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Abstract

Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a
harmonic bath with colored noise in which the system—bath coupling operator does not necessarily commute with the system Hamilto-
nian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order pertur-
bative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative
case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density
matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While
the equation describes the exact dynamics of the density matrix beyond weak system—bath interactions, it does not have the capability to
calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the
external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order
two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that
can handle quantal system—bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack

of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.
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1. Introduction

Impressive progress in ultrafast spectroscopy has
opened up real-time observation of molecular motion that
has provided important tests for advancing the theoretical
studies of quantum dynamics. Understanding condensed
phase quantum dynamics is pivotal in elucidating diverse
molecular processes such as vibrational relaxation, chemi-
cal reactions, electron or proton transfer, energy transfer
in multichromophore complexes, and so forth. Hence,
much effort is currently being devoted to the development
of approaches for describing the quantum dynamics in
these complex systems.
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The great strides in computer power have enabled us to
perform rigorous quantum dynamics calculations for small
systems [1,2]. For systems with a large number of degrees
of freedom, however, it is still extremely difficult to apply
such calculations [3]. Thus, it is common that only the
important degrees of freedom (the relevant system, or the
system) are treated quantum mechanically, whereas the
others (the bath) are treated classically. Unfortunately,
the boundary between quantum and classical descriptions,
which is set in an ad hoc fashion, may cause severe prob-
lems because the inherent effects of quantum interference
cannot be treated appropriately [4-6].

Other commonly used approaches are based on the
reduced equation of motion. In these approaches, the key
quantity of interest is the reduced density matrix, i.e., the
partial trace of the total density matrix over the bath degrees
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of freedom. In contrast to the mixed quantum-classical
methods, the reduced density matrix approach can describe
the dynamics of the bath quantum mechanically. A consid-
erable amount of research has been devoted to the construc-
tion of the equation of motion [7] e.g., the Nakajima-
Zwanzig identity (the time-convolution quantum master
equation) [8,9] the Shibata-Takahashi-Hashitsume identity
(the time-convolutionless quantum master equation: TCL-
QME) [10,11]. In most formulations, however, it is impossi-
ble to reduce explicit expressions for the equations beyond
the exact formal structures. Hence, some approximations
have to be invoked to make practical calculations possible.
A well-known example is the Redfield equation, which
invokes the perturbative approximation and the Markov
approximation [12]. This equation has been applied to inves-
tigate the dynamics of electron-transfer [13—18] motion
through conical intersections [19,20] photoisomerization
[21,22] and energy transfer in multichromophore complexes
[23,24] under the condition of weak system—bath coupling
for which the second-order perturbative truncation should
be valid. One approach to go beyond the restriction on the
coupling strength is to include higher-order system-bath
interaction terms [25-28]. However, the resultant expres-
sions are quite cumbersome to treat. For the model of a lin-
early coupled harmonic oscillator bath, the path integral
formalism provides a powerful alternative to perturbative
approaches. The effects of the bath on the relevant system
are described by the Feynman—Vernon influence functional
[29] which allows us to handle strong system-bath coupling.
Under the assumption of a white-noise bath (the Markov
assumption), Caldeira and Leggett employed this formalism
to derive a Markovian quantum master equation, which is
sometimes referred as the quantum Fokker—Planck equa-
tion [30]. In order to include colored noise effects (non-Mar-
kovian effects), Tanimura and his coworkers constructed a
set of hierarchically coupled equations of motion [31-36]
by creating a fusion of the Caldeira-Leggett approach and
Kubo’s stochastic theory [37]. These equations employed
the high-temperature approximation, and therefore cannot
be applied to low-temperature systems. Thus, low-tempera-
ture correction terms for the hierarchical formalism were
explored [38] and summarized as the closed hierarchy form
as the quantum Fokker—Planck equation with low-tempera-
ture correction terms (QFP-LTC) [39-41].

In the present paper, we derive a reduced equation of
motion in a nonperturbative manner with help of the influ-
ence functional formalism. Despite strenuous efforts to go
beyond second-order perturbation, we have found that
the present nonperturbative result is identical to the sec-
ond-order perturbative approximation form of the TCL-
QME as long as the bath is harmonic. This is because, in
the nonperturbative case, the terms arise from the higher-
order system-bath interaction that can be incorporated
into the reduced density matrix as the influence operator,
and only the second-order term remains in the equation
of motion. Thus, although the present result has the iden-
tical form as the perturbative one, the restriction of the

weak system-bath coupling can be eliminated. By taking
the Markov limit in the resultant equation, we can obtain
the Redfield equation. Hence, it is now clear that the Red-
field equation actually has a wider scope of application
than previously thought [42]. While this equation describes
the exact dynamics of the density matrix, we found the seri-
ous limitations of this equation with respect to calculating
an observable defined by a multi-time correlation function.
This is because the present equation cannot describe the
memory effects which straddle the operators involved in
the correlation function due to the reduced description of
the system. We demonstrate this point by calculating the
third-order two-dimensional spectra from the present
approach and from the QFP-LTC approach.

