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Abstract

Explicitly correlated calculations using the transcorrelated Hamiltonian are performed at the level of linearized

coupled cluster (LCC) theory. Two different reference functions are employed in the calculations and the results are

compared with those of the conventional LCC. The application to the water molecule shows a markedly better con-

vergence of the correlation energies when the transcorrelated Hamiltonian is used than in the conventional approach.

We also present results for some other ten-electron systems, Ne, HF, NH3, and CH4. � 2002 Published by Elsevier

Science B.V.

1. Introduction

Continuous developments of computers and
theoretical methods are making ab initio calcula-
tions including electron correlation increasingly
available for larger molecules. However, there re-
mains a problem that a large one-electron basis set
is required to obtain reliable energetics with
chemical accuracy. This is due to the difficulty in
expanding many-electron wavefunctions as a lin-
ear combination of Slater determinants i.e., the
slow convergence in describing the correlation
cusp by the products of one-electron functions [1].
This difficulty is dramatically ameliorated by the

use of two-electronic functions (geminals) [2–4],
which more appropriately describe the correlation
cusp. Gaussian-type geminal (GTG) methods [5–
9,17,18] and R12 [11–14] methods have been
implemented for many-electron calculations. Al-
though the Rayleigh–Ritz variational method
combined with the use of explicitly correlated basis
functions gives excellent accuracy [15–18], it be-
comes impractical for systems with large number
of electrons. To remedy this, the coupled cluster
(CC) approach was applied to the GTG method
[8,9] and the pair functions were expressed in terms
of the explicitly correlated functions. Also the R12
method which includes the linear r12 dependence in
the pair functions [10–12] was combined with the
CC method and has been applied in highly accu-
rate calculations of some atoms and molecules
[13,14].
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Recently, we proposed another explicitly cor-
related method [19–22] using the transcorrelated
Hamiltonian [23] which was defined as a similari-
ty-transformed Hamiltonian with the correlation
factor expanded in terms of GTGs. We chose the
correlation factor to compensate for the Coulomb
interaction at short inter-electronic distances. We
implemented the second-order many-body pertur-
bation theory (MBPT) with the transcorrelated
Hamiltonian [19,21] and demonstrated that this
led to better convergence of the correlation ener-
gies with the expansion of the one-electronic basis
than in the conventional MBPT method. In this
Letter, we implement the linearized coupled cluster
(LCC) [27,28] method within the framework of the
transcorrelated approach to determine higher-or-
der correlation corrections and examine their
convergence with the basis set expansion.

In Section 2, we briefly describe the transcor-
related Hamiltonian used in this work. In Section
3, we review the pseudo-orbital method [19] and
the biorthogonal self-consistent field (SCF) meth-
od [21]. In that section, we also formulate the LCC
equations. In Section 4, we present and discuss the
numerical results for some atoms and molecules.
The conclusions are presented in Section 5.

2. Transcorrelated Hamiltonian

The transcorrelated Hamiltonian is defined as
[23]

~HH ¼ e�F HeF : ð2:1Þ
The exponent, F, used in the present work is a sum
of geminals [19–22], which depend on inter-elec-
tronic distances

F ¼
X
i<j

f rij
� �

: ð2:2Þ

~HH is rewritten as

~HH ¼ H þ H ; F½ � þ 1
2
H ; F½ �; F½ �

¼ H þ K þ L; ð2:3Þ

where the operators K and L are given by

K ¼ 1

2

X
ij

Kij; ð2:4Þ

L ¼ 1

6

X
ijk

Lijk; ð2:5Þ

K12 ¼ �r2
1f r12ð Þ � r1f r12ð Þ 	 r1ð � r2Þ

� r1f r12ð Þ 	 r1f r12ð Þ; ð2:6Þ

L123 ¼ �3r1f r12ð Þ 	 r1f r13ð Þ: ð2:7Þ
We represent the geminal as a linear combination
of Gaussian functions

