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A biorthogonal formulation is applied to the non-Hermite transcorrelated Hamiltonian, which treats
a large amount of the dynamic correlation effects implicitly. We introduce biorthogonal canonical
orbitals diagonalizing the non-Hermitian Fock operator. We also formulate many-body perturbation
theory for the transcorrelated Hamiltonian. The biorthogonal self-consistent field followed by the
second order perturbation theory are applied to some pilot calculations including small atoms and
molecules. ©2001 American Institute of Physic§DOI: 10.1063/1.1408299

I. INTRODUCTION nonorthogonal orbitals. For instance, Mayer, Surjand co-
) ) workers proposed a method called the chemical Hamiltonian
The importance of the electron correlation effects hasapproach(CHA) (Refs. 23, 24 to eliminate the basis set

been widely appreciated b initio quantum chemistry. De- g nerposition errofBSSH. Gouyet discussed the intermo-
spite the successful developments of highly reliable correfo.yar interactiorf®26 using a nonhermite unperturbed

lated methods like coupled-cluster thedryost numerical _Hamiltonian. Biorthogonal perturbation formulas were de-
results are obtained with a finite number of one—electromq,ebped by Gouyéf'% and by Sufa and Maye?.7

basis functions. The slow convergence of such traditionafchikami and Block treated the exchange interactions be-
correlated methods is a direct consequence of the inability t,een monomers representing the interaction Hamiltonian

describe the correlation cusp: The inclusion of explicitly \\in nonorthogonal orbital® Cantu and co-workers pro-

correlated functions turned out to ameliorate this featw%osed an application to the valence baW@) theory?® They
dramatica_tll;ﬁ‘i‘i‘;r he uses of explicitly correlated Gaussian- giscyssed a group theoretical treatment to construct the VB
type g_enwl%l% and the functions with explicitly linear,  giates with definite spin symmetry from biorthogonal orbitals
behaviof"~**have been plugged into many-electron theories, g evaluate matrix elements. Norbeck and McWeeny per-
to provide highly accurate approaches. After the improveso meq preliminary VB calculations with biorthogonal
ments of scaling and feasibility, the explicitly correlated g piiq530

methods will play the most important role in contemporary s shortly review how operators are represented in the
quantum chemistry for reliable energetics with wide varietyga-ond quantized form using biorthogonal formulation in
including the potential energy surfaces of large molecules. gec |1 n Sec. 11I, we illustrate the transcorrelated Hamil-

Recently, Ten-no proposed the simple use of a similarity,nian approach and discuss the self-consistent field theory
transformed Hamiltonian, which is parameterized with ausing biorthogonal orbitals. In Sec. IV, we develop MBPT

1 ) i ina) 20.21 e g
fixed two-electronic function(gemina).”"** Hereafter the {5 the transcorrelated Hamiltonian based on the biorthogo-
Hamiltonian is referred to as the transcorrelated Hamlltomarha| formalism. In Sec. V, we report numerical results. We

after the former terminology of Boys and HarfyThe 5, explain the approximate calculations of three-electron

geminal is determined such that the singular behavior of th?ntegrals, which appear in the transcorrelated method. We
Coulomb potential is compensated at short interelectronig,,mmarize this work in Sec. VI.

distances. The accompanying correlation factor reproduces
the correlation cusp in the many-electronic wave function
appropriately. The non-Hermitian nature of the transcorrell- BIORTHOGONAL SECOND QUANTIZATION
lated Hamiltonian, however, makes the construction of a  The piorthogonal second quantization has been dis-
self-consistent field nontrivial. The problem was resolved by ssed in several literatur&¥2528:2234\e priefly show the
employing a modified Mgller—PlesséMP) partitioning”® ey features of the formulation. Let us suppose the bior-
with the usual hermite component of the Hartree—Focknogonal functions,
model Hamiltonian. Approximate ground state energies were
obtained at the second order perturbation level based on the A={x1.x2:--}, 2.9
pseudo-orbital theory with the partitioning. m={d1,dbs,...}, 2.2

In this paper, we propose an attractive alternative to treat

the transcorrelated Hamiltonian using biorthogonal formula-
tion, which has been applied to many electron theories with Xp(1) dg(1)d1= by, 23
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where the indicesp,q, ..., denote spin orbitals. For simplic- bracket vacuum$?%2° In what follows, we formulate a
ity, the one-electronic functions are assumed to be real. Thmany-body perturbation theory for the transcorrelated
field operators are expressed in terms of the biorthogonahethod.

