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Abstract

This is supplemental information concerning the paper “Phase-Space Wavepacket
Dynamics of Internal Conversion via Conical Intersection: Multi-State Quan-
tum Fokker-Planck Equation Approach”.

S1. Quantum Liouvillian in the Wigner-Moyal Expression Form

S1.1. The Liouville Von-Neumann equation

We consider a system described by the Hamiltonian, Eq. (1). By adapting
the canonical quantization of dimensionless coordinates

p̂s →
1

i

∂

∂zs
and qs → zs, (S1)

we have the Schrödinger equation for the wavefunction Ψj(~z) expressed as

d

dt
Ψj(~z, t) = i

∑
s

ωs
2

∂2

∂z2s
Ψj(~z, t)

− i

~
∑
k

U jk(~z)Ψk(~z, t).

(S2)
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Accordingly, the Liouville von-Neumann equation for the density matrix ρjk(~z, ~z ′) =
Ψj(~z)Ψk∗(~z ′) is written as

d

dt
ρjk(~z, ~z ′, t) = i

∑
s

ωs
2

(
∂2

∂z2s
− ∂2

∂z′2s

)
ρjk(~z, ~z ′, t)

− i

~
∑
l

[
U jl(~z)ρlk(~z, ~z ′, t)

− ρjl(~z, ~z ′, t)U lk(~z ′)
]
.

(S3)

In the vector and matrix representations {Ψ(~z)}j ≡ Ψj(~z) and {ρ(~z, ~z ′)}jk ≡ ρjk(~z, ~z ′),
Eqs. (S2) and (S3) are expressed as

d

dt
Ψ(~z, t) = i

∑
s

ωs
2

∂2

∂z2s
Ψ(~z, t)− i

~
U(~z)Ψ(~z, t) (S4)

and

d

dt
ρ(~z, ~z ′, t) = −L(~z, ~z ′)ρ(~z, ~z ′), (S5a)

where

L(~z, ~z ′)ρ(~z, ~z ′) ≡ −i
∑
s

ωs
2

(
∂2

∂z2s
− ∂2

∂z′2s

)
ρ(~z, ~z ′)

+
i

~

[
U(~z)ρ(~z, ~z ′)− ρ(~z, ~z ′)U(~z ′)

] (S5b)

is the quantum Liouvillian.

S1.2. Phase space representation

For the density matrix ρ(~z, ~z ′), the Wigner distribution is defined as

W (~p, ~q, t) ≡ 1

(2π)N

∫
d~r e−i~p·~rρ

(
~q+

~r

2
, ~q−~r

2

)
, (S6a)

whereas the inverse transformation is defined as

ρ(~z, ~z ′) =

∫
d~p e+i~p·(~z−~z

′)W

(
~p,
~z+~z ′

2
, t

)
. (S6b)

For the mean coordinates ~q ≡ (~z+~z ′)/2 and the differences ~r ≡ ~z−~z ′, the chain
rules are expressed as

∂

∂zs
=

1

2

∂

∂qs
+

∂

∂rs
and

∂

∂z′s
=

1

2

∂

∂qs
− ∂

∂rs
. (S7)
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Then Eq. (S5a) can be rewritten as

d

dt
ρ

(
~q+

~r

2
, ~q−~r

2
, t

)
= i
∑
s

ωs
∂2

∂qs∂rs
ρ

(
~q+

~r

2
, ~q−~r

2
, t

)
− i

~

[
U

(
~q+

~r

2

)
ρ

(
~q+

~r

2
, ~q−~r

2
, t

)
− ρ

(
~q+

~r

2
, ~q−~r

2
, t

)
U

(
~q−~r

2

)]
.

(S8)

The time evolution of W (~p, ~q) is now described by

d

dt
W (~p, ~q, t)

= −
∑
s

ωsps
∂

∂qs
W (~p, ~q, t)

− i

~

∫
d~p′
[

1

(2π)N

∫
d~r e−i(~p−~p

′)·~rU

(
~q+

~r

2

)
W (~p′, ~q, t)

−W (~p′, ~q, t)

∫
d~r

1

(2π)N
e−i(~p−~p

′)·~rU

(
~q−~r

2

)]
.

(S9)

The Fourier Expression

We introduce the Fourier transformed expression for U(~q) defined as

Uw(~p, ~q) ≡ 1

(2π)N

∫
d~r e−i~p·~rU

(
~q+

~r

2

)
(S10)

and the convolution operator, ∗, expressed as

W (~p, ~q) ∗ g (~p ′, ~q) ≡
∫
d~p ′W (~p−~p ′, ~q)g (~p ′, ~q) . (S11)

The Liouville equation, Eq. (S9) can be rewritten as

d

dt
W (~p, ~q, t) = −LW (~p, ~q)W (~p, ~q), (S12)

where the quantum Liouvillian is expressed as

LW (~p, ~q)W (~p, ~q) =
∑
s

ωsps
∂

∂qs
W (~p, ~q, t)

+
i

~

[
Uw(~p, ~q) ∗W (~p, ~q, t)

−W (~p, ~q, t) ∗Uw(~p, ~q)†
]
.

