ z z t z z t n( , , ) ( , , )n

K
H .

It has been found that these yield the same reduced dynamics
in the system subspace.32,78 After the Wigner transformation,
eq 25 is evaluated as

∫ ∫= { }| ⃗= ⃗C t p qq t qW p q( ) d d ( ) ( , )q nH H
eq

0 (26)

where t( )H is Green’s function evaluated from eq 11 or 17,
and WH

eq(p,q) is the stationary solution of t( )H . We define the
Fourier transform of eq 25 as

∫ω ω≡
∞

C tC t t( ) d ( )cosq q
0 (27)

Figure 3. Wigner distribution function for the equilibrium state of a
harmonic oscillator in the overdamped case (ζ = 10ω0) at βℏω0 =
7.47 (T = 77 K) using several values of the number of QLT correction
terms (K = 3, 4, and 5). The reduced distributions f(q) and f(p) ≡
∫ dq W(p,q) are also displayed.

Figure 4. Symmetrized correlation function given in eq 25 for a harmonic oscillator under (a) underdamped (ζ = 0.1ω0), (b) critically damped (ζ
= 2ω0), and (c) overdamped conditions (ζ = 10ω0) in (i) low-temperature (βℏω0 = 7.47 (77 K)) and (ii) high-temperature (βℏω0 = 1.92 (300
K)) cases. The solid and dotted curves were calculated from eqs 23 and 28 for the classical (red) and quantum (blue) cases, respectively. The
values plotted here are normalized with respect to the maximum of eq 23. The LT-QFPE and LT-QSE results are denoted by the blue symbols,
respectively, while the FPE and SE results are denoted by the red symbols. Note that QFPE and the classical Fokker−Planck equation (FPE) are
equivalent in the case of a harmonic PES.
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In the quantum case, eq 27 can be analytically evaluated as
eq 23. Under the condition ζ ≫ ω0, this function
asymptotically approaches38,79

ω β ω
ω

γω
ω γ

̃ = ℏ ̃
+ ̃

ζ ω≫C ( )
1
2

coth
2

1
q

0
2 2

0 i
k
jjj

y
{
zzz

(28)

where γ̃ ≡ ω0
2/ζ. The classical high-temperature limit of the

above result is obtained by replacing coth(βℏω/2) with 2/
βℏω. In Figure 4, we depict the symmetrized-correlation
function calculated under several damping conditions in (i)
low temperature (βℏω0 = 7.47) and (ii) high temperature
(βℏω0 = 1.92) cases. As seen there, the numerical results
obtained from eqs 11 and 17 are close to the exact analytical
solutions. Generally, in the HEOM formalism, we are able to
obtain as accurate results as we need by employing larger
hierarchical space (i.e., by increasing K and by decreasing δtol).
It should be noted that, although the LT-QSE well predicts the
quantum dynamics under strong friction, the stable solution of
the LT-QSE depend upon the number of QLT correction
terms. As shown in Appendix C, because the analytical solution
for the overdamped case, eq 28, also diverges under the infinite
summation of the Matsubara frequencies, careful verification is
important when we use the LT-QSE to calculate observable
strongly depend on the equilibrium distribution.
As shown in this section, the LT-QFPE and LT-QSE can

describe accurate dynamics with a properly truncated
hierarchical space. This finding is important for numerical
calculations. As shown in Appendix B, the LT-QFPE and LT-
QSE are equivalent to the Langevin expressions for a single
harmonic potential case. As analytically calculated symmetrized
correlation functions from the Langevin equations indicate, we
can obtain eqs 23 and 28 from the present approach, under δtol
→ 0 and K→∞. This result demonstrates the reliability of the
LT-QFPE and LT-QSE theories.
3.2. Multistate Case: Double-Well PESs with Gaussian

Adiabatic Coupling. Next, we present our numerical results
for multistate systems. For convenience, we describe our
system using adiabatic electronic states, |Φa(z)⟩. In the
following, a, b, and c refer to adiabatic electronic states, and
j, k, and l refer to diabatic electronic states.
3.2.1. Adiabatic and Diabatic Bases. The ath adiabatic

electronic state is an eigenfunction of the time-independent
Schrödinger equation, and thus we have

̂ |Φ ⟩ = |Φ ⟩U z z U z z( ) ( ) ( ) ( )a a a
a

(29)

where Û(z) ≡ ∑j,k|j⟩Ujk
d (z)⟨k| and Ua

a(z) is the ath adiabatic
Born−Oppenheimer (BO) PES. The diabatic and adiabatic
states are related through the transformation matrix given by

≡ ⟨ |Φ ⟩Z z j z( ) ( )ja a (30)

We introduce the unitary matrix Z(z) defined as {Z(z)}ja =
Zja(z), which satisfies the relation Z(z)†Z(z) = Z(z)Z(z)† = 1.
Then, eq 29 can be expressed in diagonal matrix form as

=†Z U Z Uz z z z( ) ( ) ( ) ( )d a (31)

where {Ua(z)}ab ≡ δabUa
a(z), and δab is the Kronecker delta.