functions, which span the complete one-electronic space as,

vr(1)= E by xp(1) (24 |1 TRANSCORRELATED HAMILTONIAN

The transcorrelated Hamiltonid??%%is defined as

V(1)= 1), 2. -
(1 % Cadal1) 29 FA=e FHe", (3.1

whereb, andc, are new creation and annihilation operatorswhich deals with the dynamic correlation effects accurately
corresponding to the biorthogonal functior, and x4, re-  through the correlation factoe™. The correlation factor is

spectively, dependent on the positions of electrons explicitly. The trans-
formation does not change the energy spectrum while the
b;:f ¢p(1)\lf+(1)d1, (2.6) effective Hamiltonian becomes non-Hermitian. This means

that the variational calculation does not necessarily give the
upper bound of the exact energy. The feature never becomes
CqZJ Xq(1)W(1)d1. (2.7 a major disadvantage in practical applications. In the recent

development®?ta spherically symmetric geminal
These definitions of the operators are mathematically equiva-

lent to the ones using the inverse of overlap integrals of the F=2 f(r) (3.2
nonorthogonal basis s&t?%282%310ne can express opera- =
tors in the second quantized form using the biorthogona,

: . s used to describe the Coulomb hole in the vicinityref
basis functions. The one-electron operator,

=0. Residual correlation effects are dealt with by the stan-

. dard expansions with one-electronic functiof$. is ex-
1_ 1
o _Ei g, (28 panded in a power series Bfas

. . - 1
is rewritten as H=H+[H,F]+§[[H,F],F], (3.3

f T (Do ()W (1)dl= E wpaPp Cq. (2.9 \which terminates at the double commut&# We can re-
write the transcorrelated Hamiltonian as
wpq=j Xp(1) @ (1) dg(1)d1. (2.10 H=H+K+L, 3.9

Similarly, the two-electron operator where the operator& andL, are in the biorthogonal form,

02=3 2(i,j), (2.19) 2 (palKigrs)by by cecy (3.9
i>]
1
becomes L=5 2 (parlLidstub;byb; cycics, (3.6
1 pgrstu
_E ; @parsbp bg €<y 4 (212 with the operators,
) , Kip==Vif(r1p) = Vif(ri)-Vif(ry)
wpqrs,:f pr(l)Xq(Z)w (1,2)¢r(1)¢s(2)d1d2(.2 5 V(1) (Vi=Vy), 3.7
' Lipg= =V 1f(rq2) - Vif(rq3) = Vaf(rag) - Vof(r
The Hermitian conjugate af, is notb,! unless the orbitay,, 123 11112 Vaf(119) = Vol (rag) - Vo (r2r)
coincides with¢, . The usual anticommutation relations hold —V3f(rz) - Vaf(ray). (3.8
for the biorthogonal operators, We parameterize the geminal using the least square fitting
{b, ,bg}=0, (2.143  such that the relation,
{cp.cqt=0, (2.14b VEF(r) +Vif(ri) - Vaf(r)=rwirgy), (3.9
bt cl=6 (2.149 holds approximatel§? wherew(r ;,) is a short-range weight
“ar ~ Opg :

function. Under this condition, we localize the correlation
The Wick theorem can be used for the calculation of operatofactor to keep the additional integrals, E¢3.7) and (3.98),
products. This fact enables us to use the conventional secondcreasing linearly to the system size, maintaining the proper
guantized formalism, i.e., the normal ordering and diagramdescription of the Coulomb cusp. The geminal is represented
matic techniques, for different determinatal states as differerity a linear combination of Gaussian functions,
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Ng The choice of the model Hamiltonian fulfills the Hellman—
f(ri)=—2, cgexpicrs,). (3.10  Feynmann theorem,
G
. . . ’ d - aH
We use another weight Gaussian function, exfjf7,) for a-(x(a)|H(a)|<I>(a)> :<X|O7—|(I)>. (3.20
o o

closed expressions in the least-square fitting. The present a=0

method does not treat the co_rrgla_ltion factor as a variationafherefore, molecular properties like the energy gradients are
parameter unlike the zgthéré including the original  gimply calculated in terms of the transformed molecular in-
transcorrelated methdﬂz_ This feature bypasses the com- teqrals and the reduced density matrix for the biorthogonal
plicated nonlinear optimization of the factor, which requireSstatesX andd. One disadvantage is that we have to manipu-
four electron integrals. The antisymmetrized part of the wavgate the time-consuming three-electron integrals iteratively.
function is treated efficiently with one-electronic basis funC'Fortunater our choice of the short-ranged geminal makes