This paper is organized as follows. In Section 2, we
derive the exact non-Markovian quantum master equation
equivalent to the second-order TCL-QME by employing
the path integral formalism. In Section 3, we briefly review
the QFP-LTC formalism and discuss the limitation of the
equation of motion derived in Section 2 by calculating
third-order multidimensional spectra. Finally, Section 4 is
devoted to concluding remarks.

2. Formulation

As a starting point, the total system is partitioned into a
relevant system part (S) and the remaining bath degrees of
freedom (B). The total Hamiltonian H o is then separated
into a system part Hs, a bath part /', and the system-bath
interaction Hsg,

ﬁ[tot:HS‘i‘ﬁB‘i‘ﬁSE (2.1)
The corresponding Liouvillian is decomposed as
:E/;[O[ - @S + @B + :??SB. (22)

If necessary, the counter term H. (:?70) can be added to the
system part [43]. We assume that the bath degrees of free-
dom can be treated as an ensemble of harmonic oscillators
as

(2.3)

where x;, p;, and o; are the mass-weighted coordinate, con-
jugate momentum, and frequency of the ith bath oscillator,
respectively. Unlike the real environment, there is no redis-
tribution of energy within the present bath model since the
bath modes are not coupled to each other. Furthermore,
we assume that the bath coordinates are linearly coupled
to the system,

Hgg = Vs E ciXi,
i

where Vg is an arbitrary dimensionless operator of the sys-
tem and ¢; denotes the coupling constant to the ith bath
oscillator. Here, the system—bath coupling operator V5 does
not necessarily commute with the system Hamiltonian.

(2.4)
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Since we are only interested in the dynamics of the rele-
vant system S, we eliminate the bath degrees of freedom
leading to the reduced density matrix, p(¢) = Tre{pw(?)},
i.e., the partial trace of the total density matrix over the
bath degrees of freedom. This contains the information
on the dynamic properties of the system influenced by the
bath. While efforts have been made previously to include
an initial quantum correlation (coherence) between the sys-
tem and bath [26,44] we restrict our discussion to the case
of the factorized initial condition defined by p(to) =
p(to)py', where py! is the equilibrium density matrix of
the bath alone. The effects of the correlation between the
system and bath will be discussed in Section 3 in the con-
text of a nonlinear optical response. To continue, p(¢)
evolves in time as follows:

PO (1) = GV (1:10)p" (10), (2.5)
where the reduced propagator ?(t; fy) is given by
t
G0 (1;1)) = <Texp ( / dsggﬂ;(s)» . (2.6)
fo B

Here, (---)y stands for Trg{---pp'} and the symbol ‘T’
describes the usual chronological time ordering. For later
convenience, we have employed the interaction picture
for the Liouvillian without the system-bath interaction,
Po= Ps+ PLp. The superscript ‘(I)’ indicates an opera-
tor in the interaction picture. Using the path integral for-
malism under the conditions Egs. (2.3) and (2.4), we can
derive an exact (nonperturbative and non-Markovian)
expression for the propagator. For a representation
Q| o)=0] ) (c.g, ¢ is a coordinate operator ¢ or an
annihilation operator &; ¢ is an eigenvalue of the operator
@), the matrix element of the propagator can be expressed
as [29-31,39]

(0, 9"; ZI@ (t:to |(P07(Po7l‘0>>

/ (@o:t0) / (@g:t0)

where S[¢] is the action corresponding to Hs, and e~"1¢/
is the Feynman-Vernon influence functional, which
encompasses the influence of the bath on the system. The
influence phase W[gp, ¢'] is explicitly given by

wv{a{mélwum%@—mnw>

+iCy(s — u)V i (u)],

ei(Slel=Sle')/h e—W[w,w’],

(2.7)

(2.8)

where Cp(7) and Cy(¢) are the real and imaginary parts of
the correlation function of the collective bath coordinate

Oy =Y.t (1),

~

Cs(1) = (XD ()X D(0)),. (2.9)
In the above, we have introduced the abbreviations,
V() = V(o) —V(¢'(1) (2.10a)

and
Vi(t)=V(e(n) + V(o). (2.10b)
Any time-ordered operator product, ToW(z)---o"(t,)

(tg > t1,...,t, > t1), can be incorporated as a function of
time in the functional formalism and expressed as [45]

(@p, e[ TV (1) -+ " (1) |y, 1)

(@ tF) Siol/i
:/( G Sp(r,) ..

