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Reduced equations of motion for a two-level system strongly coupled to a harmonic oscillators bath are
constructed by extending the hierarchy of equations introduced by Tanimura and Kubo [J. Phys. Soc.
Jpn. 58 (1989) 101]. The set of equations treats the bath in a nonperturbative manner and is applicable to
a low-temperature system with taking into account the correlation time of noise. By numerically
calculating linear absorption spectra for different temperatures, we demonstrate that the present theory is
not afflicted with the dynamical positivity problem that occurs at low temperatures without the rotating
wave approximation. Remarkable changes are found in the spectra when the temperature is lower than
the resonant energy of the two-level system.
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Quantum systems in a dissipative environment have been a
subject of great interest for many years.1,2) There are several
approaches to deal with such systems,3–7) but the most
commonly used approach is based on the reduced equations
of motion, which are obtained by tracing over the heat-bath
degrees of freedom under the rotating wave approximation
(RWA) or high-temperature approximation. The perturba-
tive approximation together with the factorization condition
is also commonly employed. These approximations, how-
ever, limit the applicability of the equations.8) Due to the
advent of experimental technology, we can now test a
system under ultimate conditions, i.e., at very low temper-
atures, in a very short time scale with extreme accuracy. It is
therefore crucial to establish a reliable theory that can
accurately treat the effects of dissipation under such extreme
conditions. In this letter, we show that we can remove the
limitations by extending the hierarchy treatments in the
equations of motion developed by Tanimura and Kubo.9)

We consider a spin-Boson system modeled by a two-level
system (TLS) coupled to a harmonic oscillators bath. The
total Hamiltonian is expressed as1)
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where  ̂ y and  ̂ are the Fermion creation and annihilation
operators, which obey the anticommutator relations
f ̂ ;  ̂ yg ¼ 1 and f ̂ ;  ̂ g ¼ f ̂ y;  ̂ yg ¼ 0. The parameters x̂xj,
p̂pj, mj and ! j are the coordinate, momentum, mass, and
frequency of the jth bath oscillator, respectively. In eq. (1),
the system-bath interaction is expressed as ĤHI ¼
�V̂V

P
j c jx̂xj, where cj denotes the coupling constant to the

jth bath mode, and V̂V is the dimensionless operator of the
TLS given by

V̂V ¼ V1 � ð ̂ y þ  ̂ Þ þ
V2

2
� ð ̂ y ̂ �  ̂  ̂ yÞ; ð2Þ

with V1 and V2 being real C-numbers. Note that under the
rotating wave approximation for the system-bath coupling,
the inelastic part  ̂ y þ  ̂ is responsible for the longitudinal
(T1-type) and transversal (T2-type) relaxation processes in
the TLS, while the elastic part  ̂ y ̂ �  ̂  ̂ y gives rise to the
pure dephasing (T�

2 -type) process.
12) Although our treatment

can handle both terms, here we focus on the energy
relaxation process and set V1 ¼ 1 and V2 ¼ 0.

All information on the bath is contained in the spectral
distribution function Jð!Þ ¼

P
j½cj2=ð2mj! jÞ��ð!� ! jÞ.

Here we consider the nearly Gaussian–Markovian noise
bath, whose distribution function is given by the Ohmic form
with the Lorentzian cutoff:9)

Jð!Þ ¼
h��

�!0

�2!

!2 þ �2
; ð3Þ

where � represents the width of the spectral distribution of
the bath modes and is related to the correlation time of the
noise induced by the bath, �c ¼ 1=�. The parameter � is
related to the system-bath coupling strength.

To reduce the equation of motion, we set the temporary
initial condition of the total system in the factorized form as
�̂�totðt0 ! �1Þ ¼ �̂�ð�1Þ � �̂�eqB , where �̂�ð�1Þ is the initial
state of the TLS and �̂�eqB is the thermal equilibrium state of
the bath. This is not the ‘true’ equilibrium state of the total
system because it neglects the correlated effects of the
system-bath interaction. The true equilibrium initial con-
dition can be set by utilizing the hierarchy equations, as will
be explained below.