In adiabatic representations of kinetic equations, non-
adiabatic couplings between adiabatic states are characterized
by the nonadiabatic coupling matrix, d(z), expressed in terms
of the first-order derivative of the coordinate as80,81

{ } = ≡ ⟨Φ | ∂
∂
|Φ ⟩d z d z z

z
z( ) ( ) ( ) ( )ab ab a b (32a)

The nonadiabatic coupling matrix, d, is skew-Hermitian (i.e.,
d† = −d). This matrix can also be expressed in terms of Z(z) as

= ∂
∂

†d Z Zz z
z

z( ) ( ) ( )
(32b)

and therefore we have
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zi

k
jjj

y
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(33)

where
⎯ →⎯⎯⎯⎯⎯
exp is the ordered exponential in coordinate space.

Thus, the transformation matrix, eq 30, can be constructed
from d(z), and hence the diabatic PESs can be obtained from
the adiabatic PESs using the inverse of the transformation in eq
31.
If necessary, we can introduce the nonadiabatic coupling

matrix of the second-order, defined as

{ } = ≡ ⟨Φ | ∂
∂

|Φ ⟩h z h z z
z

z( ) ( ) ( ) ( )ab ab a b

2

2 (34a)

which can be constructed from d(z) as
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∂
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+†h Z Z
d
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2

2
2

(34b)

Next, we introduce the reduced density matrix in the
adiabatic representation, defined as

ρ ρ′ ≡ ⟨Ψ | ̂ ′ |Ψ ′ ⟩z z t z z z t z( , , ) ( ) ( , , ) ( )ab a b
a

(35)

where the diagonal element ρaa
a (z, z, t) and the off-diagonal

element ρab
a (z, z′, t) (a ≠ b) represent the population of

|Φa(z)⟩ and the coherence between |Φa(z)⟩ and |Φb(z′)⟩,
respectively. The adiabatic representation of the density matrix,
{ρa(z, z′, t)}ab = ρab

a (z, z′, t), can be obtained from ρd(z, z′, t)
through application of the transformation matrix Z(z) as

ρ ρ′ = ′ ′†Z Zz z t z z z t z( , , ) ( ) ( , , ) ( )a d (36)

This representation is related to the Wigner representation as

∫ ρ
π

≡ + −−W p q t r q
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2
ipra ai

k
jjj

y
{
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Although we can construct the equations of motion for
Wa(p,q,t) directly, the numerical integrations are complicated,
because the number of terms that include the Moyal product
becomes large (see Appendix E). For this reason, we integrate
the equations of motion in the diabatic representation. After
obtained the numerical results, we convert these to the
adiabatic representation.

3.2.2. Tilted Double-Well Model. As a schematic model for
IC in a photoisomerization process, we adopt the following
tilted double-well adiabatic ground BO PES:

ω
=

ℏ
− + Δ

U q
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q q
L E
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2 2g
a 0

0
2

2 2 0
2
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i

k
jjjjj

y

{
zzzzz (38a)

Here, L0 and ΔE are the displacement between the wells and
the difference between their energies, respectively. We use the
following harmonic adiabatic excited BO PES:
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(38b)

Here, ωe, q†, and Egap
e−g are the vibrational characteristic

frequency in the excited state, the position of the crossing
region, and the energy gap between the ground and excited BO
PES in the crossing region, respectively.
We assume that the nonadiabatic coupling has the Gaussian

form

π
σ

= − = σ
†

− − † †
d q d q e( ) ( )

8eg ge
q q

2
( ) /22 2

(39)

and dgg(q) = dee(q) = 0, where σ† is the width of the crossing
region. The integral of deg(q) is given by
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(40)

where erfc(x) ≡ 1 − erf(x) is the complementary error
function. Because deg(q) is normalized with respect to Deg(∞)
= π/2, the adiabatic bases are exchanged with the change of
position from z = −∞ to z = +∞.
Although we can construct the MS-LT-QFPE and their

variant equations in the adiabatic representation (see Appendix
E), in the present study, we performed the numerical
calculation using the diabatic representation, because in this
case, the equations are simpler and easier to solve. Then, after
we obtained the numerical results, we carried out the inverse
transformation to convert these to the adiabatic representation.
We employ the diabatic basis defined as |0⟩ ≡ |Φg(−∞)⟩ and |
1⟩ ≡ |Φe(−∞)⟩. Then eq 33 is solved as
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and the diabatic PESs and coupling are given by
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Figure 5 presents the adiabatic BO PESs and diabatic PESs
for the parameter values listed in Table 2.
We set the initial distribution as