Pryt1)

@(tn)- (2.11)

In the operator representation, Eq. (2.7) is expressed as

G0 (t;t) = Texp [— / t ds~/7<l>(s)] (2.12)
)
with
W O(s) = % / S TO(s) [Cl(s — ) PO ()
+iCh(s — )V V()] (2.13)

where we have introduced the hyper-operator notations
O*f =0,f] and O” f={0,7} for any operator ¢ and
operand operator f Thus, we can obtain the following
equation of motion,

0, - .
5,70 = =0 000).

As can be seen from the definition of Egs. (2.5) and (2.6),
the operator pV(¢) is equivalent to the distribution func-
tion in the influence functional formalism and is the exact
density operator which involves all orders of the system—
bath interaction. Since we obtain the above equation of
motion by simply carrying out the time derivative of the
propagator Eq. (2.12), this equation describes the exact
(i.e. nonperturbative and non-Markovian) dynamics of
the reduced system. The key feature of this expression is
the time-convolutionless expression of the influence phase
operator W )(¢). The higher-order system-bath interac-
tion at different time events can be taken into account by
integrating Eq. (2.14). Thus, Eq. (2.14) allows us to evalu-
ate the reduced density matrix element by means of a differ-
ential equation instead of functional integration.

Noting Eq. (2.4) and turning back to the Schrodinger
picture, we can recast Eq. (2.14) into

(2.14)

~

t o~
5,P(0) = —iZsp(r) - / ds( P spe 00 Ppe Loy b(f).
to

(2.15)

This equation coincides with the time-convolutionless
quantum master equation (TCL-QME) developed by
Shibata et al. [10,11] with the second-order perturbative
approximation. From the time-convolution equation such
as the Nakajima—Zwanzig identity [8,9], we can also obtain
Eg. (2.15) by employing the approximation, p(t — 1) =
e ’s*p(t), in addition to the second-order perturbative
approximation [18]. While the perturbative expression is
obtained by expanding the propagator Eq. (2.6) in terms
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of the system-bath coupling up to some order, we have
obtained the present result by including all orders of the
system-bath interaction. We were able to obtain the exact
expression because we assumed a harmonic bath in
employing the framework of the influence functional for-
malism. To illustrate the difference between the perturba-
tive approach and the present one, we derived the
perturbative results up to the fourth-order in Appendix.
Since the second-order approximation coincides with the
present exact result, the situation becomes ironic. While
the second-order expression can give the exact result, the
inclusion of the fourth-order interaction gives only approx-
imate results that are valid only for weak system-bath
interaction. If we include all orders of the perturbative
expansion, their contributions to dynamics higher than
the second-order interaction cancel. Although the present
resultant expression, Eq. (2.15), is exactly the same as the
second-order perturbative expression of the TCL-QME,
it can handle a strong system—bath interaction in the case
of colored noise. In order to address this point, we call
Eq. (2.15) the nonperturbative non-Markovian quantum
master equation (NN-OQME).

Up to this point, our argument is merely formal as a
case of the Feynman-—Vernon influence functional. To
show its practical value as well as the limitation of the for-
malism, we assume that the system Hamiltonian is time-
independent and employs the eigenstate representation,
Hs | a) = hw, | a). Thus, Eq. (2.15) is evaluated as

0
+ Z Rab«,cd(t)pcd(t)
c,d

_ 1) =

ot pab( )

where we have introduced the notations p,(¢) = (a |
p(t) | b) and w,, = v, — wp. The tetradic relaxation matrix
Rupca(t) 1s expressed as

—iWap 5 (1) (2.16)

Ralxcd(t) = de,ac(wca; t) + ca,bd wdln 5bd Zrae ec wc‘ea

T Z T4 ?) (2.17)
in terms of the damping matrix,
Tupea(oait) = (@] Vs | b)(c | Vs | d)Cplwast — to)

(2.18)
with the relaxation function,
- 1 t—ty
Cg(w;t — to) z?/ dsCp(s)e ). (2.19)
0

This is the nonperturbative non-Markovian Redfield
equation. The identical equation for non-Markovian
noise has been derived from the second-order perturba-
tive approach [18]. However, the result can be used for
nonperturbative cases. In general, the bath correlation
function Cy(¢) decays to zero within a certain time scale
7., which depends on a set of bath parameters. In the
time region, ¢ —t, > 7., the upper integration limit in

Eq. (2.19) can be replaced by infinity (the Markov limit).
Then, Eq. (2.16) deduces to the conventional Redfield
equation.