f r12ð Þ ¼ �
XNG
G¼1

cG exp
�
� fGr

2
12

�
: ð2:8Þ

In this work, we employ an even-tempered se-
quence of 10 Gaussian functions with the range of
exponents between 904000.0 and 0.12. The coeffi-
cients are determined by the least square fitting so
that the relation

r�1
12 w r12ð Þ ¼ r2

1f r12ð Þ þ r1f r12ð Þ 	 r1f r12ð Þ ð2:9Þ
approximately holds for a short-range weight
function, w r12ð Þ, which localizes the correlation
factor near r12 ¼ 0.We chose theweight function as,
w r12ð Þ ¼ exp �fwr212

� �
, with the exponent fw ¼ 20:0.

The correlation factor, eF , treats the short-range
behavior of the correlation cusp explicitly, and its
use excludes a large amount of Coulomb singularity
from the Hamiltonian. This fact enables us to ac-
curately expand the eigenfunction of ~HH using a
smaller one-electronic basis than what is required
for expanding the eigenfunction of H. The idea of
eliminating the Coulomb singularity from the
Hamiltonian has been previously proposed by
Nooijen and Bartlett [24], and Jankowski [25,26]. It
should be noted that the three-electron interaction
L becomes small due to the localized nature of the
correlation factor. We therefore can insert the res-
olution of identity in L and use this approximation
to calculate the three-electron integrals [19–22]. The
number of additional integrals increases only lin-
early with the system size.

3. Transcorrelated LCCSD method

We have performed LCC calculations using two
types of reference functions, the usual Hartree–
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Fock (HF) SCF wave function and the biorthog-
onal SCF wave functions. Henceforward, we use
the notations, i; j; . . . and a; b; . . . for occupied and
virtual orbitals, respectively. In the HF case, we
treat the orbital relaxation induced by the operator
K with the pseudo-orbital equation [19] prior to
the LCC calculation,

Xþ
l w0

D ��� Hð þ KÞ exp �TT1
� �

w0j ic ¼ 0

8l 2 S;
ð3:1Þ

�TT1 ¼
X
ai

�ttai a
þ
a ai; ð3:2Þ

where Xþ
l denotes excitation operators with re-

spect to the HF vacuum, w0. The three-body op-
erator, L, is excluded from the above equation
because its contribution is assumed to be small.
The LCC singles and double (LCCSD) equations
[27,28] are given by:

w0h j ~̂HH~HH 1ð þ T Þ w0j i ¼ E; ð3:3Þ

Xþ
l w0

D ��� H0; T½ � w0j i

¼ � Xþ
l w0

D ��� ~̂VV~VV þ ½ ~̂VV~VV ; T � w0j i 8l 2 S;D; ð3:4Þ

where the operators are defined as

~̂HH~HH ¼ expð� �TT1Þ ~HH expð�TT1Þ; ð3:5Þ

~̂VV~VV ¼ ~̂HH~HH � H0; ð3:6Þ

T ¼ T1 þ T2

¼
X
ai

tai a
þ
a ai þ

1

2

X
abij

tabij a
þ
a a

þ
b ajai; ð3:7Þ

and H0 is the usual HF model Hamiltonian.
The second method uses the biorthogonal sets

of orbitals, k ¼ v1; v2; 	 	 	f g and p ¼ /1;/2; 	 	 	f g,
which satisfy the relation

vp=/q

� 	
¼ dpq: ð3:8Þ

The transcorrelated Hamiltonian, ~HH , is rewritten
in terms of the biorthogonal orbitals in the second
quantized form [21,29–31]

~HH ¼
X
pq

vp
� ��h /q

�� 	
bþp cq

þ1

2

X
pqrs

vpvq r
�1
12

���
þK12

��/r/s

	
bþp b

þ
q cscr

þ1

6

X
pqrstu

vpvqvr L123j j/s/t/u

� 	
bþp b

þ
q b

þ
r cuctcs;