= β ω− ℏ [ + − ]W p q e( , , 0)
1

ee
p q qa tanh( /2) ( )0

2
i

2

(43)

and as = = =W p q W p q W p q( , , 0) ( , , 0) ( , , 0) 0gg
a

eg
a

ge
a in eq

43, where qi = −L0/2 and is the partition function. This is
the Wigner transformation of the Boltzmann distribution for
the harmonic oscillator centered at q = qi. In this
demonstration, we ignore the initial correlation at t = 0.
We performed the numerical calculations to integrate

equations of motion using the finite difference method with
mesh sizes Nq = 256 and Np = 64 and mesh ranges −12 ≤ q ≤

+ 12 and −12 ≤ p ≤ + 12. The other calculation conditions
were the same as in section 3.1. For comparison, we display the
results calculated using the fewest switch surface hopping
(FSSH)26,82 and Ehrenfest methods80,81 with a classical
Markovian Langevin force under the same conditions. In
both methods, the adiabatic electronic basis was employed. In
the Ehrenfest methods, the state of the system is described
using the electronic density matrix (or the electronic wave
function), ρel(t), and a trajectory, {p(t), q(t)}, which is
determined following the mean-field force calculated from the
electronic PESs (i.e., averaged force from the populations in
ρel(t)). In the FSSH methods, the state is also described using
ρel(t), but its trajectory, {p(t), q(t)}, now follows the force
calculated from the active PES, Uλ(t)

a (q), where λ(t) is a

Figure 5. (i) The adiabatic ground BO PES (black solid curve),
excited BO PES (red solid curve), and nonadiabatic coupling (black
dashed curve) given by eqs 38a, 38b, and 39 are depicted for the
parameter values given in Table 2. The blue solid curve represents the
second excited BO PES. The first eight vibrational eigenfunctions for
the ground and first excited BO PESs are also plotted. (ii) The
diabatic 00 PES (black solid curve), diabatic 11 PES (red dashed
curve), and the diabatic 10 coupling (black dotted curve) for the case
of panel i.

Table 2. Parameter Values for the Numerical Tests

symbol value

ω0 400 cm−1

ωe ω0

ωf 1.5ω0

L0 10
ΔE 2000 cm−1

Egap
e−g 1000 cm−1

Egap
f−e 5000 cm−1

q† 1
σ† 1
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randomly changing index (i.e., g or e) in time whose hopping
rate is calculated using ρel(t). In each case, the time evolution
of the particle trajectories under the Langevin force was
calculated using the Vanden−Eijnden−Ciccotti methods.83

The time evolution of ρel(t) was calculated by the numerical
integration of the Schrödinger equation (NISE) method,84,85

in which the coefficients of the time evolution operator of the
electronic density matrix were held constant during each time
step evaluation. We used δt = 0.1 fs as the time step for the
integrations using the FSSH and Ehrenfest methods, and we
employed N ≃ 10 000 trajectories for the average calculations.
3.2.3. Population Dynamics. In Figure 6, we present plots

of the excited population in the adiabatic representation
defined as

∫ ∫≡u t p qW p q t( ) d d ( , , )e ee
a

(44)

In the FSSH and Ehrenfest cases, we defined ue(t) as an
ensemble average of ρee

el(t) for all trajectories. In the FSSH
(active) case, we further introduced the excited population,
u̅λ(t)=e(t), calculated as an ensemble average of the population
with the active PES index λ(t) = e for all trajectories.
As demonstrated in section 3.1, the MS-LT-QFPE is

numerically accurate, and therefore, the calculated results
obtained with these equations can be used as a reference to
verify other results from different formalisms. We now discuss

the numerical results. A wavepacket centered at q = qi in the
excited state as the initial state. The wavepacket then moves in
the direction of the crossing region, that is, near q = q†. Then
the population of |Φe(q)⟩ decreases due to the nonadiabatic
transition. In the case that ζ is sufficiently small, the de-excited
wavepacket moves among the double minima of the adiabatic
ground state PES while maintaining a large kinetic energy, and
it traverses the crossing region repeatedly through non-
adiabatic transitions. As a result, oscillatory behavior is
observed in Figure 6i-a and 6ii-a. As the coupling constant ζ
increases, the wavepacket motion becomes slower, and the
population of |Φe(q)⟩ decays more slowly. While classical
treatments of the heat bath produce pathological negative
populations (red and green curves), in particular in the low
temperature case, the presently investigated equations of
motion, eqs 11 and 17, accurately describe the population
dynamics (the blue lines). This demonstrates the importance
of the QLT correction terms.
While the results obtained with the FSSH and Ehrenfest

methods do not exhibit negative populations because of the
assumptions for a decomposition of the distribution function
into the trajectories, they do differ significantly from both the
quantum (MS-LT-QFPE) and semiclassical (MS-FPE) results,
particularly in the low temperature case. Because the FSSH
and Ehrenfest methods were originally developed to study
isolated systems, which have a few degrees of freedom, these