tions since the transcorrelated Hamiltonian is almost fregne contribution ofL much less important tha and the
from the Coulomb singularity. The expansion series is €Xupproximate form of the model Hamiltonian

pected to converge much faster than the usual wave function
one. 7 qe-1 :
. . ' foa=hpqt i|r 5 +Kplgida, 3.2
We introduce the self-consistent field theory for the pa—pa Z (pilrsz +Kadldi)a (3.23
fcranscorrelated Ham|lton_|an_ using the biorthogonal formaI-WorkS pretty well as will be discussed in Sec. V.
ism. Henceforward, the indices,j,..., anda,b,..., denote
occupied and virtual orbitals in the biorthogonal basis, redV. MANY-BODY PERTURBATION FOR THE
spectively. Let us suppose the conjugate states consisting ®3RANSCORRELATED HAMILTONIAN
N biorthogonal occupied orbitals, Let us proceed with reviewing the biorthogonal pertur-
X= i -l 31 bation theory?>=2"
—lIXax2m NI (319 We derive perturbation formulas for the transcorrelated
D=y , (3.12 Haml_ltonlan following  the _ previous biorthogonal
[#162-ni theories?®>2"2°Suppose the partitioning,

with the normalization conditioq X|®)= 1. The variation to - o~
the energy functional, H=Hg+V. 4.1

The biorthogonal Slater determinants are assumed to be the

Esce=(X[H|®), (313 gigenfunctions of the non-Hermitian model Hamiltonian,
leads to the Brillouin theorem for the transcorrelated Hamil-ﬁo,
tonian, ~
(Ho—Eg)|®)=0, 4.2
(X|Hb, ¢i|®)=f,,=0, (3.19 (X|(Fig—Eg)=0. )
(X|b;" ¢ H|®)=T,=0. (3.159  The projection of the Scheinger equation,
The non-Hermite Fock operator is given by (H- E)Q|P)=0, (4.9

- — _ on the bra vector X|, gives the perturbation energy,
fpa= hpq+2i (pilr; +Kaai)a

E—Eo=(X|VQ|D), (4.5
1 B B where () is the wave operator. Using the projection opera-
+_2 <p|J|L123|qIJ>A7 (316) tors
2 1] '
whereh,, are the one-electron integrals in the biorthogonal P=[®)X], 4.6
basis and the antisymmetrized matrix elements are Q=1-P, 4.7
(palriz +Kidrs)a=(pari; +Kyjrs)—(pglr; and Eq.(4.4), we have
+Ky,Sr), 3.1 ~
12lS0) 317 O=1+ ——Q(z-E+V)Q, (4.8
(par|Lizdstupa=(par|Lizdstu)+(par|Lidtus) 2= Ho

for any numberz. Iterating the equation, we obtain the per-

+ riL st — riLipgsut
(ParlLizdush —(par|lzdsuf turbative formulas for the wave operator and energy,

—(par|Lidtsu)—(pgr|Ly,duts).

o m
(3.18 Q=2 | —Q(z-E+V)| , 4.9
m=Y1z—H
We can obtain the biorthogonal canonical orbitals by diago- 0
nalizing the Fock operator, ” - ™
E-Eo= >, (X|V|——Q(z—E+V)| |®). (4.10
Toa=epdpq- (3.19 m=0 z—Ho
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Setting the parameteg=E,, we obtain the biorthogonal
Rayleigh—Schrdinger serie$®2’
m

D).
(4.10)

Alternatively, we have the Brillouin—Wigner one with
z=E,

Q(E,—E+V)

0

E-Eo= 2, (XY

Eo

s}

E-Ep= > (X|V

m=0

m

1

E—Hg
Applying the patrtitioning,

QV

D). 4.12

Hozé qub;cng epbyCp, (4.13

<t

_ 1 B
= _E (qu—hpq)b;Cq"‘ E E <pq|r12l
pPq pars
+Kyrs)by by cscr

1
+ gpqErs (par|Lidstuyb byb e ciCs, (4.14

to the formula, Eq(4.11), we obtain the second order per-
turbation energy,

E?=EP+EP, (4.19

—p 1 GijabTabij

E@ ="' _ Zlabdabi 4.1
D 4ab|j 8i+8J_8a_8b ( @

— 1 ijk|Lq,5abcya{abcL ,5ijk

E2=_ (ijk|L1pgabca{abdlL,4ij >A' 417

36abcuk 8i+8j+8k_83_8a_8b
where we defined the matrix elements
@pqrs:<DQ|rle+K12|VS>A+Ei (pQilLipgrsi)a.  (4.18

If we use the approximate form of the Fock operd@®21),
the singles correction appears in the energy expression,

ER-ERER+ED, (4.19
1 ijk|Lq,dajk)a(ajk|L4ijk
552)2_2 (ijk|Liodajkya(ajk|Loodij >A. (4.20

4 37k €i " €4

Usually, the triples energfg{?, is negligibly small for our
localized geminal.