Now let us introduce the Fermion coherent state j i,
which satisfies  ̂ j i ¼  j i and h j ̂ y ¼ �  h j, where  
and �  are Grassmann variables. Then, the reduced density
matrix element for the TLS is expressed in the path integral
form with the factorized initial condition as
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Here, S½ �  ; � is the action of the TLS defined by S½ �  ; � ¼R t
t0
ds Lð �  ; Þ for the Lagrangean,
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and F FV½ �  ; ; �  0;  0� is the Feynman–Vernon influence
functional given by13)
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Here, we have introduced the abbreviations

V�ðtÞ � Vð �  ðtÞ;  ðtÞÞ � Vð �  0ðtÞ;  0ðtÞÞ ð7Þ

and

V�ðtÞ � Vð �  ðtÞ;  ðtÞÞ þ Vð �  0ðtÞ;  0ðtÞÞ: ð8Þ

For the distribution eq. (3), we can rewrite eq. (6) as
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with

�ðtÞ � iV�ðtÞ; ð10Þ

�ðtÞ �
i�

�h�!0

�i
�h��

2
V�ðtÞ þ

�h��

2
cot

�h��

2

� �
V�ðtÞ

� �
; ð11Þ

�kðtÞ �
i�

�h�!0

2�2

�k2 � �2
V�ðtÞ; ð12Þ

where �k ¼ 2�k=ð�h� Þ is a Bosonic Matsubara frequency. It
was shown that one can deduce the hierarchy of equations of
motion for the above system by evaluating the time
derivative of the reduced density matrix elements for the
high-temperature case.9) Inclusion of the low-temperature
correction terms that appeared in eq. (9) was also dis-
cussed10) and numerically examined.14) The former formu-
lation for the low-temperature correction was, however,
somewhat cumbersome and impractical for systems with
large degrees of freedom, since the members of the hierarchy
elements relate in a rather complex manner and their number
quickly increases as the temperature decreases. In this letter,
we present a simpler formulation to deal with low-temper-
ature correction terms.

First, we should notice that if we choose K so as to satisfy
�K ¼ 2�K=ð�h� Þ 	 !0, where !0 is the characteristic fre-
quency of the TLS, the factor e��K ðs�s0Þ in eq. (9) can be
replaced by Dirac’s delta function as

�ke
��kðs�s0Þ ’ �ðs� s0Þ ðk > K þ 1Þ: ð13Þ

Thus, by choosing the relevant K, eq. (9) can be reduced to
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In order to derive the equation of motion, we introduce the
auxiliary operator �̂�ðnÞj1;...; jK ðtÞ by its matrix element as9–11)

�ðnÞj1;...; jK ð �  ; 
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for nonnegative integers n; j1; . . . ; jK . Note that only
�̂�ð0Þ0;...;0ðtÞ ¼ �̂�ðtÞ has a physical meaning and the others are
introduced for computational purposes only. Differentiating
�ðnÞj1;...; jK ð �  ; 

0; tÞ with respect to t, we obtain the following
hierarchy of equations in operator form:

@
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where L̂L is the Liouvillian of the TLS, the relaxation
operators �̂�, �̂�, and �̂�k are obtained by replacing V�ðtÞ !
V̂V� and V�ðtÞ ! V̂V� in eqs. (10)–(12), and

�̂� �
�
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1�
�h��

2
cot
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2

� �� �
V̂V�V̂V�: ð17Þ

In the above equations, we introduced the following two
superoperators for any physical operator ÔO: ÔO� f̂f � ÔO f̂f �
f̂f ÔOy and ÔO� f̂f � ÔO f̂f þ f̂f ÔOy, for any operand operator f̂f . The
above expression is similar to the expression given in
refs. 9–11, and the number of the hierarchy in the present
formula is safely suppressed by K because of the operator �̂�
in eq. (17). What makes the present formulation unique is
the way in which the hierarchy is terminated, as will be
explained below.