Figure 6. Time evolution of the excited population in the adiabatic state |Φe
a⟩ under (a) underdamped (ζ = 0.1ω0), (b) critically damped (ζ = 2ω0),

and (c) overdamped conditions (ζ = 10ω0) in the (i) low-temperature (77 K) and (ii) high-temperature (300 K) cases, respectively. The red and
blue solid curves were calculated using the MS-QFPE and MS-LT-QFPE, respectively. The green solid curves represent the MS-FPE results. These
were derived using the first-order Moyal-truncated Liouvillian, which is equivalent to the mixed quantum-classical Liouvillian.20,21 The black solid
and dotted curves are the ensemble averages of the excited state population of the electronic density matrix, ρee

el(t), calculated in the FSSH and
Ehrenfest cases, respectively. The black dashed curves are the excited population, u̅λ(t)=e(t), in the FSSH (active) case. Panels i-c′ and ii-c′
correspond to the Smoluchowski limit, which can be evaluated from eq 17.
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methods may not be proper for calculations of systems in
dissipative conditions that are essentially many-body problem
when we include the bath degrees of freedom. It should be
noted that, in the FSSH results, ue(t) and u̅λ(t)=e(t) disagrees,
while both correspond the electronic excited state. The similar
disagreement is reported in ref 86.
Note that, as the coupling constant ζ increases, the results

obtained from the quantum Liouvillian (red curves) and
semiclassical Liouvillian (green curves) treatments of the PES
become similar. This is because the higher-order differential
operators in the Moyal products vanish in the overdamped
limit, as shown in the construction of the LT-QSE (see section
S1.C). Moreover, when the energy gap between the ground
and excited states in the crossing region is small, the negative
population of the semiclassical results is suppressed. This is
because, the characteristic frequency of the electronic
transition dynamics becomes small in such situation, and
therefore the high-temperature approximation of the bath
works well, as the authors’ previous investigation for conical
intersection problem.20

3.3. Transient Absorption Spectra. The presently
investigated formalisms are capable of calculating nonlinear
response functions. By calculating the transient absorption
spectrum, here we demonstrate the importance of the QLT
correction terms for nonlinear optical spectra. In order to
include an excited state absorption (ESA) process, we add a
second excited state, |Φf(q)⟩, with the PES

ω
ω

=
ℏ

− + +† † −U q q q U q E( )
2

( ) ( )f
f

e
e fa

2

0

2 a
gap

(45)

to the present model. Because we assume dfg(q) = dfe(q) = 0, a
spontaneous transition between |Φf(q)⟩ and the subspace
{|Φg(q)⟩, |Φe(q)⟩} is prohibited. Thus, only optically
stimulated transitions between |Φg(q)⟩and |Φe(q)⟩ occur.
The diabatic PESs of this three-state system are those given
in eq 42, along with U22(q) = Uf(q), U20(q) = U21(q) = 0.
The transient absorption (TA) spectrum from the initial

state eq 43 is given by19

∫ω ω τ τ≡ ωτ
∞

I t Im e R t( , ) d ( , )iTA

0

TA
(46)

where

{
}

μ μτ τ

ρ

≡
ℏ
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W

R t Tr q Tr
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q t

p q x x

( , ) ( ) ( ) ( ) ( )

( ( , , 0) ( , ))
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S

d
B tot

d
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d
B
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l
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no

|
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is the response function of the TA and {μd(q)}jk = ⟨j|μ̂(q)|k⟩ is
the dipole operator in the matrix representation. Here, A×B ≡
AB − BA is the commutator and

∫ ∫ ∑{ } ≡ { }Tr p q... d d ...
j

jjS
(48)

is the trace over the system subspace. In the HEOM formalism,
eq 47 becomes

{ {μ μτ τ=

× } }
ℏ

×

⃗= ⃗W

R t Tr q q t

p q

( , ) ( ) ( ) ( ) ( )

( , , 0)

i

n

TA
S

d
H

d
H

H
d

0 (49)

where ≡ { ′ | ⃗ ∈ }⃗ W Wp q z z t n( , , 0) ( , , )n
K

H
d d is initialized as

Wn⃗
d(p, q, 0) = Wd(p, q, 0) for n⃗ = 0⃗ and Wn⃗

d(p, q, 0) = 0
otherwise.
Hereafter, for μ̂(q), we assume the form μ̂(q) =

|Φe(q)⟩⟨Φg(q)| + |Φf(q)⟩⟨Φe(q)| + c.c. While μ̂(q) may induce
nonvertical transitions among adiabatic electronic states, here
we consider the vertical transition only for simplicity (i.e., the
laser interaction is described by the commutator, μa(p,
q)×Wa(p, q) among the electronic states). Note that because
the distribution, eq 43, is set in the excited state at the initial
time, ground state bleaching (GSB) is not observed.
Figure 7 displays the calculated results in the overdamped

case at T = 77 K. Here, the parameter values are the same as in
Figure 6i-c′. For comparison, we display the TA spectra
obtained using the FSSH and Ehrenfest methods with a
classical Markovian Langevin force under the same conditions.