V. NUMERICAL METHOD AND RESULTS

For the application of the present biorthogonal method

the mampulatl(_)n_ of the three-electrqn integrals is _cruual be- gasis set At ER ER
cause the explicit calculation of the integrals requires a large

amount of CPU time and disk space. To avoid this difficulty,
the approximate completeness insertion,

(Pqr|Vifi- Vifipdstu)

E% (pa|V1fdwty-(wr|V,fy,[su), (5.1

Hino, Tanimura, and Ten-no

was used in the previous wofR.The formula however re-
quires all of the Cartesian components of the integrals,
(pq|V1f(rip|rs). Furthermore, it is difficult to adapt the
spatial symmetry. In this work, we employ an alternative
formula®® The operatorK ;,, is decomposed into the linear
and quadratic terms in the geminal as,

K= %(Kliz"' KI2_1)+K(1?2, (5.2
Ki=—V2f1,— 2V f1,- Vy, (5.3
K?zz —Vifio Vifoo. (5.9

Then the three-electron integrals are approximated by
1 L
(pqr|V1f12-V1f13|stu)z§§ (prIKzwu)(walfizst)

—(pdlfdwty(wr[K5|su)).
(5.9

The operatorsK1, andf,,, are antisymmetric and symmet-
ric to reduce the disk storage and to enable us to use the
molecular symmetries. In addition to these features, the ex-
pression increases the accuracy of the completeness inser-
tion. This is because the operators do not include extra mo-
mentum unlike the oneV;fi,, and do not increase the
necessary angular momentum of the expansion functiens,
We consistently use the spherical harmonic basis functions
for all the calculations.

A. Beryllium atom

We first apply the present biorthogonal MBRT to the
beryllium atom. The frozen geminal determined Q=5
with 6-component Gaussian functidfis is employed
throughout this work for all molecules consist of light atomic
elements. We use the primitive functions in the atomic natu-
ral orbitals (ANO) triple zeta set® 14s9p4d3f, and check
the convergence by removing the angular components outer
than thes-shell. The approximate expression of the Fock
operator(3.21) is used for the self-consistent scheme.

We compare the biorthogonal energies with the conven-
tional MBPT (2) results in Table I. The componemt,Egcr
+E?), can be attributed to the single determinant contribu-
tion of the reference to the correlation energy, where

AEgc=(X|H—Eye®). The singles energye?, is less
than 0.01 rk,,. This rationalizes the use of the approximate
Fock operator. The triples contributioE,(TZ), is always less

than 1uEy, and can be neglected practically. The reference

TABLE I. Biorthogonal MBPT energies of the beryllium atom Ey).?

EP®  AEg++E® MBPT(2)
14s 58.38 6.46 0.K10*  64.84 15.91
14s9p 58.38  18.82 1.210%  77.20 64.05
14s9p4d 58.38 2234 1.910%  80.72 68.29
14s9p4d3f 58.38 2333 1.910% 8171 69.45

2The Hartree—Fock energy is14.57299E,. Almost exact MBPT2) en-
ergy is—76.36 nE, (Ref. 39. The best R12-MBP{®) and R12-CCSDT)
energies are-76.25 and—94.29 nk,,, respectively(Ref. 19.
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TABLE II. Perturbation energies (By,) of the methane molecufe. TABLE Ill. Perturbation energies (B),) of the acetylene molecufe.