The hierarchy equation, eq. (16), continues to infinity,
which is not easy to solve numerically. To terminate
eq. (16), let us solve eq. (16) formally as
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If n� þ
PK

k¼1 jk�k is large enough compared with the
characteristic frequency of the TLS, !0, the time kernel of
the integral can be replaced by Dirac’s delta function as

n� þ
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k¼1

jk�k

 !
e�ðn�þ
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and then eq. (16) becomes

@
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which works as the terminator for the hierarchy equation,
eq. (16). This termination is valid for the integers n;
j1; . . . ; jK , satisfying

N � nþ
XK
k¼1

jk 	
!0

minð�; �1Þ
ð21Þ

because n� þ
PK

k¼1 jk�k > ðnþ
PK

k¼1 jkÞminð�; �1Þ. As
shown in Fig. 1, the hierarchical elements �̂�ðnÞj1;...; jK can be
represented by the lattice points ðn; j1; . . . ; jKÞ contained
within the ðK þ 1Þ-simplex,15) 	Kþ1 ¼ fðx0; x1; . . . ; xKÞ 2
R

Kþ1 j 0 6
P

j x j 6 N; 0 6 xj 6 Ng. In particular, the lat-
tice points corresponding to the terminators lie on a K-
face15) of 	Kþ1, fðx0; x1; . . . ; xKÞ 2 R

Kþ1 j
P

j x j ¼ N; 0 6

xj 6 Ng. This termination is simple and easy to utilize in
numerical calculations. In practice, we may use the lower
values of N which do not satisfy eq. (21).

The factorized initial condition is, as mentioned above, not
the true equilibrium state because the correlation effects of

the system-bath coupling are neglected. The present formal-
ism can take into account such effects with the nonzero
hierarchical elements �̂�ðnÞj1;...; jK 6¼ 0 for ðn; j1; . . . ; jKÞ 6¼
ð0; 0; . . . ; 0Þ. Note that all hierarchical elements reach
steady-state values after a sufficiently long time evolution,
even though we started from the factorized initial condition.
We regard these steady-state elements as the correlated
initial equilibrium condition,11) �ðnÞj1;...; jK ðt ¼ 0Þ.

What has to be noticed is that the present formulation does
not employ the Markov approximation, the high-temperature
assumption, the perturbative approximation, or the rotating
wave approximation (RWA). The conventional quantum
master equations or the Bloch equation cannot be applied to
low-temperature systems, where quantum effects play a
major role, without RWA. Generalized quantum master
equations can handle a colored noise bath, but can treat only
weak system-bath couplings. In the present approach, the
nonperturbative manner allows us to treat the strong system-
bath interaction. Best of all, our formulation is rather
compact and fits numerical calculations.

To demonstrate the advantage of the formalism, we
numerically evaluated the time evolution of the density
matrix element and linear absorption spectrum for the TLS.
We chose the depth of the hierarchy N ¼ 3{10 for low-
temperature cases (�h�!0 > 1), and N ¼ 20{50 for high-
temperature cases (�h�!0 < 1). For all calculations, the
accuracies were checked by changing the values of N.

We denote the density matrix elements of the ground state
jgi, excited state jei and their coherence at time t,
respectively, by �ggðtÞ, �eeðtÞ, and �geðtÞ. Figure 2 demon-
strates how �eeðtÞ attains the steady-state values for various
numbers of the Matsubara frequencies f�1; . . . ; �Kg, where
K ¼ 1, 2, 3, and 4 from the top to the bottom. The
characteristic frequency of the TLS is !0 ¼ 1000 cm�1

(1=!0 ¼ 33:3 fs), which is the typical value for intramolec-
ular vibrational motion. The system-bath parameters are T ¼
300K (�h�!0 ¼ 4:79), � ¼ 0:5!0 (strong coupling), and � ¼
0:05!0. Here, we consider the nonequilibrium initial state
�eeð0Þ ¼ 1 and �ggð0Þ ¼ �geð0Þ ¼ 0. As is shown in Fig. 2
(note that the ordinate is a log scale), the steady-state value
of �eeðtÞ converges in the vicinity of the canonical
equilibrium value, �canee ¼ e��h�!0=ð1þ e��h�!0 Þ, as the value

x0

x1

0 1 2

1

2

N

 N −1

NN − 1
0

terminators:
n + j1 = N

ρ(t)
...

...

...

Fig. 1. The tree-like structure of the hierarchical elements in the case of

K ¼ 1. On the x0x1-plane (R2), a lattice point ðn; j1Þ in the right triangle

(2-simplex 	2) denotes a hierarchical element �̂�ðnÞj1 . The lattice points

corresponding to the terminators lie on the hypotenuse (a 1-face of 	2).