Figure 7. Transient absorption spectra, ITA(ω,t), calculated in the overdamped low-temperature case (ζ = 10ω0 and T = 77 K). The results were
obtained using the (i) MS-LT-QSE, (ii) MS-SE, and (iii) FSSH, and (iv) Ehrenfest methods, respectively. In the FSSH method, the effects of the
nonadiabatic transition dynamics during waiting time was taken into account using the ensemble average of the active PES index, u̅λ(t)=e(t). The red
and blue regions represent emission and absorption, respectively. The values are normalized with respect to the maximum of the MS-LT-QSE
calculation at t = 0 fs.
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As shown in Figure 6, nonadiabatic transitions in the FSSH
and Ehrenfest calculations are slow. This is reflected by very
sharp peaks in the TA spectra. To avoid numerical errors in the
computation of the Fourier transform due to these sharp peaks,
we employed an exponential filter, exp(−τ/τd), with decay
time constant τd = 200 fs in the all calculations. The procedure
of calculating nonlinear response functions using the FSSH and
Ehrenfest methods following that for the two-dimensional
electronic spectra given in ref 86 is presented in section S6.2.
To carry out FSSH calculations, the effects of the

nonadiabatic transition dynamics during waiting time was
taken into account using the ensemble average of the active
PES index, u̅λ(t)=e(t) (i.e., using the auxiliary wave function
given in ref 86).
First, we discuss the TA spectrum plotted in Figure 7i . At t

= 0, ESA and stimulated emission (SE) are observed at
frequencies corresponding to the Franck−Condon point,
Uf(qi) − Ue(qi) = 14 000 cm−1 and Ue(qi) − Ug(qi) =
10 552 cm−1, respectively. The ESA signals is labeled “A” and
the SE signal is labeled “B”. Because both Uf(q) − Ue(q) and
Ue(q) − Ug(q) decrease in accordance with the wavepacket
motion from q = qi to q = z†, the ESA and SE peaks move
toward the frequencies ω = Uf(q

†) − Ue(q
†) = Egap

f−e = 5000
cm−1 and Uf(q

†)−Ue(q
†) = Egap

e−g = 1000 cm−1 as functions of
time, respectively. The intensity of the ESA signal decreases
because of the de-excitation from |Φe(q)⟩ to |Φg(q)⟩. The
intensity of the SE signal also decreases, and becomes zero
near t = 300 fs, because the SE from |Φe(q)⟩ and the
absorption from |Φg(q)⟩ cancel each other. Then, the
absorption signal from the crossing region labeled “C” appears
and the position of the peak moves toward the resonant
frequency of the product ground state labeled “D”, following
the wavepacket motion.
In Figure 7ii, the positive peak labeled E′ appears at ω = Egap

f−e

after t = 400 fs. Its appearance is due to the violation of the
positivity of the excited state population of |Φe(q

†)⟩; the E′
peak in ESA signal arises from a negative population of |Φe⟩,
which is observed as emission. The negative population of
|Φe(q

†)⟩ also appears as an absorptive contribution in the SE,
and the intensity of the negative peak labeled C′ is enhanced.
When this negative population propagates to the |Φg(q

†)⟩
state, the absorption from this state is observed as the emission
spectrum labeled F′. These results indicate that the classical
treatment does not have the capability to predict optical
signals, in particular in the low-temperature regime.
In Figure 7iii and 7iv, the calculated results from the

phenomenological FFSH and Ehrenfest approaches are
presented. These results do not agree with the MS-LT-QSE
results not only quantitatively but also qualitatively, in
particular in the Ehrenfest case. This is due to the poor
estimation of nonadiabatic transition rate in these two
approaches, as illustrated in Figure 6. Although the MS-SE
approach exhibits unphysical emission or absorption peaks, the
MS-SE result is closer to the accurate MS-LT-QSE results than
the FSSH and Ehrenfest results. This indicates that the MS-SE
approach is physically more consistent than the FSSH and
Ehrenfest approaches, even the positivity problem occurs.
Although the FSSH and Ehrenfest approaches are simple and
easy to implement molecular dynamics simulations, the
verification of the calculated results, in particular for
calculation of nonlinear response function, should be made
before comparing the experimental results. Note that, when we
calculate the effects of the nonadiabatic transition dynamic

using the ensemble average of the electronic density matrix
(i.e., using the primary wave function given in ref 86), the
FSSH method produces a similar spectrum to the Ehrenfest
result.