All information on the bath is contained in the spectral
density function, J(w) = n)_,[c?/2w]6(w — ;). We now
specify the character of the bath by choosing J(w). Several
forms of the function are being employed in the literature,
either based on model assumptions or analyses of molecu-
lar simulations. Here, we focus on the Ohmic spectral den-
sity with the Lorentz—Drude form,

w7

Jo) =05

(2.20)
where @, is a characteristic frequency of the relevant sys-
tem. The parameters y and { are related to the correlation
time and the strength of noise by the bath, respectively [36].
Eq. (2.9) is then evaluated as

hz
npe(iy)e™ + Z e,

where  the quantities npg(w) =1/(e#* —1) and
ve = 2nk/ph are the Bose-Einstein distribution function
and the bosonic Matsubara frequency, respectively. In
Eq. (2.21), the first term indicates that the bath oscillators
disturb the relevant system with the colored noise, charac-
terized by an exponential decay in the correlation. The
additional terms involving the Matsubara frequencies im-
ply a quantum effect of the bath-noise. At low-temperature
characterized by fhwy/2 = 1, the disregard of these terms
destroys the quantum interference between the system
and the bath, and then gives rise to an unphysical result
known as the positivity problem, where the populations of
the excited states become negative [36,39]. The time-inte-
gration in Eq. (2.19) can be performed analytically as
follows:

Co(1) =

(2.21)

. 'CA})2 1= m )l 1 & 2
Calw;t) =i S
B((i)7 ) 1 w0 nBE(lj)) 71(0 I . h Z ﬁ IVk
1— (iw—vg )t
xS (2.22)
—1m + Vi

which is dominated not only by the noise correlation time
7. =7 but also by the Matsubara frequencies {v;},,.

After the transient region, ie. ¢>max(y~',v'), Eq.
(2.22) reaches the stationary value Cg(w;o00) given by
ReCp(w; 00) = J(;) [nge(w) + 1] (2.23a)
and

& J()[my = Py
ImCg(w; = — — Latdd 4
mCp(w;00) - {2w+ﬁhy+w<2n

—Re w( ﬁhw)} (2.23b)

where /(z) is the digamma function defined in terms of the
gamma function I'(z) as follows: Y(z) = dInI'(z)/dz [46].
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In Eq. (2.23), the spectral density has been extended to neg-
ative frequencies via J(—w) = —J (o).

3. Discussion: limitation to calculate nonlinear response
functions

Although the NN-QME correctly describes the dynam-
ics of the reduced density matrix, there is a limitation in
evaluating the nonlinear response function that is defined
by multi-time correlation functions of system observables.
To illustrate this point, we introduce the quantum
Fokker-Planck equation with low-temperature correction
terms (QFP-LTC) [39] that can also be used to study
the dynamics nonperturbatively without employing the
energy cigenstate representation of the system. Then we
investigate the role of the correlation (quantum coher-
ence) between the system and bath by calculating the
third-order response function as two-dimensional spectra
of ultrafast nonlinear optical measurements using the
NN-QME given by Eq. (2.15) and the QFP-LTC
equation.

For the spectral distribution Eq. (2.20
equation for the reduce density, p(0;¢) =

), the QFP-LTC
p(1), is given by

a A '. —_
ap(m =-

Z/kvk@kp(]k i),

k=0 k=0

(3.1)

where we have defined vy =y, and have introduced the
(K + 1)-dimensional vectors consisting of nonnegative inte-
gers, j = (j()vjla te 7jK) and jkj: = (jO’ ce ajk + 17 s 7jK)'
Here, it should be noted that only p(0;7) = p(¢) describes
the dynamics to be measured. The other elements are the
auxiliary operators being introduced in order to take into ac-
count such a correlation between the system and the bath as
memory effects and quantum interference. The value of K is

determined so as to satisfy the condition,
Vg > . (32)