(S13)
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The Moyal Expression

The second and third terms of Eq. (S9) are expressed in the Taylor expansion
form as ∫

d~p ′
1

(2π)N

∫
d~r e−i(~p−~p

′)·~rU

(
~q+

~r

2

)
W (~p ′, ~q)

=

∫
d~p ′

1

(2π)N

∫
d~r e−i(~p−~p

′)·~r

×

[∑
m

1

m!

(
+
∑
s

rs
2

∂

∂qs

)m
U (~q)

]
W (~p ′, ~q)

=

∫
d~p ′U (~q)

[∑
m

1

m!

(
+
∑
s

i

2←
∂qs→∂ps

)m]

× 1

(2π)N

∫
d~re−i(~p−~p

′)·~rW (~p′, ~q)

= U (~q) e+
∑

s i←∂qs→∂ps/2W (~p, ~q)

= U (~q) ?W (~p, ~q)

(S14)

and ∫
d~p ′W (~p ′, ~q)

∫
d~r

1

(2π)N
e−i(~p−~p

′)·~rU

(
~q−~r

2

)
= W (~p, ~q) e−

∑
s i→∂qs←∂ps/2U (~q)

= W (~p, ~q) ?U (~q) ,

(S15)

respectively, we have introduced the differentiation operations form the left and
right, which are defined by

→∂xf(x) = f(x)←∂x ≡
∂f(x)

∂x
, (S16)

and ? is the Moyal product

? ≡ exp

[
+
∑
s

i(←∂qs→∂ps −→∂qs←∂ps)/2

]
. (S17)

The equation of motion, Eq. (S9), is expressed as

d

dt
W (~p, ~q, t) = −LW (~p, ~q)W (~p, ~q) (S18)

where the quantum Liouvillian (S13) is defined as

LW (~p, ~q)W (~p, ~q) =
∑
s

ωsps
∂

∂qs
W (~p, ~q)

+
i

~

[
U (~q) ?W (~p, ~q)

−W (~p, ~q) ?U (~q)

]
.

(S19)
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This is the Wigner-Moyal expression of the Liouvillian, Eq. (7b).

S2. Adiabatic Representation of the Phase Space Distribution

By using the conversion matrix Eq. (17), the wavefunction Ψ(~z) and the
density matrix ρ(~z, ~z ′) in the electronic adiabatic basis are expressed as

Ψa(~z) ≡ Z (~z)
†
Ψ(~z) (S20a)

and

ρa(~z, ~z ′) ≡ Z (~z)
†
ρ(~z, ~z ′)Z (~z ′) . (S20b)

In the adiabatic representation, W (~p, ~q) is expressed as

Wa(~p, ~q, t) ≡ 1

(2π)N

∫
d~r e−i~p·~rρa

(
~q+

~r

2
, ~q−~r

2

)
(S21a)

=
1

(2π)N

∫
d~p ′

∫
d~r e−i(~p−~p

′)·~r

×Z
(
~q+

~r

2

)†
W (~p ′, ~q, t)Z

(
~q−~r

2

)
.

(S21b)

The inverse transform is expressed as

W (~p, ~q, t) =
1

(2π)N

∫
d~p ′

∫
d~r e−i(~p−~p

′)·~r

×Z
(
~q+

~r

2

)
Wa (~p ′, ~q, t)Z

(
~q−~r

2

)†
.

(S21c)
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Therefore, Eqs. (S21b) and (S21c) are expressed in the Taylor expansion form
of Z(~q) as

Wa(~p, ~q)

=
1

(2π)N

∫
dp′
∫
dre−i(p−p

′)rZ
(
q +

r

2

)†
W (~p ′, ~q)Z

(
q − r

2

)
=

∫
dp′

[∑
m

1

m!

(∑
s

i

2

∂

∂ps

∂

∂qs

)m
Z (~q)

†

]

×W (~p ′, ~q)

∑
m′

1

m′!

(
−
∑
s

i

2

∂

∂ps

∂

∂qs

)m′
Z (~q)


× δ(~p− ~p ′)

= Z (~q)
†

exp

(∑
s

i

2→
∂ps←∂qs

)

×W (~p ′, ~q) exp

(
−
∑
s

i

2←
∂ps→∂qs

)
Z (~q)

= Z (~q)
†
?W (~p, ~q) ?Z (~q) ,

(S22)

and

W (~p, ~q) = Z (~q) ?Wa(~p, ~q) ?Z (~q)
†
, (S23)

respectively.

S3. The Brinkman Hierarchy Expression for The Multi-State Quan-
tum Fokker-Planck Equation

In this section, we present a derivation of the Brinkman hierarchy expression
for the MSQFPE (15).