4. CONCLUSION
In this Article, we investigated (MS-)LT-QFPE and (MS-)LT-
QSE that include QLT correction terms to satisfy the QFD
theorem. The (MS-)LT-QFPE and (MS-)LT-QSE were
rigorously derived from path integral formalism. We found
that the (MS-)LT-QFPE can be used to obtain correct
numerical descriptions of dynamics of a system coupled to an
Ohmic bath when the QLT correction terms are treated
properly, even in the strong coupling, low-temperature regime.
In the overdamped case, we can further reduce the momentum
degrees of freedom from these equations, thereby obtaining
the (MS-)LT-QSE. Although the applicability of these
equations is limited to the Ohmic case, they are significantly
less computationally intensive than (MS-)QHFPE approaches
in particular for the case of (MS-)LT-QSE. Moreover, because
structures of the PESs play essential roles in nonadiabatic
transition phenomena, and because the difference between the
Markovian and non-Markovian noise cases is minor, the
present formalism is sufficient for studying nonadiabatic
transition phenomena. Applications of this approach to the
study of a molecular motor system will be presented in
forthcoming papers. The MS-LT-QFPE and MS-LT-QSE are
also helpful for identifying purely quantum effects, because
they allow us to compare the quantum results with the classical
results obtained in the classical limit of the MS-LT-QFPE and
MS-LT-QSE.
As shown in Appendix C, although the LT-QSE accurately

predicts the quantum dynamics in the case of strong friction,
while we must truncate the number of QLT correction terms
properly with estimating the time scales of each term given by,
νk, in comparison with the time scale of the system dynamics.
A correction of the LT-QSE using conventional QSE theories
may suppress this ambiguity. This is left for future
investigations.
Because the (MS-)LT-QFPE is derived using a technique

similar to that used in the conventional HEOM approach, an
extension of the present formalism to the imaginary time
formalism in calculations of the partition function should be
straightforward.32,78

■ APPENDIX A: STOCHASTIC LIOUVILLE
DESCRIPTION OF (MS-)LT-QFPE AND (MS-)LT-QSE

Because each contribution from the QLT terms is a Gaussian
process, we can construct equations of motion in terms of
continuous stochastic variables.13,33 We introduce a set of
stochastic variables Ω⃗ ≡ (..., Ωk, ...), where Ωk is the auxiliary
stochastic variable for the description of the kth QLT
correction term. Then, the Wigner distribution function is
expressed as

∑ ϕΩ⃗ ≡ Ω⃗
⃗

⃗ ⃗W Wp q t p q t( , , , ) ( , , ) ( )
n

n n
d d

(50a)

The inverse relation is expressed as

∫ ϕ= Ω⃗ Ω⃗ Ω⃗⃗ ⃗
−W Wp q t p q t( , , ) d ( , , , ) ( )n n

d d ( 1)
(50b)

Here, the functions ϕn⃗(Ω⃗) and ϕn⃗
(−1)(Ω⃗) are defined as
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where ψn⃗(Ω⃗) is the Hermite function, ψn⃗(Ω⃗) ≡ ∏k
Kψnk(Ωk),

with
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(52)

and the nth Hermite polynomial, Hn(z) ≡ (−1)nez
2

(∂n/∂zn)e−z
2

.
The coefficients αk ≠ 0 and bk ≠ 0 are real numbers. Then, the
MS-WDF, Wd(p, q, t) = W0⃗

d(p,q,t), can be expressed as

∫= Ω⃗ Ω⃗W Wp q t p q t( , , ) d ( , , , )d d
(53)

because of the orthogonality of the Hermite functions.
While the coefficients αk and bk in eqs 51a and 51b can be

chosen in an arbitrary manner, we found that the choice

α η ζ β ω ν= ℏ4 /k k k0 and bk = α v2/ k k makes the equation of

motion for Wd(p, q, Ω⃗, t) simple. Thus, we obtain the
stochastic Liouville description of (MS)-LT-QFPE as

∑

∂
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where
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ℏ
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For details of eq 54, see section S2. Note that, while eq 54 is
similar to the Fokker−Planck equation for classical non-
Markovian dynamics via Markovian-type Fokker−Planck
equations with “virtual variables”,87,88 our variables Ω⃗ = (...,
Ωk, ...) are introduced to describe the QLT correction terms
from the Bose−Einstein distribution function. Equation 50b is
similar to the discretized representation of a phase-space
distribution of the classical Kramer’s equation (the Brinkman
hierarchy).19,63 Therefore, the (MS-)LT-QFPE can be
regarded as the Brinkman hierarchy representation of eq 54.
Similarly, the (MS-)LT-QSE, eq 17, is equivalent to the

equation of motion

∑
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∂
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Further details of eq 56 are given in section S2.

■ APPENDIX B: LANGEVIN DESCRIPTIONS OF
LT-QFPE AND LT-QSE

In the case that the system has only a single-state (i.e., in the
case of that Wd(p, q, t) and Ud(q) reduce to scaler functions,
W(p, q, t) and U(q)) and the quantum nature of the nuclear
dynamics is weak (i.e., anharmonicity of the potential is weak
or friction is strong), higher-order terms of the Moyal product,
eq 13, can be omitted and eq 12c is approximated as

≃

≡ ∂
∂

p q W p q p q W p q

F q
p

W p q

( , ) ( , ) ( , ) ( , )

( ) ( , )

qm cl

(58)

Here, we have introduced the force F(q) ≡ − (1/ℏ)∂U(q)/∂q.
In a harmonic potential case, the above expression is exact.
Then, eqs 11 and 54 can be decomposed into a set of Langevin
equations

ω̇ =q t p t( ) ( )0 (59a)