AEger EQY  E®  AEg+E®@ MBPT(2) CCSD CCSDT) AEser E® EP®  AEg+E® MBPT(2) CCSD CCSDT)
159.28 2.07 121.21 282.56 249.75 270.71 277.54 296.28 295 173.02 472.24 411.58 425.50 443.40
(59.03 (2.0 (-6.8) (109.15 (2.95 (—-14.39

&The numbers in the parentheses denote the contributidn ®he HF en-  ®The numbers in the parentheses denote the contributitn She HF en-
ergy is —40.21469E,. The R12-MBPT2)-A, R12-CCSD, and R12-  ergy is—76.85194E,. The extrapolated correlation energies aré55.0,
CCSOT) correlation energies are273.58,—288.56, and-295.95 nt;,, —460.6, and—480.2 nE,,, at MBPT(2), CCSD, and CCSO), respec-
respectively(Ref. 19. tively (Ref. 36.

tive scheme. The contribution a&f in AESCF, which is the

energy,AESC,:Jr E(Sz), covers~70% of the total correlation first ord i ith th imate Fock tor. i
energy and the residual is dealt with mainly by the doubles; ">t Order correction wi € approximate Fock operator, IS

E(DZ)' The best biorthogonal MBRZ) energy lies in between somewhat larger in comparison with the beryllium case ac-

the exact MBPT2) and R12-CCSIT) ones. This is because g;;gg‘r?;t%r;he increase of the number of electrons in the
the transcorrelated results implicitly include the quadruples ’ . .
plcitly q P The result of acetylene is given in Table IIl. The geo-

and higher excitations, which are similar to the disconnected . -
products in the coupled-cluster theory, as a result of the exnetical parameters used amcc= 1.2033A and Rey

ponential form of the correlation factor. We expect a clear_ }&?30;1:(&2) In Contrgst tc: tge ”:_tn etf;)ane ;Esull?t,ltzhecglg(;r)logo-
improvement by inclusion of higher order contributigh® " Energy 1s only © i, above e RLzs-

because the nondynamic correlation effects are important fgpne, since acetylene is strongly correlate_d In comparison
with methane due to the presence of the triple bond. Evalu-

the atom. . . .
ating the contrast improvement over the conventional meth-
ods, it is clear that the present transcorrelated Hamiltonian
B. Methane and acetylene considerably enhances the accuracy with such a minor modi-
The methane molecule was calculated using the modification of the correlated method. In the subsequent

fied MP partitioning® in the previous work. We apply the publication®**we will show the importance of higher-order

biorthogonal theory to the system to compare with the con€nergies in achieving the chemical accuracy.
ventional results including those of the R12 theory. Addition-
ally, we also calculate the acetylene molecule whose extrapdz- Water and neon
lated MBPT2), CCSD, and CCSO) energies are The application of the transcorrelated Hamiltonian has
available® The primitive basis functions are derived from peen even straightforward for systems consisting of light
the parent basis set, cc-pVTZ of DunnifigTo improve the  atomic elements. As the mass of a constituent atom in-
description around core, we augment the basis set for carbajteases, however, we have to pay attention to the radius of
with s-, p-, and d-primitives with the exponents, 41615.0, the correlation factor. This is because the linear behavior of
70.588, and 3.784305, respectively, which are even-temperefle correlation factot,f(r,,)=r,,, is adequate only in the
sequences of the original basis set. Other conditions follov§lowly varying limit of the wave function. If the momentum
the previous calculation. difference of electrons is large, the term,V,f(ry,)-(Vy

In Table Il, we show the result of methane. The calcula--v,), in K, can become a primary perturbation over the
tions are performed with the geometrical paramet®s,  Coulomb repulsion at somewhat large interelectronic dis-
=1.0848A and £HCH=109.47°. The conventional tances. This makes the second-order treatment inappropriate
MBPT(2) energy is about 25H, above the R12- especially for pair correlations including core electrons. Fur-
MBPT(2)-A one, whereas the presemiEgc+E® is  thermore, the uncertainty in the completeness insertion in-
—282.56 nk;,, which is in between R12-MBRZ®)-A and  creases according to the dominancd.ads described in the
R12-CCSDT). This agrees with the previous transcorrelatedprevious worlé® For instance, the three-body contribution to
result using the modified MP partitionirf§.The singles en- the total energy becomes as large-a5000 nE,, for Ne with
ergy, —2.07 nE,,, is purely from the operatdr and is suf- the geminal derived in the previous study. In order to reduce
ficiently small to be treated perturbationally outside the iterathe uncertainty from the completeness insertion lfprwe

TABLE IV. Perturbation energies (&) of water?