S3.1. The creation and annihilation operators

In order to simplify the calculations, we introduce the creation and annihi-

lation operators for Hermite function ψ
(s)
ns (ps) defined as

a±s =
1√
2

(
1

αs
ps ∓ αs

∂

∂ps

)
. (S24)

For ψ
(s)
ns (ps), they operate as{

a+s ψ
(s)
ns

(ps) =
√
n+1ψ

(s)
ns+1(ps)

a−s ψ
(s)
ns

(ps) =
√
n ψ

(s)
ns−1(ps),

(S25)
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while, for ψ~n(~p), as {
a+s ψ~n(~p) =

√
ns+1ψ~n+~es(~p)

a−s ψ~n(~p) =
√
ns ψ~n−~es(~p).

(S26)

The operators ps and ∂/∂ps are expressed as

ps =
αs√

2
(a+s + a−s ) (S27a)

and

∂

∂ps
= − 1√

2αs
(a+s − a−s ). (S27b)

For the Brinkman hierarchy expression, we introduce the transformation
from a superoperatorOW (~p, ~q) that acts onW (~p, ~q) to the superoperatorOc(~n, ~q)
on c~n(~q) as

Oc(~n, ~q)c~n(~q)

=

∫
d~pψ~n(~p)ψ~0(~p)

−1
eεβU0(~q)/2

×

(
OW (~p, ~q)

{∑
~n′

e−εβU0(~q)/2c~n ′(~q)e
−εβU0(~q)/2

× ψ~0(~p)ψ~n ′(~p)

})
eεβU0(~q)/2.

(S28)

We also employ the following relations

psW (~p, ~q)

→
∫
d~pψ~n(~p)ψ(~0, ~p)

−1

× ps
∑
~n ′

c~n ′(~q)ψ(~0, ~p)ψ~n ′(~p)

=
∑
~n ′

c~n ′(~q)

∫
d~pψ~n(~p)

αs√
2

(a+s + a−s )ψ~n ′(~p)

=
∑
~n ′

c~n ′(~q)

∫
d~p

[
αs√

2
(a−s + a+s )ψ~n(~p)

]
ψ~n ′(~p)

=
αs√

2
(b−s + b+s )c~n(~q)

(S29a)
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and

∂

∂ps
W (~p, ~q)

→
∫
d~pψ~n(~p)ψ(~0, ~p)−1

× ∂

∂ps

∑
~n ′

c~n ′(~q)ψ(~0, ~p)ψ~n ′(~p)

= −
∑
~n ′

c~n ′(~q)

∫
d~pψ~n(~p)

√
2

αs
a+s ψ~n ′(~p)

= −
∑
~n ′

c~n ′(~q)

∫
d~p

[√
2

αs
a−s ψ~n(~p)

]
ψ~n ′(~p)

= −
√

2

αs
b−s c~n(~q),

(S29b)

where we have formally introduced the creation and annihilation operators for
c~n(~q) as {

b+s c~n(~q) =c~n(~q)b−s =
√
ns+1c~n+~es(~q)

b−s c~n(~q) =c~n(~q)b+s =
√
ns c~n−~es(~q).

(S30)

Thus we can perform the transformation (S28) by merely replacing as

ps →
αs√

2
(b−s + b+s ), (S31a)

→∂ps → −
√

2

αs
b−s , (S31b)

and

←∂ps → −
√

2

αs
b+s , (S31c)

respectively. Note that the order of the operators a+s and a−s are inversed in
Eq. (S29).

All of the terms in Eq. (7b) and the last term of Eq. (15) are then transformed
as follows,
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The first term of Eq. (7b):

∑
s

ωsps
∂

∂qs
W (~p, ~q, t)

→ eεβU0(~q)/2

[∑
s

ωsαs√
2

(b−s + b+s )

× ∂

∂qs
e−εβU0(~q)/2c~n(~q)e−εβU0(~q)/2

]
eεβU0(~q)/2

=
∑
s

(b−s + b+s )

{
ωsαs√

2

∂c~n(~q)

∂qs

− ε√
2αs

[
∂U0(~q)

∂qs
c~n(~q) + c~n(~q)

∂U0(~q)

∂qs

]}
≡ Ab(~b+, ~q)c~n(~q) +Ab(~b−, ~q)c~n(~q)

(S32)

The second term of Eq. (7b):

U (~q) ?W (~p, ~q)

= U (~q) e+
∑

s i←∂qs→∂ps/2W (~p, ~q)

→ eεβU0(~q)/2

[
U (~q) e−

∑
s i←∂qs

√
2b−s /2αs

× e−εβU0(~q)/2c~n(~q)e−εβU0(~q)/2

]
eεβU0(~q)/2

= e+εβU0(~q)/2

[
U (~q) e−

∑
s i←∂qsb

−
s /
√
2αs

]
e−εβU0(~q)/2c~n(~q)

≡ B+b (~b−, ~q)c~n(~q)

(S33)

The third term of Eq. (7b):

W (~p, ~q) ?U (~q)

= W (~p, ~q) e−
∑

s i→∂qs←∂ps/2U (~q)

→ eεβU0(~q)/2

[
e−εβU0(~q)/2c~n(~q)e−εβU0(~q)/2

× e
∑

s i→∂qs
√
2b+s /2αsU (~q)