The bath-induced relaxation operators are defined by

~ ~

=irx, (3.3a)
b0 = iﬁhcwo FeotzP* — iz, (3.3b)
~ . C 222

k:lmm (k = 1), (330)
and
~ K ~ ~
== Z /mw (1 —zcotz)V*V™ (3.3d)

1 O

with z = pfiy/2. The hierarchically coupled equations, Eq.
(3.1), continue to infinity, which is impractical to solve
numerically. To terminate the equations at the finite stages,
we introduce the terminator as follows [39]:

5,000 = —iZsp(i1) — Ep(is), (34)
which is valid for the nonnegative integers j,,/j,,--.,Jjx
satisfying
)
N = ST A — 3.5
ij min(vp = y,v) " (3.5)

In practice, we may use the lower values of K and N, both
of which do not satisfy Egs. (3.2) and (3.5), respectively.
The numerical implementation of the formulation is not
as cumbersome as it appears to be. Since the bath-induced
relaxation operators in Eq. (3.3) are all time-independent
as opposed to those in Eq. (2.16), the time integration of
the equations of motion is straightforward.

As long as we consider relaxation processes of the
reduced density operator, the QFP-LTC and the NN-
QME are equivalent to each other. In order to verify this,
the diagrammatic expressions for the reduced density oper-
ator, Eq. (2.12), is represented in Fig. 1. Each diagram cor-
responds to an expanded term of the time-ordered
exponential operator of the system-—bath interaction. The
solid lines represent a free time-evolution of a reduced
density, whereas the broken lines represent a bath-
phonon absorption—emission process corresponding to
Cg(s; — u;). During the time-evolution of the reduced oper-
ator, the phonon absorption—emission processes occur
repetitively. If we observe the state of the system at time
7, all excited phonons relax because of the trace of the
expectation value defined by (A4(¢)) = Trio{dpi(t)} =
Trs{4p(¢t)} for the system operator 4. In the QFP-LTC
formalism, the states are described just by the operator
p(t) = p(0;¢). The other hierarchical members p(j # 0;¢),
which are certainly missing in the NN-QME, do not play
any roles for the measurement at time z.

The significance of the hierarchical members, or the
superiority of the QFP-LTC formalism becomes evident
when we consider multi-time correlation functions of phys-
ical observables. In nonlinear spectroscopic experiments
including off-resonant and resonant multidimensional spec-
troscopy [47,48], the signals are described by the nonlinear
response function characterized by the multi-time correla-
tion functions of the optical dipole i or the polarization

t t, t /7 R/
0 0
< T - :
51 U
1"\ 1"\ "—i):—is /’—_-~\‘
t o vl \ t() t I \[0 N tO
+ <l 1 + <l L + <l L
S U S Uy S Syu U Sy Sy Uy Uy
(Y (Y (Y
I I 1
iy g
+ o e—— -y ...

Sy Uy SyUy Sy Uy

Fig. 1. Diagrammatic expressions for a time-evolution of the reduced
density operator p(z) propagated by Eq. (2.12). A solid line represents a
free time-evolution of a reduced density, whereas a broken line represents
a bath-phonon absorption—emission process corresponding to Cy(s; — u;).
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& in the systems of interest [49]. Here, we consider the third-
order nonlinear response function expressed as

RO (13,12, 11) = (;) Trou{a(O)u(ts) 1(t2) 1) Prolte)
(3.6)

where ji(¢) = e e is the Heisenberg representa-
tion of ji. Through the reduction procedure, Eq. (3.6) can
be recast into

lHlotf/h *1H101f/h

R<3)(t; t3,t2,tl) = (h>3Trs{u () (t l3,tz,f1)} (37)

with

eV (5,00, 11) = Tu" (1) 1™ (1) " ™ (11)
xw[/&%(ﬂm (38)

Notice that the position of the symbol ‘T’ is different from
that in Eq. (2.12). In Fig. 2, we show two representative
diagrammatic expressions of the terms involved in Eq.
(3.8). In the diagram (a), the states at time ¢, #,, and £;
are described by p(0;17,) = p(z,) since all phonons relax at
the points of the system-laser interaction. Thus, the pho-
non propagation can be factorized at these points. In the
diagram (b), in contrast, the phonon propagation straddles
the evolution (¢ ~ t;), waiting (z, ~ #3), and detection
(t3 ~ t) periods. We term such time evolutions the strad-
dling evolutions. As shown from the functional integral ap-
proach [50], the straddle evolutions illustrated by Fig. 2(b)
closely relate to the quantum coherence between the system
and bath and cannot be neglected for an accurate descrip-
tion of nonlinear response functions. Obviously, the states
at time ¢y, t,, and #; in the diagram (b) cannot be described
by the operator p(0;¢,) = p(¢,) itself. The other hierarchi-
cal elements p(j # 0;¢,) defined in the interaction picture as