Basis set HF AEscrtERY) AEgtE®  MBPT(2) CCSD  CCSOT)
9s4pild 76030.43 103.16 317.27 257.74 266.34 271.24
10s5p3d1f 76 057.32 101.40 347.04 318.46 325.06 333.40
12s6p5d3flg 76 064.89 101.12 354.88 341.90 345.74 355.27
14s8p7d5f3g 76 066.87 101.05 356.23 348.89 351.48 361.36

@Almost exact MBPT2) energy is —361.4 nE, (Ref. 41). The R12-MBPT2)-A, R12-CCSD, and R12-
CCSOT) energies are-361.691,—359.312, and-369.228 nk,,, respectively(Ref. 19. The Gaussian-type
geminals MBPT2) is —356.43 nf;, (Ref. 40.
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FIG. 1. Correlation energies of water for the cardinal number X in the

cc-pVXZ basis set series augmented with the core polarization functions ofIG. 2. Correlation energies of neon for the cardinal number X in the
cc-pCVXZ. Bio-MBPT(2), MBPT(2), CCSD, and CCSIY) mean the bior-  cC-pVXZ basis set series augmented with the core polarization functions of
thogonal MBPT?2), conventional MBPT2), CCSD, and CCSO), respec-  CCc-pCVXZ. Bio-MBPT(2), MBPT(2), CCSD, and CCSOI) mean the bior-
tively. thogonal MBPT2), conventional MBPT2), CCSD, and CCSO)), respec-

tively.

parameterize a tight geminal for systems including heavy

elements using the weight exponefyt=20. The three-body erable improvements over the conventional MBBT One
contribution does not exceed 140 nky, for the present sys-  pqteg the single determinant contributiahEsc+ E), is
tems under this condition. We use an even-tempered Sguch |ess sensitive to the basis set in comparison with the
quence of 6 Gaussian-type functions with the range Ofpange of the HF energy. The biorthogonal MEPiTener-
Gaussian exponents between 9040.0 and 0.52. We also INV€Sies is always superior to the conventional MBPTand
tigate the basis set convergence for water and neon usingcsp for the present basis sets. The CCBDhowever
primitive functions for the heavy atoms derived from the gains more correlation energy atsBb5d3flg due to the
parent basis sets, cc-pVX@&ef. 37 (X=D, T, Q and 3. importance of connected triples which are absent in the
The primitive sets are augmented with @ f-, andg-core  yanscorrelated MBR®). The energy difference between the
polarization fgncu_ons in the corresponding cc-pCXR&ef. 10s5p3d1f and 148p7d5f3g sets is only 9 ri&, in our

38) sets. This gives rise to thes@pld, 10s5p3dlf,  spproach, which is less than one-third of the conventional
12s6p5d3flg, and 148p7dsf3g sets, respectively. The \ppT(2). This manifest improvements in the converge be-

corresponding primitive sets from cc-pVXZ are used for hy-payior is due to the absence of Coulomb singularity in the
drogen with the exception that cc-pVQZ is used for the larg+anscorrelated Hamiltonian.

est oxygen set, 8p7d5f3g. The contributions oE{?) are We also show the results for the neon atom in Table V
estimated for 186p3d1f. We do not discuss the effect in and Fig. 2. The correlation energies of the biorthogonal
more detail since the absolute valuesﬂf) are less than MBPT(2) are closer to the R12-CCSD) one than those of
0.01 nE,;, under the above conditions. the conventional MBP{R), CCSD, and CCS[). The best
The correlation energies of the water molecule arebiorthogonal MBPT2) energies of water and neon are very

shown in Table IV and Fig. 1. We use the bond length anctlose to those of Gaussian-type geminals MBBTThe ac-
bond angle,Roy=0.9573A and ~HOH=104.52°. It is curacy of the present fit for the correlation factor is 95.7%,
shown that the biorthogonal MBRZ) energies yield consid- which is less than the previous one, 98.7%, in which both the

TABLE V. Perturbation energies (&) of Ne?

Basis set HF AEscrtEY) AEg++E®  MBPT(2) CCSD  CCSB)
9s4pild 128 488.78 190.99 366.31 255.48 257.48 259.64
10s5p3d1f 128531.86 187.69 381.17 330.53 332.81 337.68
12s6p5d3flg  128543.47 183.66 385.31 360.63 361.84 368.85
14s8p7d5f3g  128546.77 183.47 385.60 370.69 370.78 377.24

@Almost exact MBPT2) energy is —387.9 nE, (Ref. 42. The R12-MBPT2)-A, R12-CCSD, and R12-
CCSOT) energies are-388.311,—383.823, and-390.508 nk,, respectively(Ref. 19. The Gaussian-type
geminals MBPT2) is —385.3 nE,, (Ref. 43.
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