∑ζ̇ = − + ̃ + Ω̇p t F q t p t R t t( ) ( ( )) ( ) ( ) ( )q
k

K

k
(59b)

and

νΩ̇ = − Ω + ̃ νt t R t( ) ( ) ( )k k k k
( )

(59c)

Here, Ωk(t) is an auxiliary stochastic variable for the kth index
of n⃗, and R̃q(t) and R̃k

(ν)(t) are Gaussian-white forces that
satisfy the relations

⟨ ̃ ⟩ = ⟨ ̃ ⟩ =νR t R t( ) ( ) 0q k
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and ⟨R̃q(t)R̃k
(ν)(t′)⟩ = ⟨R̃k

(ν)(t)R̃k
(ν)(t′)⟩ = 0 (k ≠ k′). For details

of eqs 59a−59c, see section S3. By introducing a quantum
random force as

∑̃ = ̃ + Ω̇R t R t t( ) ( ) ( )q
k

K

kqm
(61)
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the set of Langevin equations, eqs 59a, 59b, and 59c, can be
rewritten as

ω̇ =q t p t( ) ( )0 (62a)

and

ζ̇ = − + ̃p t F q t p t R t( ) ( ( )) ( ) ( )qm (62b)

The random force R̃qm(t) satisfies the QFD theorem as
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The set of eqs 62a and 62b are the quantum Langevin
equation10,57 for the c-number variables, p(t) and q(t) (i.e., the
quasi-classical Langevin equation89,90). In the cases that
anharmonicity of the system is strong, we cannot employ the
above equations. In such cases, we have to evaluate the
quantum Langevin equation described by the operators, p̂(t)
and q̂(t), or to employ Wigner description (i.e., eqs 11 and 54)
with the quantum Liouvillian (eq 12a). This indicates that, the
LT-QFPE, eqs 11 and 54, can be regarded as the Fokker−
Planck equations equivalent to the quantum Langevin
equation. Note that, while eqs 59a, 59b, and 59c are similar
to the generalized Langevin equation for classical non-
Markovian dynamics via Markovian-type Lanvegin equations
with virtual variables,87,88,91,92 our stochastic variables Ω⃗ = (...,
ωk, ...) are introduced to describe the QLT correction terms
from the Bose−Einstein distribution function.
It should be noted that, for the LT-QFPE with a single PES,

eq 17 can also be decomposed into a set of Langevin equations

∑ζ
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̇ = + ̃ + Ω̇q t F q t R t t( ) ( ( )) ( ) ( )q
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K

k
0 (64a)

and

νΩ̇ = − Ω + ̃ νt R t( ) ( )k k k k
( )

(64b)

By introducing R̃qm(t), the set of Langevin equations, eqs 64a
and 64b, can be rewritten as

ζ
ω

̇ = + ̃q t F q t R t( ) ( ( )) ( )
0

qm
(65)

This is the “overdamped” quantum Langevin equation for the
c-number variable, q(t) (i.e., the inertia term ∝q̈(t) is omitted).
For details of eqs 64a and 64b, see section S3.

■ APPENDIX C: COMPARISON OF QSE AND LT-QSE
In this appendix, we compare our LT-QSE theory with
conventional QSE theories.
The QSE is proposed in refs 48, 49, and 65. It is given by
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in terms of our dimensionless coordinate q. Here, we have
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In the case of the harmonic oscillator (eq 20), eq 66 can be
written
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Better quantum corrections for the QSE are presented in refs
66 and 67. For a harmonic potential, this becomes

∂
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= Ω ∂
∂
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i
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where ζ ζ ωΩ ≡ − −/2 ( /2)2
0

2 and ⟨q2⟩β,ζ is given in eq
22b. Hereafter, we refer to eqs 68 and 69 as the QSE and
QSE′, respectively.
In Figure 8, we display the steady-state solutions of the QSE,

QSE′, and LT-QSE for several values of the damping strength

at low temperature, βℏω0 = 7.47. The other parameter values
are the same as in section 3.1. In the overdamped case, all
calculated results are qualitatively similar to the analytical
result. This is because the QSE and QSE′ are constructed so as
to reproduce the steady-state solution. The QSE′, in particular,
utilizes ⟨q2⟩β,ζ; for this reason, it reproduces the analytical
result even in the critical-damping case.
Note that if we assume the overdamped approximation eq

28 for the analytical equilibrium distribution eq 21 instead of
eq 23, the integral in eq 22b diverges under the infinite
summation of the Matsubara frequencies as

∑γ
β ω γ ν

⟨ ⟩ = ̃
ℏ ̃ + | ̃ |

→ ∞β ζ
ζ ω≫

=−∞

∞

q
1

k k

2
,

0

0

(70)

The calculated results using the LT-QSE theory become close
to the above analytical result by employing larger hierarchical
space (i.e., by increasing K). Thus, the steady-state solution
predicted by the LT-QSE theory deviates as K increases. This
divergence is similar to the ultraviolet divergence of ⟨p2⟩. This
indicates that, in order to calculate physical quantities on the
basis of LT-QSE, we must truncate the number of QLT