]
eεβU0(~q)/2

= c~n(~q)e−εβU0(~q)/2

[
e−

∑
s i→∂qsb

+
s /
√
2αsU (~q)

]
e+εβU0(~q)/2

≡ B−b (~b+, ~q)c~n(~q)

(S34)
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The last term of Eq. (15):

ζs
∂

∂ps

(
ps +

1

βωs

∂

∂ps

)
W (~p, ~q, t)

→

(
−ζs

(
αs√

2
(b−s + b+s )− 1

βωs

√
2

αs
b−s

) √
2

αs
b−s c~n(~q)

)
= −ζsb+s b−s c~n(~q)

(S35)

Note that the differential operators←∂qs and→∂qs , in Eqs. (S33) and (S34) act
on the square brackets [. . . ]. Hence, the MSQFPE for the coefficients c~n(~q) is
expressed as

d

dt
c~n(~q, t) = −Ab(~b+, ~q)c~n(~q, t)−Ab(~b−, ~q)c~n(~q, t)

− i

~

[
B+b (~b−, ~q)c~n(~q, t)− B−b (~b+, ~q)c~n(~q, t)

]
−
∑
s

ζsb
+
s b
−
s c~n(~q)

(S36)

S3.2. The multi-index notation

Hereafter, we employ the multi-index notation Table 1. Using the multino-
mial expansion (∑

s

xs

)M
=

∑
m0+m1+···=M

M !

m0!m1! . . .

∏
s

xms
s

=
∑
|~m|=M

|~m|!
~m!

~x ~m,

(S37a)

We can expand the exponential function as

e
∑

s xs =
∑
M

1

M !

(∑
s

xs

)M
=
∑
M

1

M !

∑
|~m|=M

|~m|!
~m!

~x ~m

=
∑
~m≥~0

1

~m!
~x ~m.

(S37b)
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By using Eq. (S37b), Eqs. (S33) and (S34) are evaluated as

B+b (~b−, ~q)c~n(~q)

= eεβU0(~q)/2

[
U (~q)

∑
0≤~m

1

~m!

∏
s

(
− i√

2αs
←∂qsb

−
s

)ms
]

× e−εβU0(~q)/2c~n(~q)

=
∑

~0≤~m≤~n

√
~n!

(~n−~m)!

(−i/
√

2)|~m|

~α ~m ~m!

× eεβU0(~q)/2
∂|~m|U (~q)

∂~q ~m
e−εβU0(~q)/2c~n−~m(~q)

=
∑

~0≤~m≤~n

√
~n!

(~n−~m)!
(−i)|~m|B~m(~q)c~n−~m(~q)

(S38)

and

B−b (~b+, ~q)c~n(~q)

= c~n(~q)e−εβU0(~q)/2

×
[∑
0≤~m

1

~m!

∏
s

(
+

i√
2αs

→∂qsb
+
s

)
U (~q)

]
eεβU0(~q)/2

=

~n∑
0≤~m≤~n

√
~n!

(~n− ~m)!

(+i/
√

2)|~m|

~α ~m ~m!

× c~n−~m(~q)e−εβU0(~q)/2
∂|~m|U (~q)

∂~q ~m
eεβU0(~q)/2

=
∑

~0≤~m≤~n

√
~n!

(~n− ~m)!
c~n−~m(~q)(+i)|~m|B~m(~q)†,

(S39)

where

B~m(~q) ≡ 1
√

2
|~m|
~α ~m ~m !

e+εβU0(~q)/2
∂|~m|U (~q)

∂~q ~m
e−εβU0(~q)/2. (S40)

Here,

b−ms
s c~n(~q) = c~n(~q)b+ms

s

=


√

ns!

(ns−ms)!
c~n−ms~es(~q), if ms ≤ ns

0. otherwise

(S41)
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Therefore, Eq. (S36) is written as

d

dt
c~n(~q, t) = −

∑
s

As(~q)
[√

ns+1c(~n+~es, ~q, t)

+
√
nsc(~n−~es, ~q, t)

]
−

∑
0≤~m≤~n

B~m(~q)

√
~n!

(~n−~m)!
c~n−~m(~q, t)

−
∑
s

ζsnsc~n(~q, t),

(S42)

where

As(~q)c~n(~q) ≡ αsωs√
2

∂c~n(~q)

∂qs

− 1

~
[As(~q)c~n(~q) + c~n(~q)As(~q)]

(S43a)

and

B~m(~q)c~n(~q) ≡ i

~

[
(−i)|~m|B~m(~q)c~n(~q)

− c~n(~q)(+i)|~m|B~m(~q)†
] (S43b)

and we introduce the auxiliary matrices

As(~q) ≡
ε√
2αs

∂U0(~q)

∂qs
. (S44)

S4. Adiabatic transformation matrix for a two-state system

In this section, we introduce the transformation matrix, Eq. (32), that di-
agonalize the potential matrix of a two-state system. The potential matrix is
expressed as

U(~q) =

(
U00(~q) U01(~q)
U10(~q) U11(~q)