The lattice points connecting with each other via the broken line interact

by means of the operators �̂�, �̂�, and �̂�1.

0 5 10 15 20 25

1

 

eeρ 
  (

t)

time (ps)

10 1-

10 2-

Fig. 2. The relaxation of the excited population �eeðtÞ for the different

number of the Matsubara frequencies f�1; . . . ; �Kg. From the top to the

bottom, K ¼ 1; 2; 3, and 4. The frequency of the TLS is !0 ¼ 1000 cm�1.

The system-bath parameters are T ¼ 300K (�h�!0 ¼ 4:79), � ¼ 0:5!0

(strong coupling), and � ¼ 0:05!0.
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of K increases. Our formalism is not afflicted with the
positivity problem, which is a notorious and grave issue in
conventional quantum master equation theories in which the
populations of the excited states become negative at low
temperatures.16) This point deserves explicit emphasis. In
addition, we note that the relaxation rates of �eeðtÞ are
similar regardless of the values of K. We may, therefore,
extract the information on the relaxation process, e.g.,
relaxation time T1 and so forth, by means of calculations
with small values of K.

In many measurements, including optical and NMR
spectroscopies, the dynamics of the system are probed by
a correlation function of the physical observables. Let us
consider the two-point correlation function defined by

Rð1ÞðtÞ ¼
i

h�
Tr Q̂QFðtÞ; Q̂QFð0Þ

	 

�̂�eqtot

� �
: ð22Þ

Here, �̂�eqtot is the thermal equilibrium density operator of the
total system �̂�eqtot ¼ expð��ĤHtotÞ=Tr expð��ĤHtotÞ. Q̂QFðtÞ is the
Heisenberg representation of the operator Q̂QF defined by
Q̂QF �  ̂ y þ  ̂ , in which the subscript F shows that QF is the
coordinate of a Fermionic oscillator. The Fourier transform
of eq. (22), Rð1Þð!Þ ¼

R1
0

dt Rð1ÞðtÞ expði!tÞ, is equivalent to
the linear absorption spectrum of the TLS in optical
measurement. In Fig. 3, we present the imaginary part of
Rð1Þð!Þ for !0=2� ¼ 1:0THz in the cases of T ¼ 5K
(�h�!0 ¼ 9:59) and T ¼ 300K (�h�!0 ¼ 0:15). For both the
cases, the system-bath parameters are set to be � ¼ 0:5!0

and � ¼ 0:2!0. In addition, we chose the number of the
Matsubara frequencies K ¼ 1{4 for the calculations, as we
have verified that further increases in K do not change the
linear absorption spectra. Figure 3 shows that the line shape
in the low-temperature case exhibits a sharp Lorentzian

peak, whereas that in the high-temperature case exhibits a
featureless broadened peak. This difference can be explained
as follows. Since we can define the effective coupling
strength17) as �effð�Þ � �=ð�h�!0Þ from eqs. (11), (12), and
(17), the coupling strength effectively decreases when the
temperature decreases. Thus, the perturbation on the TLS
dies down at the low temperature, and accordingly sup-
presses the destruction of the quantum coherence.

In this letter, we derived a novel quantum dissipative
equation that has applicability to low-temperature systems
(�h�!0 	 1) strongly coupled to a harmonic bath without
employing the rotating wave approximation for the system-
bath coupling. Although we only described the spin-Boson
system, the extension to a discrete multilevel system or to a
potential system expressed in the phase space is straightfor-
ward. Applying our approach to the study of quantum
dynamics in potential systems, one can explore the intra-
molecular vibrational energy relaxation, the frequency
fluctuation, and their interplay in the condensed phases. In
addition, the dissipative effects of mode couplings in
multimodal anharmonic potential systems remain the key
issue of investigations into molecular dynamics in con-
densed phases. Extensions of the present theory in these
directions are left for future studies.
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Fig. 3. The linear absorption spectra, ImfRð1Þð!Þg, of the TLS (!0=2� ¼
1:0THz) at different temperatures: T ¼ 5K (solid line, �h�!0 ¼ 9:59) and

T ¼ 300K (dashed line, �h�!0 ¼ 0:15). The other system-bath parameters

are � ¼ 0:5!0 and � ¼ 0:2!0.
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