Figure 8. Equilibrium distribution, feq(q), calculated with the QSE,
QSE′, and LT-QSE for the critically damped, ζ = 2ω0 (green), and
overdamped, ζ = 10ω0 (blue), cases at low temperature, βℏω0 = 7.47.
The classical (dashed) and quantum (solid) equilibrium distributions
were obtained from the analytical expression in eq 21.
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correction terms properly by estimating the time scales of
them, νk, in comparison with the time scale of the system
dynamics. Note that a Drude spectral density model for
reduced electronic states has also this problem because eq 28 is
equivalent to the symmetrized correlation function of the
collective noise coordinate in the Drude spectral density
model.
In Figure 9, we display the symmetrized correlation

functions calculated with the QSE, QSE′, and LT-QSE

under the same conditions as in the case of Figure 8. Because
the QSE and QSE′ attempt to account for all quantum
corrections with Markovian terms ignoring the non-Markovian
nature of the quantum noise, they cannot reproduce the
dynamics at low temperature. In contrast, the calculated results
with the LT-QSE theory become close to the exact solution in
the overdamped case, eq 23, by increasing K, and both
numerical results and eq 23 approach the solution eq 28 for
large ζ.

■ APPENDIX D: ZUSMAN EQUATION

In this appendix, we show the relation between the present
equation and Zusman equation. For simplicity, we assume a
two-level system described by the diabatic harmonic PESs as

ω
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2
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0 2
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Here, V is the diabatic coupling constant between |0⟩ and |1⟩, d
is the dimensionless displacement between the minima of two
PESs, and E0 ≡ ΔE + λ is the summation of the driving force
ΔE and the reorganization energy λ ≡ ℏω0d

2/2. In this case,
the MS-SE can be rewritten as
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Here, we have introduced commutation and anticommutation
hyper operators, O×/°f ≡ Of ∓ f O, and

γ
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Note that eq 73 is equivalent to the stochastic Liouville
representation of the HEOM for a Drude spectral density in
the high-temperature limit, given in refs 33 and 51. When we
neglect the electronic−nuclear interaction from the force term
(i.e., Fd(q) → −ω0q and the anticommutation term (∝B°) is
omitted from eq 73), we obtain the ZE in a matrix
representation as

ω∂
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The equations of motion for diabatic matrix elements are
expressed as

∂
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and
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The above equations are equivalent to the original ZE in ref 50
except the shift and scaling factors of q. As this derivation
indicates, the MS-SE can be regarded as a generalization of the
ZE for arbitrary PESs with including the quantum dynamical
effects arising from the electric states. Note that the ZE for
harmonic PESs including this dynamical effect is given in refs
38 and 51. This is also sometimes referred to as the ZE.

■ APPENDIX E: ADIABATIC REPRESENTATIONS OF
MS-LT-QFPE AND MS-LT-QSE

In this appendix, we present the adiabatic representations of
MS-LT-QFPE (eq 11) and MS-LT-QSE (eq 17).

Figure 9. Symmetrized correlation functions, C(ω), calculated with
the QSE, QSE′, and LT-QSE for the (a) critically damped and (b)
overdamped cases at low temperature, βℏω0 = 7.47. The solid and
dashed curves represent the analytically derived solution, eq 23, and
its overdamped limit, eq 28, respectively. The red and blue curves
were obtained with classical and quantum treatments of coth(βℏω/
2). The values are normalized with respect to the maximum of eq 23.
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We can rewrite eqs 36 and 37 in terms of the Moyal star
product, eq 13, as

= ★ ★†W Z W Zp q t q p q t q( , , ) ( ) ( , , ) ( )a d
(77)

Inserting this into eq 11, we obtain the MS-QFP-LT in the
adiabatic representation as
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where

≡ + +p q p q p q p q( , ) ( , ) ( , ) ( , )qm
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is the quantum Liouvillian for the MSWDF in the adiabatic
representation, and we have
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Here, we have introduced the commutation and anticommu-
tation hyper operators with the Moyal product, O×/°(★)f ≡ O★f
∓ f★O. The non-Markovian noise terms are Φ̂a(p, q) ≡ Φ̂d(p,
q) and Θ̂k

a(p, q) ≡ Θ̂k
d(p,q), and the Markovian noise term, eq

15c, becomes
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In the Smoluchowski limit, we introduce the adiabatic
representation of fd(q)

= †f Z f Zq t q q t q( , ) ( ) ( , ) ( )a d
(81)

Here, we have omitted the higher-order contributions from the
Moyal product in eq 77 because such contributions from the
quantum coherence, z−z′, have been removed in the
Smoluchowski limit. Then the MS-LT-QSE (eq 17) becomes
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where the operators appearing in eq 17 are transformed as

≡
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Here, we have introduced the force acting on the adiabatic
states
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and its derivative
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