)
. (S45)

Then, Eq. (18) is expressed as(
Z0g∗(~q) Z1g∗(~q)
Z0e∗(~q) Z1e∗(~q)

)(
U00(~q) U01(~q)
U10(~q) U11(~q)

)(
Z0g(~q) Z0e(~q)
Z1g(~q) Z1e(~q)

)
=

(
Ugga (~q) Ugea (~q)
Uega (~q) Ueea (~q)

)
, (S46)
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where

Ugga (~q) = Z0g∗(~q)[U00(~q)Z0g(~q) + U01(~q)Z1g(~q)]

+ Z1g∗(~q)[U10(~q)Z0g(~q) + U11(~q)Z1g(~q)],
(S47a)

Ugea (~q) = Z0g∗(~q)[U00(~q)Z0e(~q) + U01(~q)Z1e(~q)]

+ Z1g∗(~q)[U10(~q)Z0e(~q) + U11(~q)Z1e(~q)],
(S47b)

Uega (~q) = Z0e∗(~q)[U00(~q)Z0g(~q) + U01(~q)Z1g(~q)]

+ Z1e∗(~q)[U10(~q)Z0g(~q) + U11(~q)Z1g(~q)],
(S47c)

and

Ueea (~q) = Z0e∗(~q)[U00(~q)Z0e(~q) + U01(~q)Z1e(~q)]

+ Z1e∗(~q)[U10(~q)Z0e(~q) + U11(~q)Z1e(~q)].
(S47d)

By inserting Eq. (32), these functions are evaluated as

Ugga (~q) =
U00(~q)χ(~q)2 + U11(~q)σ(~q)2 − (U01(~q) + U10(~q))χ(~q)σ(~q)

χ(~q)2 + σ(~q)2
, (S48a)

Ugea (~q) =
(U00(~q)− U11(~q))σ(~q)χ(~q) + U01(~q)χ(~q)2 − U10(~q)σ(~q)2

χ(~q)2 + σ(~q)2
, (S48b)

Uega (~q) =
(U00(~q) + U11(~q))χ(~q)σ(~q)− U01(~q)σ(~q)2 + U10(~q)χ(~q)2

χ(~q)2 + σ(~q)2
, (S48c)

and

Ueea (~q) =
U00(~q)σ(~q)2 + U11(~q)χ(~q)2 + (U01(~q) + U10(~q))χ(~q)σ(~q)

χ(~q)2 + σ(~q)2
. (S48d)

Using the relations

U10(~q) = U01(~q) = σ(~q) (S49)

and

χ(~q)2 − σ(~q)2 = [U11(~q)− U00(~q)]χ(~q), (S50)

we obtain

Ugga (~q) = U11(~q)− χ(~q), (S51a)

Ugea (~q) = 0, (S51b)

Uega (~q) = 0, (S51c)

and

Ueea (~q) = U00(~q) + χ(~q). (S51d)

Hence, the potential matrix is diagonalized and the adiabatic BO PES of the
ground and excited states are expressed as Eqs. (30a) and (30b), respectively.
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S5. Formulas for the Coefficients of the Brinkman Hierarchy

S5.1. Adiabatic transformation

We introduce the Brinkman hierarchy in terms of ca,~n(~q) for adiabatic dis-
tribution Wa(~p, ~q) as

ca,~n(~q) ≡
∫
d~pψ~n(~p)ψ~0(~p)

−1

× eεβU0(~q)/2Wa(~p, ~q)eεβU0(~q)/2.

(S52)

Using Eq. (S30), Eq. (S22), we have

ca,~n(~q) = eεβU0(~q)/2

[
Z (~q)

†
e−

∑
s i←∂qsb

−
s /
√
2αs

]
e−εβU0(~q)/2

× c~n(~q)

× e−εβU0(~q)/2

[
e+

∑
s i→∂qsb

+
s /
√
2αsZ (~q)

]
eεβU0(~q)/2

(S53)

In the multi-index notation presented in Table 1, this is written as

ca,~n(~q)

=

~m+~m′≤~n∑
~m≥0,~m′≥0

eεβU0(~q)/2

[
(−i/

√
2)|~m|

~m!~α ~m

∂|~m|Z (~q)
†

∂~q ~m

]
e−εβU0(~q)/2

×

√
~n!

(~n−~m−~m′)!
c~n−~m−~m′(~q)

× e−εβU0(~q)/2

[
(+i/

√
2)|~m

′|

~m′!~α ~m′
∂|~m

′|Z (~q)

∂~q ~m′

]
eεβU0(~q)/2

=

~m+~m′≤~n∑
~m≥0,~m′≥0

√
~n!

(~n−~m−~m′)!
(−i)|~m|(+i)|~m

′|

×Z−~m(~q)†c~n−~m−~m′(~q)Z
−
~m′(~q),

(S54)

where

Z±~m(~q) ≡ 1
√

2
|~m|
~α ~m ~m!

e±εβU0(~q)/2
∂|~m|Z (~q)

∂~q ~m
e∓εβU0(~q)/2. (S55)

The inverse transformation can be expressed as

c~n(~q) =

~m+~m≤~n∑
~m≥0,~m′≥0

√
~n!