ð3:9Þ

where the new creation and annihilation operators
are defined as

bþp ¼
Z

/p 1ð ÞWþ 1ð Þd1; ð3:10Þ

cq ¼
Z

vp 1ð ÞW 1ð Þd1; ð3:11Þ

using the field operators, Wþ 1ð Þ and W 1ð Þ. The
biorthogonal relations (3.8) assure the anti-com-
mutation relations

fbþp ; cqg ¼ dpq; ð3:12Þ

bp; cq
� �

¼ fbþp ; cþq g ¼ 0; ð3:13Þ

and enable us to use the Wick theorem and the
diagrammatic techniques in the usual second
quantization formulation. We determine the bior-
thogonal orbitals self-consistently as

vp
� ��f /q

�� 	
¼ vp

� ��h /q

�� 	
þ
X
i

vpvi
� ��r�1

12 þ K12 /q/i

�� 	
A

¼ epdpq; ð3:14Þ

where the subscript A denotes anti-symmetrized
integrals. We also omit the contributions to the
Fock operator from the three-body operator, L, in
the SCF calculations. The use of the biorthogonal
orbitals is necessary because the Fock operator, f,
is nonhermitian. The biorthogonal model Hamil-
tonian is then written as

~HH ðBOÞ
0 ¼

X
p

epbþp cp: ð3:15Þ

The LCC equations based on the biorthogonal
reference become:

Xh j ~HH 1ð þ TbÞ Uj i ¼ E; ð3:16Þ
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hZþ
l X j½H

ðBOÞ
0 ; Tb�jUi

¼ �hZþ
l X j ~VV þ ½ ~VV ; Tb�jUi 8l 2 S;D; ð3:17Þ

where the perturbation and the cluster operator
are given by:

~VV ¼ ~HH � H ðBOÞ
0 ; ð3:18Þ

T ¼ T1 þ T2

¼
X
ai

tai b
þ
a ci þ

1

2

X
abij

tabij b
þ
a b

þ
b cjci: ð3:19Þ

Zl denotes a deexciation operator with respect to
the right-hand vacuum,

Zl ¼ fbþi bþj . . . cbcag; ð3:20Þ

and X and U are the determinants composed of the
biorthogonal occupied orbitals

X ¼ v1v2 	 	 	 vnk k; U ¼ /1/2 	 	 	/nk k: ð3:21Þ
These determinants are the left- and right-hand
ground states of ~HH ðBOÞ

0 . For later analysis, we de-
fine the first-order corrections of the transcorre-
lated Hamiltonian as

DE 1ð Þ ¼ w0h j ~̂HH~HH w0j i � EHF pseudo-orbitalð Þ
Xh j ~HH Uj i � EHF biorthogonalð Þ:

(

ð3:22Þ
Our preliminary results imply that the contribu-
tions of the two- and three-body operators of the
normal-ordered L with respect to both vacuums
are very small. In the calculations we omit the
terms that are derived from the contractions of T
with the normal-ordered three-body operator in
the LCCSD equations.

It should be noted that the present scheme
maintains the scaling properties of the standard ab
initio theory. Let us denote by N, V and O the
numbers of basis functions, virtual orbitals, and
occupied orbitals, respectively. The pseudo-orbital
and biorthogonal SCF calculations scale as N 4

when we exclude the expensive, but less important,
contribution of L from the iterative process. The
most demanding steps in the LCCSD method are
the double contractions of T2 with two-electron
operators in the transcorrelated Hamiltonian.
These scale as V 4O2 at most as they do in the
conventional LCCSD methods.