Jk
J7 n E T H |: / dse*"’AUn*S)vk@]((I) (S):|

n —_
X exp {—/ ds"/V(‘)(s)] V(%) (3.9)
to

a sTTT 2Ty kS ”» " "

t II II \‘ \‘ ll ll “ “ " ‘\ l’ “ l’ “ l’ ‘l
< L ! ! MLt [ L S¢ 1 LI T S T | 3¢
Detection t;  Waiting t,  Evolution ¢

TTe" TS ,,—:::: RN RN --~‘~\\ Al

t P \‘l :‘: e 7‘\ kW Y RN A \
: L L ] L L 1 1 X L1 P! X
Detection ty Waiting t, Evolution ¢,

Fig. 2. Diagrammatic expressions of the system—bath interaction involved
in the third-order nonlinear response function, Egs. (3.7) and (3.8). The
cross stands for the system-laser interaction associated with the operator
aM(#,)*. In (a), the phonon propagations are factorized by the system—
laser interaction. In (b), in contrast, the phonon propagations straddle the
three periods, the evolution period (#; ~ f,), the waiting period (, ~ £3),
and the detection period (#; ~ t).
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are necessary to include the equations of motion to de-
scribe the straddling evolutions. The above elements de-
scribe the density operator that is associated with the
Zk o/ phonons emitted 1n the time period between ¢,
and ¢, via the operators {(9 (s - (As can be seen from
the form of Eq. (3.1), the operator @ corresponds to the
phonon absorption processes. See Appendix A in Ref.
[51].) While the QFP-LTC equation can handle the straddle
evolutions through the laser interactions, the NN-QME,
Eq. (2.15) cannot treat such dynamics, since this equation
cannot describe the memory effects which straddle the sys-
tem-laser interaction despite its non-Markovian character.
Thus, although the present NN-QME accurately describes
the time-evolution of the density operator, it cannot pro-
duce the nonlinear signals including multidimensional sig-
nals appropriately.

In order to demonstrate the limitation of the NN-QME,
we present two-dimensional (2D) optical spectra calculated
from two different formalisms. For simplicity, here, we
treat a two-level system (TLS) whose Hamiltonian is
expressed as

(3.10)

where g; is a jth component (j = x,,z) of the Pauli matrix.
The system—bath coupling operator Vs in Eq. (2.4) is set to
be in the form,

= 1
VS = Gx+zo-z7

where the inelastic part o, is responsible for the longitudi-
nal (T;-type) and transversal (T,-type) relaxation processes
in the TLS, whereas the elastic part ¢. induces the pure
dephasing (T5-type) process. Furthermore, we assume that
the optical dipole ji can be expressed as

QL= oy (3.12)
We calculate the rephasing (echo) response functions,
A i AX i ~ X X e
R,y ) = ~Trd (e 1. 66 126w
(3.13)
and a nonrephasing (virtual echo) response function,

R A
RNR(‘C3,‘L'2,‘C1) = —TI‘{,L{G(‘B)%#_)G(‘Q)

(3.11)

i AX Y i X ~e
X%/’L—G(T:;)h Hpt(?t} (314)
where a’(r) is the retarded propagator of the total system in
the Liouville space, and t, =t —#, 1=t —t, and
73 = t — t3. In the above, we have introduced the following
operators [40,41],

. oy*Eio,
He = 2
By carrying out the double Fourier transform of Egs.

(3.13) and (3.14) with respect to 7, and 13, the 2D rephasing
and nonrephasing spectra are, respectively, given by

(3.15)
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SR(937Q1;‘52) = Im/ dr3ei9”3/ d‘EleiQITIRR(‘E%T%‘El)
0 0

(3.16)

and

o0 o0
SNR(Q3, Ql; ‘[,'2) = Im/ (31‘1?3619313 / d‘[lelQITIRNR(’Q, T2, Tl)‘
0 0

(3.17)

The individual 2D rephasing and nonrephasing spectra
show distorted line shapes, the so-called phase-twisted
lines, because the double Fourier transform leads to a com-
bination of absorptive and dispersive features [52]. By add-
ing the 2D rephasing and nonrephasing spectra in equal
weights, however, we can cancel out the dispersive contri-
bution so that we can obtain the 2D correlation spectrum
with only the absorptive line shape [53]

SC(Qg, Ql; ‘52) = SR(Qg, 7.91;‘[2) +SNR(.Q3, Ql;’[z). (318)

For numerical calculations, we set the system—bath param-
eters in Egs. (2.22) and (3.3) as follows: wy = 2100 cm™!,
{ = 0.5m, y = 0.005w,, and fhw, = 10. Because the value
of 7 is quite small compared with that of w,, the non-
Markovian memory effect is significant in the system. With
respect to calculating Egs. (3.13) and (3.14) numerically,
refer to Refs. [40,41].