(~n−~m−~m′)!
(−i)|~m|(+i)|~m

′|

×Z+
~m(~q)ca,~n−~m−~m′(~q)Z

+
~m′(~q)

†

(S56)
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Then the relation among Wa(~p, ~q), Fa(~q) and c~n(~q) are given by

Wa(~p, ~q)

= e−εβU0(~q)/2
∑
~n

~m+~m′≤~n∑
~m≥0,~m′≥0

√
~n!

(~n−~m−~m′)!
(−i)|~m|(+i)|~m

′|

×Z−~m(~q)†c~n−~m−~m′(~q)Z
−
~m′(~q)e

−εβU0(~q)/2

× ψ(~0, ~p)ψ(~n, ~p),

(S57)

Fa(~q)

= Z†(~q)e−εβU0(~q)/2c(~0, ~q)e−εβU0(~q)/2Z(~q),
(S58)

and

c~n(~q)

=

~m+~m≤~n∑
~m≥0,~m′≥0

√
~n!

(~n−~m−~m′)!
(−i)|~m|(+i)|~m

′|

×Z+
~m(~q)

∫
d~pψ~n−~m−~m ′(~p)ψ~0(~p)

−1

× eεβU0(~q)/2Wa(~p, ~q)eεβU0(~q)/2Z+
~m′(~q)

†.

(S59)

S5.2. Temporary initial conditions

Using ψ0
(s)(ps) = exp(−βωsp2s/4)/

√
αs
√
π, the temporary initial distribu-

tion can be written as

W a
ab(~p, ~q,−teq) = δagδbgF

a
g (~q,−teq)

× ψ(t)
0 (pt)

2
ψ
(c)
0 (pc)

2
,

(S60)

where δab is the Kronecker delta and F a
g (~q,−teq) is the initial distribution of

the coordinate space set as

F a
g (~q,−teq) =

1

Z~q
exp

[
−βUa

g (~q)
]
. (S61)

The constants Z~q are the coordinate part of the partial function Z. Then the
coefficients ~c~n(~q, 0) describing Eq. (S60) are calculated using Eqs. (22b) and
(21b), and are evaluated as

c~n(~q,−teq)

=
∑

~m,~m′:~m+~m=~n

√
~n!(−i)|~m|(+i)|~m

′|

×Z+
~m(~q)eεβU0(~q)/2Fa(~q,−teq)eεβU0(~q)/2Z+

~m′(~q)
†.

(S62)
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S5.3. The expectation value of kinetic energy
We define the expectation value of the kinetic energy of the sth mode as

EK
s (t) ≡

∫
d~p

∫
d~q

~ωsp2s
2

∑
j

Wjj(~p, ~q, t). (S63)

This is expressed by using ~c~n(~q, t) as

EK
s (t) =

∫
d~p

∫
d~q
∑
j

∑
~n≥~0

e−εβUjj(~q)cjj,~n(~q, t)

× ~ωs
2
ψ~0(~p)

α2
s

2
(b+s + b−s )2ψ~n(~p)

=
1

2β

∫
d~q
∑
j

e−εβUjj(~q)[cjj(~0, ~q, t) +
√

2cjj(2~es, ~q, t)]. (S64)

Under the temporary initial distribution,

EK
s (0) =

1

2β
=
kBT

2
. (S65)

S6. Finite Difference and Artificial Viscosity

S6.1. Upwind difference and artificial viscosity for the phase space
In a phase space representation, the derivative ∂W (~p, ~q)/∂~qs is often approx-

imated by the first-order difference expression: The first-order upwind difference
with the (2N−1)th-order accuracy is expressed as [1–5]

∆W (~p, ~q)

∆qs
=

δ
(1)
s;[−N+1,N ]W (~p, ~q), if ps < 0

δ
(1)
s;[−N,N−1]W (~p, ~q). otherwise

(S66)

Here we introduce the finite difference symbol

δ
(L)
s;[a,b]W (~p, ~q) ≡

b∑
m=a

δ
(L)
[a,b],mW (~p, ~q +m∆qs~es), (S67)

where ∆qs is the mesh width in the qs direction and δ
(L)
[a,b],m represents the coeffi-

cients of the Lth order differences at m = 0 for the mth point that are evaluated
from the mesh points in the qs direction expressed as{a∆qs, (a+1)∆qs, . . . , (b−1)∆qs, b∆qs}
[6]. Equation (S66) can be rewritten using the sign function sgn(x) as

∆W (~p, ~q)

∆qs
=
[
δ
(1)
s;[−N,N ] + sgn(ps)δ

(visc)
s;[−N,N ]

]
W (~p, ~q), (S68)

where δ
(visc)
s;[−N,N ] is defined as

δ
(visc)
[−N,N ],m ≡ δ

(2N)
[−N,N ],m∆q(2N)

s × δ(1)[−N,N ],−N (S69)

and Eq. (S67). This term is O(∆q
(2N)
s ) and gives Eq. (S66) the artificial viscos-

ity. Table S1 lists these coefficients for N = 1—5.
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Table S1: The coefficients of the finite difference calculations at m = 0 point for Eq. (S67).