4. Results and discussion

We have applied the transcorrelated LCCSD
methods in calculations of the 10-electronic sys-
tems, Ne, HF, H2O; NH3, and CH4. The geomet-
rical parameters used in this work are listed in
Table 1. For the atoms, Ne, F, O, N, and C, we use
the primitive functions derived from the cc-pVQZ
basis sets [32] augmented with the p-, d-, and f-core
polarization functions taken from the cc-pCVQZ
basis sets [33]. The primitive functions of the cc-
pVQZ basis set are adopted for the hydrogen atom.
Table 2 shows the correlation energies obtained
using the transcorrelated methods along with those
obtained with the conventional and R12 methods
for comparison. The first-order energy difference
between the pseudo-orbital and biorthogonal SCF
methods becomes large as the charge of the first
row atom increases. The difference between the
single excitation energies shows similar behaviors;
absolute values of the single excitation energies
obtained with the pseudo-orbital method are about
30 times larger than those with the biorthogonal
SCF method. This is because the elements in the
half-block of the approximate Fock matrix,
w0h j ~̂HH~HH aþa aiw0

�� 	
, do not vanish in the pseudo-orbital

method. The corresponding matrix is entirely di-
agonal in the biorthogonal SCF method. The dif-
ferences in the first-order and single excitation
energies contribute oppositely in sign and com-
pensate each other. The differences of the total
energies are at most 3.6 mEh. Only the pseudo-or-
bital LCCSD energy of the Ne atom is lower than
the R12-CCSD(T) one by 1.66 mEh due to the
inadequacy of the HF reference for the heavy ele-
ment. All other transcorrelated LCCSD energies
are in the range between the R12-CCSD and R12-
CCSD(T).

Table 1

Geometrical parameters for the systems HF, H2O;NH3 and

CH4 (E¼F, O, N and C)

HF H2O NH3 CH4

REH 1.733 1.809 1.913 2.050

\HEH 104.52 106.67 109.47

Units for the bond length and angle are Bohr and degree,

respectively.
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Table 2

LCCSD energies (-mEhÞ of Ne, HF, H2O;NH3 and CH4 molecules with 12s6p5d3f1g/6s3p2d1f basis set

Ne HF H2O NH3 CH4

HF 128543.47 100067.71 76064.89 56223.14 40216.34

Conventional LCCSD 365.27 366.36 352.55 325.52 287.61

Pseudo-orbital

DEð1Þ 222.47 158.84 112.55 79.55 55.84

ES
a )28.67 )17.39 )10.59 )6.36 )3.64

ED
b 197.92 244.02 263.89 261.22 241.82

LCCSD 391.72 385.47 365.85 334.13 294.02

Biorthogonal

DE 1ð Þ 184.14 138.06 102.13 74.70 53.77

ES 1.07 0.53 0.38 0.27 0.16

ED 202.95 245.05 262.87 259.65 240.47

LCCSD 388.15 383.63 365.38 334.62 294.39

R12c

CCSD 383.53 378.99 359.91 327.83 288.56

CCSD(T) 390.06 387.91 369.88 337.25 295.95

aContributions of the single excitations.
bContributions of the double excitations.
cReference [14].

Table 3

Basis set dependence of correlation energies (-mEh) of H2O

Basis set 9s4p1d 10s5p3d1f 12s6p5d3f1g 14s8p7d5f3g

HF 76 030.43 76 057.31 76 064.89 76 066.87

Conventional

Second 257.74 318.46 341.90 348.89

Third 263.61 323.38 344.43 350.14

Fourth 268.58 329.65 351.14 357.11

LCCSD 270.20 331.14 352.55 358.50

CCSD 266.34 325.06 345.74 351.48

CCSD(T) 271.24 333.40 355.27 361.36

Pseudo-orbital

Second 325.38 354.54 362.20 363.11

Third 323.40 352.19 358.86 359.24

Fourth 328.08 357.78 364.70 365.18

LCCSD 329.34 358.95 365.85 366.34

Biorthogonal

Second 317.76 347.34 355.47 356.54

Third 322.82 351.37 357.89 358.17

Fourth 327.38 356.97 363.89 364.38

LCCSD 329.02 358.53 365.38 365.87

The second-, third- and fourth-order perturbation energies within the LCCSD model are presented as well as LCCSD energies. The