Fig. 3 presents the 2D correlation spectra calculated
from the two formalisms, (a) the NN-QME and (b) the
QFP-LTC, for different waiting times, t,. The 2D correla-
tion spectra in the panel (a) show completely different char-
acteristics from the those in the panel (b). In the panel (b),
the 2D-lineshape at 1, = 0 is elongated along the diagonal
line. This elongation is the evidence of correlation due to
the straddling evolution between the evolution period
(t; ~ ;) and the detection period (#; ~ t) [54-56]. We can
see that the higher-frequency part (the upper right portion)
of the ellipse-like lineshape is slightly broadened compared
with the lower-frequency part (the lower left portion). This
phenomenon is caused by the cross-term contribution
between the inelastic (o,) and elastic (o) interactions which
is known as the bath-induced conversion between coherence
to population process [34,51,57]. With the increase in the
value of 1, the degree of the elongation is dwindling. Dur-
ing the waiting period (¢, ~ t3), the correlation is destroyed
by the fluctuation—dissipation processes, so that the mem-
ory is faded by the elapse of the waiting time 7,. The behav-
ior of the 2D-lineshape in the panel (b) has been observed
experimentally [56,58,59]. On the other hand, the 2D-line-
shape at 7, = 0 in the panel (a) does not show the elonga-
tion; it has the star-like characteristic. The characteristic is
observed in the fast bath-noise correlation cases, where the
correlation between the evolution and detection periods is
vanishingly small [56]. Furthermore, the 2D-lineshape in
panel (a) is elongating along the Q; axis direction with an
increase in the value of 7,. These are artifacts caused by
the above-mentioned limitation of the NN-QME, and
hence the 2D-lineshapes in the panel (a) have no physical

(a) NN-QME (b) QFP-LTC
o I v I v I I ' I ' I
ST 1 -0 -
e S 1L i
o —
~ N
[sp]
a
(e
2L 4 L .
(@]
N 1 1 1
o I I I
[l = - - -
N
N
e 8L 1L i
(&) —
~ N
[92)
a
(e
2L 4 L .
(@]
N 1
o I
(@] - -
N
N
e 8| 1L i
(] —
~ o
™
a
(e
o - - - -
[e]
N 1 . . 1 1 . 1 . 1
2000 2100 2200
2, (cm™) 2, (cm™)
Low NN Bl High

Fig. 3. 2D correlation spectra, S(C})(Q37Q1;Tz), for the two-level system

whose characteristic frequency is @y = 2100 cm™'. The spectra were

calculated from (a) the NN-QME approach with Eq. (2.16) and (b) the
QFP-LTC approach with Eq. (3.1). For both approaches, the system-bath
parameters are set to be { = 0.5w, y = 0.005w, and phwy = 10. The
normalization of the 2D spectra is such that the maximum at 7, = 0 in the
panel (b) is unity. Ten equally spaced contour levels from 0.05 to 0.95 are
drawn for each plot.

meaning. The validity of the NN-QME to calculate nonlin-
ear response functions is limited to the fast bath-noise case,
where the quantum coherence between the system and bath
plays a minor role.

4. Concluding remarks

Assuming the harmonic oscillator heat bath and the fac-
torized initial condition, we have derived a nonperturbative
non-Markovian quantum master equation (NN-QME) for
a reduced density operator. We have found that the resul-
tant expression coincides with the second-order approxi-
mation form of the TCL-QME. This result indicates that
the effects of higher-order system-bath interactions can
be incorporated into the influence operator as given in
Eq. (2.13) and that contributions higher than the second-
order do not play any role once we sum up all contribu-
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tions. By employing the energy eigenstate representation,
we reduced the above approach to the nonperturbative
non-Markovian Redfield equation, which also coincides
with the generalized Redfield equation derived for a weak
system—bath interaction. Our derivation of the Redfield
equation indicates that the equation actually has a wider
scope of application than previously thought. While the
presently derived equation, the NN-QME, is valid under
the assumption of the factorized initial condition, this
approach can describe the time-evolution of the density
operator for any spectral distribution at any temperature
of the bath. As long as the system Hamiltonian is time-
independent and the factorization assumption is relevant,
the present approach has advantages in evaluating the
time-evolution of the density matrix elements in compari-
son to the QFP-LTC approach.