N m = −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5

N
=

1
(1

st
) δ

(1)
[0,1],m∆qs −1 +1

δ
(1)
[−1,0],m∆qs −1 +1

δ
(1)
[−1,1],m∆qs −1/2 +0 +1/2

δ
(visc)
[−1,1],m∆qs −1/2 +1 −1/2

N
=

2
(3

rd
) δ

(1)
[−1,2],m∆qs −1/3 −1/2 +1 −1/6

δ
(1)
[−2,1],m∆qs +1/6 −1 +1/2 +1/3

δ
(1)
[−2,2],m∆qs +1/12 −2/3 +0 +2/3 −1/12

δ
(visc)
[−2,2],m∆qs +1/12 −1/3 +1/2 −1/3 +1/12

N
=

3
(5

th
) δ

(1)
[−2,3],m∆qs +1/20 −1/2 −1/3 +1 −1/4 +1/30

δ
(1)
[−3,2],m∆qs −1/30 +1/4 −1 +1/3 +1/2 −1/20

δ
(1)
[−3,3],m∆qs −1/60 +3/20 −3/4 +0 +3/4 −3/20 +1/60

δ
(visc)
[−3,3],m∆qs −1/60 +1/10 −1/4 +1/3 −1/4 +1/10 −1/60

N
=

4
(7

th
) δ

(1)
[−3,4],m∆qs −1/105 +1/10 −3/5 −1/4 +1 −3/10 +1/15 −1/140

δ
(1)
[−4,3],m∆qs +1/140 −1/15 +3/10 −1 +1/4 +3/5 −1/10 +1/105

δ
(1)
[−4,4],m∆qs +1/280 −4/105 +1/5 −4/5 +0 +4/5 −1/5 +4/105 −1/280

δ
(visc)
[−4,4],m∆qs +1/280 −1/35 +1/10 −1/5 +1/4 −1/5 +1/10 −1/35 +1/280

N
=

5
(9

th
) δ

(1)
[−4,5],m∆qs +1/504 −1/42 +1/7 −2/3 −1/5 +1 −1/3 +2/21 −1/56 +1/630

δ
(1)
[−5,4],m∆qs −1/630 +1/56 −2/21 +1/3 −1 +1/5 +2/3 −1/7 +1/42 −1/504

δ
(1)
[−5,5],m∆qs −1/1260 +5/504 −5/84 +5/21 −5/6 +0 +5/6 −5/21 +5/84 −5/504 +1/1260

δ
(visc)
[−5,5],m∆qs −1/1260 +1/126 −1/28 +2/21 −1/6 +1/5 −1/6 +2/21 −1/28 +1/126 −1/1260
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Figure S1: The overlap matrix with the sign function (S71) for the case αs = 1.

S6.2. Artificial viscosity for the coefficients of the Hermite expansion

The upwind difference (S68) is transformed in the Hermite expansion form
as

∆c~n(~q)

∆qs
= δ

(1)
s;[−N,N ]c~n(~q)

+ δ
(visc)
s;[−N,N ]

∑
n′s

Sns,n′s
c~n+(n′s−ns)~e(~q),

(S70)

where we introduce the overlap matrix with the sign function as

Sns,n′s
≡
∫
dps ψns

(ps)sgn(ps)ψn′s(ps). (S71)

Figure S1 plots Sns,n′s
for the case αs = 1. Because sgn(ps) is an odd function,

Sns,n′s
has non-zero value only in the case that ns + n′s is odd.

Although we can add the artificial viscosity to Eq. (25) using Eq. (S70),
the summation of n′s in Eq. (S70) increases the numerical cost. To improve
the efficiency, we used the fact that the two points n′s = ns ± 1 have larger
contributions to Eq. (S70) than other points, and found either this two points
make our calculations sufficiently stable. Therefore, we employed the finite
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difference form of Eq. (25) as

d

dt
c~n (~q, t)

= −
∑
s

{√
ns+1

αsωs√
2

[
δ
(1)
s;[−N,N ]c~n+~es(~q) + δ

(visc)
s;[−N,N ]c~n(~q)

]
−
√
ns+1

1

~

[
As(~q)c~n+~es(~q) + c~n+~es(~q)As(~q)

]
+
√
ns
αsωs√

2

[
δ
(1)
s;[−N,N ]c~n−~es(~q) + δ

(visc)
s;[−N,N ]c~n(~q)

]
−
√
ns

1

~

[
As(~q)c~n−~es(~q) + c~n−~es(~q)As(~q)

]}
−
∑

~0≤~m≤~n

B~m(~q)

√
~n !

(~n−~m)!
c~n−~m(~q)

−
∑
s

ζsnsc~n(~q, t).