R12-MBPT(2)- A, R12-MP3, R12-MP4, R12-CCSD and R12-CCSD(T) energies are )362.69, )358.84, 371.54, 359.91 and )369.88
mEh, respectively with 301 basis functions [14].
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Basis set dependence of the correlation energies
for H2O is shown in Table 3. For the oxygen atom,
we use the primitive functions derived from the cc-
pVXZ (X¼D, T, Q and 5) basis sets augmented
with the d-, f-, and g-core polarization functions of
the corresponding cc-pCVXZ basis sets. This gives
rise to 9s4p1d, 10s5p3d1, 12s6p5d3f1g, and
14s8p7d5f3g sets. The corresponding primitive
functions of the cc-pVXZ basis sets are used for the
hydrogen atom except that the cc-pVQZ functions
are used with the 14s8p7d5f3g set. Although the
second-order correlation energies depend on the
choice of the reference, the differences of the cor-
relation energies quickly decrease as the perturba-
tion order increases. Both transcorrelated energies
almost coincide at the infinite order (LCCSD) for
each basis set. An important feature is that the
transcorrelated energies are almost saturated with
the 12s6p5d3f1g set in each order, while there is still
about 6 mEh difference between the conventional
energies obtained with the 12s6p5d3f1g and
14s8p7d5f3g sets. In Fig. 1, the transcorrelated
LCCSD energies and the conventional LCCSD,

CCSD, and CCSD(T) energies are plotted against
the cardinal number X of the parent cc-pVXZ basis
sets. The R12-CCSD and R12-CCSD(T) energies
with 301 basis functions [14] are also depicted by
the horizontal lines. The transcorrelated LCCSD
methods, the correlation energies of which lie be-
tween the R12-CCSD and R12-CCSD(T), recover
more correlation energies than the conventional
LCCSD, CCSD, and CCSD(T). The best tran-
scorrelated energy is higher than the R12-CCSD(T)
one by ca. 4 mEh. The fourth-order triples and
quadruples contributions, which are absent in the
present treatment, should recover most of the re-
maining correlation error.

5. Conclusions

We developed the LCC method using the
transcorrelated Hamiltonian. It was shown that
the transcorrelated Hamiltonian improves the
basis set convergence of the dynamic correlation
effects. This is because the correlation factor is
chosen to cancel the Coulomb singularity at short
inter-electronic distances. In other words, the
eigenfunction of the transcorrelated Hamiltonian
is almost free from the cusp behavior near the
coalescence of two electrons. Our choice of the
localized geminal (1) leads to favorable scaling
properties concerning the additional integrals in
the transcorrelated Hamiltonian, (2) makes the
contribution of the three-electron operator L
small, and (3) conforms the transcorrelated
Hamiltonian to the original Hamiltonian at large
inter-electronic distances and maintains the ordi-
nary molecular orbital picture. Especially, the
second feature allows us to use the approximate
resolution of identity to adequately represent the
secondary operator L. The computational re-
quirements of the transcorrelated calculations are
similar to the conventional methods. We used
spherically symmetric geminals in this work. Al-
though the introduction of geminals, which are
explicitly dependent on the electronic positions,
might improve the accuracy of the transcorrelated
method, the present treatment seems adequate as
long as we deal with molecules composed of the
atomic elements lighter than Ne.

Fig. 1. The transcorrelated LCCSD energies for H2O are

plotted with those of the conventional LCCSD, CCSD, and

CCSD(T) methods. LCCSD-PO and LCCSD-BO indicate the

transcorrelated LCCSD energies by the pseudo-orbital and

biorthogonal SCF methods, respectively. The horizontal dotted

and solid lines indicate the R12-CCSD and R12-CCSD(T)

energies with 301 basis functions [14].
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Multireference treatments will be required to
accurately describe excited states and potential
energy surfaces. These applications of the tran-
scorrelated Hamiltonian are straightforward and
we are planning to proceed with such develop-
ment.
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