If we need to calculate nonlinear response functions,
however, the NN-QME formalism can be applied only
for fast bath-noise correlation cases. This is because the
NN-QME cannot handle the correlations between the sys-
tem and the bath depicted as the straddling evolution of the
bath phonons. The fact also restricts the NN-QME
approach to calculations of the time evolution of density
matrix elements under time-dependent external forces. In
such situations, we encounter the difficulty not only to
include the system-bath coherence but also to employ the
energy eigenstate representation of the system, which is
necessary to derive the time-dependent relaxation matrices
in the Redfield equation.

Although the form of the spectral distribution is
restricted to Eq. (2.20), the QFP-LTC formalism can han-
dle a variety of systems including systems with time-depen-
dent external forces. The formalism can also treat systems
defined in coordinate space with the effects of the corre-
lated initial condition. [31,32,39]. Thus, the validity and
limitation of the NN-QME for a general spectral distribu-
tion may be justified by comparing the results obtained
from the QFP-LTC.

End note

The reviewer informed us that a similar work by R.
Doll, et al. appeared on the preprint server (http://arxiv.
org/abs/0707.3938) about the same time we submitted
our manuscript. While their result was limited to the
dephasing case, our result was for a general system—bath
interaction. A role of the quantum coherence between the
system and bath was also discussed as the context of non-
linear response functions.
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Appendix.

We derive a time-convolutionless quantum master equa-
tion from the conventional perturbative approach up to the
fourth-order to illustrate the difference from the nonpertur-
bative approach.

The reduced propagator Eq. (2.6) can be expanded as
follows:

00

GO (s510) = 3 g M), (A1)
n=0
where we have defined the nth-order moment as
N t t th-1
g'M,(t) = (—i)”/ dy / de ... ds,
to to to
x (@) LG(0), .., LGt (A.2)

In Eq. (A.1), the terms of odd powers in Psp have van-
ished, because #sp is linear in the bath coordinates.

By truncating the propagator Eq. (A.1) up to second-
order, we have

(1) = [1+ &M ()| p(te) = U (t:10)p(10),

where the subscript 2’ of the p(¢) stands for the density
operator under the second-order perturbative approxima-
tion. By taking the time derivative of Eq. (A.3), we obtain
the equation of motion for f)g)(t) as

(A.3)

G — .

&pé”(t) = A0 (1) (A4)
with

HA(t) = 0, (5 10) - Uy (£ 10), (A.5)

where we have introduced the notation o, = 9/0¢. Within
the second-order approximation, the operator 4 ,(¢) can
be evaluated as follows:

Hat) = REVLON + @M(0] " ~ 28 .(1). (A6)

The second-order expression in Eq. (A.4) and the
NN-QME in the interaction picture have the same form.
However, p,(¢) in Eq. (A.3) involves only the Oth and sec-
ond-order system—bath interaction (only the upper two dia-
grams in Fig. 1.), whereas p(¢) in the NN-QME contains all
orders (all diagrams in Fig. 1) as defined by Eq. (2.6) with
the influence operator Eq. (2.13). Thus, for the perturbative
case, there exists the fourth-order correction denoted by
the middle three diagrams in Fig. 1. For the fourth-order
perturbation case, p4(f), the equation of motion can be de-
rived as follows:

2500 = Fop'0) (A7)
with
A 4(t) 2 §0,M (1) + g*[0,M4(t) — 0, M (1) - M (1))

(A8)
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The second term of the right-hand side in Eq. (A.8) is the
fourth-order correction for the second-order perturbation,
which can be explicitly expressed as

t t 15 - - - P
[an [ an [ an (@G0 2400 Zhe) 2w,
ty 1) to
—(ZHOL R (1) (Z5(0) L5
—(ZHOL R (1)) (L 5(10) L5 (1))
—(ZROZH) (PR LG (1)) (A9)

Once we sum up the contributions from all orders of the
system-bath interaction, we can include them into a part
of the density operator as the influence operator. This indi-
cate that even if we include all orders of the relaxation
operators in the Redfield equation, their contributions will
be exactly canceled except the contribution from the sec-
ond-order operator.
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