(S72)

Here, we employed an approximation, Sns,ns−1 ∼ Sns,ns+1 ∼ 1, at the order in

O(∆q
(2N)
s ), because accurate values of them are not important to describe the

time evolution.
Figure S2 shows that relations between the accuracy of the the finite differ-

ence expressions and time evolution of the excited wavepacket using Eq. (S72)
with and without the artificial viscosity terms. The model and parameters of
the calculations are the same as Sec. 4.1 and the order of the truncated Moyal
product and the equilibration time are M = 3 and teq = 2, 000 fs, respectively.
Note that the finite difference expressions given in Table S1 are the (2N)th-
order accuracy for N without the artificial viscosity terms. The calculation
with second-order accuracy with mesh size Nt = 128 exhibit unphysical oscil-
lating distribution (Fig. S2(a-i)). The more accurate differencial calculations
we employ, the worse ossillations appear (Figs. S2(a-ii) and S2(a-iii)). In the
case that we would like to improve the stability of the calculations without the
artificial viscosity terms, we need to employ very fine grid (Fig. S2(b)).

Contrastingly, the calculations with the artificial viscosity terms exhibit good
stability with the same mesh size Nt = 128 (Figs. S2(c-ii) and S2(c-iii)). Fig-
ure S2(c-i) indicates the initial distribution different from other calculations.
This is because the equilibration is also not accurate because of the finite dif-
ference expression with the first-order accuracy.

Figure S3 shows that the accuracy of the kineticy energy of the tuning mode
Kt(t). The calculations with the artificial viscosity terms (Fig. S3(c)) exhibit
almost the same as the calculation with fine mesh (Fig. S3(b)). Note that,
although the calculations without the artificial viscosity terms display divergent
behavior in their distributions (Fig. S2(a)), the kinetic energy calculations are
correct (Fig. S3(a)), because the oscillating behavior is averaged out for the
caluculations of the kinetic energy. Therefore, to enhance the stability of the
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Figure S2: (Continued on the following page.)
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Figure S2: Wavepacket dynamics of the AC0 model for different finite difference expressions.
The solid and dashed curves represent the wavepacket in the adiabatic ground and excited
states, respectively. The colors of the curves represent different time at t. (a) The results
obtained from the finite difference expressions with the (i) second-, (ii) sixth-, and (iii) tenth-
order accuracy without the artificial viscosity terms. The mesh sizes are Nt = 128. (b) The
results obtained from the finite difference expressions with the fourth-order accuracy. The
mesh sizes are (i) Nt = 128, (ii) 256, and (iii) 512, respectively. (c) The results obtained from
the finite difference expressions with the (i) first-, (ii) fifth-, and (iii) ninth-order accuracy
with the artificial viscosity terms.
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Figure S3: (i) The kinetic energy of the tuning mode Kt(t) for the AC0 model are plotted
as a function of time for different finite difference calculations. (a) The calculations per-
formed with the finite difference calculations with different accuracy without the artificial
viscosity terms. The mesh sizes are Nt = 128. (b) The calculations performed with the finite
difference calculations with the fourth-order accuracy. The mesh sizes are changed within
Nt = 128, 256, 384 and 512. (c) The calculations performed with the finite difference calcu-
lations with different accuracy with the artificial viscosity terms. (ii) The relative errors de-

fined as
∣∣∣Kt(t) −K4th-order,Nt=512

t (t)
∣∣∣ / ∣∣∣maxt′

{
K4th-order,Nt=512

t (t′)
}∣∣∣ for the calculations

in Fig. S3(i).
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Figure S4: A snapshot of the wavepacket in the adiabatic excited state F e(~q, t) in the CI0
model with d = 0 at t = 1, 000 fs. The contours of the adiabatic excited BO PES for every
1, 000 cm−1 are expressed as the gray curves on the two-dimensional plate. The mark ×
represents the CI point.

finite difference expression, we have to test not only the averaged values of the
observable but also the distribution function of the system.

Note that, if we employ different parameters, for example weak system-
bath tuning constants or PESs having significantly tilted points, the artificial
viscosity based on rough estimations, Eq. (S72), may not work. In such cases,
we need to use Eq. (S70).

S7. Breakdown of the positivity condition from the high-temperature
approximation

In this paper, we employed the high-temperature approximation coth(β~ω0/2) ∼
2/β~ω0, where ω0 is the effective characteristic frequency of the entire dynamics.
Although the vibrational frequency of the tuning mode is slow (ωt = 100 cm−1),
that of the coupling mode is not slow in comparison with the room temperature
(ωc = 500 cm−1 and 2/β = 417.02 cm−1). Moreover, the electronic resonant
frequency between the adiabatic ground and excited states is fast outside of the
crossing region, and this also affects the effective characteristic frequency ω0.
As a result, slight negative probability distributions appear in the calculations
as presented in Fig. S4. Because these negative values are small, we concluded
that this approximation did not change our results. However, when we employ
different parameters and we consider more sensitive quantities, this approxima-
tion may cause more unphysical behavior. In such cases, we need to avoid the
approximation using the hierarchical techniques. [3, 4, 7, 8]
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